
A Neural Combinatorial Optimization Algorithm for
Unit Commitment in AC Power Systems

Shahab Bahrami, Yu Christine Chen, and Vincent W.S. Wong
Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada

email: {bahramis, chen, vincentw}@ece.ubc.ca

Abstract—The unit commitment (UC) problem in AC power
systems can be formulated as a mixed-integer nonlinear opti-
mization program with a running time that scales exponentially
with the number of generators. This paper addresses the time
complexity of solving the UC problem by developing a deep learn-
ing framework that determines the generator on/off states using
a transformer deep neural network (DNN), and subsequently
solves an AC optimal power flow (OPF) problem to obtain the
generator setpoints. To obtain a feasible binary solution, we
apply a neural combinatorial optimization algorithm to train the
DNN, while penalizing infeasible power flow solutions. Also, to
guarantee the optimality of the generator setpoints, we transform
the AC OPF problem into a semidefinite program (SDP). The
proposed algorithm can obtain a near-optimal solution to the UC
problem in polynomial running time. Simulations are performed
for two IEEE test systems. When compared with three existing
UC algorithms in the literature, our proposed algorithm can
obtain a solution with at least 2.14% lower operation cost and
lower running time. When compared with the MOSEK solver,
our algorithm can obtain a solution with at most 1.97% greater
operation cost, but with a significantly lower running time.

I. INTRODUCTION

The unit commitment (UC) problem for AC power systems
can be formulated as a mixed-integer optimization program
with the objective of minimizing the cost of operating gener-
ators subject to operational constraints, including the network
power balance, bus voltage limits, power flow limits of trans-
mission lines, the generator capacity limits, ramp rate limits,
and the minimum on/off time requirements. Obtaining an op-
timal solution to the UC problem while satisfying the network
constraints is critical for economic and safe operations.

In practical settings, the UC problem is solved for large-
scale transmission networks, and the network constraints are
modeled with either DC or linear approximations of AC power
flow equations to promote computational efficiency [1]. How-
ever, the key to guarantee a feasible solution that satisfies the
network constraints is to avoid approximations of the power
flow equations. While this can be achieved by the inclusion
of the nonlinear AC power flow model in the UC problem,
it then becomes a mixed-integer nonlinear program (MINLP)
with nonconvex constraints and a large number of binary
variables associated with the on/off states of all generators.
These aspects render UC an NP-hard optimization problem
[2], which is computationally difficult to solve. The running
time required to obtain a near-optimal solution of the UC
problem using nonlinear program (NLP) optimization solvers
grows exponentially with the number of generators. Although
the UC problem is typically solved on a day-ahead basis, an

algorithm with lower running time can enable system operators
to address faster and larger load variations and intermittent
renewable energy resources by performing intra-day UC more
often and maintain the consistency between the day-ahead and
real-time electricity markets [3].

There have been many efforts to address the computational
complexity of the UC problem. Amjady et al. in [4] formulated
the UC problem with load and generation uncertainty as
a three-level optimization problem. Šepetanc et al. in [5]
applied a second-order Taylor approximation to formulate
the UC problem as a mixed-integer quadratically constrained
quadratic program (MIQCQP). Both [4] and [5] solved the
resulting optimization problem using commercial MINLP
solvers. Castillo et al. in [6] applied outer approximation
method to decompose the UC problem into a mixed-integer
linear program as the master problem and an NLP as the
subproblem, and they solved the subproblem by using a
successive linear programming technique. Liu et al. in [7]
applied outer approximation method augmented with second-
order cone relaxation and developed an iterative algorithm to
solve the UC problem. Paredes et al. in [8] formulated the
UC problem as an MIQCQP and solved the problem using
successive semidefinite program (SDP) relaxation. Ashraphi-
juo et al. in [9] also proposed an SDP relaxation of the
UC problem by including additional quadratic constraints and
relaxing them to linear matrix inequalities. Quarm et al. in [10]
proposed an SDP relaxation of the UC problem and developed
a heuristic approach to obtain an suboptimal solution when the
relaxation gap is not zero. Zohrizadeh et al. in [11] formulated
the UC problem as a second-order cone program (SOCP)
and developed a sequential convex relaxation algorithm to
obtain a near-optimal solution. The general approach in the
aforementioned works is to perform approximations on the
UC problem, after which the approximate problem is solved
by using either a commercial NLP solver (in, e.g., [4]–[6])
or an iterative approach comprising a sequence of convex
optimization problems (in, e.g., [7]–[11]). These techniques,
however, suffer from long running time to solve the approxi-
mate UC problem.

In this paper, the promising computational benefits of using
deep neural networks (DNNs) to solve large-scale combina-
torial optimization problems (in, e.g., [12], [13]) motivate us
to address the computational complexity of the UC problem
in AC power networks via a deep learning method that
applies a neural combinatorial optimization algorithm to train
a transformer DNN with sample UC problem instances for a

given power network. The trained DNN is augmented with an
AC optimal power flow (OPF) module to obtain a near-optimal
solution to a new instance of the UC problem. Hence, unlike
solving an MINLP or a sequence of convex optimization
problems (in, e.g., [4]–[11]), the trained DNN can reduce the
running time to solve the UC problem by simply performing a
forward propagation in the DNN and solving an OPF problem.
The main contributions of this paper are as follows:
• Deep Learning to Solve UC Problem: We design a

transformer DNN architecture that can obtain the binary
variables for the set of operating generators. To train the
proposed transformer DNN and promote the feasibility
of the binary solution, we develop a neural combina-
torial optimization algorithm [14], which penalizes in-
feasible solutions. By training the proposed DNN with
sufficiently many sample UC problem instances using
historical data for a given power network, we can obtain
a feasible and near-optimal solution of a new instance of
the UC problem in polynomial running time.

• Full AC Power Flow Constraints: To guarantee the fea-
sibility of the generator setpoints, we consider full AC
power flow equations in the UC problem. We address the
nonconvexity of the full AC power flow constraints by
applying convex relaxation techniques to transform the
original UC problem into an SDP under a given set of
generator on/off states. We can solve a single instance of
SDP to obtain the setpoints of the operating generators.

• Performance Evaluation: Simulations are performed on
the IEEE 6-bus and 300-bus test systems. For the IEEE 6-
bus test system, results show that our proposed algorithm
obtains the global optimal solution. When compared with
existing state-of-the-art UC algorithms in the literature
(i.e., [9]–[11]), our proposed algorithm obtains a solu-
tion with at least 2.14% lower objective value for the
IEEE 300-bus test system. When compared with the
MOSEK commercial MINLP solver with branch and
bound method [15], our proposed algorithm can obtain a
near-optimal solution with 1.97% higher objective value.
However, in all comparison case studies, our proposed
algorithm incurs a significantly lower running time to
solve the UC problem.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the UC problem formulation and its trans-
formation. In Section III, we develop a neural combinatorial
optimization algorithm to solve the UC problem. In Section
IV, we evaluate the performance of the proposed algorithm via
simulations. Finally, we conclude the paper in Section V.

II. UNIT COMMITMENT PROBLEM FORMULATION

Consider a power transmission network consisting of a set
of buses N and a set of transmission lines L ⊆ N ×N . Let
G ⊆ N denote the set of buses connected to the generators. We
use the lumped-element Π model for transmission lines [1].
Let ynm and ynm, respectively, denote the series and shunt
admittances connected to bus n for line (n,m) ∈ L. Further
define Ynm = (ynm+ynm)ene

T
n−ynmeneT

m so that the entries

(n, n) and (n,m) of Ynm are equal to ynm +ynm and −ynm,
respectively, and all other entries of Ynm are zero. Let Y
denote the network admittance matrix. For bus n ∈ N , let
en ∈ RN denote the nth basis column vector and Yn = ene

T
nY .

For bus n ∈ N , we define matrices

Yn =
1

2

[
Re{Yn + Y T

n } Im{Y T
n − Yn}

Im{Yn − Y T
n } Re{Yn + Y T

n }

]
, (1a)

Yn = −1

2

[
Im{Yn + Y T

n } Re{Yn − Y T
n }

Re{Y T
n − Yn} Im{Yn + Y T

n }

]
, (1b)

Mn =

[
ene

T
n 0

0 ene
T
n

]
. (1c)

For each line (n,m) ∈ L, we define matrices

Ynm =
1

2

[
Re{Ynm + Y T

nm} Im{Y T
nm − Ynm}

Im{Ynm − Y T
nm} Re{Ynm + Y T

nm}

]
, (2a)

Ynm = −1

2

[
Im{Ynm + Y T

nm} Re{Ynm − Y T
nm}

Re{Y T
nm − Ynm} Im{Ynm + Y T

nm}

]
. (2b)

Let T = {1, . . . , T} denote the set of operating time horizon
with T time slots of equal duration (e.g., one hour). In time
slot t ∈ T , let Vn(t) denote the voltage phasor of bus n, and let
v(t) = (Vn(t), n ∈ N) denote the vector of voltage phasors.
We define vector x(t) = ((Re{v(t)})T (Im{v(t)})T)T con-
sisting of the real and imaginary parts of v(t) in time slot t.
We define the rank-one matrix W(t) = x(t)x(t)T, i.e.,

rank{W(t)} = 1, t ∈ T . (3)

A. Operational Constraints

We denote the active- and reactive-power outputs of the
generator at bus n ∈ G in time slot t by PGn(t) and QGn(t),
respectively. Let PDn(t) and QDn(t) denote the active- and
reactive- power components of the load at bus n ∈ N in time
slot t, respectively. We denote the lower and upper limits of the
voltage magnitude at bus n by V min

n and V max
n , respectively. Let

Smax
nm denote the upper limit for the apparent power flow in line

(n,m) ∈ L. We leverage the matrices defined in (1a)−(2b) to
obtain the following constraints in time slot t ∈ T [16]:

PGn
(t)− PDn

(t) = Tr{YnW(t)}, n ∈ G, (4a)
QGn

(t)−QDn
(t) = Tr{YnW(t)}, n ∈ G, (4b)

PDn
(t) = −Tr{YnW(t)}, n ∈ N \ G, (4c)

QDn
(t) = −Tr{YnW(t)}, n ∈ N \ G, (4d)

(V min
n)2 ≤ Tr{MnW(t)} ≤ (V max

n)2, n ∈ N , (4e)[
(Smax

nm)2 Tr{YnmW(t)} Tr{YnmW(t)}
Tr{YnmW(t)} 1 0
Tr{YnmW(t)} 0 1

]
� 0,

(n,m) ∈ L. (4f)

Above constraints, (4a)−(4d) represent nodal power balance
equations, constraint (4e) delineates the limits on the voltage
magnitude of bus n, and constraint (4f) represents the limit
on the apparent power flow in line (n,m). In time slot t, let
binary variable un(t) ∈ {0, 1} indicate whether the generator
at bus n is on (un(t) = 1) or off (un(t) = 0). Also, let binary

variable sn(t) ∈ {0, 1} indicate whether the generator at bus
n starts up (sn(t) = 1) or not (sn(t) = 0). Similarly, binary
variable dn(t) ∈ {0, 1} indicates whether the generator at bus
n shuts down (dn(t) = 1) or not (dn(t) = 0). Thus, we have
sn(t) = dn(t) = 0 if generator n neither starts up nor shuts
down in time slot t. Let Pmin

Gn
and Pmax

Gn
, respectively, denote

the lower and upper limits for the active-power output of the
generator at bus n. Let Qmin

Gn
and Qmax

Gn
, respectively, denote

the lower and upper limits for the reactive-power output of
the generator at bus n. For generator at bus n, we denote the
maximum ramp-up, ramp-down, startup, and shutdown ramp
rate ru

n, rd
n, rsu

n , and rsd
n , respectively. We consider a minimum

up time tun and down time tdn for the generator at bus n. In
time slot t ∈ T , for the generator at bus n ∈ G, we have

un(t)Pmin
Gn
≤ PGn

(t) ≤ un(t)Pmax
Gn

, (5a)

un(t)Qmin
Gn
≤ QGn

(t) ≤ un(t)Qmax
Gn
, (5b)

PGn
(t)− PGn

(t− 1) ≤ un(t− 1) ru
n + sn(t) rsu

n , (5c)

PGn
(t− 1)− PGn

(t) ≤ un(t− 1) rd
n + dn(t) rsd

n , (5d)∑t
t′=t−tu

n+1 sn(t′) ≤ un(t), (5e)∑t
t′=t−td

n+1 dn(t′) ≤ 1− un(t). (5f)

The variable sn(t) is equal to 1 only when the generator at
bus n is off in time slot t−1 but is on in time slot t. Similarly,
the variable dn(t) is equal to 1 only when the generator at bus
n is on in time slot t−1 but is off in time slot t. Thus, we have

un(t)− un(t− 1) = sn(t)− dn(t), n ∈ G, t ∈ T . (6)

It can be shown that constraints (5e), (5f), and (6) enforce
sn(t) and dn(t) to be either 0 or 1 even if we relax them to
take any value in the interval [0, 1]. Then, we have

0 ≤ sn(t), dn(t) ≤ 1, n ∈ G, t ∈ T , (7)
un(t) ∈ {0, 1}, n ∈ G, t ∈ T . (8)

B. The UC Problem in AC Power Systems

The operation cost of a generator includes those for genera-
tion, startup, and shutdown [1]. The generation cost of a gener-
ator at bus n with output PGn(t) in time slot t can be modeled
by a quadratic function cn2 (PGn(t))

2
+cn1PGn(t)+cn0 un(t),

where cn0, cn1, and cn2 are nonnegative coefficients. We
consider a fixed startup cost csu

n and a fixed shutdown cost csd
n

for the generator at bus n. We define PG(t) = (PGn
(t), n ∈

G), u(t) = (un(t), n ∈ G), s(t) = (sn(t), n ∈ G), and
d(t) = (dn(t), n ∈ G) in time slot t. Then, the aggregate
operation cost of all generators in time slot t can be expressed
as follows:

Cop(PG(t), u(t), s(t), d(t)
)

=
∑

n∈G

(
cn2 (PGn

(t))
2

+ cn1PGn(t) + cn0 un(t) + csu
n sn(t) + csd

n dn(t)
)
. (9)

Let QG(t) = (QGn
(t), n ∈ G) collect the reactive-power

outputs of all generators in time slot t. For the UC problem
over the operating horizon T , we define the vector of decision
variables φ = (W(t), PG(t), QG(t), s(t), d(t), u(t), t ∈

T). Let Φ denote the feasible space defined by constraints
(3)−(8). The system operator aims to minimize the system-
wide operation cost. The UC problem is formulated as

P1 : minimize
φ

C(φ)

subject to φ ∈ Φ,

where C(φ) =
∑

t∈T C
op
(
PG(t),u(t), s(t),d(t)

)
. Due to

the quadratic objective function, the rank-one constraint (3),
and the binary variables u(t), t ∈ T , problem P1 is an
MINLP, which is NP-hard [2] and difficult to solve. Thus,
we solve problem P1 in two steps: (i) transform it into a
combinatorial optimization problem, and (ii) develop a neural
combinatorial optimization algorithm that trains a transformer
DNN to determine a near-optimal solution for the UC problem.

C. Transform P1 into Combinatorial Optimization Problem

Let ψ = (W(t), PG(t), QG(t), s(t), d(t), t ∈ T) denote
the vector of continuous decision variables. Let Ψu denote the
feasible space defined by constraints (3)−(7) under a given
vector u = (u(t), t ∈ T). The objective function in problem
P1 can be decomposed as follows:

C(φ) = C̃(ψ) +
∑

t∈T
∑

n∈G cn0 un(t), (10)

where C̃(ψ) =
∑

t∈T
∑

n∈G
(
cn2 (PGn(t))

2
+ cn1PGn(t) +

csu
n sn(t)+csd

n dn(t)
)
. Problem P1 is equivalent to the follow-

ing optimization problem:

P2 : minimize
u

C̃(ψ∗u) +
∑

t∈T
∑

n∈G cn0 un(t)

subject to un(t) ∈ {0, 1}, n ∈ G, t ∈ T ,

where ψ∗u is the solution to the following optimization prob-
lem under a given vector u:

Popf
2,u : minimize

ψ
C̃(ψ)

subject to ψ ∈ Ψu.

Problem Popf
2,u is an AC OPF for a given u. The UC problem

P1 is equivalent to problem P2. Considering vector u as the
decision variable, problem P2 is a combinatorial optimization
problem. To solve the original UC problem P1, it is sufficient
to obtain the optimal solution u∗ to the combinatorial opti-
mization problem P2, such that ψ∗u∗ is the optimal solution
to the AC OPF problem Popf

2,u for u = u∗.

III. ALGORITHM DESIGN

In this section, we leverage the promising accuracy and
computational benefits of the neural combinatorial optimiza-
tion algorithm with transformer DNN [12], [13] to solve com-
binatorial optimization problem P2. The transformer DNN
can determine u∗, i.e., the set of operating generators. The AC
OPF module then solves Popf

2,u∗ to obtain the optimal setpoints
of the operating generators. We train the proposed DNN using
sample UC problem instances for a particular power network.
The trained DNN can obtain a near-optimal solution to a new
instance of the UC problem.

A. Transformer DNN Architecture

The number of binary variables in problem P2 is T |G|.
A standard transformer architecture (as in [12] and [13])
has an encoder-decoder neural network that requires an input
sequence with 2T |G| elements corresponding to the on and off
state of the generators in all time slots. Such a DNN would
have a large number of neural network parameters for the UC
problem in a large-scale power system over a typical operating
time horizon of T = 24 hours. Hence, training the DNN
would require a large amount of computational and storage
resources, which may not be available in practice. To address
this challenge, we modify the standard transformer DNN
architecture to solve problem P2 in T consecutive steps. As
shown in Fig. 1, in the modified DNN, we reduce the number
of elements of the input sequence from 2T |G| to 2|G| corre-
sponding to the on and off state of the generators in time slot t.
The modified DNN determines the set of operating generators
in time slot t. Thus, the output sequence contains |G| elements
corresponding to vector u(t) in time slot t. Moreover, the
embedding for the obtained set of operating generators in the
previous time slot t− 1 is included in the context embedding
vector to be shared with the decoder self-attention layer as
well as the encoder-decoder attention layer in time slot t.
The shared information enables the decoder to account for
the generators’ status in time slot t − 1 when scheduling
the generators in time slot t, which guarantees that the inter-
temporal constraints (5e)−(6) are satisfied. Let θ denote the
vector of neural network parameters. The total number of
neural network parameters in the modified DNN architecture
is independent of T . With the proposed transformer DNN,
we can obtain the set of operating generators over the entire
time horizon T . We append an AC OPF module to solve
optimization problem Popf

2,u to obtain the generator setpoints.

B. Neural Combinatorial Optimization Algorithm
Algorithm 1 shows the proposed neural combinatorial opti-

mization algorithm to solve UC problem P2.
1) Sample Datasets and Algorithm Initialization: For a

given power system, we use the sets Dtrain and Deval of sample
UC problem instances to train and evaluate the proposed DNN,
respectively. A sample problem instance comprises of histor-
ical data for the load profiles and generator specifications at
different buses. Lines 1 to 3 of Algorithm 1 correspond to the
algorithm initialization. Let I denote the number of training
epochs. An epoch consists of B batches of Etrain problem
instances selected randomly from set Dtrain. We denote the
set of batch indices by B = {1, . . . , B}. We evaluate the
updated DNN at the end of each epoch. For evaluation, we
consider Eeval problem instances from set Deval. We initialize
the number of training epochs I , number of batches per
epoch B, training epoch size Etrain, and evaluation size Eeval.
Each update of the neural network parameter is referred to as
a step. We set both the epoch index i and step index j to 1
and initialize the neural network parameter θj in step j = 1.

2) Algorithm Training and Evaluation: The loop within
Lines 4 and 20 involves the training and evaluation phases of

Figure 1. A modified transformer DNN for the UC problem.

Algorithm 1: Deep Learning-based UC Algorithm.
1 Initialize the number of training epochs I , number of batches per

epoch B, training epoch size E train, and evaluation size Eeval.
2 Initialize epoch index i := 1. Set step index to j := 1.
3 Initialize neural network parameter θ1 randomly.
4 while i ≤ I do
5 Select set Dtrain

i ⊆ Dtrain of E train sample data randomly.
6 Select set Deval

i ⊆ Deval of Eeval sample data randomly.
7 Divide set Dtrain

i into B batches Dtrain
i,b , b ∈ B.

8 Set batch index b := 1.
9 while b ≤ B do

10 Solve the relaxed UC problem P r
d to obtain input

sequence sin
d (t) := (sin,on

n,d (t), sin,off
n,d (t), n ∈ G) for

sample data d ∈ Dtrain
i,b and time slot t ∈ T .

11 Obtain output sequence sout
d (t) :=(sout

k,d(t), k=1, . . . , |G|)
for sample data d ∈ Dtrain

i,b and time slot t ∈ T .
12 Compute vector ud as the on/off state of the generators

for sample data d ∈ Dtrain
i,b from sout

d := (sout
d (t), t ∈ T).

13 Obtain ψp,∗
ud by solving the penalized AC OPF problem

Popf–p
2,u , u :=ud, for sample data d ∈ Dtrain

i,b .
14 Update neural network parameter θj in step j using (11).
15 Update batch index b := b+ 1.
16 Update step index j := j + 1.
17 end
18 Evaluate the updated model on the evaluation set Deval

i .
19 Update epoch index i := i+ 1.
20 end

Algorithm 1. In Lines 5 and 6, we randomly sample Dtrain and
Deval to obtain, respectively, the training set Dtrain

i and evalua-
tion set Deval

i of sample UC problem instances in epoch i. In
Line 7, we partition the training set into B batches, denoted by
Dtrain

i,b , b ∈ B. In the loop within Lines 9 and 17, we repeatedly
compute the input sequence, determine the corresponding
output sequence, and update the neural network parameters.
We use subscript d in parameters and variables associated with
sample UC problem instance d ∈ Dtrain

i,b .
Constructing an appropriate input sequence for a sample UC

problem instance is crucial to train the proposed DNN. We re-
lax constraints (3) and (8) in UC problem P1 and replace them
by W(t) � 0 and 0 ≤ un(t) ≤ 1, n ∈ G, t ∈ T , respectively,
to obtain the feasible space Φr. We solve the following relaxed

UC for the sample problem instance d ∈ Dtrain
i,b :

P r
d : minimize

φ
C(φ)

subject to φ ∈ Φr.

The relaxed UC problem P r
d is an SDP and can be solved ef-

ficiently. The relaxed UC problem P r
d provides a lower bound

for the original UC problem P2,d for sample problem instance
d. Also, the optimal solution ur,opt

d (t) = (ur,opt
n,d (t), n ∈ G) to

problem P r
d provides implicit information about the on/off

states of the generators over the entire operation horizon.
Hence, ur,opt

d (t) is a suitable choice to construct the input se-
quence sin

d (t), t ∈ T , for sample problem instance d ∈ Dtrain
i,b .

In Line 10, we obtain the input sequence sin
d (t), t ∈ T , for a

sample problem instance d ∈ Dtrain
i,b . We set sin,on

n,d (t) = ur,opt
n,d (t)

and sin,off
n,d (t) = 1 − ur,opt

n,d (t) for generator n ∈ G. Thus, the
input sequence for time slot t ∈ T and problem instance
d ∈ Dtrain

i,b is obtained as sin
d (t) =

(
sin,on
n,d (t), sin,off

n,d (t), n ∈ G
)
.

In Fig. 1, consider input sequence sin
d (t) for sample problem

instance d. The input sequence is passed through a linear
projection layer to construct the input embedding. Then it
passes through an attention layer and a feed-forward layer to
obtain the inter-dependent operation of the generators in the
power network and compute the encoded information (referred
to as the node embedding [12, Sec. 3.1]). The decoding
process in the decoder is performed for |G| rounds to obtain
the on/off state of all generators in a certain time slot t. In
round k = 1, . . . , |G|, the input embedding of the decoder is
the encoded information, which contains implicit information
about the generators’ schedules from the solution to the
relaxed UC problem P r

d. The decoder also receives the context
embedding that contains the average of encoded information,
the embedding for the output sequence in previous time slot
t−1, and the embedding of the obtained set of operating gen-
erators up to round k − 1. Such a context embedding enables
the decoder to apply masking mechanism [12, Sec. 3.2] with
information from the solution to the relaxed UC problem P r

d,
the inter-temporal constraints (5e), (5f), and (6), and the power
flow constraints. In Lines 11 and 12 of Algorithm 1, we obtain
output sequence sout

d (t) = (sout
k,d(t), k = 1, . . . , |G|) and vector

ud for on/off state of the generators in all time slots. Next,
we solve AC OPF problem Popf

2,u for u = ud to obtain the
setpoints of the operating generators. Problem Popf

2,u may not
have a feasible solution for u = ud. We penalize infeasible
solutions during DNN training. We transform problem Popf

2,u

into a penalized AC OPF problem Popf-p
2,u in three steps. First,

we introduce a new decision variable ∆un(t) for the generator
at bus n ∈ G. In constraints (5a)−(6), we replace un(t − 1)
and un(t) by un(t − 1)+ ∆un(t − 1) and un(t)+ ∆un(t),
respectively. We define ψp = (ψ, ∆un(t), n ∈ G, t ∈ T).
Second, we relax constraint (3) and replace it by W(t)� 0,
t ∈ T to obtain the feasible space Ψp

u. Third, we define a
modified objective function C̃p(ψp) by including a penalty
term ρ

∑
t∈T

∑
n∈G

∣∣∆un(t)
∣∣ to the objective function of

problem Popf
2,u, where ρ is a nonnegative weight coefficient.

We have C̃p(ψp) = C̃(ψ)+ρ
∑

t∈T
∑

n∈G
∣∣∆un(t)

∣∣. Problem
Popf

2,u is transformed into the following optimization problem:

Popf–p
2,u : minimize

ψp
C̃p(ψp)

subject to ψp ∈ Ψp
u.

Problem Popf–p
2,u always has a feasible solution. Via algebraic

manipulations, problem Popf–p
2,u can be transformed into an

SDP that can be solved in polynomial time. With quadratic
cost function, practical power networks (including IEEE test
systems) satisfy the sufficient conditions given in [16, Sec. IV-
C] for the network topology and constraints (e.g., connected
graph induced by Re{Y } and nonnegative Lagrange multi-
pliers for the active power balance constraints). Thus, if the
original AC OPF problem Popf

2,u is feasible for u = ud, then by
increasing the weight coefficient ρ, the global optimal solution
ψp,∗
ud of problem Popf–p

2,u approaches the global optimal solution
to problem Popf

2,u. In Line 13 of Algorithm 1, we obtain
the optimal solution ψp,∗

ud to problem Popf–p
2,u . The objective

value is obtained as C̃p(ψp,∗
ud)+

∑
t∈T

∑
n∈G cn0 un,d(t). We

update the neural network parameter by batch gradient descent
using the REINFORCE gradient estimator [14]. Define πθj =
(πon

n,k,θj ,d
(t), πoff

n,k,θj ,d
(t), n ∈ G, k = 1, . . . , |G|, d ∈ Dtrain

i,b ,
t ∈ T). In Line 14 of Algorithm 1, the neural network
parameter is updated as follows:

θj+1 =θj−γj
(
C̃p(ψp,∗

ud
)+
∑
t∈T

∑
n∈G

cn0 un,d(t)
)
∇θlnπθ

∣∣∣
θ=θj

,

(11)

where γj is the learning rate in step j. In (11), one can include
a baseline as the cost of a deterministic greedy algorithm
solution obtained by the best model until epoch i. Adding the
baseline function can reduce the gradient variance and increase
the speed of learning. It also enables the DNN to gradually
improve over itself [13]. In Lines 15 and 16, we update the
batch index and step index. Epoch i is completed when all
batches of sample problem instances have been processed. In
Line 18, we evaluate the obtained DNN model in epoch i on
the evaluation set Deval

i . In Line 19, we update the epoch index.
3) Solve UC Problem Using the Trained DNN: After I

epochs, we select the model with the lowest objective value for
the evaluation set as the trained DNN to solve P2 for a new UC
problem instance. The total running time to solve a problem
instance includes the time to (i) solve the relaxed UC problem,
(ii) perform forward propagation in the trained DNN, and (iii)
solve the AC OPF problem Popf–p

2,u . The relaxed UC and AC
OPF problems are SDPs and can be solved in polynomial
time. Also, the forward propagation in the trained DNN has
a constant running time. Thus, by using the trained DNN, a
new UC problem instance can be solved in polynomial time.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm in solving the UC problem for the IEEE 6-bus
and 300-bus test systems. The data for the test systems are

 6 am 8 am 10 am 12 pm 2 pm 4 pm 6 pm 8 pm 10 pm 12 am 2 am 4 am 5 am
0.5

0.7

0.9

1.1

1.3

1.5

Time (hour)

L
o

ad
 S

ca
li

n
g

 F
ac

to
r

Figure 2. Load scaling factor during 24 hours.

from [17]. The data in [17] for active- and reactive-power
loads are for a single time slot. Hence, for each bus, we
obtain the average load profile over the operating horizon T
by scaling the loads given in [17]. Fig. 2 depicts the load
scaling factor that we use over a 24-hour period. We then
use the average load profile at each bus to obtain the data
samples for the active-power load during one day. That is, we
scale the historical load demand data from Ontario, Canada
power grid database [18] from January 1, 2020 to December
31, 2020, such that the average value in a time slot is equal to
the average active-power load for a bus. We consider a fixed
power factor to obtain the samples for reactive loads. We use
the generation cost coefficients cn0, cn1, and cn2, n ∈ G given
in [17]. For generator n ∈ G, we set the coefficients csu

n and
csd
n at random from a normal distribution with mean cn1 and

variance 0.1 × cn1. We set the parameters Pmin
Gn

, Pmax
Gn

, Qmin
Gn

,
and Qmax

Gn
according to [17] for generator n. We set parameters

ru
n, rd

n, rsu
n , and rsd

n to 50% of Pmax
Gn

for generator n. Unless
stated otherwise, we select parameters tun and tdn at random
from set {0, 1, 2} for generator n. For the training process in
Algorithm 1, we consider I = 150 epochs and 4800 problem
instances (i.e., Etrain = 32 problem instances per epoch).
The number of batches per epoch is set to 4. For validation,
we consider Eeval = 32 problem instances. We perform
simulations using Python/PyTorch and Python/CVXPY with
MOSEK solver [15] on the Digital Research Alliance of
Canada platform [19] with 24 CPUs and 4 GPUs.

First, we compare the gap between the solution obtained by
Algorithm 1 and the global optimal solution of the original
UC problem P1 obtained by the exhaustive search method in
an IEEE 6-bus test system with three generators. We set the
operating time horizon T to 5 hours to limit the number of
combinations for the on/off states of the generators to 215 for
the exhaustive search method. We set parameters tun and tdn
to 1 hour for all generators. Fig. 3 shows the convergence of
the average objective value with Algorithm 1. The horizontal
dashed line shows the average objective value with the ex-
haustive search method. The running time of the exhaustive
search method to solve one problem instance is about one
hour. The average optimality gap between Algorithm 1 and
the exhaustive search method is 0.94%. As an example, Fig. 4
shows the generator setpoints for one validation sample using
Algorithm 1 and the exhaustive search method. For this UC
problem instance, the objective value with the trained DNN
of Algorithm 1 is $12, 780, which is only 0.7% larger than
the optimal value, $12, 690, obtained by the exhaustive search
method. To reduce the optimality gap between Algorithm

0 25 50 75 100 125 150
1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

Epoch

A
v

er
ag

e
O

b
je

ct
iv

e
V

al
u

e
($

)

Algorithm 1

Exhaustive Search Method

12,640 $

12,760 $
Optimality Gap = 0.94%

Figure 3. Average objective value versus the number of epochs for Algo-
rithm 1 and the exhaustive search method.

 6 am 7 am 8 am 9 am 10 am
0

20

40

60

80

100

Time (hour)

G
en

er
at

io
n
 L

ev
el

 (
M

W
)

 6 am 7 am 8 am 9 am 10 am
0

20

40

60

80

100

Time (hour)

G
en

er
at

io
n
 L

ev
el

 (
M

W
)

 6 am 7 am 8 am 9 am 10 am
0

20

40

60

80

100

Time (hour)

G
en

er
at

io
n
 L

ev
el

 (
M

W
)

Algorithm 1

Exhaustive Search Method

Generator 1 Generator 2 Generator 3

Figure 4. The output active power of the generators in an IEEE 6-bus test
system obtained using Algorithm 1 and the exhaustive search method.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of Forward Propagation Rounds

O
p

ti
m

al
it

y
 G

ap
 (

%
)

0

2

4

6

10

8

R
u

n
n

in
g

 T
im

e (s)

Figure 5. The optimality gap between Algorithm 1 and the exhaustive search
method, as well as the running time versus the number of rounds that forward
propagation is performed to select the solution with the lowest objective value.

1 and the exhaustive search method, we can run forward
propagation for multiple rounds and select the solution with
the smallest objective value. To justify this approach, in Fig. 5,
we show the average optimality gap between Algorithm 1 and
the exhaustive search method versus the number of rounds
that we run forward propagation. Results demonstrate that
we can obtain the global optimal solution if we run forward
propagation for five rounds, with the running time being less
than 10 seconds, which is significantly lower than the running
time of the exhaustive search method.

Due to the high computational complexity, the exhaustive
search method becomes impractical for an IEEE 300-bus test
system with an operating time horizon of T = 24 hours. For
the sake of comparison, we instead use MOSEK commercial
solver [15], which applies a branch and bound method to
solve the original UC problem as an MINLP. The NLP
commercial solvers such as MOSEK are commonly used in
the literature (in, e.g., [4]–[6]) to solve the UC problem. In
MOSEK, we use the default value of 10−6 for the relative
optimality tolerance parameter [15]. We consider both the
AC and DC power flow constraints to solve the UC problem
with MOSEK. Moreover, we compare the performance of
Algorithm 1 with the UC algorithms proposed in [9]–[11].
We apply the multi-order weakly-strengthened SDP relaxation
proposed in [9, Sec. II-D]. We apply the SDP relaxation
technique in [10] to relax the binary variables. We also use

5.2

5.4

5.6

5.8

6

6.2

O
b
je

ct
iv

e
V

al
u
e

($
) 10

6

A
lg

or
ith

m
 1

 M
O

SEK
 w

ith

A
C
 O

PF SD
P

 R
el

ax
at

io
n

[9]

SD
P

 R
el

ax
at

io
n

[10

]

SO
C
P

 R
el

ax
at

io
n

[1

1]

(a)

 M
OSEK

 w
ith

DC
 O

PF

0

50

100

150

200

250

300

350

R
u
n
n
in

g
 T

im
e

(m
in

)

4 hrs 46 mins

1 hr 42 mins

2 hrs 33 mins

49 mins

1 hr 28 mins

17 mins

A
lg

or
ith

m
 1

 M
O

SEK
 w

ith

A
C
 O

PF SD
P

 R
el

ax
at

io
n

[9]

SD
P

 R
el

ax
at

io
n

[10

]

SO
C
P

 R
el

ax
at

io
n

[1

1]

(b)

EK

 M

O
D

S

C
 O

PF
w

ith

Figure 6. (a) Objective value and (b) running time for Algorithm 1, MOSEK
solver, and the UC algorithms in [9]–[11] in an IEEE 300-bus test system.

the proposed heuristic approach in [10] to recover a feasible
binary solution. As the proposed algorithms from [9] and
[10] rely on DC power flow constraints, we solve an AC
OPF problem to check the feasibility of the solution and
update the setpoints for the operating generators for AC power
flow constraints. The nonlinear AC power flow constraints are
considered in [11]. The running time and optimality of the
solution with the proposed algorithm in [11] depend on the
initial point. Hence, for the sake of fair comparison, we run
the algorithm in [11] for five rounds with randomly chosen
initial points and report the lowest objective value and the
total running time. In Algorithm 1, we use the trained DNN
to solve one UC problem instance and run forward propagation
for five rounds to select the solution with the smallest objective
value. When compared with the proposed algorithm in [11],
Fig. 6(a) shows that Algorithm 1 can obtain a near-optimal
solution with 2.14% lower objective value for the IEEE 300-
bus test system. Also, MOSEK with DC OPF and the proposed
UC algorithms in [9] and [10] lead to a solution with higher
objective value than Algorithm 1. MOSEK with AC OPF
performs the best among the aforementioned algorithms and
can obtain a near-optimal solution with slightly lower optimal
value (i.e., 1.97%) than Algorithm 1. However, Fig. 6(b)
demonstrates that Algorithm 1 benefits from a much lower
running time compared with MOSEK with AC OPF and the
UC algorithms developed in [9]–[11].

V. CONCLUSION

In this paper, we developed a deep learning algorithm to
solve the UC problem with full AC power flow equations.
In our proposed algorithm, we trained a transformer DNN to
obtain the on/off state of the generators, and subsequently,
solved an AC OPF to determine the generator setpoints.
We obtained a near-optimal solution by applying a neural
combinatorial optimization algorithm to penalize infeasible
solutions during the training process of the proposed DNN.
Via numerical simulations on two different IEEE test systems,

we showed that our proposed algorithm can obtain a near-
optimal solution of the UC problem with considerably lower
running time. In particular, when compared with the exhaustive
search method in an IEEE 6-bus test system, our proposed
algorithm obtained the global optimal solution in about 10
seconds. When compared with the MOSEK solver, simulation
results demonstrate a reduction in the running time from five
hours to several minutes. When compared with three state-of-
the-art UC algorithms in the literature, our proposed algorithm
can obtain a solution with at least 2.14% lower operation cost
and a lower running time in an IEEE 300-bus test system. For
future work, we plan to study the UC problem with uncertainty
in the load demand and renewable generation.

REFERENCES

[1] R. Miller and J. Malinowski, Power System Operation, 3rd ed. NY:
McGraw-Hill Education, 1994.

[2] H. S. Wilf, Algorithms and Complexity, 2nd ed. FL: CRC Press, 2002.
[3] California ISO Department of Market Monitoring, “Annual report on

market issues and performance,” Available: https://www.caiso.com/
Documents/2021-Annual-Report-on-Market-Issues-Performance.pdf,
Jul. 2022.

[4] N. Amjady, S. Dehghan, A. Attarha, and A. J. Conejo, “Adaptive robust
network-constrained AC unit commitment,” IEEE Trans. Power Syst.,
vol. 32, no. 1, pp. 672–683, Jan. 2017.

[5] K. Šepetanc and H. Pandžić, “Convex polar second-order Taylor approx-
imation of AC power flows: A unit commitment study,” IEEE Trans.
Power Syst., vol. 36, no. 4, pp. 3585–3594, Jul. 2021.

[6] A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R. P.
O’Neill, “The unit commitment problem with AC optimal power flow
constraints,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4853–4866,
Nov. 2016.

[7] J. Liu, C. D. Laird, J. K. Scott, J.-P. Watson, and A. Castillo, “Global
solution strategies for the network-constrained unit commitment problem
with AC transmission constraints,” IEEE Trans. Power Syst., vol. 34,
no. 2, pp. 1139–1150, Mar. 2019.

[8] M. Paredes, L. S. A. Martins, and S. Soares, “Using semidefinite
relaxation to solve the day-ahead hydro unit commitment problem,”
IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2695–2705, Sept. 2015.

[9] M. Ashraphijuo, S. Fattahi, J. Lavaei, and A. Atamtürk, “A strong
semidefinite programming relaxation of the unit commitment problem,”
in Proc. of IEEE Conf. on Decision and Control (CDC), Las Vegas, NV,
Dec. 2016.

[10] E. Quarm and R. Madani, “Scalable security-constrained unit commit-
ment under uncertainty via cone programming relaxation,” IEEE Trans.
Power Syst., vol. 36, no. 5, pp. 4733–4744, Sept. 2021.

[11] F. Zohrizadeh, M. Kheirandishfard, A. Nasir, and R. Madani, “Sequential
relaxation of unit commitment with AC transmission constraints,” in
Proc. of Int’l. Conf. on Decision and Control (CDC), Miami, FL, Dec.
2018.

[12] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proc. of Int’l. Conf. on Learning Representations (ICLR),
New Orleans, LA, May 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. of
Conf. on Neural Information Processing Systems (NIPS), Long Beach,
CA, Dec. 2017.

[14] I. Bello, H. Pham, Q. Le, M. Norouzi, and S. Bengio, “Neural combina-
torial optimization with reinforcement learning,” in Proc. of Int’l. Conf.
on Learning Representations (ICLR), Toulon, France, Apr. 2017.

[15] MOSEK. [Online]. Available: https://www.mosek.com.
[16] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow prob-

lem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb. 2012.
[17] The University of Washington, power systems test case archive.

[Online]. Available: https://www.ee.washington.edu/research/pstca.
[18] Independent Electricty System Operator (IESO). [Online]. Available:

https://www.ieso.ca.
[19] The Digital Research Alliance of Canada. [Online]. Available:

https://www.alliancecan.ca/en.

