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Abstract—This paper proposes a set-theoretic method to assess
the effect of variability associated with renewable-based elec-
tricity generation on power system dynamics, with a focus on
time-scales involving electromechanical phenomena. Performance
requirements define a set within which the values of certain
system variables, e.g., synchronous generator speeds, system fre-
quency, or bus voltages, must remain at all times. To address this
problem, reachability analysis techniques are used; for a given
timeframe, if the reach set, i.e., the set that contains all possible
system trajectories, is within the set defined by performance
requirements, then it may be concluded that variability arising
from in renewable-based electricity generation does not have a
significant impact on system dynamics. The proposed method is
illustrated through several case studies, including the 39-bus New
England system model.

I. INTRODUCTION

The motivation for this work lies in the current trend

toward more environmentally friendly electricity generation,

which requires increased reliance on renewable resources,

such as wind or solar. It is well known that the integration

of these renewable-based electricity sources into a power

system presents notable challenges in its operation due to

the variable nature of wind speed and solar insolation. This

introduces uncertainty on the generation side, which affects

system operation across different time-scales: day-ahead, hour-

ahead, and five-minute-ahead scheduling; automatic generation

control, and governor response [1]. The focus of this work

is on the impact of variability in renewable-based generation

on power system dynamic performance, particularly, on time-

scales involving electromechanical phenomena [2], with time-

frames of interest of up to 100 s. On these scales, deep levels

of wind penetration may impact small-signal and transient

stability due to reduction of system effective inertia [3],

and primary frequency control due to displacement of units

providing governor response [4].

Various approaches to address uncertainty in power systems

have been explored in the context of both power flow analysis

and dynamic performance assessment. These approaches in-

clude probabilistic and set-theoretic (unknown-but-bounded)

uncertainty characterizations. In this paper, we pursue the

unknown-but-bounded approach, building on previous results

reported in [5]. Previous work that used set-theoretic uncer-

tainty characterizations mainly focused on static analysis. For
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example, the authors in [6] use interval arithmetics to capture

uncertainty in power flow computations. The effect of model

parameter uncertainty on transmission security in a power

market is explored in [7]. Interval analysis, in conjunction

with a linearized power system model, is used to determine

the worst-case effects of network parameter uncertainties on

various optimization problems solved in a deregulated power

market [8]. Furthermore, [9] uses ellipsoidal approximations in

power system optimization to obtain ranges in which generator

injections can vary without violating operational constraints

in static security analysis. In dynamic performance analysis,

the authors in [10], [11] use sensitivity analysis techniques

to generate accurate first-order approximations of trajectories

that arise from perturbed parameter sets. The work in [12],

[13] uses backward reach sets to compute the stability region

of an equilibrium point.

In this paper, we develop an analytically tractable method to

assess whether in a particular timeframe, certain state variables

of interest remain within acceptable ranges for all possible

realizations of renewable-based electric power generation that

arise from variability in their primary energy source. In this

regard, the method can be used to verify the performance of

power system closed-loop controls, which are responsible for

maintaining acceptable performance, for different scenarios

of wind penetration. This type of verification analysis is a

common step in control system performance analysis when

the system dynamics is perturbed by an uncertain input dis-

turbance.

In the context of this paper, the power injected by renewable

resources can be described (under certain simplifying assump-

tions described in Section II) as an uncertain disturbance to

the system dynamics. Specifically, for a given timeframe, the

amount of renewable-based generation can be described by

some nominal generation profile (given by a forecast) and

some confidence interval around each point of this gener-

ation profile (e.g., forecast error). As mentioned above, an

application of the tool is to verify whether power system

closed-loop controls can handle this uncertainty by ensuring

that performance requirements are met, and also ruling out

undesired behaviors such as the ones described in [11].

One way to address the verification problem described

above is to repeatedly simulate the system dynamic behavior

for many different (renewable-based) generation profiles (de-

scribed as functions of time). Alternatively, the problem can

be addressed by computing the system reach set [14], i.e., the

set that bounds all possible system trajectories that arise from

all possible renewable-based power generation profiles. Com-

puting the exact reach set of a nonlinear differential-algebraic
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equations (DAEs) may be very difficult, or even impossible.

For the timeframes of interest (up to 100 s), it is assumed

that the disturbance to the system dynamics introduced by

(uncertain) variations around the nominal generation profile is

sufficiently small. This justifies approximating the DAE reach

set by that of a dynamical model that results from linearizing

the DAE around the trajectory that arises from the renewable-

based nominal generation profile.

We now discuss our method’s role in the hierarchy of

power system dynamic performance analysis. On one hand,

in small-signal stability analysis, the canonical problem is to

study the stability of power system equilibrium points through

eigenvalue analysis (see [2], [15]). On the other hand, transient

stability is used to study the time-evolution of a power system

trajectory when subject to a large perturbation, e.g., a fault

in a transmission line (see [2], [15]). We believe that our tool

complements these two types of analysis as it attempts to char-

acterize the effect of time-evolving perturbations that originate

from the (uncertain) variability of renewable-based electricity

generation on power system dynamics. More precisely, it can

be considered as belonging to a class of tools for power system

trajectory sensitivity analysis (see e.g., [10], [11]).

Application of the proposed method is illustrated through

two case studies. The first one involves a three-bus system,

the size of which enables us to derive explicit expressions in

all steps involved in the analysis. The second one involves

the 39-bus New England system model, where the impact of

wind on power system dynamics for 20% and 30% penetration

is studied, with different synchronous generator displacement

scenarios, different wind variability levels, and different units

participating in governor response.

The remainder of this paper is organized as follows. Sec-

tion II presents the modeling framework. Section III describes

the proposed dynamic performance assessment method. Sec-

tions IV and V illustrate the assessment method with a three-

bus and a 39-bus system example respectively. Concluding

remarks are made in Section VI.

II. MODELING FRAMEWORK

In this section, we present the modeling framework,

which includes the canonical power system DAE model, the

renewable-based electricity source model, and the augmented

DAE model that results from accounting for the dynamics of

renewable-based electricity sources. The model describing the

primary energy source variability is also introduced.

A. Renewable-Based Electricity Resource Model

It is assumed that under normal system operating conditions

(no faults in the network or sudden loss of synchronous

generators) and for the time-scales of interest, the interaction

between a renewable-based electricity source and the network

is predominantly through its power injection. This injection

can be described by a dynamical model that relates the

renewable-based source power output to its primary energy

source. For wind turbine generators, this assumption is con-

sistent with the findings in [16], where it is shown through

model order reduction that a low-order dynamical model yields

a simple yet accurate description of the relation between wind

speed and power generated by a Type-C wind turbine.

Following the ideas above, we assume that a wind power

plant can be represented by a dynamical model that includes all

individual wind turbine generators, where the power injection

in the grid is a function of wind speeds at points where wind

turbines are located. Following [17] (also [18, ch. 2]), this

model can be further reduced by aggregating individual wind

turbine generator models, which results in the power injection

being a function of a single wind speed representative of the

plant location. Letting wi(t) ∈ R denote the representative

wind speed (or insolation) for the ith wind (or solar) power

plant at time t, the power injection arising from the renewable

plant can then be described by

żi = αi(zi, wi),

Pi = βi(zi),
(1)

where zi ∈ R
ni , Pi(t) is the output power, αi : R

ni+1 7→ R
ni ,

and βi : R
ni 7→ R

+.

B. System DAE Model

In order to describe the electromechanical behavior of

the power system, the standard DAE model is formulated

to explicitly account for renewable-resource dynamics using

the model in (1). Assume the system contains r buses with

power injections arising from renewable resources or aggre-

gations thereof. Then, following the notation in (1), define

z = [zT
1 , . . . , z

T
r ]T , w = [w1, . . . , wr]

T , and the vector func-

tions α(z, w) = [αT
1 (z1, w1), . . . , α

T
r (zr, wr)]

T and β(z) =
[β1(z1), . . . , βr(zr)]

T . Also, define v = [P1, . . . , Pr]
T , where

each Pi is the power output of renewable resource i as

described in (1), from where it follows that v = β(z). Then

the system electromechanical behavior can be described by a

DAE model of the form

ẋ = g(x, y, u),

ż = α(z, w),

v = β(z),

0 = h(x, y, v),

(2)

with g : R
n+p+m 7→ R

n, h : R
n+p+l 7→ R

p, and where

x ∈ R
n includes the synchronous machine dynamic states,

y ∈ R
p includes the bus voltage magnitudes and angles, and

u ∈ R
m includes the synchronous machine set points. In (2),

we assume that the rotor angle of a particular synchronous

generator provides the reference and all other rotor angles and

bus voltages are defined relative to this reference [2].

The model in (2) is similar to the standard electromechanical

models in the literature (see e.g., [2], [15]) except for the

way in which the power injections from renewable-energy

resources are modeled. In particular, in the general device

power injection model described in [15, §9.1], the state vector

for each device contains external variables shared with other

devices. In our case, due to the assumptions for reducing

the order of the renewable-based electricity source model

described in (2) by ż = α(z, w), the model does not share

external variables with the conventional dynamic model for

the conventional generators described in (2) by ẋ = g(x, y, u).
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Fig. 1: Renewable-based power injection model.

While, this difference is perhaps not substantial, it allows us

to have an aggregate reduced-order model for the renewable-

based resources that substantially decreases the dimension of

the state space. Additionally, for solar photovoltaic installa-

tions, the maximum power point tracker sets power output as

a function of insolation. With respect to the time-scales of

interest here, and given that there are no moving parts, it can

be assumed that power output changes instantaneously with

changes in insolation, i.e., the relation between power output

and insolation is algebraic. Such a static insolation/output-

power model is consistent with the models in [19], and can

be easily recovered from the more general dynamical model

ż = α(z, w) by setting ż = 0.

C. Primary Energy Source Variability Model

Variability in the primary energy sources of a renewable-

based electricity source is modeled as an unknown-but-

bounded quantity. For example, wind speed or solar insolation

are assumed to lie within some interval around a nominal

value, which could result from forecast or could be chosen

based on engineering judgment. The model, which captures all

possible primary energy source realizations as time evolves, is

graphically depicted in Fig. 1.

Let w∗

i (t) denote the nominal value of wind speed (or

insolation) at time t for renewable resource i. Additionally, the

(unknown) actual value of wind speed (or insolation) at time

t, which is denoted by wi(t), is assumed to lie within some

interval around the nominal w∗

i (t) value. Then the variability

in wi(t) ∈ R can be described by

wi(t) ∈ Wi(t) = {wi(t) : |wi(t) − w∗

i (t)| ≤ ki(t)} . (3)

Accounting for all r renewable-based electricity sources in the

system, it follows that

w(t) ∈ W(t) = W1(t) × · · · ×Wr(t) ⊆ R
r. (4)

Equivalently, wind speed (or insolation) can be expressed as

wi(t) = w∗

i (t) + ∆wi(t), where ∆wi(t) ∈ R is given by

∆wi(t) ∈ ∆Wi(t) = {∆wi(t) : |∆wi(t)| ≤ ki(t)} , (5)

and

∆w(t) ∈ ∆W(t) = ∆W1(t) × · · · × ∆Wr(t) ⊆ R
r. (6)

III. DYNAMIC PERFORMANCE ASSESSMENT

In this section, we develop a method to assess the dynamic

performance for all feasible realizations of renewable-based

power generation that arise from primary energy source vari-

ability. In this method, the DAE model is linearized along a

nominal trajectory that results from some nominal renewable-

based generation. Assuming primary energy source variability

Linearized 

Power System 

ODE

Augmented 

Power System

DAE

Bounded 

Input 

Disturbance

Exact 
Reach Set
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Fig. 2: Dynamic performance assessment framework.

is sufficiently small, the linearized model is used to approxi-

mate the DAE reach set, which contains all trajectories arising

from all possible primary energy source realizations. The reach

set can be used to assess whether certain state variables remain

within a region of the state space defined by performance

requirements at all times. The method is summarized in Fig. 2,

and formalized next.

A. Linearized Model

Let τ denote the timeframe of interest (up to 100 s).

Then, for 0 ≤ t ≤ τ , assuming the augmented DAE system

in (2) evolves from x(0) = x0, y(0) = y0, and z(0) = z0
according to nominal set points u(t) = u∗(t) and wind

speed (or insolation) w(t) = w∗(t), a nominal trajectory,

described by the 3-tuple, (x∗, y∗, z∗), results. Assume that the

functions g(·), α(·), β(·), and h(·) in (2) are continuously

differentiable with respect to their arguments in some neigh-

borhood of
(

x∗(t), y∗(t), z∗(t), u∗(t), w∗(t)
)

, 0 ≤ t ≤ τ .

Let x(t) = x∗(t) + ∆x(t), y(t) = y∗(t) + ∆y(t), z(t) =
z∗(t) + ∆z(t), where ∆x(t), ∆y(t), and ∆z(t) result from

∆w(t) = w(t)−w∗(t). We assume that along the nominal tra-

jectory (x∗, y∗, z∗), invertibility of the power flow equations’

Jacobian always holds. Then, assuming ∆w(t) ∈ ∆W(t)
is sufficiently small, using a variational approach [20], we

can obtain a linear, time-varying ordinary differential equation

(ODE) model of the form:

d

dt
∆x̃ = A(t)∆x̃ +B(t)∆w, (7)

where ∆x̃ = [∆xT ,∆zT ]T , and ∆x̃(0) = 0. The derivation

of A(t) and B(t) is provided in Appendix A.

B. Reachability Analysis

The objective is to obtain the reach set of the augmented

DAE model in (2), which is the set that contains all trajectories

that arise from all feasible values of the primary source of en-

ergy w(t) ∈ W(t), for 0 ≤ t ≤ τ . Computing the exact shape

of the reach set R(t) can be very difficult, or even impossible,

especially for nonlinear DAEs. Thus, instead of computing

R(t), for 0 ≤ t ≤ τ , we assume that the disturbance ∆w(t)
is sufficiently small to justify the approximation of the DAE

reach set by that of the linearized model in (7). Thus, we obtain

an upper bound to the reach set of (7), which we denote by

∆R(t), and assume that R(t) ≈ x∗(t) ⊕ ∆R(t) =: R̃(t),
where ⊕ denotes the Minkovski sum. Also, since the reach

set of the linearized system in (7) is only an approximation

to that of the nonlinear system in (2), it suffices to obtain an

upper bound instead of calculating the exact reach set of (7).
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Fig. 3: Input set ∆W(t) and its ellipsoidal bound Ω∆w(t).

Although there exists several different methods for linear-

ODE reachability analysis, we use ellipsoidal-based tech-

niques, which have a long history in control theory (see

e.g., [14], [21], [22], [23], and the references therein). We

introduce next the fundamental ideas for reachability analysis

using ellipsoidal techniques, and illustrate them with several

examples. Then, we provide a formal comparison, in terms

of computational complexity, of ellipsoidal techniques against

other techniques for reachability analysis of ODEs.

1) Computing the input set ellipsoidal bound: In

ellipsoidal-based reachability analysis, as depicted in Fig. 3,

at every time instant t, the input set ∆W(t) is bounded by an

ellipsoid Ω∆w(t), i.e., ∆W(t) ⊆ Ω∆w(t), defined as

Ω∆w(t) :=
{

∆w(t) : ∆wT (t)Q−1(t)∆w(t) ≤ 1
}

, (8)

where Q(t) is a positive definite shape matrix. Thus, for

every t, given ∆W(t), it is necessary to obtain an upper

bound Ω∆w(t) that is optimal in some sense. For example,

a choice for Q(t) is one that minimizes the volume of the

resulting bounding ellipsoid Ω∆w(t). Since the volume of

Ω∆w(t) is proportional to (detQ(t))1/2 [24], computing the

shape matrix Q(t) that minimizes the volume of Ω∆w(t) and

contains ∆W(t) can be formulated as the following convex

optimization problem [25]:

minimize

subject to

(detQ(t))1/2

vTQ−1(t)v ≤ 1, ∀v ∈ ∆W .
(9)

Other criteria to choose Q(t), ∀t, includes minimizing the

span of Ω∆w(t) on a particular direction defined by a vector

ρ ∈ Rr, which results in an optimization problem where the

objective is to minimize the support function of Ω∆w(t) for

ρ. In the case studies presented in Sections IV and V, we use

the minimum volume criterion.

Remark 1: Although in theory it is necessary to obtain

Q(t) for every t ∈ [0, τ), in practice, it is only calculated

at discrete time instants t0, t1, . . . , ti, ti+1, . . . , τ , and in the

interval between two time instants [ti, ti+1), Q(ti) is used only

to be updated to Q(ti+1) at ti+1. An alternative to updating

Q(t) at discrete time instants is to use a fixed Q, which

corresponds to the shape matrix of an ellipsoid E such that

Ω∆w(t) ⊆ E , for 0 ≤ t ≤ τ . This results in a conservative

upper-bound on the calculation of R(t), but substantially

speeds up the analysis. �

2) Propagating the input set ellipsoidal bound: Once the

input set bounding ellipsoid Ω∆w(t) is obtained, it can be

propagated through the system dynamics to obtain a family

of ellipsoids X (t) = {Xβ(t), β > 0}, the members of which

provide upper bounds on the exact reach set ∆R(t) of (7).

Each ellipsoid Xβ(t) in X (t) is defined as

Xβ(t) = {x : xT Ψ−1
β (t)x ≤ 1}, (10)

where Ψβ is a positive definite shape matrix obtained as

d

dt
Ψβ(t) =A(t)Ψβ(t) + Ψβ(t)AT (t)+

βΨβ(t) +
1

β
B(t)Q(t)BT (t), (11)

with Ψ(0) = Ψ0. The exact reach set ∆R(t) (evaluated for

a time instant t) of the small-signal model (7) can be upper

bounded by the intersection of the ellipsoids in the family

X (t):

∆R(t) ⊆
⋂

β

Xβ(t), ∀ β ∈ R such that β > 0. (12)

Then, the set ∆R containing all possible ∆x trajectory ap-

proximations, for 0 ≤ t ≤ τ , is given by

∆R =

τ
⋃

t=0

∆R(t). (13)

The result in (11) can be obtained through set calculations

[14], or derived from Pontryagin’s maximum principle [23].

The parameter β > 0 (possibly time-varying) is arbitrary

and determines the shape of the bounding ellipsoids. We next

discuss a few alternatives for choosing β.

3) Choice of Parameter β: From (12), it is obvious that in

order to obtain an upper bound on ∆R(t), it suffices to obtain

a single Xβ(t) for some β > 0. In this regard, we may be

interested in obtaining a bounding ellipsoid that is optimal in

some sense. For example, an alternative is to choose a single β
that minimizes the volume of the resulting bounding ellipsoid

Xβ(t) is minimum for all t > 0 [22]. This can be achieved by

choosing a time-varying β(t) of the form

β(t) =

√

tr(Ψ−1
β (t)B(t)Q(t)B(t)T )

n
, (14)

where tr(Ψ−1
β (t)BQBT ) denotes the trace of Ψ−1

β (t)BQBT .

However, with this choice of β(t), the matrix differential

equation in (11) becomes nonlinear, posing some additional

challenges in terms of obtaining its solution numerically.

The accuracy of the approximation can be substantially

increased by obtaining more than one bounding ellipsoid, and

it is even possible to obtain the exact reach set in some

cases. For example, if the system in (7) were controllable1,

the authors in [23] showed that choosing β(t)’s of the form

β(t) =

√

ηT eAtB(t)Q(t)BT (t)eAT tη

η′Ψη(t)η
, (15)

for all η ∈ R
n such that η′η = 1, results in a family of

bounding ellipsoids such that ∆R(t) =
⋂

β Xβ(t), i.e., the

intersection of the family of ellipsoids generated with (11)

and (15) yields the exact reach set. While this approach for

choosing β is appealing in theory, in practice, it is not possible

1A linear system dx

dt
= Ax+Bu, with x ∈ R

n is controllable if and only

if the controllability matrix C =
ˆ

B AB A2B . . . An−1B
˜

is full rank.
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Fig. 4: Single-machine infinite bus system.

to compute Xβ(t) for infinitely many values of β (although

accurate approximations can be obtained by using a few

η’s appropriately chosen). Additionally, the matrix differential

equation in (11) becomes nonlinear, posing computational

challenges. For uncontrollable systems, we can only choose

η’s in the image of the controllability matrix (otherwise,

β(t) = 0, ∀t, and the matrix differential equation in (11)

is not properly defined).

A practical alternative adopted in this work to circumvent

the problems described above with the particular choice of

β in (14) and (15) is to randomly choose several positive

and constant values of β, which makes the matrix differential

equation in (11) linear and simplifies its numerical solution

by allowing it to be rewritten as a set of differential equations

as follows. Let X ⊗ Y denote the Kronecker product of

matrices X and Y (see, e.g., [26]). Denote by ψβ ∈ R
n2

the vector that results from stacking up the columns of the

matrix Ψb ∈ R
n×n, and by b ∈ R

n the vector that results

from stacking up the columns of the matrix BQ̃B ∈ R
n2

.

Then,
d

dt
ψβ = Ãψβ + b, (16)

with Ã = In ⊗A+A⊗ In + βIn2 , where In and In2 denote

the n× n and the n2 × n2 identity matrices, respectively.

Remark 2: It is important to note that although the size of

(16) is n2, in practice, since Ψβ is a symmetric matrix, it is

possible to reduce the size of (16) to n(n + 1)/2. Also, it

is possible to numerically solve in parallel all these systems

using, e.g., the MATLAB parallel toolbox, although for each

β, a different system of differential equations results. We used

these ideas in the code we developed to analyze the case-

studies presented in Sections IV and V. �

We illustrate the application of the reachability concepts

introduced above with the following example featuring the

single-machine infinite-bus (SMIB) system. Since the purpose

of this example is to illustrate notions, without loss of gener-

ality, we restrict the analysis to the case when the infinite bus

voltage magnitude is uncertain.

Example 1: Consider the SMIB system in Fig. 4, where

the synchronous generator is described by the classical model.

Assume that the infinite bus voltage magnitude v∞ can vary

over time; however, the time structure of this variation is not

known except for upper and lower bounds, i.e., v∞ is unknown

but bounded. Let the maximum and minimum values of the

variation be ±0.1 pu around a nominal value of vm = 1 pu,

i.e., v∞ ∈ [0.9, 1.1] pu, from where it follows that |∆v∞| <
0.1, or ∆v2

∞
< 0.01. Therefore, following the notation in (8),

this results in Q(t) = 0.01, 0 ≤ t ≤ τ . In this particular case,

since vm is a constant, the system that results from linearizing

the SMIB model will be time invariant.

TABLE I: SMIB System Model Parameter Values

E Xm Xl M D [s/rad] Tm ωs [rad/s] vm

1 0.2 0.066 1

15π
0.08 1 120π 1

Let δ be the angular position of the rotor in electrical

radians, and ω be the angular velocity of the rotor in electrical

rad/s. Define ∆δ = δ−δ0, ∆ω = ω−ω0, and ∆v∞ = v∞−vm.

Then, by linearizing the SMIB model, we obtain

d

dt

[

∆δ
∆ω

]

=

[

0 1

− Evm

M(Xm+Xl)
cos δ0 − D

M

] [

∆δ
∆ω

]

+

[

0
− Tm

Mvm

]

∆v∞,

(17)

where D, M , E, Xm, Xl, ωs, and Tm are constants [2].

Reachability analysis is conducted for τ = 20 s using the

values given in Table I. We assume that the initial conditions

are known: [∆δ(0),∆ω(0)]T = [0, 0]T , Ψ0 ∈ R
2×2 is a zero

matrix. In Fig. 5(a), we plot the minimum volume ellipsoid,

X0, which results from solving (11) with β defined in (14).

In the same figure, by solving (11) with β defined in (15)

for η = [0, 1]T =: η1, η = [0.9962, 0.0872]T =: η2, and

η = [−0.9986, 0.0523]T =: η3, we obtain three ellipsoids Xη1
,

Xη2
, Xη3

(all of which bound the reach set of the system in

(17) and thus so does their intersection). Additionally, a worst-

case system trajectory obtained by simulating the nonlinear

SMIB model is plotted in Fig. 5(a). This worst-case trajectory

is obtained by switching the value of v∞ between 0.9 (its

minimum) and 1.1 (its maximum). This worst-case trajectory

and minimum volume ellipsoidal reach set are reproduced in

Fig. 5(b). Additionally, Fig. 5(b) also contains three bounding

ellipsoids Xβ1
, Xβ2

, Xβ3
corresponding to three randomly

chosen constant β’s: β = 0.64 =: β1, β = 0.74 =: β2, and

β = 0.84 =: β3, respectively. From both Figs. 5(a) and 5(b),

we see that the linearized small-signal reach set fully contains

the system state excursions of the nonlinear system, providing

a fairly accurate approximation to the nonlinear model reach

set. �

4) Alternative methods for reachabiltiy analysis: Other

methods for reachability analysis of ODEs include the use

of regular polytopes [27], and symmetric polytopes [28].

Although regular polytopes can provide tight approximations

for any convex set, the complexity of numerical algorithms that

use polytopes for reachability analysis is V n, where V is the

number of vertices of the polytope and n is the dimension of

the state space [11], [29]. Symmetric polytopes (or zonotopes)

have been proposed as an alternative to polytopes and ellip-

soids as they are closed under the Minkovski sum; however as

time increases, the order of bounding zonotope increases by a

factor equal to the order of the zonotope describing the initial

conditions divided by n. On the other hand, ellipsoidal-based

reachability algorithms grow in complexity as O(n3) with the

dimension of the state space, and linearly with the number of

time steps and the number of bounding ellipsoids [29]. The

reader is referred to [30] for further discussion and comparison

between different techniques for reachability analysis.
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Fig. 5: SMIB system reachability analysis results for infinite bus voltage variation of ±0.1 pu.

C. Performance Requirements Verification

Performance requirements generally consist of constraints

in the form of interval ranges on variables of interest such

as system frequency and synchronous generator speeds. In

general, performance requirements constrain the excursions of

x(t) around some x0(t) ∈ R
n to a region of the state space

Φ ⊆ R
n defined by a symmetric polytope:

Φ(t) = {x(t) : |πT
i

(

x(t) − x0(t)
)

| ≤ 1, ∀i = 1, 2, . . . , p},
(18)

where πi ∈ R
n. The computation of the reach set allows us to

determine whether the performance requirements are violated.

In fact, verifying that the system meets all performance re-

quirements for any w(t) ∈ W(t), is equivalent to checking that

R(t) ⊆ Φ(t), for 0 ≤ t ≤ τ . As explained in Section III-B,

we assume that R(t) ≈ R̃(t) for 0 ≤ t ≤ τ ; then, instead of

checking that R(t) ⊆ Φ(t), we check that R̃(t) ⊆ Φ(t).

The ideas above are illustrated in the following example,

which is a continuation of Example 1.

Example 2: Consider the SMIB discussed in Example 1.

Assume that the synchronous generator is equipped with an

under-speed protection that causes it to disconnect below

373.2 rad/s (59.4 Hz) and an over-speed protection that also

disconnects the generator above 380.6 rad/s (60.6 Hz). In this

case, and following the notation in (18), π1 = [0, 1
1.2π ]T .

Therefore the performance requirements set is defined as

Φ(t) = {ω(t) : |ω(t) − ωs| ≤ 1.2π}, (19)

where ωs = 120π rad/s. In Fig. 5, the performance require-

ments set described by (19) corresponds to the two horizontal

dashed lines. It is easy to check by visual inspection that

the intersection of the ellipsoids in Fig 5(a), as well as

all the ellipsoids in Fig 5(a) are fully contained within the

region defined by the two horizontal dashed lines. Then, we

conclude that despite the variability in the infinite bus voltage

magnitude, the speed protection on the generator will not cause

it to inadvertently disconnect. �

D. Results Visualization

Visualization of the ellipsoids in Example 1, and thus

checking whether or not R̃(t) ⊆ Φ(t) is satisfied, is straight-

forward since the two state variables can be plotted directly

onto the Cartesian plane. Even for the case when there are

three state variables, we can still plot the resulting three-

dimensional ellipsoids. In general, systems with q > 3 states

result in q-dimensional ellipsoids. To assess whether a state

variable of interest, denoted as ∆x̃i [i.e., the ith component

of ∆x̃ ∈ R
q in (7)], lies within acceptable ranges, we project

the corresponding q-dimensional ellipsoid X onto a subspace

spanned by the ith axis of ∆x̃.

Define the projector Hi to be a 1× q matrix with all entries

equal to zero except for the ith one, which is set to one. Then,

the projection of X (t) onto the subspace spanned by the ith

axis of the ith dimension is

dΠi(X ) = {∆xi : ∆xT
i (HΨHT )−1(t)∆xi ≤ 1}. (20)

It is also possible to plot the projection of X (t) onto the

subspace spanned by the ith and jth axis, corresponding to

∆x̃i and ∆x̃j dimensions, by defining the projector Hij to

be a 2 × q matrix will all entries equal to zero except the

(1, i) and the (2, j) entries, which are set to one. We illustrate

these ideas in the following example and use them in the case

studies of Sections IV–V.

Example 3: Consider, again, the SMIB system of Examples

1 and 2. Even though the system has only two state variables

and can be plotted in a straightforward manner onto the

Cartesian plane, we may be interested in only the behavior of

one of the variables and wish to obtain its maximum deviations

around an operating point. To obtain the projection onto δ,

we choose the projector H1 = [1, 0] and, similarly for ω,

H2 = [0, 1]. A geometric interpretation is shown in Fig. 5(b),

where the outermost ellipsoid is projected onto both the δ
and ω axes via the thin dashed lines and the corresponding

projections are plotted in thick lines on the axes. Again, we

conclude ω deviations are completely contained within the

interval between 59.4 Hz and 60.6 Hz. �
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P2 + jQ2

P3 + jQ3

jX13

Fig. 6: Three-bus system with a wind turbine generator.

IV. THREE-BUS SYSTEM CASE STUDY

In this section, we use the methodology described in the

previous section to analyze a three-bus power system depicted

in Fig. 6, consisting of a synchronous generator connected to

Bus 1, a renewable-based generating resource connected to

bus 2, and a load connected to Bus 3. The electrical network

is assumed to be lossless and is described by the standard

power flow equations. We will analyze this system for different

synchronous generator and wind turbine generator (WTG)

models. Unless otherwise stated, all quantities are in per unit

(pu). As in Example 2, the performance criteria adopted is the

synchronous machine speed excursion—a surrogate for system

frequency [2].

A. Case 1

The synchronous generator is described by a three-state

model that includes the mechanical equations of motion and

the governor. The power generated by the renewable resource

of Bus 2 is modeled as an unknown-but-bounded static injec-

tion, i.e., following the notation in (2), ż = 0. The functions

g(x, y, u) and h(x, y, v) are described in Appendix B1.

The procedure described in Section III is followed—we used

MATLAB to implement the system models and also to im-

plement the algorithms for reachability analysis. In this case,

u∗(t) = Pc = 0.6 pu, and v∗(t) = P2 = 0.4 pu are constant

for 0 ≤ t ≤ τ , with τ = 20 s, so the resulting linearized model

described in (7) is time invariant. Following the notation in

(7), in order to obtain x∗ and y∗ needed for computing the

linearized model matrices, the steady-state solution of (27)

and (28) is obtained by setting all the derivatives to zero and

solving for all unknowns. Using the parameters in Table II, this

results in ωo = 120π rad/s, Pmo = 0.6 pu, E1o = 1.13 pu,

V1o = 1 pu, V2o = 0.94 pu, V3o = 0.94 pu, θ1o = −6.12◦,

θ1o − θ3o = 3.65◦, θ2o − θ3o = 3.89◦.

374 376 378 380 382 384
0.3

0.4

0.5

0.6

0.7

0.8

ω [rad/s]

P
m

[p
.u

.]

 

 

x∗ + ∆x(t)
x(t)
Φ
X0

Xη1

Xη2

Xη3

Fig. 7: Three-bus system reachability analysis results for wind

power injection variability of ±0.32 pu.
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Fig. 8: Three-bus system reachability analysis results for wind

variability of ±1.6 m/s.

The unknown-but-bounded input disturbance is the power

injection at Bus 2, which is denoted by v and assumed to vary

between ±80% of its nominal value, i.e., v ∈ [0.08, 0.72]. In

this case, since there is only one uncertain input, it follows

that Q = (0.8 × 0.4)2 = 0.1024. The input uncertainty

is then propagated through the system dynamics using (11),

resulting in the reach set of the linearized system. Since the

linearized matrix pair (A,B) is controllable, we choose the

free parameter β in (11) by using (15).

Since there are only two dynamic states—ω and Pm—we

can plot the linearized system state-bounding ellipsoids in the

plane as shown in Fig. 7. The intersection of these ellipsoids is

a tighter bound on the exact linearized system reach set. Also

depicted Fig. 7 is a worst-case trajectory, which is created

by switching between the two extrema of the input variation

and roughly represents the reach set of the nonlinear system.

In the same figure, a linearized system trajectory obtained

from the same switching scheme is included, depicted with

asterisks. We note the closeness to which the linearized system

trajectory follows that of the nonlinear system and that the

reach set of the nonlinear system is well approximated by the

reach set obtained from the linearized system, i.e., R ≈ R̃.

The acceptable range for the state variable ω, which is given

by the interval [59.4, 60.6] Hz or [373.03, 380.57] rad/s, is

depicted in Fig. 7 by the vertical dashed traces. We note that,

for the plotted trajectory, the excursions of ω are not entirely

contained within the region defined by these two dashed traces,

thus violating performance requirements. As expected, the

violation is captured by the approximate reach set obtained

from the linearized system.

B. Case 2

The synchronous generator is described by a five-state

model, including the one-axis machine model, governor, and

fast exciter/voltage regulator dynamics. In this case, the

renewable-based resource considered is a Type-C WTG, which

we describe by a first order dynamical model relating its

power output, angular speed and wind speed. The inclusion

of the WTG dynamics is an extension to a similar example

considered in [5]. In this model, we use the augmented DAE

description as in (2), where g(x, y, u), α(z, w) and β(z), and

h(x, y, v) are detailed in Appendices B2 and B3. In this case,

it follows that u∗(t) = [Pc, Vref ]T = [0.903, 1.1083]T and

w∗(t) = wm = 8 m/s, which are constant for 0 ≤ t ≤ τ , with

τ = 20 s. Hence, the resulting linearized model described in

(7) is, again, time invariant. The unknown-but-bounded input is
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wind speed, which we assume to be within ±20% of its nom-

inal value, i.e., w ∈ [6.4, 9.6] m/s and Q = (8×0.2)2 = 2.56.

Several ellipsoids are generated via (11), where the free

parameter β > 0 is chosen randomly. In order to compare

this case to the previous three-bus example, in Fig. 8(a) we

plot the projections of the resulting ellipsoids onto the ω-Pm

subspace by choosing the corresponding projector matrix as

H23 =

[

0 1 0 0 0
0 0 1 0 0

]

.

The exact reach set of the linearized system is upper bounded

by the intersection of these ellipsoids. In order to visualize

the ellipsoids in Fig. 8(a) more clearly, we apply a rotation to

both the ellipsoids and worst-case trajectory so the principle

axes of one of the ellipsoids are in line with the Cartesian

axes, as shown in Fig. 8(b). In this case, we note that the

linearized system reach set upper bound does not cover the

entire worst-case trajectory but is still a good approximation.

Furthermore, by visual inspection of the ellipsoids (before

rotation) in Fig. 8(a), we conclude that the excursion in ω
do not violate performance requirements.

V. 39-BUS SYSTEM CASE STUDY

In this section, we analyze the performance of the 39-bus

New England (NE) system for different renewable-based gen-

eration scenarios. In order to implement our analysis method,

we modified the small-signal stability analysis capability of

the MATLAB-based Power Systems Toolbox (PST) [31].

We also utilized MATLAB to implement the algorithms for

reachability analysis discussed in Section III-B. The model of

this system, which contains 10 synchronous units, is part of

the PST suite and can be found in [31]. Units 1-9 are modeled

by a 10th-order ODE that includes mechanical equations of

motion (2 states), damper/field windings (2 states), excitation

system (3 states), and governor/turbine dynamics (3 states).

Unit 10 model is fourth-order as it does not include the

voltage regulator/exciter nor the governor/turbine, and has an

artificially high inertia to mimic the slack bus behavior. The

system real power generation is 61.93 pu.

Before proceeding in Section V-B with the system per-

formance analysis for different renewable-based generation

scenarios conducted, we present some analysis to verify the

accuracy of our analysis procedure when utilized to study the

New England system model. To this end, as in the three-

bus example, we compare trajectories obtained by simulating

the nonlinear system model with those obtained through the

linearized model.

A. Accuracy of the Linearized Model

Consider a scenario in which the inertia of Unit 4 at Bus

33 is made artificially low to mimic a renewable-based power

injection with fast dynamics, i.e., following the notation in (2),

ż = 0. Then, the unknown-but-bounded input disturbance is

the power injection from Unit 4, denoted as P4, which has a

nominal value of 6.32 pu.

We illustrate the accuracy of the linearized model by as-

suming several levels of variation in P4 around the nominal
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Fig. 9: Accuracy of linearized New England system model

under wind power injection variability.

value. In particular, we consider scenarios with ±1 pu, ±2 pu,

±3 pu, ±4 pu variations around the nominal power injection

value, i.e., variability levels of 15.8%, 31.6%, 47.4%, 63.3%
respectively. For each of these variability levels, we generate a

renewable-based power injection profile by switching (several

times) between the two power injection extrema. The results

are shown in Fig. 9, where we plot the projections of the

resulting nonlinear and linearized system trajectories onto the

subspace defined by the axes corresponding to Efd3
and ω3,

which are the exciter field voltage and machine speed of Unit

3, respectively. We note that the linearized system trajectories

indeed approximate the nonlinear trajectories closely for input

variations of up to ±2 pu (see Figs. 9(a) and 9(b)), which

corresponds to more than 30% of the nominal power injection

quantity. As expected, the linearized system trajectory begins

to deviate from the nonlinear trajectory as the variability level

in the power injection increases. In particular, as shown in

Fig. 9(d), we observe significant deviations between the two

trajectories for power injection variability of ±4 pu, which

corresponds to a variability level of almost 70%. It is also

worth noting that, while the machine speed excursions are not

as dramatic as those in the three-bus example, they are still

significant; in particular, for 15.8%, 31.6%, 47.4% variability

levels, the excursions of Unit 3 speed are 0.12 Hz, 0.19 Hz,

0.38 Hz, and 0.57 Hz respectively.

In subsequent analysis, we assume the linearized model ap-

proximates the nonlinear system sufficiently well and omit tra-

jectories due to the difficulty in obtaining switching scenarios

for worst-case trajectories given multiple input disturbances.

B. Case Studies

For the case studies presented in this section, we mimic

integration of renewable-based generation by displacing cer-

tain synchronous generator with wind resources, and study

system performance for several scenarios. The wind power

plants are described by a first-order ODE following the models

in [17] (also in [18, ch. 2]). We study the impact of wind

variability on system dynamics for 20% and 30% penetration
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(b) Units 9 and 10 displaced and
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Fig. 10: New England system with 30% renewable penetration,

variability of ±5 m/s, and governors in all non-displaced units.

with: i) different synchronous unit displacement scenarios,

ii) two wind speed variability models: ±3 m/s and ±5 m/s,

and iii) different units participating in governor response. As

described in (12), in order to visualize reach set approxima-

tions, corresponding bounding ellipsoids are projected onto the

subspace that contains the synchronous machine speed and

exciter field voltage of a particular unit. In Figs. 10–13, in

order to understand the effect of wind variability, attention

must be paid to the intersection of ellipsoids, instead of

the individual ones. Performance requirement limits are not

displayed when the boundary of the ellipsoids is far away

from these limits. The timeframe is τ = 60 s for all studies.

1) Varying inertia, participation of all non-displaced units:

We study the trade-offs between displaced amount of inertia,

renewable penetration level, and participation in frequency

control of non-displaced units.

Figure 10 depicts machine 5’s speed and exciter field voltage

deviations (denoted by ∆ω5 and ∆Efd5
respectively) for 30%

wind penetration and two different scenarios: i) displacement

of Units 3, 6, and 7 and participation in governor response of

Units 1, 2, 4, 5, 8, and 9
(

Fig. 10(a)
)

, and ii) displacement of

Units 9 and 10 and participation in governor response of Units

1-8
(

Fig. 10(b)
)

. Displacement of Units 9 and 10 represents

a system inertia reduction of 53.45 s (the inertia constant

of machine 10 is artificially large so as to mimic the slack

bus behavior), whereas the displacement of Units 3, 6, and 7

represents a system inertia reduction of 6.12 s. We may reason

that more deviations would be observed in Fig. 10(b), as this

corresponds to the scenario with less total effective inertia;

however, for machine speed, the opposite is observed. More

insight into this paradox can be gained by considering the non-

displaced unit governor participation. In Fig. 10(b), only one

unit is effectively removed from primary frequency response,

whereas, in Fig. 10(a), three units are removed.

We next compare system performance for the 20% pene-

tration scenario, which results in less inertia reduction and

more units participating in governor response with respect to

the 30% penetration scenario of Figs. 10(a) and Fig. 10(b),

of Fig. 11(a) with the scenario of Fig. 10(b). In this new

scenario
(

Fig. 11(a)
)

Units 6 and 8 are displaced (with

an effective inertia reduction of 5.91 s), and Units 1-5, 7,

and 9 participating in governor response. In this case, the

penetration of wind is reduced by 33% with respect to the one

in Fig. 10(b), but there are still 16% fewer units participating

in governor response than in the scenario of Fig. 10(b). In
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(b) Units 2 and 4 displaced, and
participation of Units 1, 3, and 5-9.

Fig. 11: NE system with 20% renewable penetration, variabil-

ity of ±5 m/s, and governors in all non-displaced units.

Fig. 11(a), it is observed that machine 5 speed deviations are

approximately equal to those in Fig. 10(b).

While there may be trade-offs between inertia reduction,

level of renewable penetration, and number of non-displaced

synchronous generators that participate in primary frequency

response, it seems that these trade-offs are clearly in favor of

governor response participation from non-displaced units.

2) Fixed inertia, participation of different sets of units:

With the amount of displaced inertia fixed, we study the

difference in performance that results from different choices of

non-displaced units participating in primary frequency control.

Figures 11(a) and 11(b) depict results for the cases in which

the total displaced inertia is 5.91 s and 5.89 s, respectively.

Also, both scenarios employ the same number of units for

primary frequency response. Little difference in machine speed

deviations for the two cases is observed. However, from this

analysis, we cannot conclusively assert that the number of

machines participating in governor response is the factor that

causes the similarity between these scenarios, as shown next.

We compare the scenarios depicted in Fig. 12(a) and

Fig. 12(b), where the effective inertia reduction is approxi-

mately equal and same as above, but the choice of units in

partial governor participation is different. In Fig. 12(a), Units

1, 3, 5, and 7 are used, whereas in Fig. 12(b), Units 1, 3, 7, and

8 are used. The machine speed deviations shown in Fig. 12(a)

are larger than those in Fig. 12(b), which indicates that, Unit

8 is more suited for primary frequency control than Unit 5

since Units 1, 3, and 7 are common to both scenarios. This

finding is consistent with the droop characteristics of Unit 8

vs. Unit 5; more specifically, the steady-state gains for Unit 8

(165.6 pu), is much higher than that of Unit 5 (21.0 pu).

We now consider the scenario in which 30% renewable

penetration is achieved by displacing Units 3, 6, and 7. In

Fig. 13(a), machines 1, 2, and 4 partake in primary frequency

control, and in Fig. 13(b), machines 2, 4, and 8. Even though

both cases have three machines participating in governor

response, the frequency deviations are larger in Fig. 13(a)

than those in Fig. 13(b). This is again consistent with the

droop characteristics of the governors/turbines on Units 1 and

8 (i.e., the steady-state gain for Unit 8 (165.6 pu) is greater

than that of Unit 1 (110.1 pu)). Thus, it may be concluded that

the governor on Unit 8 is more effective. Moreover, Fig. 13(a)

shows that the choice of Units 1, 2, and 4 may be inadequate,

as machine speed is outside the performance requirements

region. The choice of Units 2, 4, and 8, on the other hand,

yields acceptable results.
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Fig. 12: NE system with 20% renewable penetration, and wind

variability of ±5 m/s.

VI. CONCLUDING REMARKS

This paper proposes a method to assess the impact of

renewable resource variability on power system dynamics for

time-scales involving electromechanical phenomena. With this

method, we can determine whether certain variables of interest,

such as synchronous generator speeds or system frequency,

remain within acceptable ranges as the power system is subject

to uncertainty in renewable-based generation, which may arise

from inaccurate forecast of the primary source of energy (e.g.,

wind speed or solar insolation). We achieve this by describing

the primary energy source variability in set-theoretic terms,

and utilizing reachability analysis techniques for linear sys-

tems to obtain an approximation of the system reach set, the

set that contains all possible system trajectories arising from

all possible renewable-based power injection scenarios. We

illustrate the application of this method to a three-bus system,

where detailed derivations are presented. The method is also

applied to the New England system model, from which several

insightful observations are made.

APPENDIX

A. Derivation of Linearized Model

From (2), and under the assumptions stated in Section III-A,

we can approximate ∆x(t), ∆y(t), and ∆z(t) by

∆ẋ = A1(t)∆x+A2(t)∆y, (21)

∆ż = A3(t)∆z +B(t)∆w, (22)

∆v = C1(t)∆z, (23)

0 = C2(t)∆x+ C3(t)∆y + C4(t)∆v, (24)

where,

A1(t) =
∂g(x, y, u)

∂x

∣

∣

∣

x∗,y∗,u∗

, A2(t) =
∂g(x, y, u)

∂y

∣

∣

∣

x∗,y∗,u∗

,

A3(t) =
∂α(z, w)

∂z

∣

∣

∣

z∗,w∗

, B(t) =
∂α(z, w)

∂w

∣

∣

∣

z∗,w∗

,

C1(t) =
∂β(z)

∂z

∣

∣

∣

z∗

, C2(t) =
∂h(x, y, v)

∂x

∣

∣

∣

x∗,y∗,v∗

,

C3(t) =
∂h(x, y, v)

∂y

∣

∣

∣

x∗,y∗,v∗

, C4(t) =
∂h(x, y, v)

∂v

∣

∣

∣

x∗,y∗,v∗

,

with v∗ = β(z∗). In (24), as long as C3(t) is invertible, we

can solve for ∆y to obtain

∆y = −C−1
3 (t)

[

C2(t)∆x + C4(t)∆v
]

. (25)
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-1 0 1 2
-0.2

-0.1

0

0.1

0.2

∆ω5 [rad/s]

∆
E

f
d
5

[p
.u

.]

(b) Units 3, 6, and 7 displaced, and
participation of Units 2, 4, and 8.

Fig. 13: NE system with 30% renewable penetration, and wind

variability of ±5 m/s.

Then, substitute (25) into (21) and (22) to obtain a linear,

time-varying ODE model:

d

dt

[

∆x
∆z

]

=

[

A11(t) A12(t)
A21(t) A22(t)

] [

∆x
∆z

]

+

[

B1(t)
B2(t)

]

∆w, (26)

with ∆x(0) = ∆z(0) = 0, and where A11(t) = A1(t) −
A2(t)C

−1
3 (t)C2(t), A12(t) = −A2(t)C

−1
3 (t)C4(t)C1(t),

A21(t) = 0, A22(t) = A3(t), B1(t) = 0, B2(t) = B(t).

B. Models in Three-Bus Example

1) Three-state differential-algebraic model: Let δ [rad] be

the rotor electrical angular position, ω [rad/s] be the rotor

electrical angular speed, Pm [pu] be the turbine mechanical

power, and Pc [pu] be the unit power setting, which is assumed

to be constant. Let Vi [pu], i = 1, 2, 3, denote the ith bus

voltage magnitude, and θi [rad], i = 1, 2, 3, denote the ith bus

voltage angle referenced to the synchronous machine angle

δ. Following the notation in (2), define x = [δ, ω, Pm]T ,

y = [V1, θ1, V2, θ2, V3, θ3]
T , u = Pc. Then, the components

of the vector function g(x, y, u) in (2) are

ω̇ =
1

M

[

−D(ω − ωs) + Pm

−
EV1

Xm
sin(−θ1)

]

=: g1(x, y, u), (27)

Ṗm =
1

TSV

[

−Pm + Pc −
1

RD

(

ω

ωs
− 1

)]

=: g2(x, y, u),

where ωs [rad/s], D [s/rad], M [s2/rad], E [pu], TSV [s], and

RD [pu] are machine parameters [2]. Note that by using δ as a

reference angle, the ODE governing its evolution is δ̇ = 0 and

is therefore omitted. The components of the vector function

h(x, y, v) in (2) are given by

0 =v − Y23V2V3 sin(θ2 − θ3) =: h1(x, y, v),

0 =Y23V
2
2 − Y23V2V3 cos(θ2 − θ3) =: h2(x, y, v),

0 =Y13V1V3 sin(θ1 − θ3)

− YmEV1 sin(−θ1) =: h3(x, y, v),

0 =(Y13 + Ym)V 2
1 − Y13V1V3 cos(θ1 − θ3)

+ YmV
2
1 − YmEV1 cos θ1 =: h4(x, y, v)

0 = − P3 − Y13V1V3 sin(θ3 − θ1)

− Y23V2V3 sin(θ3 − θ2) =: h5(x, y, v),

0 = −Q3 − (Y13 + Y23)V
2
3 + Y13V1V3 cos(θ3 − θ1)

+ Y23V2V3 cos(θ3 − θ2) =: h6(x, y, v),

(28)

where the Yik = 1/Xik’s are the line admittances (see Fig. 6).
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TABLE II: Parameter values for synchronous generator and network in three-bus system model example.

P3 Q3 Q2 X13 X23 Xm M [s2/rad] D [s/rad] Pc ωs [rad/s] TSV RD Td0 Xd X′

d Xq TE KA

1 0.5 0 0.1 0.15 0.2 1

15π
0.04 0.6 120π 0.2 0.05 5.89 1.31 0.18 1.26 0.2 20

2) Five-state differential-algebraic model: Let E′

q [pu]

be the scaled q-axis voltage, Efd [pu] be the scaled field

voltage, and Vref be the exciter reference voltage setting.

Further, let Id and Iq [pu] be the stator currents. Following

the notation in (2), define x = [E′

q, δ, ω, Pm, Efd]
T ,

y = [Id, Iq , V1, θ1, V2, θ2, V3, θ3]
T , u = [Pc, Vref ]T .

Then, the components of the vector function g(x, y, u) in the

augmented DAE model of (2) are given by

Ė′

q =
1

Td0

[

−E′

q − (Xd −X ′

d)Id + Efd

]

=: g1(x, y, u),

ω̇ =
1

M

[

−D(ω − ωs) + Pm − E′

qIq

− (Xq −X ′

d)IdIq
]

=: g2(x, y, u), (29)

Ṗm =
1

TSV

[

−Pm + Pc −
1

RD

(

ω

ωs
− 1

)]

=: g3(x, y, u),

Ėfd =
1

TE
[−Efd +KA(Vref − Vt)] =: g4(x, y, u),

where

Id =
1

X ′

d

[

E′

q − V1 cos(θ1 − δ)
]

,

Iq =
1

Xq
[−V1 sin(θ1 − δ)] ,

with Td0, Xd, X ′

d, Id, Iq , Xq, TE , KA and Vt being the model

constant parameters [2].

The components of h(x, y, v) are given by

0 =v − Y23V2V3 sin(θ2 − θ3) =: h1(x, y, v),

0 =Y23V
2
2 − Y23V2V3 cos(θ2 − θ3) =: h2(x, y, v),

0 =IdV1 sin(θ1 − δ) − IqV1 cos(θ1 − δ)

+ Y13V1V3 cos(θ3 − θ1) =: h3(x, y, v),

0 = − IdV1 cos(θ1 − δ) − IqV1 sin(θ1 − δ)

+ Y13V
2
1 − Y13V1V3 cos(θ1 − θ3) =: h4(x, y, v)

0 = − P3 − Y13V1V3 sin(θ3 − θ1)

− Y23V2V3 sin(θ3 − θ2) =: h5(x, y, v),

0 = −Q3 − (Y13 + Y23)V
2
3 + Y13V1V3 cos(θ3 − θ1)

+ Y23V2V3 cos(θ3 − θ2) =: h6(x, y, v),

(30)

3) First-order wind turbine generator model: Denote w2

[m/s] as the wind speed at the location where the turbine is

located, ωt [rad/s] the wind turbine rotor speed, and P2 [pu]

the power injected in the network by the wind turbine. It is

assumed that the turbine is operated in power factor mode

with unit power factor, i.e., Q2 = 0 (the model can be easily

modified to account for operation in voltage control mode).

Additionally, we assume that the WTG is operating between

cut-in and rated speeds (constant pitch angle), and that stator

and rotor dynamics, and active and reactive power controls are

much faster than the mechanical motion.

Then, through singular-perturbation analysis [32], and ne-

glecting stator losses, it can be shown that the WTG 10th-order

model in [16] (also in [18, pp. 14-20]) can be described by a

first order dynamical model relating its power output, angular

speed, and wind speed. Thus, following the notation in (2),

define w = w2, z = ωt, and v = P2; the functions α(z, w)
and β(z) describing the WTG power output are

ż =
ωs

Mr

[

BCp(z, w)
w3

z
− Cz2

]

=: α(z, w),

v = cz3 =: β(z),

(31)

where ωs [rad/s] is the synchronous speed, Cp(z, w) (dimen-

sionless) is the power coefficient, Mr [s2/rad] is the scaled

inertia constant, and B [s3/m3] and C [s3/rad3] are constants

related to turbine geometry and power settings, respectively.

Linearization of (31) yields

∆ż =a∆z + b∆w,

∆v =c∆z,

where a = −5.53 · 10−2 pu, b = 2.91 pu, and c = 9.37 ·
10−4 pu [18, p. 54].
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