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Abstract—This paper presents a real-time electricity marginal
pricing method that captures the impact of frequency dynamics
in the presence of i) aggressive net-load variability and ii) sub-
stantial net-load forecast uncertainty, both made more likely by
extensive renewable integration. The proposed method augments
a traditional economic dispatch with constraints pertaining to
system frequency dynamics and explicit models for the net-
load forecast uncertainty, while minimizing the sum of expected
operation cost and expected frequency deviations from the
synchronous speed across the scheduling horizon of interest.
Chance constraints in the modified problem dictate the tolerable
probability of violating lower and upper limits of dynamic
system frequency and generator outputs. To facilitate solution
efficiency, the chance-constrained economic dispatch transforms
into a deterministic optimization problem under the assumption
that the uncertainty in the net-load forecast is Gaussian. The
effectiveness of the proposed model is demonstrated through case
studies based on the Western System Coordinating Council test
system. The results show that the proposed pricing method can
reflect the impact of transient frequency deviations, yield greater
profits for generators, and hedge against net-load uncertainty.

I. INTRODUCTION

Renewable energy sources (RESs) help to address mounting
environmental concerns of fossil sources. Extensive integration
of RESs, however, poses notable challenges in reliable and
efficient real-time operation of the power system as it copes
with larger and faster variations in the net load (system load
minus non-dispatchable RES generation), a task made even
more difficult by the considerable uncertainty inherent to
forecasts of RES generation [1]. There is growing concern
that existing wholesale electricity markets, which have been
instrumental in fostering competition and promoting system
efficiency, may be challenged to sustain the same benefits for
both energy suppliers and consumers along the current trajec-
tory of RES deployment [2]. In light of this, our work aims to
improve over existing market designs to accurately compensate
generating units for the energy they produce that contribute to
i) maintaining the second-to-second supply-demand balance
across potential frequency transients, and ii) limiting the risk
imposed by uncertainty in the net-load forecast.

Fundamental to competitive electricity markets is the con-
cept of marginal pricing that reflects the rate of change of
optimal cost due to an incremental change in demand. Tradi-
tionally, marginal pricing is derived from a problem commonly
known as the economic dispatch (ED), which is solved for a
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single operating point with two notable underlying assump-
tions: i) the system operates in synchronous steady state, and
ii) the net-load forecast is known precisely [3]. These may be
invalidated in the future as high-inertia dispatchable fossil-fuel
generators in the present-day power system become increas-
ingly displaced by low-inertia non-dispatchable RESs [2].

A promising approach to account for net-load forecast
uncertainty in an ED is to formulate a chance-constrained
economic dispatch (CCED) minimizing expected costs subject
to tolerable probability of constraint violations. Prior work
in CCED can be categorized by the choice of probabilistic
models (non-parametric [4] or parametric [5]) and by the solu-
tion approach (approximate [6] or exact [7]). Non-parametric
methods that favour more general empirical probability dis-
tributions may require more data to achieve the same level
of precision as parametric methods that assume a specific
distribution with its parameters being estimated from historical
data [8], [9]. In terms of the solution approach, approximate
methods tend to establish a set of scenarios representative of
the probability distribution of the uncertainty [6], and exact
methods aim to transform the chance-constrained problem into
an equivalent deterministic one [7].

Common to all CCED efforts mentioned above is the as-
sumption that the power system operates in steady state, which
may not hold in the face of larger and more frequent transients
expected in future power systems. To address this issue, [10]
formulates a dynamics-aware ED by incorporating discrete-
time primary and secondary frequency response dynamics, but
it focuses only on optimal decision making, not electricity
pricing. Recent research in pricing and compensating genera-
tion sources for faster dynamic response include procuring new
services like rotational and virtual inertia to mitigate undesired
frequency excursions [11]–[13]. More aligned with traditional
ED-based formulations, our recent work in [14] proposes
a multi-time-scale dynamics-aware ED focused on marginal
pricing of electricity. This model integrates the relatively fast
system dynamics along with slower decisions on generator set-
points into a single optimization problem. However, it does not
address the impact of uncertainty associated with the net-load
forecast on the marginal price of electricity during transients.

In this paper, similar to [14], we directly modify the
traditional ED to include constraints pertinent to system fre-
quency dynamics, yielding a dynamics-aware ED. Extend-
ing from [14], we further model probabilistic uncertainty in
the net-load forecast as a multivariate Gaussian distribution.
Chance constraints then dictate the tolerable probability of
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violating lower and upper limits of dynamic system frequency
and generator outputs. The resulting dynamics-aware CCED
minimizes the sum of the expected operation cost and expected
frequency deviations from the synchronous speed across the
scheduling horizon. Given the structure of the dynamics-
aware CCED along with the Gaussian model for forecast
uncertainty, we can transform the chance-constrained problem
into a deterministic optimization problem, so as to facilitate
solutions using standard optimization solvers. The marginal
price of electricity under uncertainty is the (suitably scaled)
Lagrange multiplier of the dynamic power balance constraint.
It represents the cost of energy to regulate system frequency
while satisfying tolerable risk specified by the probability
of constraint violations. The proposed method admittedly
deviates significantly from today’s regulation markets where
generators are paid for reserve capacity. However, as simula-
tions involving the Western System Coordinating Council test
system confirm, it offers a promising extension of existing
real-time markets to provide greater compensation to genera-
tors for contributing to dynamic performance while mitigating
risk brought about by net-load forecast uncertainty.

II. PRELIMINARIES

In this section, we outline a traditional dynamics-oblivious
CCED incorporating load forecast uncertainty. We also de-
scribe the system frequency dynamical model.

A. Traditional Chance-constrained Economic Dispatch

Consider a transmission system with G online generators in
the set G = {1, . . . , G} supplying forecasted net load P load

◦ .
Prevailing ED formulations assume synchronous steady-state
operations, where generator g produces steady-state electrical
power P◦,g with cost function Cg(P◦,g). Uncertainty asso-
ciated with predictions of the upcoming net load renders
generator outputs to be random variables. Then the total
expected cost of generation E[C(P◦)] = E[

∑
g∈G Cg(P◦,g)],

with P◦ = [P◦,1, . . . , P◦,G]T, can be minimized in a CCED

minimize
P◦,π

E[C(P◦)] (1a)

subject to 1T
GP◦ = P load

◦ , (1b)

P◦ = πP load
◦ , (1c)

P(P◦ ≥ Pmin) ≥ (1− εP )1G, (1d)

P(P◦ ≤ Pmax) ≥ (1− εP )1G, (1e)

where participation factors collected in π ∈ RG distribute
system load amongst all generators, εP ∈ (0, 1) represents the
tolerable probability of violation in chance constraints (1d)–
(1e), and 1G is a G-dimensional vector of 1s (see, e.g., [15]).

Since the ED in (1) assumes steady-state operation, it does
not offer any insights on the optimal dispatch or price of
electricity during transients. This is well aligned with power
systems dominated by high-inertia synchronous generators
serving slow-varying loads. However, the displacement of fos-
sil fuel-based synchronous generators by low-inertia sources
is bringing about larger, faster, and more frequent frequency
excursions away from synchronous steady state. Thus, there is

a pressing need to update the dynamics-oblivious CCED in (1)
so that resulting marginal prices capture the cost of electricity
generation considering frequency transients.

B. Generator Frequency Dynamics

For each generator g ∈ G, let ωg denote its electrical angular
frequency; also let P r

g , Pm
g , and Pg respectively denote its

reference set-point, turbine mechanical power, and electrical
output. Each generator initially operates at the steady-state
equilibrium point with ωg(0) = ωs, P r

g(0) = Pm
g (0) =

Pg(0) = P r◦
g . Let ∆ωg := ωg − ωs and assume that the

electrical distances between geographically different parts of
the power system are negligible, then all generator frequencies
follow the same transient behaviour, i.e., ∆ωg = ∆ω, ∀ g ∈
G [16]. Also let P = [P1, . . . , PG]T, Pm = [Pm

1 , . . . , P
m
G ]T,

and P r = [P r
1 , . . . , P

r
G]T. Then system frequency dynamics

can be modelled as

M∆ω̇ = Pm −D∆ω − P, (2)

τṖm = P r − Pm −R−11G∆ω, (3)

where M = [M1, . . . ,MG]T and D = [D1, . . . , DG]T re-
spectively collect the generator inertia and damping constants,
and τ = diag([τ1, . . . , τG]) and R−1 = diag([R−1

1 , . . . , R−1
G ])

collect the generator governor time constants and inverse-
droop constants, respectively [17]. Summing (2) over all
g ∈ G, we define an aggregate mechanical power 1T

GP
m and

get the following reduced-order dynamical model:

Meff∆ω̇ = 1T
GP

m −Deff∆ω − P load, (4)

where the effective inertia constant Meff and the effective
damping constant Deff are respectively given by Meff :=∑
g∈GMg and Deff :=

∑
g∈G Dg , and P load = 1T

GP .

III. DYNAMICS-AWARE ECONOMIC DISPATCH

This section formulates the dynamics-aware CCED fol-
lowed by models pertinent to the uncertainty in net load and
dynamic state variables. We then reformulate the CCED into
a deterministic problem and show that the marginal price
of electricity is the Lagrange multiplier associated with the
dynamic power balance constraint.

A. Chance-constrained Problem Formulation

Consider the ED scheduling horizon from time t0 to
t0 + T , subdivided by two pertinent time steps. The time
step corresponding to faster system dynamics is denoted by
∆tD = T

ND , which is sufficiently small to model genera-
tor dynamics (e.g., 0.05 [sec]). The scheduling horizon then
divides into ND intervals with end-points collected in the
set T D

t0 = {t0, t0 + ∆tD, . . . , t0 + T}. Next, decisions on
generator reference set-points are made over a longer time
interval ∆tS = T

NS (e.g., 2.5 [sec]), which subdivides the
scheduling horizon into NS intervals with end-points collected
in T S

t0 = {t0, t0 + ∆tS, . . . , t0 + T}. Further consider the net-
load forecast over the scheduling horizon P load

t , t ∈ T D
t0 .

Due to forecast errors, the upcoming load is not known
precisely and uncertainty is associated with the predictions.
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We then formulate the following dynamics-aware CCED with
fast decisions made every ∆tD interval and slower generator
set-points determined every ∆tS interval:

minimize
P r

t′ ,P
m
t ,∆ωt,Pt

∑
t∈T D

t0

(E[C(Pm
t )] + E[κ|∆ωt|])∆tD (5a)

subject to Meff

(∆ωt+∆tD −∆ωt
∆tD

)
= 1T

GP
m
t −Deff∆ωt

− P load
t , t ∈ T D

t0 \ {t0 + T}, (5b)

τ
(Pm

t+∆tD − P
m
t

∆tD

)
= P r

t′ − Pm
t −R−11G∆ωt,

t′ ∈ T S
t0 \ {t0 + T},

t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (5c)

P(Pm
t ≥Pm

min) ≥ 1G(1− εP ), t ∈ T D
t0 , (5d)

P(Pm
t ≤Pm

max) ≥ 1G(1− εP ), t ∈ T D
t0 , (5e)

P(∆ωt≥∆ωmin) ≥ 1− εω, t ∈ T D
t0 , (5f)

P(∆ωt≤∆ωmax) ≥ 1− εω, t ∈ T D
t0 . (5g)

The objective function (5a) comprises the expected values of
two terms, each weighted by time step ∆tD and summed
over the scheduling horizon. The ED minimizes the expected
cost of generation E[C(Pm

t )] = E[
∑
g∈G Cg(P

m
t )] and the

expected cost of regulating system frequency E[κ|∆ωt|] with
κ > 0 being the coefficient of cost of absolute frequency
deviation. Constraints in (5b)–(5c) represent the discretized
system frequency dynamics, and chance constraints in (5d)–
(5e) and (5f)–(5g) respectively impose the tolerable probability
of violating limits in mechanical power and system frequency.

B. Uncertainty Models

We decompose the net-load forecast as P load
t = P

load

t +

P̃ load
t , t ∈ T D

t0 , where P
load

t is the nominal (or mean) value
and P̃ load

t represents the uncertain component. Then dynamic
state variables ∆ωt and Pm

t can be similarly decomposed as

∆ωt = ∆ωt + ∆ω̃t, t ∈ T D
t0 , (6)

Pm
t = P

m

t + P̃m
t , t ∈ T D

t0 , (7)

where ∆ωt and P
m

t are respectively the mean frequency
deviation and turbine mechanical powers, at time t, and ∆ω̃t
and P̃m

t represent the associated uncertainty. Then we can
express (5b)–(5c) as the sum of the following:[

∆ωt+∆tD

P
m

t+∆tD

]
=A

[
∆ωt
P

m

t

]
+BP

load

t + CP r
t′ ,

t′ ∈ T S
t0 \ {t0 + T}, t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (8)[

∆ω̃t+∆tD

P̃m
t+∆tD

]
=A

[
∆ω̃t
P̃m
t

]
+BP̃ load

t , t ∈ T D
t0 \ {t0 + T}, (9)

where matrices A, B, and C are given by

A =

[
1− Deff

Meff
∆tD 1

Meff
1T
G∆tD

−τ−1R−11G∆tD IG − τ−1∆tD

]
,

B =

[
− 1
Meff

∆tD

0G

]
, C =

[
0T
G

τ−1∆tD

]
. (10)

Via visual inspection of (8)–(9), we note that the dynamics
in the nominal values of states are decoupled from those in the
uncertain components. Furthermore, the latter dynamics are
driven only by the uncertainty in net load because generator
set-points are deterministic decision variables. Now, suppose
P̃ load
t , t ∈ T D

t0 , are characterized as independent and identi-
cally distributed Gaussian random variables with zero mean
and standard deviation σload

t , i.e., P̃ load
t ∼ N (0, (σload

t )2).
Since (9) is linear, we can conclude that ∆ω̃t and P̃m

t are
also Gaussian random variables with zero mean, i.e.,[

∆ω̃t
P̃m
t

]
∼N

([
0

0G

]
,

[
(σωt )2 Σω,Pt
ΣP,ωt ΣPt

])
, t ∈ T D

t0 , (11)

where the variance is calculated as[
(σωt )2 Σω,Pt
ΣP,ωt ΣPt

]
=

t−t0
∆tD
−1∑

k=0

A
t−t0
∆tD
−1−kB · (σload

t0+k∆tD)2

· (A
t−t0
∆tD
−1−kB)T, t ∈ T D

t0 \ {t0}, (12)

with σωt0 = 0, (Σω,Pt0 )T = ΣP,ωt0 = 0G, and ΣPt0 = 0G×G as
initial conditions are assumed to be known precisely.

C. Deterministic Problem Formulation

Bearing in mind that dynamic state variables are decom-
posed as in (6)–(7), we upper bound the objective function
in (5a) via the triangle inequality as

E[C(Pm
t )] + E[κ|∆ωt|]
≤ E

[
C(P

m

t + P̃m
t )
]

+ κE[|∆ωt|] + κE[|∆ω̃t|]. (13)

Now consider a typical quadratic total generation cost function

C(Pm
t ) = Pm

t
Tdiag(q)Pm

t + rTPm
t + 1T

Gc, (14)

where q = [q1, . . . , qG]T, r = [r1, . . . , rG]T, and c =
[c1, . . . , cG]T respectively represent the quadratic-, linear-, and
constant-term coefficients. Furthermore, since the uncertain
components in (13) are modelled by the Gaussian distribution
in (11), the right-hand side of (13) evaluates as

C(P
m

t ) + κ|∆ωt|+ (σPt )Tdiag(q)σPt + κ
√

2/πσωt , (15)

where σPt denotes the element-wise square root of the vector
of diagonal entries in ΣPt , which, along with σωt can be
evaluated using (12). With the updated objective function
in (15), we can reformulate the CCED in (5) into the following
deterministic counterpart:

minimize
Ω

∑
t∈T D

t0

(
C(P

m

t ) + κ(∆ω+
t + ∆ω−t )

+ (σPt )Tdiag(q)σPt + κ
√

2/πσωt

)
∆tD (16a)

subject to Meff

(∆ωt+∆tD −∆ωt
∆tD

)
= 1T

GP
m

t −Deff∆ωt

− P load

t , t ∈ T D
t0 \ {t0 + T}, (λt), (16b)

τ
(Pm

t+∆tD − P
m

t

∆tD

)
= P r

t′ − P
m

t −R−11G∆ωt,

t′ ∈ T S
t0 \ {t0 + T},
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t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (βt), (16c)

P
m

t + σPt Φ−1(1− εP ) ≤ Pm
max,

t ∈ T D
t0 , (µ+

t ), (16d)

P
m

t − σPt Φ−1(1− εP ) ≥ Pm
min,

t ∈ T D
t0 , (µ−t ), (16e)

∆ωt + σωt Φ−1(1− εω) ≤ ∆ωmax,

t ∈ T D
t0 , (ν+

t ), (16f)

∆ωt − σωt Φ−1(1− εω) ≥ ∆ωmin,

t ∈ T D
t0 , (ν−t ), (16g)

∆ωt = ∆ω+
t −∆ω−t , t ∈ T D

t0 , (ζt), (16h)

∆ω+
t ,∆ω

−
t ≥ 0, t ∈ T D

t0 , (ρω+
t , ρω−t ), (16i)

where Ω = {∆ωt,∆ω+
t ,∆ω

−
t , P

m

t , P
r
t′}t∈T D

t0
, t′∈T S

t0
collects

decision variables of the optimization problem, and Φ−1(·)
is the inverse of the cumulative distribution function of the
standard normal distribution.

D. Marginal Price of Electricity

The marginal price represents the rate of change of the
system operation cost due to an incremental change in
electrical load, while satisfying generator and system static
and dynamic constraints. Mathematically, the marginal price
is expressed as the first derivative of optimal Lagrangian
with respect to net load at time t ∈ T D

t0 . By defini-
tion, given the optimal solution of the problem in (16),
{∆ω?t ,∆ω+?

t ,∆ω−?t , P
m?

t , P r?
t′ }t∈T D

t0
, t′∈T S

t0
and the optimal

Lagrangian L?, the marginal price is calculated as

1

∆tD
dL?

dP
load

t

(17)

where the division by ∆tD ensures that the marginal price
applies for arbitrary ∆tD and results in consistent units aligned
with the cost function. Particularly, for the cost function with
units of [$/hr], division by ∆tD yields marginal price in units
of [$/MWh] regardless of the length of ∆tD. Applying the
chain rule in calculus, (17) simplifies as

1

∆tD
dL?

dP
load

t

=
1

∆tD
∂L?

∂P
load

t

=
1

∆tD
λ?t =: λ′?t . (18)

IV. CASE STUDIES

Simulations presented in this section use the Western Sys-
tem Coordinating Council test system where the system power
base is 100 [MVA]. Generator dynamic model and cost func-
tion parameters are respectively provided in Tables I and II.
The scheduling horizon spans T = 300 [sec] from t0 = 0 [sec].
The shorter time interval capturing system dynamics is ∆tD =
0.05 [sec], while the generator set-point decisions are made
every ∆tS = 2.5 [sec]. The mean net load is forecasted to take
a constant value of 315 [MW] for t ∈ [0, 15] [sec], followed
by a 15% increase for t ∈ (15, 300] [sec]. The dynamics-aware
ED in (16) is modelled in the MATLAB YALMIP toolbox and
solved using the GUROBI solver on a desktop computer with
a 3.6 [GHz] i7 processor and 32 [GB] RAM.

TABLE I
DYNAMIC MODEL PARAMETERS OF GENERATORS AND GOVERNORS

Generator Mg [sec] Dg τg [sec] 1
Rg

g = 1 23.64 20 2 100
g = 2 6.4 20 2 100
g = 3 3.01 20 2 100

TABLE II
GENERATOR QUADRATIC COST FUNCTION PARAMETERS

Generator qg[$/(MW2h)] rg[$/MWh] cg[$/h]

g = 1 0.5500 25 150
g = 2 0.0850 1.2 600
g = 3 1.225 10 335

5 10 15 20 25 30 35

15

20

25

30

35

Fig. 1. Dynamics-aware marginal prices under load forecast uncertainty
evaluated at the optimal solution of the dynamics-aware CCED in (16).

A. Dynamics-aware Marginal Price Under Uncertainty

We obtain the dynamics-aware marginal price of electricity
under uncertainty by evaluating λ′?t in (18) at the optimal
solution of (16). The marginal prices are plotted in Fig. 1
for three different net-load forecast uncertainty levels with
σload
t , t ∈ T D

t0 , being 0.01, 0.04, and 0.1 [p.u.]. At the initial
steady-state operating point, inequality constraints in (16) are
not binding, and the marginal prices for the three cases are
equal and constant. They later diverge due to the forecasted
load change. The price differences observed across the three
cases arise because, following a load change at t = 15 [sec],
the maximum power limit of generator 2 becomes binding.
Higher levels of forecast uncertainty lead to larger marginal
price because it necessitates dispatching more power from
a more expensive unit to hedge against the same tolerable
probability of unit 2 violating its maximum limit.

B. Revenues, Costs, and Profits

We now turn our attention to the comparison of costs and
profits for generators. These are determined by employing the
marginal price resulting from the proposed dynamics-aware
CCED under various levels of uncertainty. The same simula-
tion setup outlined in Section IV-A is used for this analysis.
The total revenue is calculated as

∑
t∈T D

t0

λ′?t 1T
GP

m?
t ∆tD. The

revenue in this context is a random variable evaluated as a
linear function of Pm?

t ∼ N (P
m?

t ,ΣPt ). This leads to the
probability distribution of the total revenue to be expressed as
the following sum of Gaussian distributions:∑
t∈T D

t0

λ′?t 1T
GP

m?
t ∆tD ∼

∑
t∈T D

t0

N (λ′?t 1T
GP

m?

t ∆tD,

(λ′?t )21T
GΣPt 1G(∆tD)2). (19)

Moreover, since we consider quadratic generator cost func-
tions, the total generation cost is the sum of the squares of
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Fig. 2. Probability distributions of total revenues, costs, and profits of
generators resulting from dynamics-aware pricing for different levels of load
forecast uncertainty.

Gaussian random variables, and it can be represented as the
sum of generalized chi-squared distributions given by∑

t∈T D
t0

C(Pm?
t )∆tD ∼

∑
t∈T D

t0

χ̃2(wt, kt, ht,mt, st), (20)

where the parameters wt, kt, ht, mt, and st can be obtained in
closed form [18]. Then total profit is obtained by subtracting
the cost from the revenue. It is worth noting that P

m?

t and λ′?t
needed to obtain the probability distributions of total revenue
and cost are readily available from the optimal solution of
the CCED in (5). In Fig. 2, for each load forecast uncertainty
scenario considered in Section IV-A, we plot the probability
distributions of total revenue, cost, and profit. Visual exami-
nation of Fig. 2 reveals that greater load forecast uncertainty
yields higher revenues and profits for generators due to the
elevated marginal price to hedge against the greater risk of
violating limits, as depicted in Fig. 1. Also, greater load fore-
cast uncertainty leads to correspondingly wider distributions
in revenues and costs, and consequently profits.

C. Dynamic Performance

Consider net-load forecast P load
t = P

load

t + P̃ load
t , where

P
load

t is predicted to increase by 15% at t = 15 [sec] as
above and P̃ load

t ∼ N (0, (0.1)2), t ∈ T D
t0 . We sample this

load probability distribution and simulate the system frequency
dynamics 500,000 times using the model consisting of (3)–(4)
with P r

t extracted from the optimal solution of the dynamics-
aware ED in (16). In Fig. 3, we plot the probability with which
the maximum power limit for generator 2, Pm

max = 1.9 [p.u.],
is violated. We find that the probability remains above 0.95,
consistent with the tolerance set in the chance constraint (5e).

V. CONCLUDING REMARKS

In this paper, we presented a dynamics-aware marginal pric-
ing scheme that incorporates constraints pertaining to system
frequency dynamics and Gaussian models for the net-load
forecast uncertainty. Chance constraints delineate the tolerable
probability of violating lower and upper limits of dynamic
generator outputs and system frequency. The dynamics-aware
marginal price thus embeds the impact of frequency dynamics
under uncertainty in the net-load forecast. Numerical results
confirm the benefits of the proposed marginal price in provid-
ing broader revenue opportunities for generators contributing
to system performance under uncertainty. Future work will
address non-Gaussian correlated random variables from RESs.

Fig. 3. The empirical probability with which the maximum power limit for
generator 2 is violated obtained from 500,000 repeated dynamic simulations
using net-load forecast sampled from N (P

load
t , (0.1)2) with P r

t extracted
from the optimal solution of the dynamics-aware ED in (16).
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