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Abstract—Generalized injection shift factors (ISFs) are the
sensitivities of active-power line flows to active-power bus injec-
tions. They are computed without designating an artifactual slack
bus in the power network; therefore, conceptually, they reflect
sensitivities of power flows more accurately than conventional
ISFs, the values of which depend on the choice of the slack
bus. This paper derives analytical closed-form expressions for
generalized ISFs from a perturbative analysis of the AC circuit
equations. In addition, they are computed from a system of
linear equations that arise from high-frequency synchronized
measurements collected from phasor measurement units. As an
application, generalized ISFs are used to predict active-power
line flows during the transient period following a contingency by
leveraging inertial and governor power flows over appropriate
time horizons.

Index Terms—Distribution factor, injection shift factor, moni-
toring, phasor measurement units, sensitivity.

I. INTRODUCTION

POWER system operational reliability is monitored and
maintained with a suite of online static and dynamic

security-assessment tools that allow operators to assess
whether or not the system is capable of withstanding a wide
variety of disturbances, such as sudden loss of a generator or
load. Dynamic security assessment tools indicate the ability
of the system to withstand transients induced by disturbances
prior to reaching steady-state operation at a new operating
point [1]. On the other hand, static security assessment tools
examine the system in steady-state operation.

A common security assessment tool is real-time N − 1
contingency analysis, in which operators determine whether or
not the system would meet operational reliability requirements
in case of an outage in any one particular asset [2]. With
an accurate model of the system, operators can perform the
N − 1 security analysis by repeatedly solving the nonlinear
power flow equations. However, for a large power system with
many possible contingencies, this process is computationally
expensive, and therefore could take prohibitively long periods
of time. An alternative is to use an estimate of the current oper-
ating point together with linear sensitivity distribution factors
(DFs) in order to predict values of different variables following
the occurrence of a contingency [3]. For example, the so-
called power transfer distribution factor (PTDF) approximates
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the changes in active-power line flows due to an exchange of
active power between two buses. In general, such line flow
DFs can all be derived from the injection shift factor (ISF),
which approximates the change in active-power flow across a
transmission line due to a change in active-power generation
or load at a particular bus.

In this paper, we develop the notion of a generalized ISF.
Computed via a perturbative analysis of the AC circuit equa-
tions around a particular operating point, the generalized ISF
is agnostic to the location (and even existence) of a slack bus.
Indeed, the concept of the generalized ISF represents an im-
portant step in removing the dependence on slack bus location
in steady-state power system studies. Additionally, leveraging
results from previous work in [4], we estimate generalized
ISFs by using real-time measurements without relying on an
offline model of the system. Such measurement-based methods
have been shown to be robust to undetected system-topology
and operating-point changes [4]. The proposed generalized
ISFs are utilized—based on the propagation of disturbances
over time-scales for which inertial and governor power flows
are valid [5]—to predict active-power line flows during the
transient period following a disturbance.

Conventional ISFs are computed by linearizing the power
flow equations around an operating point with a designated
slack-bus location; then, they can be used to predict post-
contingency steady-state active-power line flows [6]. The
generalized ISFs presented in this work offer three compelling
advantages over conventional ISFs. First, conventional ISF
values differ depending on the choice of slack bus [7]. This
is because conventional ISFs are derived from the power
flow equations formulated by designating a slack bus, with
the corresponding generator assumed to compensate for any
power imbalances in the system. Second, the computation of
conventional ISFs relies on an accurate model of the system,
which may not be available due to poor records or erroneous
telemetry from remotely monitored circuit breakers [8]. On
the other hand, generalized ISFs can be computed from high-
frequency synchronized measurements collected from phasor
measurement units (PMUs). Finally, traditionally, ISFs (and
DFs in general) have been used exclusively to verify that
operational reliability requirements are met (see, e.g., [6]–
[10]). Based on the propagation of disturbances over time-
scales for which inertial and governor power flows are valid,
we estimate active-power line flow limit violations not only
at the post-contingency steady-state operating point, but also
during the post-disturbance transient period.

This paper builds on preliminary work reported in [11],
and enhances it in several directions. First, from a circuit-
theoretic vantage point, we establish an analytical derivation
for generalized ISFs that does not depend on the location of
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the slack bus. The process uncovers and formalizes intuitive
connections between power-flow and current-flow sensitivity
factors. Furthermore, by revisiting assumptions underlying the
definition of widely accepted power system linear sensitivity
factors, we extend the utility of power-flow sensitivities to
large-scale power-system dynamic operational reliability mon-
itoring. Finally, to demonstrate these aspects, we show how
generalized ISFs can predict post-contingency transient line
flows via case studies involving the simplified Western Elec-
tricity Coordinating Council (WECC) and the New England
test systems.

The remainder of the paper is organized as follows. In Sec-
tion II, we establish mathematical notation, introduce voltage
phase-angle and magnitude sensitivities, define the conven-
tional ISFs, and describe the conventional model-based method
to obtain them. In Section III, we define the generalized
ISFs and provide model- and measurement-based methods to
obtain them. Generalized ISFs, as we show in Section IV,
can be manipulated to recover conventional ISFs, and to
predict transient active-power line flows after a disturbance.
In Section V, we illustrate applications of generalized ISFs
via case studies involving the WECC 3-machine 9-bus and
the New England 10-machine 39-bus test systems. Finally,
concluding remarks are provided in Section VI.

II. PRELIMINARIES

This section first introduces the notation and power system
model used in the remainder of the paper. Next, we derive
sensitivities of bus-voltage phase-angles and magnitudes with
respect to active-power bus injections, which are used to
compute conventional ISFs. Finally, we provide an example
to motivate the need for generalized ISFs.

A. Notation and Power System Model

Matrix transpose will be denoted by (·)T, complex con-
jugate by (·)∗, complex-conjugate transposition by (·)H, real
and imaginary parts of a complex number by Re{·} and
Im{·}, respectively, and j :=

√
−1. A diagonal matrix formed

with entries of the vector x is denoted by diag(x); and
diag(x/y) forms a diagonal matrix with the ith entry given
by xi/yi, where xi and yi are the ith entries of vectors x
and y, respectively. The spaces of N × 1 real-valued and
complex-valued vectors are denoted by RN and CN , respec-
tively. Given a vector function f(x) = [f1(x), . . . , fM (x)]T :
RN → RM , ∇xf(x) returns the M × N Jacobian matrix
[∇xf1(x)T, . . . ,∇xfM (x)T]T, where, for each i = 1, . . . ,M ,
the gradient ∇xfi(x) = [∂fi(x)/∂x1, . . . , ∂fi(x)/∂xN ]. The
N×N identity matrix is denoted by IN . The M×N matrices
with all zeros and ones are denoted by 0M×N and 1M×N ,
respectively; ei denotes a column vector of all zeros except
with the ith entry equal to 1; and eij denotes a column vector
of all zeros except with the ith and jth entries equal to 1
and −1, respectively. For a vector x = [x1, . . . , xN ]T, xi ∈
[−π, π] ∀ i = 1, . . . , N , cos(x) := [cos(x1), . . . , cos(xN )]T

and sin(x) := [sin(x1), . . . , sin(xN )]T. Finally, Π` :=
[e1, . . . , e`−1, e`+1, . . . , eN ] ∈ RN×N−1.

Consider a power system with N buses, and let L denote the
set of transmission lines and N the set of buses in the system.
Denote the bus admittance matrix by Y ∈ CN×N . Further, let
V = [V1, . . . , VN ]T = |V |∠θ, where Vi = |Vi|∠θi ∈ C repre-
sents the voltage phasor at bus i, and let I = [I1, . . . , IN ]T,
where Ii ∈ C denotes the current injected into bus i (through
a path not included in Y ). Then, Kirchhoff’s current law for
the buses in the power system can be compactly represented
in matrix-vector form as follows:

I = Y V. (1)

In (1), Y ∈ CN×N is the admittance matrix defined as

[Y ]mn :=


ym +

∑
(m,k)∈L ymk, if m = n,

−ymn, if (m,n) ∈ L,
0, otherwise,

(2)

where ym = gm + jbm = ymm +
∑

(m,k)∈Nm
yshmk denotes

the total shunt admittance connected to bus m with Nm
representing the set of neighbours of bus m and ymm ∈ C
any passive shunt elements connected to bus m.

Denote the vector of complex-power bus injections by S =
[S1, . . . , SN ]T = P + jQ, with P = [P1, . . . , PN ]T and Q =
[Q1, . . . , QN ]T. [By convention, Pi and Qi are positive for
generators and negative for loads.] Then, complex-power bus
injections can be compactly written as

S = diag (V ) I∗. (3)

The bus-voltage angles are collected in the vector θ =
[θ1, . . . , θN ]T, θi ∈ [−π, π]. The following auxiliary bus-
voltage-angle and power related variables will be useful:

θm := θ − θm1N×1, θ̃m := ΠT
mθ

m,

P̃m := ΠT
mP, Q̃m := ΠT

mQ, (4)

where θm is obtained by setting the system angle reference
as θm (the voltage angle at bus m). In (4), θ̃m, P̃m, and
Q̃m denote the (N − 1)-dimensional vectors that result from
removing the mth entry of the N -dimensional vectors θm,
P , and Q, respectively. For example, suppose N = 3, and
θ = [θ1, θ2, θ3]T. For m = 2, it follows that θ2 = [θ1 −
θ2, 0, θ3 − θ2]T, and θ̃2 = [θ1 − θ2, θ3 − θ2]T.

B. Bus-voltage Phase-angle and Magnitude Sensitivities

Let the angle reference be established by the voltage phase
angle at bus m. Then, leveraging the definitions in (4), the
power-flow equations can be written compactly as follows:

fm
(
θ̃m, |V |, P̃m, Q

)
= 0(2N−1)×1, (5)

where the superscript m indicates that fm is formulated by
setting the angle reference to bus m. In (5), the dependence on
network parameters, such as line series and shunt impedances,
is implicit in the formulation of the function fm.

Denote the solution to (5) by (θ̃m? , |V?|, P̃m? , Q?), and
assume fm is continuously differentiable with respect to θ̃m,
|V |, P̃m, and Q at (θ̃m? , |V?|, P̃m? , Q?). Let θ̃m = θ̃m? + ∆θ̃m,
|V | = |V?|+ ∆|V |, P̃m = P̃m? + ∆P̃m, and Q = Q? + ∆Q.
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Then, by assuming that ∆θ̃m, ∆|V |, ∆P̃m, and ∆Q are
sufficiently small, we can approximate (5) as

fm
(
θ̃m, |V |, P̃m, Q

)
≈ fm

(
θ̃m? , |V?|, P̃m? , Q?

)
+ Jm

[
∆θ̃m

∆|V |

]
+Dm∆P̃m + Em∆Q, (6)

where

Jm = ∇[θ̃m,|V |]f
m
(
θ̃m, |V |, P̃m, Q

) ∣∣∣
(θ̃m? ,|V?|,P̃m

? ,Q?)

Dm = ∇P̃mf
m
(
θ̃m, |V |, P̃m, Q

) ∣∣∣
(θ̃m? ,|V?|,P̃m

? ,Q?)

Em = ∇Qfm
(
θ̃m, |V |, P̃m, Q

) ∣∣∣
(θ̃m? ,|V?|,P̃m

? ,Q?)
.

(7)

The subscript m for the quantities Jm, Dm, and Em indicates
that they are obtained by setting the angle reference to bus m.

Since (θ̃m? , |V?|, P̃m? , Q?) is a solution to (5), then
fm(θ̃m? , |V?|, P̃m? , Q?) = 0(2N−1)×1. Also, for all application
studies in the paper, we assume power flow balance is satis-
fied, which requires that fm(θ̃m, |V |, P̃m, Q) = 0(2N−1)×1.
Furthermore, ∆θ̃m, ∆|V |, ∆P̃m, and ∆Q are assumed to be
small. With these in mind, it follows from (6) that

0 ≈ Jm
[

∆θ̃m

∆|V |

]
+Dm∆P̃m + Em∆Q. (8)

In addition, since Jm is the Jacobian of the power flow
equations evaluated at a nominal non-stressed operating point,
we assume it is invertible around (θ̃m? , |V?|, P̃m? , Q?), so we
can rearrange terms in (8) to obtain[

∆θ̃m

∆|V |

]
≈ −J−1m

(
Dm∆P̃m + Em∆Q

)
= −J−1m

(
DmΠT

m∆P + Em∆Q
)
, (9)

where the second equality in (9) follows from (4).

C. Conventional Injection Shift Factors

Denote, by Ψ`
(m,n),i, the ISF of line (m,n) ∈ L (assume

positive real power flow from bus m to n measured at bus
m) with respect to bus i, which is the linear approximation
of the sensitivity of the active power flow in line (m,n) with
respect to the active-power injection at bus i, with the slack
bus location specified as bus `. In the conventional power flow
formulation, the slack bus sets the angle reference, and the
generator connected to it absorbs any power imbalance in the
system. With this assumption in place, similar to (5), the power
flow equations can be written compactly as

f `
(
θ̃`, |V |, P̃ `, Q

)
= 0(2N−1)×1. (10)

Following an analogous development as in (5)–(9), where all
instances of m are substituted with `, and neglecting ∆Q by
setting ∆Q = 0N×1, (9) becomes[

∆θ̃`

∆|V |

]
≈ −J−1` D`∆P̃

`. (11)

Denote the active-power injection at bus i and flow in line
(m,n) by Pi and P(m,n), respectively. Further, assume all

quantities in the system remain constant except a small change
in Pi, denoted by ∆Pi. Denote the resulting change in P(m,n)

by ∆P(m,n),i. Then, define

Ψ`
(m,n),i :=

∂P(m,n)

∂Pi
≈

∆P(m,n),i

∆Pi
. (12)

Conventional ISFs can be computed with a power flow
model of the system obtained offline. We begin by expressing
the current through line (m,n) ∈ L as

I(m,n) = y(m,n)(Vm − Vn) + ysh
(m,n)Vm, (13)

where y(m,n) ∈ C\{0} is the admittance of the line connecting
buses m and n, and ysh

(m,n) ∈ C \ {0} is the shunt admittance
at bus m. Denote, by S(m,n) = P(m,n)+jQ(m,n), the complex
power flowing across line (m,n), which is expressed as

S(m,n) = VmI
∗
(m,n). (14)

Substituting (13) into (14), and isolating the real part, we
obtain

P(m,n) = Re{S(m,n)} =: h(m,n)(θ̃
`, |V |). (15)

Under the same small ∆θ̃` and ∆|V | assumption used to
derive (11), we obtain an expression for small variations
∆P(m,n) due to ∆θ̃` and ∆|V |, as follows:

∆P(m,n) ≈ [w1, w2]

[
∆θ̃`

∆|V |

]
, (16)

where

w1 = ∇θ̃`h(m,n)
(
θ̃`, |V |

)∣∣∣
(θ̃`?,|V?|)

,

w2 = ∇|V |h(m,n)
(
θ̃`, |V |

)∣∣∣
(θ̃`?,|V?|)

.

Substituting (11) into (16), we get that ∆P(m,n) ≈
Ψ`

(m,n)∆P̃
`, Ψ`

(m,n) ∈ R1×(N−1), where the conventional
ISFs in (12) are recovered as the entries of

Ψ`
(m,n) = −[w1, w2]J−1` D`. (17)

D. Motivation for Generalized Injection Shift Factors

The derivation of the sensitivity factor in (17) assumes
steady-state operation and a predefined slack bus, i.e., bus `.
However, a power system exhibits dynamic behaviour, and the
notion of a single slack bus that absorbs all power imbalances
in the system is only valid for static power-flow analysis. As a
result, conventional ISFs do not provide accurate results when
system dynamic behaviour is considered, a shortcoming that
we exemplify via the following example.

Example 1 (3-Bus System): To illustrate the motivation for
deriving generalized ISFs, consider a simple 3-bus system
connected in a ring formation. Transmission lines are modelled
with lumped parameters, where y12 = 1.3652− j11.6041 p.u.,
ysh12 = j0.088 p.u., y23 = 0.7598 − j6.1168 p.u., ysh23 =
j0.153 p.u., y13 = 1.1677 − j10.7426 p.u., ysh13 = j0.079 p.u.
In this system, generators are connected to buses 1 and 2,
injecting P1 = 1.5973 p.u. and P2 = 0.7910 p.u. respectively.
A load is connected to bus 3, with active-power injection P3 =
−2.35 p.u. and reactive-power injection Q3 = −0.5 p.u..
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The voltage magnitude at buses 1 and 2 are regulated at
|V1| = 1.04 p.u. and |V2| = 1.025 p.u., respectively.

Suppose bus 1 is set as the slack bus, i.e., ` = 1.
Let Ψ1

(m,n) = [Ψ1
(m,n),1,Ψ

1
(m,n),2,Ψ

1
(m,n),3]. Computed us-

ing (17), the conventional ISFs for this system are

Ψ1
(1,2) =

[
0 −0.7529 −0.2792

]
,

Ψ1
(2,3) =

[
0 0.2478 −0.2792

]
,

Ψ1
(1,3) =

[
0 −0.2466 −0.7415

]
.

By definition, the ISFs with respect to the slack bus are 0. On
the other hand, if ` = 2, then conventional ISFs are

Ψ2
(1,2) =

[
0.7368 0 0.2479

]
,

Ψ2
(2,3) =

[
−0.1301 0 −0.4128

]
,

Ψ2
(1,3) =

[
0.4254 0 −0.5037

]
.

The above demonstrates that vastly different numerical ISF
values can result depending on the designated slack bus loca-
tion. The concept of generalized ISFs, which do not depend
on an arbitrary slack bus, improves upon this. Moreover,
Section IV demonstrates that the proposed generalized ISFs
can be used to recover conventional ISFs as well as to predict
active-power line flows during the transient period between
two steady-state operating points. �

III. MODEL- AND MEASUREMENT-BASED ESTIMATION OF
GENERALIZED ISFS

Consider the power system model described in Section II-A.
Beginning with a valid power flow solution, instead of desig-
nating an explicit slack bus ` as in the derivation of conven-
tional ISFs (see Section II-C), define the generalized ISF of
line (m,n) with respect to bus i as

Γ(m,n),i :=
∂P(m,n)

∂Pi
≈

∆P(m,n),i

∆Pi
, i ∈ N , (18)

where ∆Pi denotes small variation in Pi and ∆P(m,n),i repre-
sents the change in active power flow in line (m,n) (measured
at bus m) resulting from ∆Pi. Also, collect Γ(m,n),i’s in
the row vector Γ(m,n) ∈ R1×N . Note that Γ(m,n) captures
sensitivities with respect to active-power injections at all buses,
which is in contrast to Ψ`

(m,n) in (17). The remainder of
this section details two methods for obtaining the generalized
ISFs defined in (18) by: (i) computing them from the AC
circuit equations, and (ii) estimating them using active-power
injection and flow measurements obtained in real time.

The derivation of the generalized ISF relies on a few
preliminaries; these include: (i) a derivation of sensitivities
of line-current flows to current injections, (ii) a matrix-based
representation of active-power line flows, and (iii) a pertur-
bative analysis of active-power line flows that is agnostic to
explicitly designating a slack bus.

A. Current Injection Sensitivities

The derivation of current injection sensitivities begins by
rewriting the current through line (m,n) from (13) as

I(m,n) =
(
y(m,n)e

T
mn + ysh

(m,n)e
T
m

)
V, (19)

where V ∈ CN is the vector of bus voltage phasors. If the
bus admittance matrix, Y , is invertible,1 then from (1), the bus
voltages can be expressed as V = Y −1I . Subsequently, (19)
can be written as I(m,n) = aT(m,n)I , where

aT(m,n) =
(
y(m,n)e

T
mn + ysh

(m,n)e
T
m

)
Y −1 ∈ C1×N . (20)

The entries of a(m,n) correspond to the current injection
sensitivity factors of line (m,n) with respect to the current
injection at bus i. Note that the current injection sensitivity
factors only depend on network parameters, and not on the
operating point.

B. Active-power Injection Sensitivities

Our derivation of the generalized injection shift factors is
grounded on computing the sensitivity of a matrix-related
expression for the active-power line flows and recognizing
their relationship to line currents. To this end, instead of the
approach in (14)–(17), we combine (20) together with (14) to
obtain

S(m,n) = Vma
H
(m,n)I

∗ = eTmV a
H
(m,n)I

∗. (21)

Eliminating I∗ from (21) using (3) yields

S(m,n) = eTmV a
H
(m,n) (diag (V ))

−1
S. (22)

Using the phasor form of the voltages, (22) becomes

S(m,n) = (|Vm|∠θm) aH(m,n)diag

(
1N×1
|V |∠θ

)
S. (23)

Since line power flows are often expressed as functions of
angle differences, it is useful to rewrite (23) as

S(m,n) = |Vm|aH(m,n)diag

(
1N×1 (1∠θm)

|V |∠θ

)
S

= |Vm|aH(m,n)diag

(
1N×1
|V |
∠ (−θm)

)
S, (24)

where θm = θ − θm1N×1. To focus on active-power line
flows, it is useful to decompose the current injection sensitivity
factors as

a(m,n) = α(m,n) + jβ(m,n), (25)

which enables us to express the real part of (24) as

P(m,n) = eTm|V |
(
uTP + vTQ

)
=: p(m,n)(θ

m, |V |, P,Q), (26)

where

u := diag

(
cos θm

|V |

)
α(m,n) − diag

(
sin θm

|V |

)
β(m,n), (27)

v := diag

(
sin θm

|V |

)
α(m,n) + diag

(
cos θm

|V |

)
β(m,n). (28)

Note that p(m,n) in (26) is a function of active- and reactive-
power injections at all buses. With these preliminaries in place,
next we state the main result of this paper.

1The inclusion of the shunt admittance term in (19) intrinsically guarantees
invertibility of Y by inducing diagonal dominance [12].
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Consider the active-power flow in line (m,n). Suppose the
originating bus m sets the angle reference and the solution
to (5) is denoted by (θm? , |V?|, P?, Q?). Then, small variations
in the active-power flow through line (m,n) are related to
small variations in the active-power bus injections by way of
∆P(m,n) ≈ Γ(m,n)∆P , where

Γ(m,n) = −[r1, r2]J−1m DmΠT
m + s1, (29)

with r1 ∈ R1×N−1, r2 ∈ R1×N , s1 ∈ R1×N given by

r1 = eTm|V |
(
uTΠmdiag(Q̃m)− vTΠmdiag(P̃m)

)
, (30)

r2 =
(
PTu+QTv

)
eTm − eTm|V |

(
uTdiag

(
P

|V |

)
+ vTdiag

(
Q

|V |

))
, (31)

s1 = eTm|V |uT, (32)

and u and v as defined in (27) and (28). The quantities
u, v, r1, r2, and s1 are all evaluated at the nominal power flow
solution (θm? , |V?|, P?, Q?). The derivation of (29) is provided
in Appendix A.

The expressions in (29) and (30)-(32) yield sensitivity
factors of P(m,n) with respect to entries of the active-power
injection vector, P , for a special case. Assume a flat voltage
profile, i.e., |Vi| = 1 p.u. and θi ≈ 0◦, for all i ∈ N . With
these assumptions, (29) reduces to

Γ(m,n) = αT
(m,n). (33)

In other words, the power-flow sensitivities reduce to the line
current-flow sensitivities, which makes intuitive sense.

C. Measurement-based Estimation of Generalized ISFs

In Section III-B, we derived closed-form expressions for the
generalized ISF using an up-to-date model of the system. On
the other hand, PMUs, which provide synchronized voltage,
current, and frequency measurements as many as 60 times
per second [13], enable us to estimate generalized ISFs in real
time. For case studies in Section V, a sampling rate of 30 Hz is
used. The measurement-based method relies only on inherent
fluctuations in measurements of load and generation and is
thus adaptive to operating point and topology changes [4].
This section tailors the measurement-based ISF estimation
approach proposed in [4] (and further refined in [14]) to obtain
generalized ISFs in real-time, using active-power bus injection
and line flow measurements.

Let Pi(t) and Pi(t+ ∆t) denote the active-power injection
at bus i at times t and t + ∆t, respectively (∆t > 0 can be
interpreted as the PMU sampling period). Define ∆Pi(t) =
Pi(t + ∆t) − Pi(t) and denote the change in active power
flow in line (m,n) resulting from ∆Pi(t) by ∆P(m,n),i(t).
The generalized ISF, Γ(m,n),i, can be computed based on the
approximation in (18). However, (18) requires ∆P(m,n),i(t),
which is not readily available from PMU measurements.
Instead, assume that the net variation in active power through
line (m,n), denoted by ∆P(m,n)(t), is available from PMU
measurements. Further, decompose this net variation as the

sum of active power variations in line (m,n) due to active-
power injection variations at each bus i:

∆P(m,n)(t) =

N∑
i=1

∆P(m,n),i(t). (34)

Substitution of (18) into each term in (34) yields

∆P(m,n)(t) ≈
N∑
i=1

∆Pi(t)Γ(m,n),i. (35)

Suppose M+1 sets of synchronized active-power bus injection
and line flow measurements are available. Let

∆Pi[k] = Pi((k + 1)∆t)− Pi(k∆t),

∆P(m,n)[k] = P(m,n)((k + 1)∆t)− P(m,n)(k∆t),

k = 1, . . . ,M ; and define

∆P(m,n) =
[
∆P(m,n)[1] · · · ∆P(m,n)[M ]

]T
,

∆Pi =
[
∆Pi[1] · · · ∆Pi[M ]

]T
.

For ease of notation, let ∆P represent the M × N matrix
[∆P1, . . . ,∆Pi, . . . ,∆PN ], where N denotes the number of
buses in the system; then, it follows that

∆P(m,n) = ∆PΓT
(m,n). (36)

If M ≥ N , then (36) is an overdetermined system. Via
weighted least-squares (WLS) estimation, the solution for
Γ(m,n) can be obtained as [4]:

Γ̂T
(m,n) = (∆PTW∆P )−1∆PTW∆P(m,n), (37)

where W ∈ RM×M is a weighting matrix. Often, W is
designed to place more importance on recent measurements
and less on earlier ones. Note that, if W = IM , i.e., all
measurements within the estimation time window are weighted
equally, then (37) reduces to the solution of a least-squares
errors (LSE) estimation problem.

The formulation in (37) assumes that all buses are equipped
with PMUs. To relax this requirement, consider the intuition
that most line flows are significantly affected by only a
small set of electrically nearby buses (this intuition is verified
in [14]). With this in mind, (37) can be modified so as to
reduce the number of required measurement locations in the
system. This observation, in combination with the fact that, in
a practical large-scale power system, only major transmission
corridors are monitored, would greatly reduce the number
of PMUs required in the measurement-based ISF estimation
method.

IV. APPLICATIONS OF GENERALIZED ISFS

While the derivation of generalized ISFs does not depend
on the location of a slack bus or any power allocation
schemes, in this section, we show that the generalized ISFs
can be used in conjunction with power allocation schemes to
yield meaningful line-flow predictions. Most generally, power
allocation schemes are based on the idea of a distributed
slack bus, where any system power imbalance is absorbed
by several buses [15], [16]. For example, in the context of
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contingency analysis, multiple generators may respond to a
loss in generation or increase in load. Based on this fact, we
utilize generalized ISFs to predict the active-power line flows
during the transient period following a loss of generation or
increase in load. Moreover, conventional ISFs can be recovered
as a special case by assuming that a single generator at a
designated slack bus absorbs all power imbalances caused by
the contingency.

A. Obtaining Participation Factor-based ISFs

Suppose we are interested in the sensitivity of the active-
power flow in line (m,n) with respect to a particular injection
at bus i, denoted as ∆Pi, and this injection is balanced by
some linear combination of injections at other buses, i.e.,

∆Pj = −γj∆Pi,
∑
j 6=i

γj = 1. (38)

The participation factors γj’s can be chosen based on insights
gleaned from economic dispatch, governor control, or syn-
chronous generator inertia [5]. For example, generator inertia-
based participation factors are obtained by defining

γj =
Hj∑
j Hj

, (39)

where Hj denotes the inertia of the synchronous generator
j in the system [17, Ch. 5]. Similarly, governor participation
factors are obtained by defining

γj =
1/Rj∑
j 1/Rj

, (40)

where 1/Rj represents the steady-state governor gain for
generator j [17, Ch. 4]. The participation factors described
in (39) and (40) describe realizations of the distributed slack
bus based on power-frequency characteristics of generators in
the system [5].

Denote by Ω(m,n),i the sensitivity of P(m,n) with respect to
Pi with consideration for generator participation factors. Sub-
stitution of (38) into (35) results in ∆P(m,n) ≈ Ω(m,n),i∆Pi,
where

Ω(m,n),i = Γ(m,n),i −
∑
j 6=i

Γ(m,n),jγj . (41)

Similar procedure for measurement-based generalized ISFs
yields ∆P(m,n) ≈ Ω̂(m,n),i∆Pi, where

Ω̂(m,n),i = Γ̂(m,n),i −
∑
j 6=i

Γ̂(m,n),jγj . (42)

The participation factor-based ISFs in (41) and (42) can be
used to predict the transient active-power line flows following
a disturbance. Since the inertial response is faster than that
of the governor, we expect the inertia-based ISFs obtained
using (41) and (42) together with (39) to be valid for a short
time after the occurrence of the disturbance. Following this,
we expect that the governor-based ISFs obtained using (41)
and (42) together with (40) to be valid until participation
factors arising from economic dispatch become relevant.
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Fig. 1: Line flows in 3-bus system due to a 0.1 p.u. increase
in active power demand at bus 3.

B. Obtaining Conventional ISFs

The conventional ISF is simply the sensitivity of the active
power flow across line (m,n) with respect to an active-power
injection at bus i, which is balanced entirely by the generator
at the designated slack bus `, i.e., in the context of (38), γ` = 1
and all other γj = 0, j 6= i, `. Thus, as a special case of (41),
the conventional ISF can be recovered as

Ω`(m,n),i = Γ(m,n),i − Γ(m,n),`, (43)

and Ω̂`(m,n),i can be analogously recovered from (42).

C. Illustrative 3-Bus System Example

In Example 1, we motivated the need to develop generalized
ISFs that do not rely on a slack bus. Here, we revisit the 3-
bus system from Example 1 and illustrate concepts described
in Sections III and IV. First, the current injection sensitivity
factors for this system are computed using (20). For each line
(m,n) ∈ L, a(m,n) = α(m,n) + jβ(m,n), where

α(1,2) =
[
0.5178 −0.2329 0.2485

]T
,

α(2,3) =
[
0.2443 0.4934 0.0289

]T
, (44)

α(1,3) =
[
0.4822 0.2329 −0.2485

]T
.

For brevity, we refrain from reporting values for β(m,n). Next,
using (29), generalized ISFs Γ(m,n) are computed for each line
(m,n) ∈ L in this system, to yield

Γ(1,2) =
[
0.5178 −0.2353 0.2493

]
,

Γ(2,3) =
[
0.2457 0.4934 0.0283

]
, (45)

Γ(1,3) =
[
0.4822 0.2353 −0.2493

]
.

Note that, indeed, the generalized ISFs obtained directly above
are very similar to α(m,n)’s reported in (44). This similarity
verifies that, indeed, generalized ISFs can be interpreted as
the power analogue of current injection sensitivity factors, as
pointed out in (33). Furthermore, like the current injection shift
factors, the derivation of generalized ISFs does not depend
on a predefined power allocation scheme. To illustrate the
flexibility of generalized ISFs, we first verify the validity
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Fig. 2: Line flows in WECC 3-machine 9-bus system due to
loss of load at bus 6.

of (43), with bus 1 designated as the slack bus. By using the
Γ(m,n)’s in (45), we obtain

Ω1
(1,2) =

[
0 −0.7531 −0.2685

]
,

Ω1
(2,3) =

[
0 0.2477 −0.2741

]
, (46)

Ω1
(1,3) =

[
0 −0.2469 −0.7315

]
.

Indeed, the Ω1
(m,n)’s obtained here are very similar to corre-

sponding Ψ1
(m,n)’s obtained in Example 1.

Finally, we predict transient active-power line flows us-
ing participation factor-based ISFs as given in (41), for a
0.1 p.u. increase in the load at bus 3. To obtain the actual
effect due to the 0.1 p.u. active load change disturbance
described above, the dynamic simulation tool Power System
Toolbox (PST) [18] is used to acquire active-power line flows
at pre- and post-disturbance operating points. The load at
bus 3 is modelled as a constant-power sink. The synchronous
generators at buses 1 and 2 are modelled with the subtransient
machine dynamic model equipped with a DC exciter and a
turbine governor (see, e.g., [1]). In these models, the rotational
inertia are set to H1 = 8 s and H2 = 3.01 s for generators con-
nected to buses 1 and 2, respectively. The governor droop for
both generators are set to 1/R1 = 1/R2 = 25 p.u. Based on
these parameters, the inertia-based participation factors for the
two synchronous generators in the system are γ1 = 8/11.01
and γ2 = 3.01/11.01. Using these factors in concert with (41),
we obtain the change in active power flow through the three
lines as ∆P(1,2) = 0.0066 p.u., ∆P(2,3) = 0.0339 p.u.,
and ∆P(1,3) = 0.0661 p.u. Similarly, the governor-based
participation factors are γ1 = γ2 = 1/2, and the corre-
sponding changes in power flow are ∆P(1,2) = −0.0106 p.u.,
∆P(2,3) = 0.0394 p.u., and ∆P(1,3) = 0.0606 p.u.

Simulation results are plotted as the solid trace in Fig. 1.
Superimposed onto the actual active-power line flows, we
also plot the line flows predicted by the inertia-based and
governor-based ISFs in dash and dash-dot traces, respectively.
Indeed, we observe that inertia-based ISFs provide a good
approximation to the line flows immediately after the load
increase, while governor-based ISFs provide a good estimate
over longer time horizons.
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Fig. 3: Line flows in New England system due to loss of load
at bus 8.

V. CASE STUDIES

In this section, we illustrate some applications of general-
ized ISFs with models of the WECC 3-machine 9-bus and the
New England 39-bus systems. We compute both conventional
and generalized ISFs using the model-based method described
in Section III-B. Loads are modelled as constant-power sinks
and fluctuations in active-power demand are simulated with
the random time-series data:

Pi[k] = Po,i[k] + σν[k], (47)

where Po,i[k] is the nominal active-power load at bus i
and σν[k] is a pseudorandom number drawn from a normal
distribution with 0-mean and standard deviation σ = 0.03 p.u.
We assume a PMU sampling rate of 30 Hz.

A. WECC 3-Machine 9-Bus System Model

Using the pre-contingency base case, we create synthetic
power-injection profiles with (47), for i = 5, 6, 8, i.e., buses
that have loads, which are inherently variable due to the
random nature of electricity demand from end users. Using
PST, we conduct time-domain dynamic simulations, from
which we extract M = 74 sets of “measurements” of active-
power injections at all buses and flows across all lines. From
these simulated measurements, we estimate generalized ISFs
using (37) with W = IM , and further compute inertia-
and governor-based ISFs via (42). These ISFs are then used
to predict active-power line flows in the post-disturbance
transient period before a new steady-state is reached.

In this case study, we consider a loss-of-load contingency
at bus 6, i.e., ∆P6 = 1.63 p.u., at time t = 1 s. We use
the same generalized ISFs that were estimated under the pre-
contingency pseudo-steady-state operating point. In Fig. 2,
line flows predicted by generalized ISFs are superimposed
over the dynamic response. Even with the severe loss of
load contingency, the generalized ISFs accurately capture post-
contingency line flows. As a measure of error, we compute the
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Fig. 4: Line (22, 23) flow in New England system due to
loss of load at bus 8, with an undetected outage in line
(16, 21). Flows predicted by model-based ISFs are delineated
by ‘×’, while those predicted by measurement-based ISFs are
delineated by ‘◦’.

absolute value of the difference between the predicted and ac-
tual active-power line flows at t = 25 s. The average prediction
error is 0.004 p.u., with a maximum error of 0.0061 p.u.

B. New England 39-Bus System Model

This model contains 39 buses and 10 synchronous genera-
tors modelled with the subtransient model [1]. All generator
models include a governor/turbine and nine include voltage
regulators/exciters. To validate the values of generalized ISFs
obtained via both the model- and measurement-based methods,
we introduce a loss of load contingency at t = 1 s, at
bus 8, and compare actual post-contingency lines flows with
generalized ISF predictions.

1) Base Case: We compute generalized ISFs via (29) using
the base-case system circuit model. The average prediction
error is 0.0252 p.u., with a maximum error of 0.0558 p.u. In
Fig 3, we plot actual and predicted post-contingency line flows
for a subset of lines.

2) Modified Network: Suppose a line outage has occurred
for line (16, 21), unbeknownst to the system operator. In this
case, the model-based generalized ISFs from above, which
are computed from the base-case network topology, would
be inaccurate in predicting line flows for the loss-of-load
contingency. The average prediction error is 0.0802 p.u., with
a maximum error of 0.8619 p.u., corresponding to line (22, 23)
flow, as shown in Fig. 4. Such discrepancies can lead to incor-
rect or suboptimal operating decisions. With this case study,
we highlight the advantages of the measurement-based method
in Section III-C, which results in generalized ISF estimates
that are adaptive to the current system operating point. Indeed,
using the measurement-based method, we obtain prediction
errors comparable to those reported above in Section V-B1.

VI. CONCLUDING REMARKS

In this paper, we introduce the concept of generalized ISF,
which can be computed from a sensitivity analysis of the AC
circuit equations or estimated using real-time measurements
obtained from the system without relying on a model of the
system obtained offline. Even though the generalized ISFs are

obtained at the pre-disturbance steady-state operating point,
we show, through numerical examples and case studies, that
they can be easily manipulated to predict active-power line
flows during the transient period following a disturbance.

As future work, we will explore dynamic model reduction
techniques to obtain time-dependent expressions for partici-
pation factors so as to make accurate line flow predictions
throughout transients.

APPENDIX

A. Derivation of the Result in (29)

The result in (29) is derived as follows. Around the nominal
power flow solution, (θm? , |V?|, P?, Q?), consider small pertur-
bations ∆θ̃m, ∆|V |, ∆P , and ∆Q. We then get the following
expression for small variations in the active-power line flows
∆P(m,n):

∆P(m,n) ≈ r1∆θ̃m + r2∆|V |+ s1∆P + s2∆Q, (48)

where, with reference to p(m,n) in (26),

r1 = ∇θ̃mp(m,n), r2 = ∇|V |p(m,n),
s1 = ∇P p(m,n), s2 = ∇Qp(m,n).

Substitution of (9) into (48) yields

∆P(m,n) ≈ −[r1, r2]J−1m Dm∆P̃m + s1∆P

− [r1, r2]J−1m Em∆Q+ s2∆Q

=
(
−[r1, r2]J−1m DmΠT

m + s1
)

∆P

+
(
−[r1, r2]J−1m Em + s2

)
∆Q

= Γ(m,n)∆P + Λ(m,n)∆Q, (49)

where the second equality in (49) follows from the fact that
θm = θ − θm1N×1, as defined in (4). Next, expressions for
r1 and r2 in (30) and (31), respectively, are derived. The
derivation begins with the expression for the active-power line
flows in (26), which can be rewritten as

P(m,n) = |Vm|((ΠT
mu)T(ΠT

mP ) + (ΠT
mv)T(ΠT

mQ))

+ eTmα(m,n)Pm + eTmβ(m,n)Qm

= |Vm|
(
uTΠmP̃

m + vTΠmQ̃
m
)

+ eTmα(m,n)Pm + eTmβ(m,n)Qm

=: p̃(m,n)(θ̃
m, |V |, P,Q). (50)

The above expresses the line (m,n) active-power flow in this
manner to recover a formulation that is explicitly a function
of θ̃m, with respect to which we can differentiate and recover
r1. In particular, with (50) defined above,

r1 = ∇θ̃m p̃(m,n)(θ̃
m, |V |, P,Q) (51)

= |Vm|
(
∇θ̃m

(
uTΠm

)
diag(P̃m)

+∇θ̃m
(
vTΠm

)
diag(Q̃m)

)
.

Differentiation of u and v in (27) and (28), respectively, with
respect to θ̃m results in

∇θ̃m
(
uTΠm

)
= −vTΠm, ∇θ̃m

(
vTΠm

)
= uTΠm. (52)
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Substitution of (52) into (51) returns r1 as given by (30). Next,
r2 can be obtained by differentiating the expression in (26)
with respect to |V | to yield

r2 = ∇|V |p(m,n)(θm, |V |, P,Q)

= |Vm|
(
∇|V |uTdiag(P ) +∇|V |vTdiag(Q)

)
+
[
em
(
uTP + vTQ

)]T
. (53)

From the expressions for u and v in (27) and (28), respectively,
we get (

∇|V |uT
)

diag(P ) = −uTdiag

(
P

|V |

)
,

(
∇|V |vT

)
diag(Q) = −vTdiag

(
Q

|V |

)
. (54)

Substitution of (54) into (53) returns r2 as given by (31). Fi-
nally, s1 and s2 are obtained directly from differentiating (26)
with respect to P and Q as

s1 = ∇P p(m,n)(θm, |V |, P,Q) = |Vm|uT, (55)

s2 = ∇Qp(m,n)(θm, |V |, P,Q) = −|Vm|vT. (56)

The sensitivities above are all evaluated at the nominal solution
of the power flow equations, denoted by (θm? , |V?|, P?, Q?).
Neglecting ∆Q by setting ∆Q = 0N×1 in (49) completes the
derivation of (29).
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