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Abstract—A method is proposed to detect and identify power
system transmission line outages in near real-time. The method
exploits the statistical properties of the small random fluctuations
in electricity generation and demand that a power system is
subject to as time evolves. To detect and identify transmission
line outages, a linearized incremental small-signal power system
model is used in conjunction with high-speed synchronized
voltage phase angle measurements obtained from phasor mea-
surement units. By monitoring the statistical properties of voltage
phase angle time-series, line outages are detected and identified
using techniques borrowed from the theory of quickest change
detection. As illustrated through case studies, the proposed
method is effective in detecting and identifying single- and
double-line outages in an accurate and timely fashion.

I. INTRODUCTION

To monitor real-time operational reliability, power system
operators rely heavily on a model of the system obtained
offline; this model contains the transmission network topology,
parameters, and historical and forecasted power generation and
demand [1], [2]. Thus, the validity and accuracy of online stud-
ies are contingent upon the accuracy of the system model used,
which is, in turn, heavily dependent upon accurate records and
telemetry from remotely monitored circuit breakers. Erroneous
records or telemetry, including knowledge of transmission line
statuses, have contributed to numerous major North American
blackouts [1], [2]. For example, in the 2011 San Diego
blackout, operators could not detect that certain lines were
overloaded or close to being overloaded because the network
model was not up-to-date, causing state estimator results to be
inaccurate [2]. Therefore, in order to update the model used
in operational reliability studies in a timely manner to reflect
current system conditions, there exists an impetus to develop
efficient and robust online tools to detect and identify network
topology changes. The development of such tools to identify
transmission line outages and, in general, changes in network
topology, can be enabled by the widespread deployment of
phasor measurement units (PMUs). Unlike current system
measurements, PMUs measure voltage and current phasors
at a very high speed (usually 30 measurements per second)
[3], and phasors measured at different locations by different
devices are time-synchronized [4].

In this paper, by exploiting the statistical properties of
voltage phase angle measurements obtained from PMUs, we
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propose a method to detect and identify line outages in near
real-time based on the theory of quickest change detection
(QCD). In QCD, a decision maker observes a sequence of ran-
dom variables, the probability distribution of which changes
abruptly due to some event that occurs at an unknown time,
such as a line outage in the present setting. The objective is to
detect this change in distribution as quickly as possible subject
to a fixed rate of false alarm before the change [5].

We model the incremental changes in net power injection
at each bus as independent random variables, the probability
distribution of which is determined by random fluctuations in
generation and demand. Then, we use an incremental small-
signal power flow model to relate the probability distributions
of the power injections and the voltage angle measurements via
a linear mapping. A decision maker observes the sequence of
incremental changes in bus voltage phase angle measurements
obtained from PMUs, the statistical properties of which change
due to a line outage. By feeding this data sequentially to
a QCD algorithm, we can detect the change in distribution.
Furthermore, in the proposed QCD-based framework, a se-
quence of observations is classified into one among multiple
hypotheses based on statistical properties of the observed
measurements [6]. Hence, the true line outage is identified
among a set of credible line outages, and the network topology
can be updated in a timely manner.

Issues of inaccurate state estimation results arising from
topology errors have been apparent for many years [7]. Nu-
merous approaches have been proposed to detect and identify
topology errors in the context of state estimation [8], [9], [10].
The specific issue of determining external system topology er-
rors was explored in [11]. Owing to the potential improvement
in situational awareness offered by the widespread deployment
of PMUs, recent work has focused on external system line-
outage detection and/or identification by taking advantage of
voltage phase angle measurements [12], [13], [14]. These rely
on the phase angle difference between two sets of PMU volt-
age phasor measurements obtained before and after the event,
and proceed to identify the line outage location via hypothesis
testing [12], sparse vector estimation [13], or mixed-integer
nonlinear optimization [14]. Existing approaches, however, do
not exploit the fact that the line outage is persistent, i.e., once
a line outage occurs, it remains as so until it is detected and
brought back into service. In our QCD-based framework, the
persistence of the fault is exploited to detect the line outage
with lower rate of false alarms and misdetections.

This paper builds on our preliminary work reported in [15],
providing extensions in several directions. First, in the line-
outage model, we expound on the voltage phase angle differ-
ence between measurement sets acquired immediately before
and after the outage occurs. Second, we modify the QCD
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algorithm to exploit this single-sample change component.
Additionally, we demonstrate the effectiveness of the proposed
method on the IEEE 118-bus test system, with respect to
both single- and double-line outages. Finally, we extend the
proposed line outage detection method to the case in which
phase angle measurements are not available at all buses.

The remainder of this paper is organized as follows. In
Section II, the power system model adopted in this work is
described. The statistical line-outage model is developed in
Section III. In Section IV, we outline the QCD-based line
outage identification algorithms that we propose in this paper.
Subsequently, we extend the QCD-based algorithm to detect
and identify double-line outages in Section V. In Section VI,
we illustrate the proposed ideas via case studies involving the
IEEE 118-bus system. In Section VII, we extend the QCD-
based algorithm to accommodate the case in which phase
angle measurements are not available at all buses. Finally, in
Section VIII, we offer concluding remarks and directions for
future research.

II. POWER SYSTEM MODEL

Consider a power system represented by a graph consisting
of a set of N nodes denoted by V = {1, . . . , N}, each one
corresponding to a bus, and a set of L edges denoted by E ,
i.e., for m,n ∈ V , (m,n) ∈ E , there exists a transmission line
between buses m and n. With a slight abuse of notation, we
also denote by (m,n) the transmission line between buses m
and n. At time t, let Vi(t) and θi(t), respectively, denote the
voltage magnitude and phase angle at bus i. Also let Pi(t) and
Qi(t), respectively, denote the net active and reactive power
injection at bus i. Then, the quasi-steady-state behavior of a
power system can be described by the power flow equations,
which can be written compactly as real and reactive power
balance components at each bus i as follows:

Pi(t) = pi(θ1(t), . . . , θN (t), V1(t), . . . , VN (t)), (1)
Qi(t) = qi(θ1(t), . . . , θN (t), V1(t), . . . , VN (t)), (2)

where the dependence on network parameters, such as line
series and shunt impedances, is implicitly considered in the
functions pi(·) and qi(·). In the remainder of this section,
we describe a linearized incremental small-signal power flow
model that arises from the sampled PMU measurements. We
also obtain statistical models that describe the PMU measure-
ments of voltage phase angles as they relate to bus active
power injections.

A. Linearized Incremental Power Flow Model

Let Pi[k] and Qi[k], respectively, denote active and re-
active power injections in bus i at time instant t = k∆t,
k = 0, 1, 2, . . . , ∆t > 0, i.e., Pi[k] = Pi(k∆t) and Qi[k] =
Qi(k∆t). Then, variations in the active and reactive power
injections in bus i between pairs of consecutive sampling
times 2k∆t and (2k+ 1)∆t are defined as ∆Pi[k] = Pi[2k+
1]− Pi[2k] and ∆Qi[k] = Qi[2k + 1]−Qi[2k], respectively.
Suppose synchronized voltage phasor measurements in all
buses are collected using PMUs each ∆t unit of time. Then,
let Vi[k] and θi[k] denote sampled PMU measurements of the

voltage magnitude and phase angle for bus i, Vi(t) and θi(t),
at t = k∆t, respectively. Further, define variations in voltage
magnitudes and phase angles between pairs of consecutive
sampling times 2k∆t and (2k + 1)∆t, k = 0, 1, 2, . . . , as
∆Vi[k] = Vi[2k+1]−Vi[2k] and ∆θi[k] = θi[2k+1]−θi[2k],
respectively.

Next, suppose a solution to (1)–(2) exists at
(θi[2k], Vi[2k], Pi[2k], Qi[2k]), i = 1, . . . , N , i.e.,

Pi[2k] = pi(θ1[2k], . . . , θN [2k], V1[2k], . . . , VN [2k]),

Qi[2k] = qi(θ1[2k], . . . , θN [2k], V1[2k], . . . , VN [2k]),

for each bus i. Assume that, for each bus i, pi(·) and qi(·) are
continuously differentiable with respect to each θi and Vi at
θi[2k] and Vi[2k], i = 1, . . . , N . Then, assuming that ∆θi[k]
and ∆Vi[k] are sufficiently small, we can approximate ∆Pi[k]
and ∆Qi[k] via a first-order Taylor series expansion of (1)–(2)
as

∆Pi[k] ≈
N∑
j=1

aij [2k]∆θj [k] +

N∑
j=1

bij [2k]∆Vj [k],

∆Qi[k] ≈
N∑
j=1

cij [2k]∆θj [k] +

N∑
j=1

dij [2k]∆Vj [k],

(3)

where

aij [2k] =
∂pi
∂θj

, bij [2k] =
∂pi
∂Vj

,

cij [2k] =
∂qi
∂θj

, dij [2k] =
∂qi
∂Vj

,

for each bus i, all evaluated at (θi[2k], Vi[2k]), i = 1, . . . , N .
A standard assumption used in analysis of transmission

systems is that, for each bus i, aij [2k] and dij [2k] are much
larger than bij [2k] and cij [2k], for all j = 1, . . . , N [16].
This effectively decouples (3) so that variations in active
power injections primarily affect bus voltage angles, while
variations in reactive power injections mainly affect bus
voltage magnitudes. For analysis purposes, we assume the
decoupling assumption holds and only consider ∆Pi[k] ≈∑N
j=1 aij [2k]∆θj [k]. Further, under the so-called DC assump-

tions,1 namely (i) the system is lossless, (ii) Vi[k] = 1 per
unit (p.u.) for all i ∈ V , k, and (iii) θm[k] − θn[k] << 1 for
all k and for m,n ∈ V , aij [k] simply becomes the negative
of the imaginary part of the (i, j)th entry of the network
admittance matrix constructed while neglecting transmission
line resistances [16]. Under these assumptions, then, aij [2k]
becomes a function of only the network, i.e., aij [2k] = aij ,
for all k under the same topology.

Without loss of generality, we set the system reference angle
to be that of the voltage phase angle at bus 1 in the system,
i.e., θ1(t) = 0, t ≥ 0. Then, for each i ∈ V , i 6= 1, under
the DC assumptions, the small-signal model in (3) can be
approximated as follows:

∆Pi[k] ≈
∑

j∈V,j 6=1

aij∆θj [k]. (4)

1Note that even though we employ DC assumptions, the resultant model
in (4) in this paper is not the conventional DC power flow model.
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TABLE I
PARAMETER VALUES FOR 3-BUS SYSTEM SHOWN IN FIG. 1.

P2 P3 X(1,2) X(2,3) X(1,3)

-1 -0.9 0.0504 0.0372 0.0636

Define vectors ∆P [k] ∈ RN−1 and ∆θ[k] ∈ RN−1, the entries
of which are ∆Pi[k] and ∆θi[k], respectively, for i ∈ V , i 6= 1.
Then, (4) can be written in matrix form as

∆P [k] ≈ H0∆θ[k]. (5)

B. Statistical Model

Small variations in the real power injection vector, ∆P [k],
can be attributed to random fluctuations in electricity con-
sumption and the subsequent response of some generators in
the system. Hence, we model the entries in ∆P [k] as indepen-
dent and identically distributed (i.i.d.) with a joint Gaussian
probability density function (pdf), i.e., ∆P [k] ∼ N (0,Σ).

Since the statistics of ∆P [k] are known, we consider ∆P [k]
as the independent variable to the system described in (5),
where ∆θ[k] is the observation that depends on ∆P [k]; thus
we rewrite (5) as

∆θ[k] ≈M0∆P [k], (6)

where M0 = H−10 . Consequently, for the system under normal
operation (i.e., prior to line-outage event), ∆θ[k] ∼ f0, where

f0 = N
(
0,M0ΣMT

0

)
. (7)

Example 1 (Three-Bus System): In this example, we illus-
trate the modeling concepts introduced above with the lossless
system shown in Fig. 1, where X(m,n) is the imaginary part
of the impedance of the line connecting buses m and n. The
parameter values are listed in Table I and, unless otherwise
stated, all quantities are in per unit. For ease of notation, we
suppress the dependence on time instant k. Then, the nonlinear
real power balance equations are

P1 =
V1V2
X(1,2)

sin(θ1 − θ2) +
V1V3
X(1,3)

sin(θ1 − θ3),

P2 =
V2V1
X(1,2)

sin(θ2 − θ1) +
V2V3
X(2,3)

sin(θ2 − θ3),

P3 =
V3V1
X(1,3)

sin(θ3 − θ1) +
V3V2
X(2,3)

sin(θ3 − θ2).

(8)

Since bus 1 is the reference bus with θ1 = 0, we re-
move the first equation from (8). Furthermore, under the DC
assumptions, the model in (8) can be approximated by a
small-signal linear incremental model of the form in (5), i.e.,
∆P [k] ≈ H0∆θ[k], where

H0 =

[
1

X(1,2)
+ 1

X(2,3)
− 1
X(2,3)

− 1
X(2,3)

1
X(1,3)

+ 1
X(2,3)

]
, (9)

where the network topology is encoded into H0. �

III. LINE OUTAGE MODEL

Suppose, at time t = tf , an outage occurs in the line (m,n).
We assume the loss of line (m,n) does not cause islands
to form in the post-event system, i.e., the underlying graph
representing the power system remains connected. Further,
we assume the loss of line (m,n) is a persistent event,
i.e., line (m,n) is not returned to service in the time frame
that we consider for line outage detection. In fact, in the
algorithms described in Section IV, we take advantage of
this persistent change. In this section, we describe the linear
incremental model due to the persistent change, followed by
special consideration for the single-sample change present in
some cases.

A. Persistent Change

Suppose a persistent outage occurs in line (m,n) at time
t = tf , where (2γ− 1)∆t ≤ tf < 2γ∆t, for some γ > 0. For
k ≥ γ, the matrix H0 in (5) changes to a new matrix H(m,n).
Without loss of generality, we can write the post-outage matrix
H(m,n) as the sum of the pre-outage matrix H0 and some
perturbation matrix ∆H(m,n), i.e., H(m,n) = H0 + ∆H(m,n).
Then, we get the following post-outage equation:

∆P [k] ≈ H(m,n)∆θ[k], (10)

for k ≥ γ. Since H0 has the same sparsity structure as the
graph Laplacian of the network, we conclude that the only
non-zero terms in the matrix ∆H(m,n) are ∆H(m,n)[n, n] =
−∆H(m,n)[m,n] = ∆H(m,n)[m,m] = −∆H(m,n)[m,n] =
−1/X(m,n), where X(m,n) is the imaginary part of the
impedance of the outaged line. Thus, the matrix ∆H(m,n) is
a rank-one matrix and can be expressed as

∆H(m,n) = − 1

X(m,n)
r(m,n)r

T
(m,n), (11)

where r(m,n) ∈ RN−1 is a vector with the (m − 1)th entry
equal to 1, the (n−1)th entry equal to -1, and all other entries
equal to 0.

By considering ∆θ[k] in (10) as the observation, we can
invert the relation in (10), and write

∆θ[k] ≈M(m,n)∆P [k], k ≥ γ, (12)

where M(m,n) = H−1(m,n) = M0 + ∆M(m,n). Thus, after the
outage of line (m,n), ∆θ[k] ∼ fσ(m,n), where

fσ(m,n) = N
(

0,M(m,n)ΣM
T
(m,n)

)
, (13)

jX(1,2)

jX(2,3)jX(1,3)

−P3

−P2P1

V1∠θ1 V2∠θ2

V3∠θ3

Fig. 1. Network topology for 3-bus system.



4

for k ≥ γ. Note that if line (m,n) is not restored, this
change is persistent. Using the matrix inversion lemma (see,
e.g., [17]) to avoid repeated matrix inversions for each possible
line outage, we obtain

∆M(m,n) = β(m,n) s(m,n) s
T
(m,n),

where β(m,n) = 1/(X(m,n)−rT(m,n)H−10 r(m,n)) and s(m,n) =

H−10 r(m,n).
Example 2 (Three-Bus System): In this example, we consider

again the 3-bus system in Fig. 1. Consider the outage of line
(2, 3); then, in accordance with (10)–(11) for m = 2 and
n = 3, we have that H(2,3) = H0 + ∆H(2,3), where

∆H(2,3) = − 1

X(2,3)
r(2,3)r

T
(2,3)

is a rank-one matrix. In this case, r(2,3) = [1,−1]T . Then
M(2,3) = H−1(2,3). Using the matrix inversion lemma, we obtain
that M(2,3) = H−10 + β(2,3)s(2,3)s

T
(2,3), where

β(2,3) =
1

X(2,3) − rT(2,3)H−10 r(2,3)
, s(2,3) = H−10 r(2,3),

with H0 as given in (9). �

B. Instantaneous Change

In Section III-A, we considered the case in which a line
outage occurs at time t = tf , where (2γ−1)∆t ≤ tf < 2γ∆t.
In such a case, the system behavior is fully described by the
model in (12) and (13). If, however, the outage occurs at time
t = tf , where 2γ∆t ≤ tf < (2γ + 1)∆t, then we must
also consider an instantaneous change that affects only one
incremental sample, namely ∆θ[γ] = θ[2γ + 1]− θ[2γ].

Since θ[2γ] is obtained from the pre-outage system, while
θ[2γ+1] is obtained from the post-outage one, the incremental
change at k = γ, i.e., ∆θ[γ], is not fully described by the
model in (10). Instead, given the nonlinear real power flow
equation for each bus i, i ∈ V , as defined in (1), prior to the
outage of line (m,n), we have that

Pi[k] = pi[k], k ≤ 2γ, (14)

where the dependence on the pre-outage network topology and
parameters is implicitly considered in pi(·). On the other hand,
in the post-outage scenario involving line (m,n) (assuming the
outage is persistent), and similar to the pre-outage power flow
equation in (1), we have that

Pi(t) = p′i(θ1(t), . . . , θN (t), V1(t), . . . , VN (t)), (15)

for t > tf , where the dependence on the post-outage network
topology are implicitly considered in p′i(·). Given (15), anal-
ogous to (14), we have that

Pi[k] = p′i[k], k ≥ 2γ + 1. (16)

The incremental change in net active power injection be-
tween the two measurement samples immediately prior to and
following the line outage, i.e., between k = 2γ and k = 2γ+1,
can be expressed as

∆Pi[γ] = Pi[2γ + 1]− Pi[2γ]. (17)

Substituting (14) and (16) into (17) and adding and subtracting
pi[γ + 1], we obtain

∆Pi[γ] = ∆Pµi [γ] + ∆Pσi [γ], (18)

where
∆Pµi [γ] = p′i[2γ + 1]− pi[2γ + 1], (19)

and

∆Pσi [γ] = pi[2γ + 1]− pi[2γ]. (20)

Let ∆Pσ[γ] = [∆Pσ2 [γ],∆Pσ3 [γ], . . . ,∆PσN [γ]]T . Following
the development in Sections II-A, it follows that

∆Pσ[γ] ≈ H0∆θ[γ]. (21)

Next, consider the ∆Pµi [γ] component in (19). Under the
same DC approximations used to derive (4), the line flow
across line (m,n) under the pre-outage network topology can
be approximated by

P(m,n)[2γ + 1] ≈ 1

X(m,n)
(θm[2γ + 1]− θn[2γ + 1]) .

The line outage, in turn, can be simulated by adding appropri-
ate injections, P(m,n)[2γ+1] and −P(m,n)[2γ+1], at buses m
and n, respectively (see, e.g., [16, Ch.11]). Define ∆Pµ as an
(N−1)-dimensional vector, the (m−1)th and (n−1)th entries
of which are P(m,n)[2γ+1] and −P(m,n)[2γ+1], respectively,
and all other entries are 0. Then, we obtain that

∆Pµ[γ] = P(m,n)[2γ + 1]r(m,n), (22)

where r(m,n) is defined as in (11). With the total variation
∆P [γ] = ∆Pµ[γ] + ∆Pσ[γ], combined with expressions
developed in (21) and (22), we obtain that, at k = γ,

∆θ[γ] ≈M0

(
∆P [γ]− P(m,n)[2γ + 1]r(m,n)

)
, (23)

which indicates that the mean of ∆θ[γ] is −M0P(m,n)[2γ +
1]r(m,n), not simply 0, as in all sample instants k < γ. Thus,
at k = γ, ∆θ[k] ∼ fµ(m,n), where

fµ(m,n) = N
(
−M0P(m,n)[2γ + 1]r(m,n),M0ΣMT

0

)
. (24)

C. Summary and Problem Statement

Suppose an outage involving line (m,n) occurs at time
tf between PMU sampling times t1 and t2; then, from the
analysis in Sections II, III-A and III-B, we have that

∆θ[k] ≈
{
M0∆P [k], if k ≤ γ − 1,
M(m,n)∆P [k], if k ≥ γ + 1.

(25)

At time instant k = γ, two cases are considered, depending
on t1 and t2. If t1 = (2γ − 1)∆t and t2 = 2γ∆t,

∆θ[k] ≈M(m,n)∆P [k],

and if t1 = 2γ∆t and t2 = (2γ + 1)∆t,

∆θ[k] ≈M0

(
∆P [γ]− P(m,n)[2γ + 1]r(m,n)

)
.

Also, from the earlier analysis, the pdf’s of ∆θ[k] are

∆θ[k] ∼
{
f0, if k ≤ γ − 1,
fσ(m,n), if k ≥ γ + 1,

(26)
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where f0 and fσ(m,n) are described in (7) and (13), respectively.
For k = γ,

∆θ[k] ∼
{

fσ(m,n), if t1 = (2γ − 1)∆t,

fµ(m,n), if t1 = 2γ∆t,
(27)

where fµ(m,n) is described in (24).
Given the model in (26)–(27), our objective in this paper

is to devise algorithms for detection and identification of line
outages based on the probability distributions of the ∆θ[k]’s,
which can be computed from PMU measurements. To this end,
we assume that small variations in the real power injection
vector, ∆P [k], are attributed to random fluctuations in end-
user electricity consumption (and the corresponding response
of generators in the system). Hence, it is reasonable to
conclude that the probability distribution of these active power
variations would not be affected by system topology changes.
Thus, in conjunction with the model described in (26)–(27),
the problem of line outage detection reduces to a problem of
detecting a change in the probability distribution of the random
observation vector sequence {∆θ[k]}k≥1.

IV. SINGLE-LINE OUTAGE IDENTIFICATION VIA
QUICKEST CHANGE DETECTION

In the setting described in Section III, the goal is to detect
the change in the probability distribution of the sequence
{∆θ[k]}k≥1 as quickly as possible while maintaining a certain
level of detection accuracy, which is usually captured in the
false alarm rate. This is a well studied problem in statistical
signal processing known as quickest change detection (QCD).
Next, we provide a precise mathematical description of this
problem and the QCD algorithm that we will use to detect a
line outage. We refer the readers to [5] for a survey on QCD
theory and algorithms; also see [18] and [19].

We assume that the sequence {∆θ[k]}k≥1 of random vectors
is available to a decision maker. In the base case, prior to
any outages, we have that ∆θ[k] ∼ f0. At some random
time tf , which is a priori unknown, an outage occurs in line
(m,n). Then, the pdf of the sequence {∆θ[k]}k≥1 changes
from f0 to f1. For purposes of line outage detection, if
tf ∈ [2γ∆t, (2γ + 1)∆t), then f1 = fµ(m,n) at the line outage
instant, and f1 = fσ(m,n) beyond the point of change, as
defined in (24) and (13), respectively. On the other hand, if
tf ∈ [(2γ − 1)∆t, 2γ∆t), then f1 = fσ(m,n) at and after the
line outage instant. In both cases, the objective is to detect
this transition from f0 to f1 in the pdf of the {∆θ[k]}’s as
quickly as possible. Mathematically, the objective is to find
a stopping time, τ , on the sequence, i.e., a discrete random
variable taking positive integer values such that the decision
to stop at time k is a function of observations until time k. In
the absence of a change, we would like E[τ ] to be as large as
possible, i.e., avoid false alarms. On the other hand, once the
change occurs, we would like E[τ ] to be as small as possible.
A popular formulation in the literature, due to Pollak, that
captures the above trade-off is [20]:

min
τ

sup
γ≥1

Eγ [τ − γ|τ ≥ γ]

subject to E∞[τ ] ≥ β,
(28)

where Eγ denotes the expectation with respect to probability
measure when change occurs at point γ, E∞ denotes the
corresponding expectation when the change never occurs, and
β > 0 is the given constraint on the mean time to false alarm.

In the remainder of this section we discuss two algorithms
to detect a single-line outage. We first devise a test for the
persistent change described in Section III-A, and then modify
it slightly to include the single-sample change described in
Section III-B. Both tests are based on the fundamental idea
from information theory that for any two densities f and g,
we have that

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx ≥ 0, (29)

with equality if and only if f = g. The quantity D(f ‖ g)
is called the Kullback-Leibler (KL) divergence, and it plays
a fundamental role in the theory of quickest change detec-
tion [18].

A. Persistent Change Detection

Here, we describe a test to detect and identify a single-
line outage by exploiting the persistent shift described in
Section III-A, i.e., the post-outage pdf is assumed to be
f1 = fσ(m,n) for all instants at and after the change, as given
in (13). Thus, the distribution of the observation at the change
point is not taken into account in the algorithm design.

Suppose both the pre- and post-outage pdfs f0 and fσ(m,n)
are known. Then, a popular algorithm in the literature that
enjoys some optimality properties with respect to Pollak’s
formulation in (28) is the Cumulative Sum (CuSum) algorithm
[21]. To describe the CuSum algorithm, a sequence of statistics
is computed as2

W(m,n)[k + 1] =

(
W(m,n)[k] + log

fσ(m,n)(∆θ[k + 1])

f0(∆θ[k + 1])

)+

,

(30)
where W(m,n)[0] = 0. Denote by τC the time at which the
CuSum algorithm declares a line outage; then,

τC = inf{k ≥ 1 : W(m,n)[k] > A}.
Before any line outage, the mean of the log likelihood ratio is
negative, due to (29). As a result, W(m,n)[k+1] would remain
close to or at 0 prior to the outage. On the other hand, after an
outage, the mean of the log likelihood ratio is positive, again
due to (29). As a result W(m,n)[k+ 1] increases unboundedly
after the outage of line (m,n). Hence, the CuSum algorithm
declares the occurrence of an outage in line (m,n) the first
time that W(m,n)[k] reaches a pre-determined threshold A.
The threshold A can be chosen to control the mean time to
false alarm in the formulation in (28). If a larger mean time
to false alarm is required, then A is set to a larger value, and
vice-versa.

In the setting we consider in this paper, since the line in
which the outage has occurred is unknown, the post-outage
pdf of ∆θ is also unknown. However, since the single-line out-
age can occur in, at most, L ways, the post-outage distribution

2(x)+ = x if x ≥ 0, otherwise (x)+ = 0.
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Fig. 2. A particular realization of W(m,n)[k] statistics for outage of (2, 3)
in Example 3.

is known to belong to the finite set {fσ(m,n), (m,n) ∈ E}. In
this context, we can apply the generalized likelihood ratio test
(GLRT) approach. In this approach, we compute L CuSum
statistics in parallel, one for each post-outage scenario, and
declare a change the first time a change is detected in any one
of the parallel CuSum tests. In other words, we compute (30)
for each line (m,n) in the system, with W(m,n)[0] = 0, and
stop at

τmax = inf

{
k ≥ 1 : max

(m,n)∈E
W(m,n)[k] > A

}
. (31)

1) Choice of Threshold A: Regarding the stopping time
τmax, if all the observations have density function f0, then in
order to ensure E∞[τmax] ≥ β, we set

A = logLβ; (32)

see [22] for a proof. On the other hand, if the fault occurs
at line (m,n), and the post-outage observations have density
function fσ(m,n), then the average detection delay is

sup
γ≥1

Eγ [τmax − γ|τmax ≥ γ] = E1[τmax] ∼ log β

D(fσ(m,n) ‖ f0)
,

as β →∞ [22].
2) Line Outage Identification: The algorithm in (31) can

be used for line outage identification as well. One option is
to use the following intuitive technique. Let (m̂, n̂) denote the
index of the line to be identified as outaged; then

(m̂, n̂) = arg max
(m,n)∈E

W(m,n)[τmax]. (33)

Thus, the line for which the associated CuSum statistic is the
highest at the time of stopping is declared as the outaged line.
We note that this technique of isolating the fault is different
from the more complicated one that is employed in [23].

3) Probability of False Isolation: Let the outage occur in
line (m,n) ∈ E and let the change occur at time γ = 1;
then we define the probability of false isolation (PFI) for the
stopping time τmax as

α(m,n) = P1

(
(m̂, n̂) 6= (m,n)| fault in line (m,n)

)
.

In other words, at τmax, the PFI refers to the probability that
the outage in line (m,n) is falsely identified as outage in
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Fig. 3. Average detection delay vs. mean time to false alarm for the three-bus
system in Example 3.

another line. In addition to the average detection delay, the
PFI can be used as a metric to gauge the effectiveness of the
line outage detection and identification algorithm.

Next, we illustrate the ideas presented above to detect and
identify line outages in a small power system example.

Example 3 (Three-Bus System): We apply the GLRT al-
gorithm in (30)–(31) to detect and identify a line outage in
our running example of the three-bus system in Fig. 1. As in
Example 2, we consider the outage of line (2, 3). In order to
simulate PMU measurements of slight fluctuations in active
power injection at each bus, we create the following power
injection time-series data. The injection at bus i, denoted by
Pi, is

Pi[k] = P 0
i [k] + σv[k], (34)

where P 0
i [k] is the nominal power injection in bus i at instant

k (see values in Table I), and v[k] is a pseudorandom value
drawn from standard normal distributions with 0-mean and
standard deviation σ = 0.5. The variation component, σv[k],
represents random fluctuations in electricity consumption. For
each set of bus injection data, we solve the nonlinear power
flow equations in (1)–(2), with the slack bus (bus 1 in
this example) absorbing all power imbalances, to obtain the
sequence of phase angle “measurements” {θ[k]}k≥1. In this
example, we assume the random fluctuations at buses 2 and 3
are uncorrelated, so that Σ is a diagonal matrix.

To illustrate the algorithm in (31), we simulate the outage
of line (2, 3) with γ = 10. Using the GLRT, we execute
three CuSum tests in parallel, corresponding to each possible
line outage. In Fig. 2, typical progressions of W(m,n)[k] are
plotted. We note that prior to line outage, i.e., for k < γ, all
three W(m,n)[k] statistics remain close to zero, as expected.
After the line outage, the statistics W(1,3)[k] and W(1,2)[k],
corresponding to CuSum tests for outages in lines (1, 3) and
(1, 2), respectively, still remain close to zero. On the other
hand, W(2,3)[k], corresponding to the CuSum test for outage
of line (2, 3), increases in value beginning at k = γ until it
crosses the threshold A = 16 at k = 16. Thus, using (33), we
conclude that the faulty line in this example is line (2, 3).

To illustrate the tradeoff between detection delay and mean
time to false alarm, assuming a PMU sampling rate of 30
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TABLE II
FALSE ISOLATION PROBABILITY OBTAINED VIA SIMULATION FOR

THREE-BUS SYSTEM IN EXAMPLE 3.

β [day] 1/24 1/4 1/2 1 2 7

Line (1, 3) 0.0060 0.0045 0.0070 0.0015 0.0030 0.0020outage
Line (1, 2) 0.0040 0.0026 0.0016 0.0012 0.0018 0.0014outage
Line (2, 3) 0.0014 0.0006 0.0002 0.0006 0.0008 0.0002outage

measurements per second, we choose the threshold A us-
ing (32) to satisfy mean time to false alarms of 1 hour, 6
hours, half a day, 1 day, 2 days, and 1 week. For each A
and possible line outage, and by setting γ = 1, we simulate
5001 random sample paths and obtain the average detection
delay. In Fig. 3, we plot the simulated average detection delay,
supγ≥1 Eγ [τmax − γ|τmax ≥ γ], against the logarithm of the
mean time to false alarm, log β, for each post-outage scenario.
In each case, we also enumerate the number of times a line
outage is falsely isolated, and obtain the simulated PFI, as
reported in Table II. We note that the line outage identification
algorithm in (33) is able to achieve very low PFI. �

4) Effect of Sudden Generation/Load Change: The line
outage detection and identification algorithm in (31) and (33)
relies on the change in the pdf’s of ∆θ[k], which occurs due
to a line outage, as described in (26). The pdf’s, in turn,
depend on (i) the statistical properties of random fluctuations
in load and generation, and (ii) H0 (M0) in the pre-outage
case and H(m,n) (M(m,n)) after an outage in line (m,n).
The latter depends only on the network topology and is
invariant to changes in generation and load. With respect to
the statistical properties of random fluctuations in load and
generation, if some event affects such properties, i.e., ∆P [k] ∼
N (0,Σ′), for k > γ, then we would need to recompute
fσ(m,n) = N (0,M(m,n)Σ

′MT
(m,n)), for each credible outage in

line (m,n). On the other hand, as long as statistical properties
of ∆P [k] do not change, a sudden change in generation/load,
which coincides with a line outage, would not affect the line
outage detection and identification algorithm.

Example 4 (Three-Bus System): Again, we consider the
three-bus system in Fig. 1, and as in Example 3, we apply
the algorithm in (30)–(31) to detect and identify a line outage
that coincides with a sudden change in power injections. To
this end, we obtain simulated power injection data using (34)
when there is a simultaneous line outage and sudden change
in P 0

3 from -0.9 p.u. to -0.2 p.u. at γ = 1, with σ = 0.5, both
before and after the fault. In Table III, we report the PFIs and
average detection delays obtained from 5001 random sample
paths. We note that, indeed, these results are similar to those
obtained in Example 3, where we did not apply coincident
load change with the line outage. �

B. Instantaneous Change Detection

In Section III-B, we described a mean shift in ∆θ[k] that
only affects the sample at k = γ, in the case that the fault
occurs at time tf ∈ [2γ∆t, (2γ + 1)∆t), namely ∆θ[γ] ∼
fµ(m,n); we now incorporate this effect in our algorithm. To

TABLE III
SIMULATION RESULTS FOR SIMULTANEOUS LINE OUTAGE AND LOAD

CHANGE IN THREE-BUS SYSTEM IN EXAMPLE 4.

β [day] 1/24 1/4 1/2 1 2 7

Lines (1, 3) outage
PFI 0.0088 0.0042 0.0046 0.0050 0.0032 0.0036

Detection 0.3903 0.4440 0.4670 0.4812 0.4929 0.5310Delay [s]
Lines (1, 2) outage

PFI 0.0090 0.0056 0.0060 0.0050 0.0030 0.0018
Detection 0.1952 0.2171 0.2237 0.2329 0.2395 0.2557Delay [s]

Lines (2, 3) outage
PFI 0.0020 0.0014 0.0014 0.0004 0.0004 0.0006

Detection 0.1634 0.1786 0.1847 0.1944 0.2042 0.2125Delay [s]

this end, let

U(m,n)[k + 1] = log
fµ(m,n)(∆θ[k + 1])

f0(∆θ[k + 1])
; (35)

then the mean of this random variable is positive at the change
point; see (29). Next, we modify the CuSum algorithm from
Section IV-A to also consider the mean shift, as follows:

W ∗(m,n)[k + 1] = max

{
U(m,n)[k + 1],

(
W ∗(m,n)[k] + log

fσ(m,n)(∆θ[k + 1])

f0(∆θ[k + 1])

)+
 , (36)

where W ∗(m,n)[0] = 0. The above equation can be derived in
the same way as the classical CuSum algorithm is derived
using the maximum likelihood principle.

The modified CuSum algorithm in (35)–(36) is equivalent
to the standard one in (30), except at the change point. The
modified statistic, W ∗(m,n)[k + 1], replaces W(m,n)[k + 1]
in (30), and we proceed with the same protocol as before for
detecting and identifying line outages.

Given the modified CuSum algorithm described above, we
would expect the quantity U(m,n)[k+1], as defined in (35), to
only affect W ∗(m,n)[γ]; this is indeed true. Extensive simula-
tions for low false alarm rates (the range of false alarms we are
interested in for this problem) have revealed that the modified
algorithm does not provide significant gain as compared to the
algorithm (31) presented in Section IV-A. As a result, in the
remainder of the paper, we focus on the algorithm in (31).

V. DOUBLE-LINE OUTAGE IDENTIFICATION VIA
QUICKEST CHANGE DETECTION

So far, in this paper, we have considered algorithms to detect
and identify single-line outages. While simultaneous double-
line outages are rare occurrences, they can be impactful.
Suppose, instead of the single-line outage in line (m,n),
simultaneous credible outage (i.e., one that does not island the
system) of lines `i = (m,n) and `j = (u, v) occurs at t = tf ,
where (2γ−1)∆t ≤ tf < 2γ∆t or 2γ∆t ≤ tf < (2γ+1)∆t.
Assuming that the outage is persistent, then the post-outage
observations ∆θ[k] can be described as

∆θ[k] ≈M{`i,`j}∆P [k], k ≥ γ + 1, (37)
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TABLE IV
FALSE ISOLATION PROBABILITY OBTAINED VIA SIMULATION FOR

SINGLE-LINE OUTAGES IN 118-BUS SYSTEM.

β [day] 1/24 1/4 1/2 1 2 7

Line (54, 55) 0.0088 0.0044 0.0026 0.0022 0.0010 0.0012outage
Line (63, 59) 0 0 0 0 0 0outage
Line (64, 65) 0 0 0 0 0 0outage
Line (65, 68) 0 0 0 0 0 0outage
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Fig. 4. IEEE 118-bus system: average detection delay vs. mean time to false
alarm.

where M{`i,`j} = H−1{`i,`j}, and H{`i,`j} = H0 + ∆H(m,n) +

∆H(u,v). Thus, after the outage of lines (m,n) and (u, v),
∆θ[k] ∼ fσ{`i,`j}, where

fσ{`i,`j} = N
(

0,M{`i,`j}ΣM
T
{`i,`j}

)
, k ≥ γ + 1. (38)

As in the single-line outage scenario, we can avoid repeated
matrix inversion operations by invoking the matrix inversion
lemma for low-rank matrix perturbations.

In addition to computing W(m,n)[k+1] statistics in (30) for
all credible single-line outages, we also compute

W{`i,`j}[k+1] =

(
W{`i,`j}[k] + log

fσ{`i,`j}(∆θ[k + 1])

f0(∆θ[k + 1])

)+

,

for each credible double-line outage in lines `i and `j . The
outaged lines are identified similar to (33), with the additional
CuSum statistics considered.

VI. CASE STUDIES

In this section, we further illustrate the proposed single-
and double-line outage detection and identification algorithms
on the IEEE 118-bus test system. We use the simulation tool
MATPOWER [24] throughout to obtain relevant voltage angles
by repeatedly solving AC power flow solutions of the system,
at each time step k, corresponding to synthetic power injection
profiles generated using (34), with σ = 0.03. Assuming these
random fluctuations are uncorrelated, then, Σ is a diagonal
matrix with each diagonal entry being 0.0018. To simulate the

TABLE V
FALSE ISOLATION PROBABILITY AND DETECTION DELAY OBTAINED VIA

SIMULATION FOR DOUBLE-LINE OUTAGES IN 118-BUS SYSTEM.

β [day] 1/24 1/4 1/2 1 2 7

Lines (23, 24) and (65, 68) outage
PFI 0 0 0 0 0 0

Detection 0.666 0.999 1.066 0.6660 0.7326 0.8658Delay [ms]
Lines (56, 59) and (59, 61) outage

PFI 0.037 0.018 0.014 0.018 0.025 0.015
Detection 2.945 3.263 3.366 3.463 3.549 3.797Delay [s]

worst-case detection delay, we choose γ = 1. As in the three-
bus case in Example 3, assuming a PMU sampling rate of 30
measurements per second, the threshold A is chosen using (32)
to satisfy mean time to false alarms of 1 hour, 6 hours, half a
day, 1 day, 2 days, and 1 week.

A. Single-Line Outage Detection

In this case study, we consider credible single-line outages
(i.e., those that do not island the system) in the IEEE 118-bus
test system; in particular, we focus on the simulated outage of
lines (54, 55), (63, 59), (64, 65), and (65, 68). These represent
a range in performance with regard to average detection delay
and probability of false isolation. For each outage and thresh-
old A, we simulate 5001 random paths. Parallel CuSums, as
described in (30), are computed for all credible single-line
outages in the system. Statistics are accumulated until the
condition in (31) is met. In Fig. 4, we plot the detection delay
versus false alarm trade-off for the four possible outages. In
Table IV, we report the PFIs obtained by enumerating the
number of sample paths for which the wrong line outage is
identified. For three of the four outages considered, we obtain
perfect isolation. In the case of line (54, 55) outage, the PFIs
are still quite low, as desired.

B. Double-Line Outage Detection

We simulate 1001 random paths for two outage cases: (i)
lines (23, 24) and (65, 68) outage, and (ii) lines (56, 59) and
(59, 61) outage. These two outage scenarios are chosen since
the former has the shortest detection delay, while the latter
has the longest. Parallel CuSums are computed for each of the
credible single- and double-line outages. In Table V, the PFIs
indicate the probability that neither of the two actual outaged
lines are identified by the algorithm in (33). Average detection
delays for each case are also reported in Table V. While we
find that the proposed double-line outage detection approach
remains manageable here, for larger systems, the combinatorial
nature of adding parallel CuSums becomes intractable.

VII. LINE OUTAGE DETECTION AND IDENTIFICATION
WITH A SUBSET OF MEASUREMENTS

Incentives to invest in the deployment of a measurement
infrastructure are driven by preliminary demonstrations of
its potential benefits in monitoring, protection, and control
capabilities (see, e.g., [25]). Moreover, today, in addition to
PMU installations, synchronous phasor measurement capa-
bilities are available as standard features in many protective
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Fig. 5. Network topology for WECC 3-machine 9-bus system.

relays, meters, and fault recorders [26]. Thus, so far, we have
assumed that PMU measurements are available at all buses;
however, present-day power systems are still far from having
such a rich set of available phasor measurement devices. With
respect to this, our proposed method can be easily extended to
the case in which phase angle measurements are not available
at all buses.

Let O ⊆ V represent the set of NO observable buses for
which phase angle measurements are available. Define ∆θO[k]
to be an NO-dimensional vector, the entries of which are
∆θi[k], for i = 1, . . . , NO. Suppose the observation ∆θi[k]
is obtained at bus j, where j ∈ V . Now, define an NO × N
observation matrix C the ith row of which contains zeros
everywhere except in the jth entry, which is equal to 1. Then,
we can write

∆θO[k] = C∆θ[k]. (39)

Furthermore, by substituting (6) into (39), we obtain that the
pre-outage observations ∆θO[k] ∼ f0, where

f0 = N
(
0, CM0ΣMT

0 C
T
)
, (40)

Suppose a persistent outage in line (m,n) occurs at time
t = tf , where (2γ − 1)∆t ≤ tf < 2γ∆t or 2γ∆t ≤ tf <
(2γ + 1)∆t. By substituting (12) into (39), the post-outage
observations ∆θO[k] ∼ fσ(m,n), where

fσ(m,n) = N
(

0, CM(m,n)ΣM
T
(m,n)C

T
)
, k ≥ γ + 1. (41)

In order to detect and identify single-line outages with a subset
of measurement locations, we can utilize the proposed QCD-
based algorithm in (31) and (33) along with the updated pre-
and post-outage pdf’s in (40) and (41).

Example 5 (3-Machine 9-Bus System): We consider the
WECC 3-machine, 9-bus system model (see, e.g., [24]), the
topology of which is shown in Fig. 5. We simulate active
power injection fluctuations at each bus i using (34) with
σ = 0.03. We assume that voltage phase measurements are
available at buses 3, 5, 6, 7, and 9 only. For each outage and
threshold A, choosen to satisfy mean time to false alarms of
1 hour, 6 hours, half a day, 1 day, 2 days, and 1 week, we
simulate 5001 random sample paths. In Fig. 6, we illustrate
the detection delay versus false alarm tradeoff for all credible
single-line outages. In Table VI, we report the PFIs obtained
for each outage. �

TABLE VI
FALSE ISOLATION PROBABILITY OBTAINED VIA SIMULATION FOR

THREE-BUS SYSTEM IN EXAMPLE 3.

β [day] 1/24 1/4 1/2 1 2 7

Line (8, 9) 0.0068 0.0096 0.0070 0.0086 0.0056 0.0060outage
Line (7, 8) 0.0128 0.0132 0.0112 0.0110 0.0134 0.0108outage
Line (6, 9) 0 0 0 0 0.0002 0outage
Line (5, 7) 0 0.0002 0 0 0.0002 0outage
Line (4, 6) 0.0002 0.0002 0.0002 0 0 0outage
Line (4, 5) 0.002 0.0014 0.0008 0.0006 0.0008 0.0012outage

0.1

0.15

0.2

D
et
ec
ti
o
n
D
el
ay

[s
]

 

 

Outage of (8,9)
Outage of (7,8)

0.08

0.1

 

 

Outage of (6,9)
Outage of (5,7)

1/24 1/4 1/2 1 2 7

0.04

0.06

Mean Time to False Alarm [day]

 

 

Outage of (4,6)
Outage of (4,5)

Fig. 6. Average detection delay vs. mean time to false alarm for the 3-machine
9-bus system in Example 5.

VIII. CONCLUDING REMARKS

In this paper, we proposed a method to detect and identify
transmission line outages that exploits the statistical properties
of voltage phase angle measurements obtained from PMUs
in real-time. We assumed that the incremental variations in
net power injection at each bus are independent random
variables, which are related to the voltage phase angles via
a linear mapping resulting from an incremental small-signal
power flow model. By processing voltage angle measurements
sequentially, we employed a QCD algorithm to detect and
identify line outages.

Future work includes design of optimal QCD-based algo-
rithms for line outage detection using fewer PMUs as well
as multiple-line outage detection with reduced computational
burden.
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