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Abstract—This paper presents a Bayesian method to infer
parameters in distribution system power flow models from noisy
measurements of voltage magnitudes and phase angles along
with active- and reactive-power injections collected from a subset
of buses with synchronized phasor measurement capability.
The proposed method bypasses the large number of repeated
nonlinear power flow solutions that would typically be required in
sampling-based Bayesian inference. Instead, the proposed method
iteratively and analytically linearizes the nonlinear power flow
model, converging to the linearized model with the maximum
probability of being (closest to) the actual nonlinear model that
gave rise to the measurement data. The combination of the linear
system, Gaussian parameter prior, and Gaussian measurement
noise enables closed-form evaluation of the parameter posterior,
model evidence, and their gradients. This can help to improve
computational scalability for large-scale networks with poten-
tially many unknown parameters to be inferred. We illustrate
the effectiveness and key features of the proposed method with
numerical case studies involving the IEEE 33-bus test system.

Index Terms—Bayesian inference, Bayesian model selection,
parameter estimation, power flow model, linear sensitivities

I. INTRODUCTION

The transition to a low-carbon future calls for modern dis-
tribution grids to serve the ever-growing demand for electricity
and newly electrified loads with renewable and distributed
energy resources. The many expected new electric loads and
energy sources can lead to unexpected or undesired changes to
the voltage profile and power flows along a distribution feeder.
Thus, there is growing need for utilities to pursue online
monitoring and active control of distribution grids and devices
therein via, e.g., state estimation, demand-side management,
and optimal dispatch [1]–[3]. Such advanced monitoring and
control techniques often rely on an offline distribution system
power flow model constructed with accurate parameters for
the loads, sources, network, and other components therein.

In this work, we compute approximate posterior probability
density functions (PDFs) for parameters in the power flow
model conditioned on noisy measurements of voltage phasors
and complex-power injections collected from distribution-level
phasor measurement units (D-PMUs) installed at a subset of
buses in a distribution network. Our approach is rooted in
Bayesian inference, which seeks the entire distribution of all
plausible parameter values that give rise to the recorded mea-
surements, circumventing practical challenges of satisfying
the observability criterion, i.e., having sufficient sensor cover-
age, fraught in observer-based estimation. Moreover, inference
techniques quantify the uncertainty in the resulting parameters

affected by, e.g., the quantity and quality of measurement data,
which is very useful to provide confidence measures that then
inform risk-aware decision making [4]. However, uncertainty
quantification is not featured in standard estimation-based
approaches that tune parameter values to best match behaviour
predicted by a given model with the measurement data [5].

Given the benefits on offer over estimation techniques,
Bayesian methods have been applied to infer system state
variables (i.e., bus voltages and injections) [6], [7]. Moreover,
in anticipation of the need for distribution system model cali-
bration, Bayesian methods have been used to infer locations of
potential outages [8], parameters in composite load models [9],
entries in the network admittance matrix [10], and changes in
the network configuration [11]. Classical Bayesian inference
uses Markov chain Monte Carlo (MCMC) algorithms that typ-
ically require thousands (or more) repeated simulations of the
nonlinear system model under study. Our recent work in [4] to
infer dynamic model parameters bypasses the large number of
system model simulations typically required in sampling-based
Bayesian inference. Instead, it relies on linearizations of the
nonlinear system model, and the linear models are constructed
to maximize the probability of being (closest to) the actual
nonlinear model that gave rise to the measurement data.

This paper tailors the Bayesian inference method developed
in [4] and offers extensions in several directions. First, we
focus on inferring parameters pertinent to static power flow
models more suitable for application in power distribution
networks instead of the transmission-level dynamic models
examined in [4]. Also, considering the expected heterogeneity
in loads and sources in future distribution systems, we extend
the power flow model typically featuring only constant-power
loads to capture more realistic models of distribution-level
nodal injections. Although the proposed method is general in
the sense that it can infer parameters in any number of models
for, e.g., electrified loads and distributed generation, numerical
case studies involving the IEEE 33-bus system focus on
parameters in the ZIP model for loads. The proposed method
avoids high-volume nonlinear system simulations performed
in [8], [9]. We further use measurements obtained at only a
single snapshot in time instead of those collected over multiple
time steps as in [8]–[10], over which the parameter values
can potentially vary. Also, distinct from the discrete Bayesian
model selection problem posed in [11] that relies on parallel
calculations of posteriors for many candidate models, we
consider a continuous spectrum of linearized models to arrive
at the “best” one after examining only several candidates.
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II. PRELIMINARIES

In this section, we present the power flow model and perti-
nent linear sensitivities. We further describe the measurement
statistical model and state the Bayesian parameter inference
problem tackled in this paper.

A. Power Flow Model

Consider an AC distribution system with buses collected in
the set N = {1, 2, . . . , n}. Over the interconnected distribu-
tion grid, a substation and potentially distributed generation
serve nodal loads across the system. Let x ∈ R2n collect
voltage magnitudes and phase-angles of all buses in the power
distribution network. Also let u ∈ R2n collect net active- and
reactive-power injections at all buses in the network. Further
let λ ∈ Rp collect unknown parameters to be inferred. Then,
the power flow equations can be expressed compactly as

0 = g(x, u;λ), (1)

where, for a given λ, g : R2n×R2n 7→ R2n. In general, u may
be modelled as a function of the nodal voltages and unknown
parameters to be inferred, i.e.,

u = f(x;λ), (2)

where, for a given λ, f : R2n 7→ R2n. Also, system output
z ∈ Rm can be mapped from the state variables, as follows:

z = h(x, u;λ). (3)

where f : R2n × R2n 7→ Rm, again, for a given λ. Note that
entries of λ are distinct from state variables in x and nodal
power injections in u. Next, via a remark, we detail the entries
in x and u, potential parameters of interest in λ to be inferred,
and possible quantities in z.

Remark 1 (Detailing system model in (1)–(3)). Let Vi and θi
denote the voltage magnitude and phase angle at bus i ∈ N ,
respectively. Also let Pi and Qi denote the net active- and
reactive-power injection at bus i ∈ N . Power flow equations
collected in (1) consist of nodal active- and reactive-power
balance for each bus i ∈ N respectively expressed as

0=Vi

n∑
k=1

Vk(Gik cos(θi − θk)+Bik sin(θi − θk))−Pi, (4)

0=Vi

n∑
k=1

Vk(Gik sin(θi − θk)−Bik cos(θi − θk))−Qi, (5)

where Gik and Bik are the real and imaginary parts of
the (i, k) entry in the network admittance matrix, respec-
tively. In (1), we let x = [θ1, . . . θn, V1, . . . , Vn]T and u =
[P1, . . . , Pn, Q1, . . . , Qn]T. Unknown parameters of interest
in λ can include Gik and Bik in (4)–(5), leading to inference
of line impedance values. They may also include parameters
needed to fully articulate nodal power injection models ex-
pressed in (2). An example of such parameters are coefficients
in the ZIP model for a load at bus i ∈ N , given by

Pi = cziV
2
i + ciiVi + cpi , (6)

Qi = dz
iV

2
i + di

iVi + dp
i , (7)

where czi , c
i
i, c

p
i , dz

i , d
i
i, and dp

i can be inferred from online
measurements to ensure the ZIP model remains represen-
tative of actual load characteristics potentially changing in
real time. Additional examples include parameters pertinent
to models of active- and reactive-power injections stemming
from distributed generation or other DERs. Finally, system
output z in (3) can comprise Vi, θi, Pi, and Qi, i ∈ N . It can
also include line active- and reactive-power flows expressed
as a function of bus voltage magnitudes and phase angles. �

B. Linear Sensitivities

Suppose that for nominal parameter value λ = λ?, there
exists power flow solution (x?, u?;λ?). Denote by x?λ ∈ R2n×p

and u?λ ∈ R2n×p the linear sensitivities of x and u, re-
spectively, with respect to λ around the nominal operating
point (x?, u?;λ?). Applying the chain rule, differentiation
of (1)–(2) with respect to λ yields

0 = g?xx
?
λ + g?uu

?
λ + g?λ, (8)

u?λ = f?xx
?
λ + f?λ , (9)

where

g?x =
∂g

∂x
, g?u =

∂g

∂u
, g?λ =

∂g

∂λ
, f?x =

∂f

∂x
, f?λ =

∂f

∂λ
,

are suitably sized sensitivity matrices evaluated at the nominal
operating point (x?, u?;λ?). Similarly, differentiation of (3)
with respect to λ around the nominal operating point yields
sensitivities of output z, denoted by z?λ ∈ Rm×p and given by

z?λ = h?xx
?
λ + h?uu

?
λ + h?λ, (10)

where we evaluate

h?x =
∂h

∂x
, h?u =

∂h

∂u
, h?λ =

∂h

∂λ
,

at (x?, u?;λ?). Now substitute (9) into (8) and (10) to get

x?λ = −(g?x + g?uf
?
x)−1(g?uf

?
λ + g?λ), (11)

z?λ = (h?x + h?uf
?
x)x?λ + h?uf

?
λ + h?λ, (12)

where we have assumed that, at the nominal operating point,
the power flow Jacobian matrix is invertible to arrive at (11).
Finally, by substituting (11) into (12), we get the following
expression describing how the system output sensitivities
behave around the nominal operating point:

z?λ = −(h?x + h?uf
?
x)(g?x + g?uf

?
x)−1(g?uf

?
λ + g?λ)

+ h?uf
?
λ + h?λ. (13)

Now, simultaneous solution of (1)–(3) and (13) yields output
linear sensitivities in z?λ evaluated at the nominal operating
point (x?, u?;λ?) and the corresponding output z?.

We can use the linear sensitivities in (13) to approximate
the output of a perturbed system resulting from variations in λ
around λ?. To do this, let z = z?+∆z, where ∆z results from
∆λ = λ − λ?. Then, assuming that ∆λ is sufficiently small,
we can approximate the perturbed output as

z ≈ a(λ?)λ+ b(λ?) =: z̃(λ;λ?), (14)

where a(λ?) = z?λ and b(λ?) = z? − z?λλ? are parameterized
by the choice of λ?.
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C. Measurement Model and Problem Statement

Suppose D-PMUs provide synchronized phasor (or syn-
chrophasor) measurements of nodal voltages and currents
at (possibly a subset of) buses, and corresponding active-
and reactive-power injections can be easily computed. Also
available may be synchronized measurements of a subset
of line active- and reactive-power flows. Let ẑ denote the
measurement of system output at a particular snapshot in time.
Considering noisy measurements, ẑ can be modelled as

ẑ = z + ξ ≈ aλ+ b+ ξ =: z̃ + ξ, (15)

where z denote the actual system output, ξ ∈ Rm denote
D-PMU measurement errors, and the approximation holds by
substituting (14). In our simulations, z is supplied by an exact
power flow solution furnished with the true parameter values.
In (15), z̃ is linear with respect to λ, and the coefficients a and
b depend on the choice of λ? as described in (14). Furthermore,
entries of the error vector ξ are modelled to be independent and
identically distributed under a joint Gaussian distribution with
zero mean and covariance Σξ, i.e., ξ ∼ N (0m,Σξ), where
Σξ ∈ Rm×m is diagonal with the inverse of each diagonal
entry reflecting the corresponding measurement precision.

Using the models established in this section and tailoring the
method developed in [4], we tackle two interrelated but distinct
problems. The first is to identify the best λ? giving rise to the
approximate linear model in (15) that most likely resembles
the measurement-generating nonlinear system. Second, we
infer the parameter λ by computing its entire distribution from
measurement ẑ, given a linearized model constructed around
the nominal output resulting from a particular choice of λ?. We
approach both problems under a Bayesian framework, where
λ? and λ are treated as random variables, as detailed next.

III. BAYESIAN APPROACH

We describe the strategy for the inference of λ given the
model in (15) obtained by linearizing power flow equations
around the nominal operating point induced by a particular λ?

choice, followed by the approach to find the best λ? choice.

A. Inference on λ

We treat the unknown parameter λ in (15) as a random
variable. It is endowed with a prior distribution representing
the uncertainty in λ before making any observations, and it
also has a corresponding posterior distribution representing
the updated uncertainty after observing measurement data
in ẑ. Direct application of Bayes’ theorem for conditional
probability yields the following parameter-posterior PDF:

f(λ|ẑ, λ?) =
f(ẑ|λ, λ?)f(λ)

f(ẑ|λ?)
, (16)

where f(λ) is the prior PDF for λ (assuming that it is
independent of the point of linearization, i.e., λ?), f(ẑ|λ, λ?)
is the likelihood, and f(ẑ|λ?) is the model evidence.

Specifically, we prescribe Gaussian prior λ ∼ N (µ◦,Σ◦)
to represent the initial uncertainty in λ. The likelihood then
follows from the linearized measurement model in (15):

f(ẑ|λ, λ?) = (2π)−
m
2 |Σξ|−

1
2 e−

1
2 (ẑ−z̃)TΣ−1

ξ (ẑ−z̃), (17)

where z̃ is evaluated for a given parameter value λ with the
linearized model in (14) constructed from a particular choice
of λ?. In (17), we drop the dependence of z̃ on λ and λ? to
contain notational burden. The combination of linear model to-
gether with Gaussian prior and likelihood leads to a conjugate
system with Gaussian posterior (λ|ẑ, λ?) ∼ N (µπ,λ? ,Σπ,λ?),
where the mean and covariance are given in closed form by

µπ,λ? = Σπ,λ?
(

Σ−1
◦ µ◦ + aTΣ−1

ξ (ẑ − b)
)
, (18)

Σπ,λ? =
(

Σ−1
◦ + aTΣ−1

ξ a
)−1

, (19)

respectively. Above, the subscript π indicates posterior and the
subscript λ? reminds us that the mean and covariance of the
posterior depend on the choice of λ? for linearization.

B. Choice of λ?

Considering that the linear model in (15) is constructed
given a particular λ?, we also formulate and solve an optimal
model selection problem to identify the best λ? giving rise
to the linear model that most resembles the measurement-
generating nonlinear system. Treating λ? as a random variable
and persisting under the Bayesian framework, we adopt the
methods of Bayesian model selection (or equivalently, Bayes
factors) applied to a continuous spectrum of models parameter-
ized by λ? [12], [13]. Application of Bayes’ theorem given a
candidate λ? (mapping to a corresponding linear model) yields
the following model-posterior PDF:

f(λ?|ẑ) =
f(ẑ|λ?)f(λ?)

f(ẑ)
, (20)

representing the “goodness” of the linear model induced by λ?

given observations made from ẑ. The best candidate λ? thus
maximizes this quantity (equivalently, its logarithm) as

λ?opt = arg max
λ?

ln f(λ?|ẑ) = arg max
λ?

ln f(ẑ|λ?), (21)

where the second equality holds by recognizing that f(ẑ) is
a constant normalization factor that does not depend on λ?

and by adopting a uniform model-prior that does not initially
favour any particular region of λ? (i.e., f(λ?) remains constant
regardless of the choice of λ?).

The key to solving (21) is recognizing that the model
likelihood f(ẑ|λ?) is precisely the model evidence (i.e., the
denominator) in (16). Here, we can obtain it in closed form
owing to the analytical parameter-posterior Gaussian PDF with
mean and covariance in (18)–(19). Taking the logarithm of (16)
and rearranging the resultant, we get

ln f(ẑ|λ?) = ln f(ẑ|λ, λ?) + ln f(λ)− ln f(λ|ẑ, λ?). (22)

We then substitute into (22) the likelihood expression in (17)
along with the closed-form expressions for the prior λ ∼
N (µ◦,Σ◦) and posterior (λ|ẑ, λ?) ∼ N (µπ,λ? ,Σπ,λ?), and
finally arrive at the following analytical closed-form expres-
sion for the log-evidence:

ln f(ẑ|λ?) = −m
2

ln(2π)− 1

2
ln |Σξ| −

1

2
ln |Σ◦|

− 1

2
(ẑ − z̃)TΣ−1

ξ (ẑ − z̃)− 1

2
(λ− µ◦)TΣ−1

◦ (λ− µ◦)
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Fig. 1: One-line diagram for IEEE 33-bus test system. We infer ZIP -model
parameters for the active-power load connected to bus 3. Synchrophasor
measurements are available from buses 1, 2, and 23 (marked in green colour)
for results presented in Fig. 3a, and at buses 18 and 33 (marked in purple
colour) for those in Fig. 3b.

+
1

2
ln |Σπ,λ? |+

1

2
(λ− µπ,λ?)TΣ−1

π,λ?(λ− µπ,λ?), (23)

where z̃, µπ,λ? , and Σπ,λ? depend on the value of λ?.
Various optimization algorithms (e.g., gradient-based, quasi-

Newton, and derivative-free methods) can be employed to
iteratively update candidates for λ? toward the optimizer λ?opt

of (21). For example, adopting gradient-ascent leads to the
following update formula:

λ?(`+1) = λ?(`) + γ(`)∇λ? ln f(ẑ|λ?)|λ?
(`)
, (24)

where γ(`) is a learning rate (gradient-ascent step size) and
∇λ? ln f(ẑ|λ?)|λ?

(`)
is the gradient of the objective ln f(ẑ|λ?)

evaluated at λ?(`). A major advantage of the proposed frame-
work is that the objective function in (21) and its gradient
can be computed in closed form, potentially enabling greater
scalability. Particularly, we completely bypass all numerical
approximations of the gradient involving, e.g., finite differ-
ences, which may be computationally impractical for high-
dimensional λ?. Interested readers may refer to [4] for details
with respect to analytical computation of the gradient in (24).

IV. NUMERICAL CASE STUDIES

This section reports on simulations involving a modi-
fied IEEE 33-bus distribution test system for which the
one-line diagram shown in Fig. 1, with a system power
base of 10 MVA [14]. Simulations were performed using
Python 3.10.12 & Jupyter Notebooks inside a Debian-based
virtual machine on a personal computer with 32 GB RAM
and Apple M1 Pro 10-core processor. Power flow solutions
were obtained using pandapower [15], and custom Python
code was used to implement the proposed method.

A. Simulation Setup

We infer unknown ZIP -model parameters cz3, ci3, and cp3
for the active-power load connected to bus 3, i.e., λ =
[cz3, c

i
3, c

p
3 ]T. The true measurement-generating value for the

unknown parameters is λtrue = [0.22, 0.44, 0.34]T. Syn-
chrophasor measurements of nodal active- and reactive-power
injections as well as voltage magnitudes and phase angles
collected in ẑ are subject to additive Gaussian noise with
zero mean and 1% standard deviation, in accordance with
the IEEE standard for PMU measurement error [16]. Partic-
ularly, we set the measurement noise ξ ∼ N (0m,Σξ), where
Σξ = diag(0.01z)2 is a diagonal matrix and z is the actual
system output supplied by the exact nonlinear power flow
solution using the true parameter values in λtrue.

Fig. 2: Convergence of log-evidence ln f(ẑ|λ?
(`)

) to ln f(ẑ|λ?opt) (marked
as dash-dot trace) with learning rates of γ(`) = γ = 0.005, 0.002, and
0.001 for all `. Dashed traces mark the iteration at which stopping criterion
||λ?

(`+1)
− λ?

(`)
|| < 10−6 is satisfied and we set λ?opt = λ?

(`+1)
.

B. Simulation Results

We begin by considering measurement scenario i) with z =
[V1, P1, V2, P2, V23, P23]T. Measurements are obtained from
buses near (but not at) the load with unknown parameters.

1) Choosing λ?: We set λ?(0) = [0.242, 0.484, 0.374]T. In
each iteration `, we solve (1)–(3) and (13) with the updated
candidate λ?(`), with which the approximate output z̃(λ, λ?(`))
is constructed from (14). We next evaluate the mean µπ,λ?

(`)

and covariance Σπ,λ?
(`)

in closed form using (18) and (19),
respectively. We also evaluate the log-evidence via (23) lever-
aging µπ,λ?

(`)
, Σπ,λ?

(`)
, and z̃(λ, λ?(`)). We then use (24) to

obtain the next update λ?(`). The iterative procedure continues
until the stopping criterion ||λ?(`+1) − λ

?
(`)|| < 10−6, at which

point we set λ?opt = λ?(`+1). Plotted in Fig. 2 are log-evidence
trajectories for three learning rates. Based on trends observed
therein, we set γ(`) = 0.005, for all `, in results reported below.

2) Inferring λ: For all values of λ?(`), we prescribe Gaussian
prior λ ∼ N (µ◦,Σ◦), where µ◦ = [0.33, 0.66, 0.51]T and
Σ◦ = diag([0.112, 0.222, 0.172]). In practice, the prior PDF
can be informed by prior experience or by domain experts.
We evaluate the posterior mean µπ,λ? and covariance Σπ,λ?

in closed form again via (18) and (19), respectively, with
λ? = λ?opt upon convergence of the λ?-updates in (24).
Using green-coloured traces in Fig. 3a, we plot the posterior
marginal PDFs of each inferred ZIP -model parameter. We
observe that the posterior distributions are narrower than their
corresponding priors, indicating the uncertainty has reduced
after being informed by the noisy measurement data. We also
note that the centres of the posterior marginal distributions are
quite close to the corresponding true parameter values.

3) Model Outputs with λ Posterior: We sample the pos-
terior PDF of λ ∼ N (µπ,λ?opt ,Σπ,λ?opt) 75 times and, for
each, solve the nonlinear power flow. Resulting output values
are shown in Fig. 4 as box-and-whisker plots, representing
the posterior-predictive distribution. Also plotted are model
outputs under the true parameter values and the recorded noisy
measurements used to infer parameters. All values plotted in
Fig. 4 are normalized using their respective model outputs
under the true parameter values. The sampled outputs from
the posterior-predictive distribution match well to the model
outputs, so the inferred parameters indeed could have induced
the measurement data. Further, the posterior-predictive distri-
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Fig. 3: Inference of ZIP -model parameters for active-power load at bus 3
using measurements obtained from (a) nearby buses 1, 2, and 23, and (b)
far-away buses 18 and 33. Green-coloured traces correspond to measurement
scenario i) with z = [V1, P1, V2, P2, V23, P23]T, red-coloured traces corre-
spond to scenario ii) with z = [θ1, Q1, θ2, Q2, θ23, Q23]T, purple-coloured
traces correspond to scenario iii) with z = [V18, P18, V33, P33]T.

bution does not simply centre around the noisy measurements,
but benefits from a regularizing effect from the Bayesian
framework to navigate toward the true data-generating values.

Remark 2 (Effects of Measurement Type and Location). We
repeat the procedure described above, but considering scenario
ii) with z = [θ1, Q1, θ2, Q2, θ23, Q23]T, where measurements
are obtained at the same locations as in scenario i) but they
differ in type. We plot the posterior marginal PDFs of inferred
ZIP -model parameters as red-coloured traces in Fig. 3a,
which are nearly identical to those of the prior, indicating that
measurements from scenario ii) do not serve to inform the
uncertainty in unknown parameters. Finally, we consider sce-
nario iii) with z = [V18, P18, V33, P33]T, where measurements
are obtained at buses located far away from the load with
unknown parameters. We plot the posterior marginal PDFs of
the inferred parameters as purple-coloured traces in Fig. 3b.
This set of measurements leads to very slight reduction in
parameter uncertainty compared to the prior, while the centres
of the distributions move closer to the true parameter values. �

V. CONCLUDING REMARKS

We applied a Bayesian method to infer unknown parameters
in a power flow model conditioned on noisy D-PMU mea-
surements available from a subset of buses in the distribution
network. The method is tailored from the one in [4] and inher-
its its main advantage of avoiding computationally expensive
MCMC sampling of the posterior and instead computes an
approximate posterior in closed form, promising for scalabil-
ity to higher dimensional settings. Compelling directions for
future work include assessing computational performance and
scalability via simulations involving large-scale test systems
with more unknown parameters, incorporating non-Gaussian
measurement noise models into the proposed framework, and

0.985

0.99

0.995

1

1.005

1.01

1.015

Fig. 4: Comparison of (normalized) outputs that are obtained from noisy
measurements, power flow solution with true parameter values, and power
flow solutions with parameter values sampled from the posterior PDF.

inferring parameters needed to model inter-temporal charac-
teristics pertinent to, e.g., deferrable loads and energy storage.
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