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Abstract—In this paper, we propose a distributed continuous-
time optimal power flow (OPF) model, with DC power flow
constraints, for a multi-area transmission network. The model
exploits the unique properties of variational optimization, func-
tion space representation, and the alternating direction method of
multipliers (ADMM) to enable continuous-time power exchange
between adjacent areas. More specifically, the centralized multi-
area OPF is formulated as a variational optimization problem
with continuous-time load and decision variables (power genera-
tion, voltage phase angles, line/tieline power flows), which is then
converted to a conventional optimization problem by projecting
the load and decision trajectories into the Bernstein function
space, and is decomposed to function space-based OPF sub-
problems of individual areas using ADMM. The numerical results
of implementing the proposed model on a synthesized three-area
network indicate convergence to the centralized continuous-time
OPF solution and showcase computational efficiency and the
efficient sharing of ramping resources among areas.

Index Terms—Optimal power flow, distributed optimization,
continuous-time scheduling

I. INTRODUCTION

Electric power grids are undergoing major changes mainly
driven by integrating high levels of renewable energy, ad-
vancing energy storage technologies, and deploying electric
vehicles at scale [1], [2]. Along with numerous benefits
offered by this grid modernization, technical challenges also
arise largely due to variability and uncertainty of renewable
energy resources [3] as well as the stochastic nature of
electric transportation charging demand [4]. To tackle these
challenges, power system operators can tap into available
operational flexibility from conventional generators and further
equip additional flexibility resources (e.g., energy storage and
flexible loads) along with institutional flexibility options (e.g.,
operational coordination of independently operated intercon-
nected networks) [5]. Coordination of interconnected networks
is indeed a viable source of operational flexibility, yet, to fully
leverage the latent benefits we require to enhance the operation
models and distributed coordination processes governing the
power exchange among areas.

Due to the large number of electricity consumers of various
types that may alter their power consumption at any time,
the power system demand follows in reality a continuous-time
trajectory. However, industry-standard power system operation
models discretize this continuous-time load with zero-order
piecewise constant functions and deploy the same type of func-
tions to present the power generation schedule of generating
units [6]. Although the zero-order approximation has hitherto
served well, it may fail to reflect and address the sub-interval

variations of renewable generation and the ensuing sharp
changes in net load (load minus non-dispatchable renewable
generation) [7]. In addition, this model defines the generation
ramping as the finite difference of two consecutive generation
values that overlooks the actual sub-interval ramping dynam-
ics. Thereby, enhanced operation models with higher modeling
flexibility are in demand. Function space-based discretization
of load and generation trajectories is presented in [7] as an
alternative solution and continuous-time operation models are
developed to better reflect the net-load sub-interval variations
and capture the generation ramping (defined as time-derivative
of generation trajectories). This general method has since
been applied to optimal scheduling of energy storage devices
[8], stochastic flexibility reserve scheduling [9], dynamics-
aware economic dispatch [10], regulation markets [11], hydro-
thermal scheduling [12], and multi-energy system [13], [14].
However, to the best of our knowledge, distributed continuous-
time multi-area scheduling has not yet been explored.

A large body of research has been dedicated to dis-
tributed optimization of electric power systems, albeit not
with continuous-time decision trajectories [15]–[21]. In these,
individual microgrids/areas typically share partial information
on state variables of boundary buses (terminal buses of con-
necting lines) without sharing complete information on the
internal generation fleet and network topology, thereby pre-
serving privacy. In [15], a comprehensive review of distributed
optimization techniques applied to optimal power flow (OPF)
problem is presented. In [16], the analytical target cascading
method is used to solve the OPF problem for a power dis-
tribution network. The auxiliary problem principle technique
is utilized in [17] to solve a security-constrained economic
dispatch, focused mainly on temporal decomposition of inter-
temporal constraints. Dual decomposition is used in [18] to
develop an incentive-compatible market coupling framework.
Among the variety of distributed optimization algorithms, al-
ternating direction method of multipliers (ADMM) has gained
popularity due to favorable convergence properties [19]–[21].
The ADMM is used in [19] to enable trading congestion
and imbalance mitigation services among distribution system
operators, in [20] to optimally schedule the smart inverters of
distributed energy resources, and in [21] for clearing energy
and flexibility markets in community-based grids.

Distinct from the aforementioned work, in this paper, we
propose a distributed continuous-time OPF model with DC
power flow constraints, for a multi-area transmission network.
We first formulate the centralized OPF problem as a variational



optimization problem that characterizes the nodal loads and
power generation of online units, bus voltage phase angles,
and line/tieline power flows, as continuous-time trajectories.
Further, the sub-interval ramping dynamics is effectively cap-
tured via defining the generation ramping as time-derivative of
power generation trajectories. The variational OPF problem is
then approximated by projection into the Bernstein function
space leading to a linear programming (LP) problem with
Bernstein coefficients as decision variables. The ensuing LP is
then decomposed into quadratic programming (QP) OPF sub-
problems of individual areas using the ADMM. Examined on a
synthesized three-area test system, the solution of the proposed
distributed continuous-time OPF problem accurately converges
to that of centralized counterpart. Further, the generation
and ramping resources are efficiently scheduled to not only
supply the system load at minimum cost, but also address the
ramping deficiency of areas with limited ramping resources by
leveraging the excess ramping resources in other areas.

II. METHODOLOGY

Consider a power system with A areas contained in the
set A = {1, 2, . . . , A}, where the topology data of area
a ∈ A is conveyed through a directed graph (Na,La)
such that Na = {1, 2, . . . , Na} and La = {(i, j)|i, j ∈
Na, j ≡ j(i)} respectively represent the sets of nodes
(buses) and edges (transmission lines). For area a, the
continuous-time bus voltage angles and nodal loads form re-
spectively the vectors θa(t) = [θa,1(t), θa,2(t), . . . , θa,Na

(t)]T

and Da(t) = [Da,1(t), Da,2(t), . . . , Da,Na
(t)]T, transmis-

sion line power flows are contained in vector Fa(t) =
[
(
Fa,(i,j)(t)

)
(i,j)∈La

], and the Na × Na admittance matrix
of each area is denoted by Ba. The set of Ka generating
units at each area a is represented by Ka = {1, . . . ,Ka},
the continuous-time power generation of units form the vector
Ga(t) = [Ga,1(t), Ga,2(t), . . . , Ga,Ka(t)]

T, the continuous-
time ramping trajectories which are the time-derivatives of
power trajectories are represented by the vector Ġa(t) =
[Ġa,1(t), Ġa,2(t), . . . , Ġa,Ka

(t)]T, and the Ka×Na incidence
matrix Ma maps the generating units to buses. Tielines con-
nected to area a are collected in set Ltie

a = {(i, j)|i ∈
Na, j ∈ Na′ , j ≡ j(i)}, the associated tieline power flows
are contained in vector Ta(t) = [

(
Ta,(i,j)(t)

)
(i,j)∈Ltie

a
], and

the incidence matrix Ra maps the tielines to boundary buses.
The above notation is illustrated via a generic multi-area
power transmission network in Fig. 1. In this section, we
formulate the centralized variational OPF problem followed
by the pertinent function space representation. Application of
ADMM to the resulting function space-based OPF problem
then enables distributed solutions.

A. Centralized Variational OPF Problem Formulation

We formulate the centralized variational OPF problem in
(1), where a single omniscient system operator has complete
information regarding technical limitations and cost functions
of generators as well as network topology of all areas and
optimally operates the entire power system by using the

available information. Nevertheless, we persist with notation
for distinct areas and distinguish transmission line power flows
from tieline power flows [22], as these facilitate formulating
the distributed solution later. The operation cost of the power
system integrated over the scheduling horizon T is minimized
in (1a), subject to operation constraints in (1b)–(1i):

minimize
Ω

∑
a∈A

∫
T
Ca(Ga(t))dt, (1a)

subject to Baθa(t) +RaTa(t) = MaGa(t)−Da(t),

∀a ∈ A, t ∈ T , (1b)

Ga ≤ Ga(t) ≤ Ga, ∀a ∈ A, t ∈ T , (1c)

Ġa ≤ Ġa(t) ≤ Ġa, ∀a ∈ A, t ∈ T , (1d)

Fa,(i,j)(t) =
θa,i(t)− θa,j(t)

xa,(i,j)
, ∀a ∈ A,

∀(i, j) ∈ La, t ∈ T , (1e)

Ta,(i,j)(t) =
θa,i(t)− θa′,j(t)

xtie
a,(i,j)

, ∀a ∈ A,

∀(i, j) ∈ Ltie
a , t ∈ T , (1f)

−F a ≤ Fa(t) ≤ F a, ∀a ∈ A, t ∈ T , (1g)

−T a ≤ Ta(t) ≤ T a, ∀a ∈ A, t ∈ T , (1h)
θ1,1(t) = 0, t ∈ T , (1i)

where Ω = {Ga(t), θa(t), Fa(t), Ta(t)}t∈T , a∈A repre-
sents the set of decision trajectories, Ca(Ga(t)) =∑

k∈Ka
Ca,k(Ga,k(t)) denotes the sum of convex cost func-

tions of units in area a at time t, the vectors Ga and Ga

respectively represent the minimum and maximum power gen-
eration limits, the vectors Ġa and Ġa contain the generation
ramping limits, and the power flow limits of transmission lines
and tielines are respectively collected in vectors F a and T a.
The nodal power balance is enforced through (1b) where the
total transmission line/tieline power flows leaving each bus are
equated to the injected power at the corresponding bus. The
generation and ramping of units are constrained to their limits
in (1c) and (1d), and transmission line and tieline power flows
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Fig. 1. Generic multi-area power transmission network.



are respectively calculated in (1e) and (1f) and confined to their
thermal limits through (1g) and (1h), where xa,(i,j) (xtie

a,(i,j))
represents line (tieline) reactance. Without loss of generality,
the bus 1 of area 1 is designated as the system angle reference
and its voltage phase angle is set to zero in (1i).

B. Bernstein Function Space

Let us subdivide the scheduling horizon T = [0, T ] into S
intervals Ts = [ts, ts+1),→ T = ∪S−1

s=0 Ts of the same length
∆ = ts+1− ts = T

S . For each interval Ts, the continuous-
time trajectories are projected into a Bernstein function space
of degree Q, which basis functions are formed by the Bern-
stein polynomials of the same degree. By concatenating the
basis functions attributed to individual intervals into a single
vector of basis functions, we form a spline function space
representing the entire scheduling horizon T . This vector of
basis functions is denoted by eQ(t)=[eQ1 (t), . . . , e

Q
P (t)]

T and
includes P = (Q+ 1)S functions defined as

eQs(Q+1)+q+1(t) = bq,Q

(
t− ts
Ts

)
, t ∈ [ts, ts+1), (2)

where bq,Q represents the qth Bernstein polynomial of degree
Q, s = 0, . . . , S−1 and q = 0, . . . , Q.

1) Decision Trajectories: For each area a, we project the
power generation trajectories Ga(t), bus voltage phase angles
θa(t), transmission line power flows Fa(t), and tieline power
flows Ta(t) into the function space spanned by eQ(t) as

Ga(t) = Gae
Q(t), θa(t) = θae

Q(t), t ∈ T , (3)

Fa(t) = Fae
Q(t), Ta(t) = Tae

Q(t), t ∈ T , (4)

where Ga, θa, Fa, and Ta are respectively Ka×P , Na×P ,
|La|×P , and |Ltie

a |×P matrices of Bernstein coefficients dis-
tinguished with bold symbols (| · | denotes the set cardinality).

2) Generation Ramping: The time-derivatives of generation
trajectories, which are projected into a function space spanned
by Bernstein polynomials of degree Q, are expressed in a
Bernstein function space of degree Q− 1 as follows:

Ġa(t) = Ġae
Q−1(t), t ∈ T , (5)

where Ġa is the Ka×(P−S) matrix of Bernstein coefficients
that linearly relates to Ga through P × (P −S) matrix M as

Ġa = GaM. (6)

3) Continuity of Trajectories: By imposing proper linear
constraints on the Bernstein coefficients of decision trajectories
corresponding to the adjacent intervals s, s + 1, we ensure
the continuity and smoothness in transitions between intervals.
Please refer to [7] for a detailed discussion on continuity.

4) Objective Function: Suppose that the cost function of
generator k ∈ Ka, i.e., Ca,k(Ga,k(t)), is approximated with
a piecewise linear function with Ha,k linear, and correspond
to each of the linear segments h = 1, . . . ,Ha,k the positive
auxiliary variable trajectories ga,k,h(t) and the segment lengths
ga,k,h. Collect the auxiliary variable trajectories of all gener-
ators k ∈ Ka in vector ga,h(t) = [ga,1,h(t), . . . , ga,Ka,h(t)]

T

and the segment lengths in vector ga,h likewise. By leveraging
the unique properties of Bernstein polynomials [23], it is
straightforward to convert the integral in the objective function
(1a) to an algebraic function of Bernstein coefficients of
decision trajectories as

Ja = Ca (Ga)T +∆

∑Ha,k

h=1 1T
Ka

γa,hga,k,h1P

Q+ 1
, (7)

where 1Ka and 1P are respectively Ka- and P -dimensional
vectors of ones, γa,h is the Ka × Ka diagonal matrix of
generator cost function slopes at the linearization segment h,
and ga,h is the Ka × P matrix of Bernstein coefficients of
auxiliary variable trajectories.

5) Centralized Continuous-time Problem: With the above
components in place, the centralized variational OPF problem
in (1) is formulated in Bernstein function space as follows:

minimize
Ω

∑
a∈A

Ja (8a)

subject to Baθa +RaTa = MaGa −Da,∀a ∈ A, (8b)

Ga1T
P ≤ Ga ≤ Ga1T

P , ∀a ∈ A, (8c)

Ġa1T
P−S ≤ GaM ≤ Ġa1T

P−S , ∀a ∈ A, (8d)

Fa,(i,j)=
θa,i−θa,j
xa,(i,j)

,∀a∈A,∀(i, j)∈La, (8e)

Ta,(i,j)=
θa,i−θa′,j

xtie
a,(i,j)

,∀a∈A,∀(i, j)∈Ltie
a , (8f)

−F a1T
P ≤Fa≤F a1T

P , ∀a∈A, (8g)

−T a1T
P ≤ Ta ≤ T a1T

P , ∀a∈A, (8h)

θT1,1 = 0P , (8i)

Ga = Ga1T
P +

Ha,k∑
h=1

ga,h, ∀a ∈ A, (8j)

0Ka×P ≤ ga,h ≤ ga,h1T
P , ∀a ∈ A, (8k)

Continuity Constraints, (8l)

where Ω = {Ga,θa,Fa,Ta}a∈A, Fa,(i,j) (Ta,(i,j)) is the
row of matrix Fa (Ta) corresponding to line (tieline) (i, j),
θa,i is the row of matrix θa corresponding to node i, and
0P (0Ka×P ) is the vector (matrix) of all zeros. Above, (8j)
constructs the Bernstein coefficients of generation trajectories
in terms of the Bernstein coefficients of pertinent auxiliary
variables, while the auxiliary variable Bernstein coefficients
are limited to linearization segments lengths in (8k). We
refer interested readers to [8]–[10] for detailed exposition on
function space representation, particularly the cost function
linearization and the continuity constraints.

C. Distributed Continuous-time OPF Using ADMM

We formulate the distributed solution of the centralized OPF
problem in (8) by using ADMM. To this end, we introduce
coupling variables to (8) that enable obtaining the decou-
pled sub-problems for individual areas. Further, we include
consistency constraints within each sub-problem to enforce
agreement between adjacent areas on the values of coupling
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Fig. 2. Data exchange between areas and the coordinator.

variables. Let Ba be the set of boundary buses of area a ∈ A
and associate to each bus i ∈ Ba the P -dimensional row vector
of coupling variables ψa,i. For a ∈ A and (i, j) ∈ Ltie

a , the
consistency constraints ensure the equality of voltage phase
angle Bernstein coefficients and the corresponding coupling
variables as

θa,i = ψa,i, θa′,j = ψa′,j . (9)

At each iteration r of the iterative algorithm, the following
three steps are performed.

1) Solving Per-area Sub-problem (Step 1): Each area solves
the following QP in iteration r:

minimize
θ(r)

a,i,θ
(r)

a′,j

J (r)
a +

∑
(i,j)∈Ltie

a

[(
θ
(r)
a,i −ψ

⋆(r−1)
a,i

)
λ
⋆(r−1)
a,i

+
ρ

2
∥θ(r)a,i −ψ

⋆(r−1)
a,i ∥22 +

(
θ
(r)
a′,j −ψ

⋆(r−1)
a′,j

)
λ
⋆(r−1)
a′,j

+
ρ

2
∥θ(r)a′,j −ψ

⋆(r−1)
a′,j ∥22

]
(10a)

subject to Constraints [(8b)–(8l)]a (10b)

where ψ⋆(r−1)
a,i and ψ⋆(r−1)

a′,j are the optimal coupling variables
calculated in Step 2 of iteration r−1, λ⋆(r−1)

a,i and λ⋆(r−1)
a′,j are

the updated dual variables calculated in Step 3 of the iteration
r − 1, and ρ is the step-size of dual update in Step 3.1 The
consistency constraints are enforced by forming the augmented
Lagrangian in (10a), and [(8b)–(8l)]a represent the subset of
constraints (8b)–(8l) pertinent to area a.

2) Optimizing Coupling Variables (Step 2): As shown in
Fig. 2, each area obtains the optimal Bernstein coefficients
θ
⋆(r)
a,i and θ

⋆(r)
a′,j from the solution of (10) in Step 1 and

sends them to the coordinator which, in turn, calculates the
optimal coupling variables through the solution of following
unconstrained optimization problem:

minimize
ψ(r)

a,i,ψ
(r)

a′,j

∑
a∈A

∑
(i,j)∈Ltie

a

[ρ
2

(
∥θ⋆(r)a,i −ψ(r)

a,i∥
2
2+∥θ⋆(r)a′,j−ψ

(r)
a′,j∥

2
2

)
(
θ
⋆(r)
a,i −ψ

(r)
a,i

)
λ
⋆(r−1)
a,i +

(
θ
⋆(r)
a′,j−ψ

(r)
a′,j

)
λ
⋆(r−1)
a′,j

]
(11)

3) Updating Dual Variables (Step 3): For a ∈ A and
(i, j) ∈ Ltie

a , dual updates are performed as follows:

λ
⋆(r)
a,i = λ

⋆(r−1)
a,i + ρ

(
θ
⋆(r)
a,i −ψ⋆(r)

a,i

)
, (12)

λ
⋆(r)
a′,j = λ

⋆(r−1)
a′,j + ρ

(
θ
⋆(r)
a′,j −ψ

⋆(r)
a′,j

)
. (13)

1Note that the starred values denote parameters of the optimization problem,
not decision variables.

TABLE I
GENERATOR QUADRATIC COST FUNCTION COEFFICIENTS

Area Generator α[$/(MWh)2] β[$/MWh] κ[$]

1, 2 1 0.0042 9.11 0
1, 2 2 0.0152 6.86 0
1, 2 3 0.0275 1.55 0
3 1 0.0019 9.52 0
3 2 0.0122 5.41 0
3 3 0.0256 1.88 0

Algorithm stop condition: The iterative algorithm stops under
the condition that ∀a ∈ A, ∀(i, j) ∈ Ltie

a :

abs
(
λ
⋆(r)
a,i − λ⋆(r−1)

a,i

)
, abs

(
λ
⋆(r)
a′,j − λ

⋆(r−1)
a′,j

)
≤ ∆λ (14)

where “abs” refers to absolute value and ∆λ is a predeter-
mined tolerable mismatch threshold.

III. NUMERICAL RESULTS

The distributed continuous-time OPF model proposed in
Section II-C, as well as the centralized model in (8), are imple-
mented on the three-area test network shown in Fig. 3, which
is composed of identical areas except for cost functions of
their generating units. For a ∈ {1, 2, 3}, the generation limits
of units are Ga = [0, 0, 0]T and Ga = [600, 400, 200]T in
[MW], and the ramp rate limits are Ġa = Ġa = [100, 65, 80]T

in [MW/hr]. The quadratic cost function coefficients of gen-
erators are reported in Table I and the transmission line/tieline
data are provided in Table II. The 5-minute load data of Cali-
fornia ISO (CAISO) [24] for March 19, 2023, is scaled down
to a peak of 2850 [MW] and used to calculate the Bernstein
coefficients of the continuous-time three-area network load
shown in Fig. 4. The nodal loads of areas a ∈ {1, 2, 3} are
deemed of the same profile as the three-area network load,
except scaled by factors LFa = [ 500

2850 ,
300
2850 ,

150
2850 ]

T.

A. Case 1: Adequate Ramping Resources

In this case adequate ramping resources are available and
the generators are chiefly prioritized based on cost.

Area 2Area1

Area 3

Bus1 Bus 2

Bus3

Bus1 Bus 2

Bus3

Bus1 Bus 2

Bus3

Fig. 3. One-line diagram of three-area test network.



TABLE II
TRANSMISSION LINE AND TIELINE DATA

Area (i, j) xa,(i,j)[Ohm] Fa,(i,j)[MW]

1, 2, 3 (1, 2) 0.01 200
1, 2, 3 (1, 3) 0.02 120
1, 2, 3 (2, 3) 0.01 200

Area (i, j) xtie
a,(i,j)

[Ohm] Ta,(i,j)[MW]

1 → 2 (2, 1) 0.0161 75
1 → 3 (3, 1) 0.0097 50
2 → 3 (3, 2) 0.0104 50

0 6 12 18 24
2000

2500

3000

Fig. 4. Three-area network electricity demand.

1) Model Convergence: By choosing a stringent value of
∆λ = 0.4 and selecting ρ = 60, the ADMM converges in
120 iterations, and the total operation cost of the three areas
smoothly approaches to that of the centralized model, as shown
in Fig. 5. Initialized at 0, dual variables also near their steady-
state values after roughly 20 iterations, as shown in Fig. 6, for
two selected boundary buses (bus 1 of areas 2 and 3).

2) Optimal Trajectories: The generation trajectories of the
generating units for all areas, obtained through distributed
continuous-time OPF are presented in Fig. 7 as black traces.

0 20 40 60 80 100 120
4.4

4.6

4.8

5

5.2

5.4

5.6
105

Fig. 5. Total operation cost of areas for distributed OPF model at each
iteration of the ADMM for Case 1.

0 20 40 60 80 100 120
0

100

200

300

400

Fig. 6. Dual variables associated with two selected buses (bus 1 of areas 2
and 3) at each iteration of the ADMM for Case 1.
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600

Fig. 7. Generation trajectories of generating units obtained from distributed
continuous-time OPF for (a) a = 1, (b) a = 2, (c) a = 3. The black and
orange traces refer respectively to Cases 1 and 2.

These trajectories coincide with that of centralized model
except for an insignificant error. To evaluate this error, we
integrate the absolute mismatch between optimal generation
trajectories from distributed model, G⋆d(t), and that of cen-
tralized model, G⋆c(t), and average the resultant over all
generators

ERG=
1∑

a∈A Ka

∫
t∈T

∑
a∈A

1T
Ka
abs

(
G⋆d(t)−G⋆c(t)

)
dt. (15)

The ERG amounts to a negligible value of 0.053 [MW].
The power flow of the tieline leaving bus 1 of area 3 is

shown in Fig. 8, as a black trace, indicating its congestion ex-
cept for t ∈ [7, 11]∪[16, 18]∪[23, 24]. Tieline and transmission
line power flows calculated from distributed OPF model also
very closely follow the corresponding trajectories obtained
from the centralized model where the pertinent errors are
respectively ERtie = 0.11 [MW] and ERline = 0.046 [MW].

B. Case 2: Limited Ramping Resources

In this case, we synthesize an extreme case where ramping
up and down limits of all generators are scaled down by a
factor of 12 except for generator 2 of area 1 whose ramping
limits are doubled. The generation schedule of generators
deviate from that of Case 1, as shown in Fig. 1 with the orange
traces. More precisely, the generator 2 of area 1, despite being
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Fig. 8. Power flow of the tieline leaving bus 1 of area 3 obtained
from distributed continuous-time OPF. The black and orange traces refer
respectively to Cases 1 and 2, and the dotted red trace to the flow limit.

a relatively expensive resource, increases its power generation
during peak-load hours to not only supply the nodal load
ramping requirements in area 1, but also in areas 2 and 3. This
reduces the tie-line power flow in Fig. 8, denoted in orange,
during peak-load hours since the increased power generation
of area 1 induces a power flow component in the opposite
direction to that in Case 1. The numerical results in Case 2
highlight the efficiency of distributed continuous-time OPF to
leverage ramping resources of area 1 (with excess ramping)
to address the ramping scarcity of other areas.

C. Computation Time

The proposed distributed solution of the continuous-time
OPF problem is implemented in GAMS optimization platform
and solved using the CONOPT4 solver on a desktop computer
with a 3.70 [GHz] i9 CPU and 32 [GB] RAM. The ADMM
converges in 55 [sec] and 102 [sec] respectively for Cases 1
and 2 which is favorable for day-ahead scheduling. The model
is expected to suitably scale for the case of areas embedding
larger networks as the computation time of QP problems in
(10), attributed to individual areas, would not considerably in-
crease for real-world network sizes. In addition, since the real-
world interconnected networks typically incorporate a limited
number of areas which solve (10) in parallel, the case of
increased number of areas would also remain computationally
manageable.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we proposed a distributed continuous-time
OPF model for a multi-area transmission network. The pro-
posed approach enabled a higher-precision modeling of sys-
tem load and generation trajectories by first formulating a
continuous-time variational optimization problem, and then
projecting it into the Bernstein function space and decompos-
ing it to individual area sub-problems using the ADMM. The
model is implemented on a synthesized three-area test network
where the simulation results showcase the effective conver-
gence to the optimal solution of the benchmark centralized
model, and the efficient sharing of ramping resources among
areas. Future work includes the extension to unit commitment
problem, incorporating energy storage and flexible loads, and
accounting for load uncertainty.
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