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Abstract—This paper proposes a measurement-based method
for calculating real-time distribution locational marginal
prices (DLMPs) without the use of an offline network model.
Instead, the proposed method relies only on online measurements
collected at a subset of distribution system buses to estimate a
linear sensitivity model mapping bus voltages to injections, which
in turn is embedded in an optimal power flow (OPF) problem as
an equality constraint. The proposed method completely obviates
the need for an accurate distribution network model that may
not be available, especially for active distribution networks with
faster variations in operating point. Also, the proposed method
renders the original OPF problem with nonlinear constraints a
computationally efficient quadratic programming problem (with
linear constraints) and provides sufficiently accurate DLMPs
at buses where measurements are collected. Via numerical
simulations involving a 33-bus test system, we demonstrate that
the proposed method yields similar DLMPs as solving the OPF
problem with an up-to-date model and greatly outperforms it
when the model is out of date.

Index Terms—Distribution system, electricity market, loca-
tional marginal pricing, measurements, synchrophasors

I. INTRODUCTION

The proliferation of distributed energy resources (DERs)
comprising distributed generation, energy storage, and flexible
loads, is driving power distribution networks from being a
collection of predominantly passive components to actively
coordinating resources therein [1]. Imperative to this paradigm
shift is to establish real-time distribution-level electricity trad-
ing practices to incentivize fast-responding DERs in providing
grid support and to compensate them through a fair pricing
scheme instead of the prevailing payments based on fixed or
time-of-use rates [2]. Real-time markets (in the range of min-
utes to hours) are particularly pertinent in distribution networks
as accurate longer-term forecasts of distributed generation and
individual nodal loads needed for, e.g., day-ahead markets, are
more difficult to obtain [3].

Inspired by wholesale electricity markets for the trans-
mission level, the use of distribution locational marginal
prices (DLMPs) represents a promising solution to establish
distribution-level real-time markets [4]. However, the task of
calculating DLMPs is patently more challenging than their
transmission-level counterparts. Computational burden for the
transmission-level problem is typically contained by lever-
aging the so-called DC power flow approximation [5], but
the assumptions for the approximation do not hold in dis-
tribution networks [6]. Instead, an optimal power flow (OPF)
problem constrained by the nonlinear power flow equations

and various operational limits related to DER capacities, line
flows, and voltage magnitudes needs to be solved repeatedly.
This approach may be computationally burdensome for large
distribution systems, calling to question its practical viability
in real-time pricing applications, especially considering the ex-
pected growth in electricity demand and DER integration [7].
Moreover, while offline models for transmission systems may
conceivably be accessible, accurate distribution network mod-
els that reflect the up-to-date operating point are often not
available [8]. The use of an inaccurate or outdated offline
model may lead to erroneous DLMPs that do not support the
market equilibrium. Challenges in this regard are expected to
amplify in the transition from the traditional passive distribu-
tion networks to active counterparts, leading to larger, faster,
and more frequent variations in operating point [9].

In this paper, we extract DLMPs as the Lagrange mul-
tipliers associated with a linear sensitivity-based equality
constraint, replacing the nonlinear power flow equations, in
an OPF problem. The linear equality constraint approximates
the relationship between nodal voltages and power injections.
Instead of relying on an offline model, we estimate the linear
voltage-to-power sensitivity model using only measurements
of nodal voltages and power injections. We assume these
measurements are available from synchrophasor technologies,
e.g., distribution-level phasor measurement units (D-PMUs),
equipped at buses with market participants in the distribution
system. The measurement and communication capabilities of
D-PMUs ensure that the estimated sensitivity model can be
updated periodically to reflect the up-to-date system operating
point [10]. As a direct consequence, the calculation of DLMPs
does not rely on any prior offline knowledge related to a
network model, and the resulting DLMPs adapt to the system’s
evolving operating point and even changes in the network
topology. Moreover, compared to solving an optimization
problem constrained by the nonlinear power flow equations,
the proposed approach incurs lower computational burden to
calculate sufficiently accurate DLMPs.

Prior work to address computational challenges associated
with calculating DLMPs includes efforts to formulate the
pertinent pricing problem by assuming a radial topology and
employing a relaxed convex branch-flow model [11]–[15].
However, the radial topology may be overly restrictive for
future distribution networks with interconnected microgrids.
Another general approach that is applicable for any network
configuration embeds linearized power flow constraints instead
of the nonlinear ones in the OPF problem [16]–[18]. Among
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these, [16] simply uses DC power flow equations while
[17], [18] obtain line flows through a lossless model and
approximate losses are lumped as additional loads on either
end of the line afterward. While the methods in [11]–[18] tend
to alleviate the computational burden of calculating DLMPs,
they all depend on offline knowledge of (at least) the network
topology, an up-to-date and accurate version of which may not
be available in practice. At the same time, the advancement of
online measurement technologies motivates the development
of data-driven approaches for power system optimization ap-
plications [19], [20]. However, these data-driven approaches
generally focus on derivation of power system security rules
while still requiring an offline network model. By contrast,
[21] develops a measurement-based security-constrained eco-
nomic dispatch without relying on an offline model, but it is
tailored for the transmission system and possible application
to DLMP calculation is mentioned only in passing.

II. PRELIMINARIES

In this section, we describe the distribution system model.
We also formulate the full-blown OPF problem subject to non-
linear power flow constraints, the solution of which includes
standard model-based DLMPs.

A. Network and Power Flow Models
Consider a distribution system with N buses collected in the

set N = {1, . . . , N}, G of which are connected to dispatch-
able DERs collected in the set G ⊆ N . Without loss of gen-
erality, assume bus 1 is the substation representing the slack
bus. The substation bus voltage is fixed and known, and its
power injection into the distribution feeder is modelled as the
output of a dispatchable DER and included in G. Further define
the set N− = N \ {1}. Let Vi and θi denote, respectively,
the voltage magnitude and phase angle at bus i ∈ N−; and
let P d

i and Qd
i denote, respectively, the active- and reactive-

power demand arising from the aggregate non-dispatchable
load at bus i ∈ N−. Also let P g

g and Qg
g denote, respectively,

the active- and reactive-power generation arising from the
aggregate dispatchable DER at bus g ∈ G. Furthermore, collect
voltage phase angles and magnitudes for all buses except the
substation in vectors θ = [(θi)i∈N− ]T and V = [(Vi)i∈N− ]T,
respectively. Also collect active- and reactive-power demand
(generation) arising from non-dispatchable loads (dispatchable
DERs) in vectors P d = [(P d

i )i∈N ]T (P g = [(P g
g )g∈G ]T) and

Qd = [(Qd
i )i∈N ]T (Qg = [(Qg

g)g∈G ]T), respectively. Then,
power flow equations can be compactly expressed as

KP g − P d = fP (θ, V ), (1)

KQg −Qd = fQ(θ, V ), (2)

where K ∈ RN×G is a matrix of 1s and 0s that maps entries
related to buses with DERs in G to corresponding bus indices
in N , and fP : R2N−2 → RN and fQ : R2N−2 → RN .
The power injection from substation bus is modelled as a
virtual DER, where its active- and reactive-power injections
into the distribution feeder appear as the first entries in P g

and Qg, respectively. In (1)–(2), the dependence on network
parameters (such as circuit breaker status and line impedances)
is implicitly considered in the functions fP (·) and fQ(·).

B. Model-based Calculation of DLMPs

The DLMPs can be obtained alongside the solution of an
OPF problem formulated as follows:

minimize
θ,V,P g,Qg

C(P g, Qg), (3a)

subject to KP g − P d = fP (θ, V ), (λP ), (3b)

KQg −Qd = fQ(θ, V ), (λQ), (3c)

V ≤ V ≤ V , (ν−, ν+), (3d)

P g ≤ P g ≤ P g
, (φ−, φ+), (3e)

Qg ≤ Qg ≤ Qg
, (ρ−, ρ+), (3f)

where the operation cost of the distribution system,
C(P g, Qg), is minimized in the objective function (3a) subject
to the operational constraints (3b)–(3f), and the Lagrange
multipliers associated with each constraint are included in
parentheses thereafter. The nodal active- and reactive-power
balance constraints are respectively included as (3b) and (3c).
Also, nodal voltage magnitudes along with the active- and
reactive-power output of DERs are confined to their mini-
mum/maximum limits through (3d)–(3f). For simplicity, we
neglect line-flow limits by assuming ample capacity for the
operating points considered. We instead focus on the impact
of nodal location and voltage-magnitude limits on the DLMPs.

The optimality conditions for the OPF problem in (3) are
established through Karush-Kuhn-Tucker (KKT) conditions.
Below, we first formulate the Lagrangian of the problem in (3),
from which KKT conditions are then derived. The Lagrangian
of (3) is

L = C(P g, Qg) + (λP )T(fP (θ, V )−KP g + P d)

+ (λQ)T(fQ(θ, V )−KQg +Qd)

+ (ν−)T(V − V ) + (ν+)T(V − V )

+ (φ−)T(P g − P g) + (φ+)T(P g − P g
)

+ (ρ−)T(Qg −Qg) + (ρ+)T(Qg −Qg
). (4)

Denote the optimal Lagrangian as L? and distinguish the
optimal values taken by decision variables and Lagrange mul-
tipliers of (15) with superscript ?. Then the KKT conditions
include stationarity conditions, given by the following:

∂L?

∂θ?
= (λP?)T

∂fP (θ?, V ?)

∂θ?
+(λQ?)T

∂fQ(θ?, V ?)

∂θ?
=0, (5)

∂L?

∂V ?
= (λP?)T

∂fP (θ?, V ?)

∂V ?
+ (λQ?)T

∂fQ(θ?, V ?)

∂V ?

+ ν+? − ν−? = 0, (6)
∂L?

∂P g?
=
∂C(P g?, Qg?)

∂P g?
− (λP?)TK + φ+? − φ−?= 0, (7)

∂L?

∂Qg?
=
∂C(P g?, Qg?)

∂Qg?
− (λQ?)TK + ρ+? − ρ−? = 0, (8)

as well as the complementary slackness conditions, as follows:

ν−?i (V i − V ?i ) = 0, ν+?i (V ?i − V i) = 0, i ∈ N , (9)

φ−?g (P g
g − P g?

g ) = 0, φ+?g (P g?
g − P

g

g) = 0, g ∈ G, (10)

ρ−?g (Qg

g
−Qg?

g ) = 0, ρ+?g (Qg?
g −Q

g

g) = 0, g ∈ G, (11)

ν−?i , ν+?i , φ−?g , φ+?g , ρ−?g , ρ+?g ≥ 0, i ∈ N , g ∈ G. (12)
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Analogous to transmission locational marginal prices, the
DLMPs represent the rate of change of distribution system
operation cost due to incremental changes in demand at
different buses in the system [22]. Mathematically, the active-
power (reactive-power) DLMP at a particular bus is the first
derivative of optimal Lagrangian (4) with respect to the active-
power (reactive-power) load at that bus [23]. Using the chain
rule in calculus and the optimality conditions in (5)–(12), it is
straightforward to show that the i-th entries of λP? and λQ?

indeed respectively represent the locational marginal prices
attributed to active- and reactive-power at distribution bus i.

C. Problem Statement

Since the inclusion of the exact nonlinear power flow model
in (1)–(2) leads to a nonconvex optimization problem in (3),
the model-based DLMP calculation outlined above may incur
considerable computational burden. Although solving the OPF
problem formulated with relaxed or linearized power flow
constraints (see, e.g., [11]–[18]) helps to address the com-
putational challenges, accurate DLMPs still rely on an offline
system model that comprises the up-to-date network topology,
device parameters, and operating point, which is often not
available in practice. Thus, aimed at practical calculation of
DLMPs for real-time markets with respect to both computa-
tional burden and reliance on offline models, we replace the
nonlinear power flow constraints in (3) by a linear sensitivity
model, which is estimated from only online measurements,
obviating the need for any knowledge of the underlying
physical network that gave rise to the measurements.

III. MEASUREMENT-BASED CALCULATION OF DLMPS

In this section, we describe the estimation of the linear
sensitivity model, which is then embedded in an OPF problem.
The solution of this problem comprises the optimal DER
setpoints as well as measurement-based DLMPs.

A. Estimated Linear Power Flow Model

Let E ⊆ N represent the set of E buses equipped with
D-PMUs, and assume that the substation bus is measured.
Also, in order to recover DLMPs at buses with dispatchable
DERs, i.e., market participants, they must be equipped with
D-PMUs, so we assume that G ⊆ E . Further define the set
E− = E \ {1}. Collect voltage phase angles and magnitudes
of measured buses (except those of the substation where
the voltage is assumed to be fixed and known) in vectors
θE = [(θi)i∈E− ]T and VE = [(Vi)i∈E− ]T, respectively. Also
collect active- and reactive-power demand at measured buses
in vectors P d

E = [(P d
i )i∈E ] and Qd

E = [(Qd
i )i∈E ], respectively.

Net active- and reactive-power injections are then respectively
PE = MP g−P d

E and QE = MQg−Qd
E , where M ∈ RE×G is

a matrix of 0s and 1s that maps indices in G to corresponding
ones in E . Measured values of the variables defined above are
distinguished by ·̂ placed over the corresponding variables.

Suppose pertinent system variables are sampled at time
t = k∆t, k = 0, 1, . . . , where ∆t is the sampling interval.
Then we collect measured bus voltage phase angles and

magnitudes at time step k in x̂[k] = [θ̂TE,[k], V̂
T
E,[k]]

T. Further
collect the measured net bus power injections (include those
of the substation) at time step k in ŷ[k] = [P̂T

E,[k], Q̂
T
E,[k]]

T.
We hypothesize a linear relationship between the measured
injections and voltages given by

ŷ[k] = J[k]x̂[k] + c[k] = [x̂T[k] 1]H[k], (13)

where H[k] = [J[k], c[k]]
T. By collecting a minimum of

2E + 1 most recent samples and stacking the corresponding
instances of (13) while assuming H[k] remains constant across
these samples, we can conceivably deploy the ordinary least
squares (OLS) algorithm to obtain an estimate of H[k]. How-
ever, due to correlation amongst voltages of various buses,
the OLS algorithm tends to lead to ill-conditioned regressor
matrices. In our recent work [24], [25], we have found the
partial least squares (PLS) algorithm to be effective to combat
the collinearity problem and provide meaningful estimates
of H[k]. We refer interested readers to [24] for further details
on the estimation algorithm and its performance. Here, it
suffices to assume that, at time step k, an updated estimate
Ĥ[k] = [Ĵ[k], ĉ[k]]

T is computed using recently obtained
measurements via the PLS algorithm. Also, we will find it
useful to decompose Ĵ[k] and ĉ[k] as follows:

Ĵ[k] =

[
ĴPθ[k] ĴPV[k]

ĴQθ[k] ĴQV[k]

]
, ĉ[k] =

[
ĉP[k]
ĉQ[k]

]
. (14)

B. Measurement-based Optimal Power Flow Problem

We modify the OPF problem in (3) by replacing the nonlin-
ear power flow constraints in (3b)–(3c) by a linear sensitivity
model estimated from measurements of nodal voltages and
injections. The resulting measurement-based OPF problem is
then formulated as follows:

minimize
θE ,VE ,P

g,Qg
C(P g, Qg), (15a)

subject to MP g−P d
E = ĴPθ[k] θE+ĴPV[k] VE+ĉP[k], (λ

P
E ), (15b)

MQg−Qd
E= ĴQθ[k] θE+ĴQV[k] VE+ĉQ[k], (λ

Q
E ), (15c)

V E ≤ VE ≤ V E , (ν−E , ν
+
E ), (15d)

P g ≤ P g ≤ P g
, (φ′−, φ′+), (15e)

Qg ≤ Qg ≤ Qg
, (ρ′−, ρ′+), (15f)

where the operation cost of the distribution system,
C(P g, Qg), is minimized in the objective function (15a)
subject to the operational constraints in (15b)–(15f). In (15),
voltage phase angles and magnitudes along with DER active-
and reactive-power setpoints of only buses with measurements
are decision variables, i.e., the problem does not optimize over
buses without measurements in N \ E . As a consequence, the
solution of (15) recovers DLMPs for only the monitored buses.

Similar to the procedure outlined in Section II-B, we can
derive the optimality conditions for the problem in (15) by
first formulating its Lagrangian as follows:

L = C(P g, Qg)

+ (λPE )T(ĴPθ[k] θE + ĴPV[k] VE + ĉP[k] −MP g + P d
E )

+ (λQE )T(ĴQθ[k] θE + ĴQV[k] VE + ĉQ[k] −MQg +Qd
E)
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+ (ν−E )T(V E − VE) + (ν+E )T(VE − V E)
+ (φ′−)T(P g − P g) + (φ′+)T(P g − P g

)

+ (ρ′−)T(Qg −Qg) + (ρ′+)T(Qg −Qg
). (16)

The stationarity conditions for voltage phase angles and mag-
nitudes as well as DER active- and reactive-power outputs are
given by, respectively,

∂L?

∂θ?E
= (λP?E )TĴPθ[k] + (λQ?E )TĴQθ[k] = 0, (17)

∂L?

∂V ?E
=(λP?E )TĴPV[k] +(λQ?E )TĴQV[k] +ν+?E − ν

−?
E = 0, (18)

∂L?

∂P g?
=
∂C(P g?, Qg?)

∂P g?
−(λP?E )TM+φ′+?−φ′−?= 0, (19)

∂L?

∂Qg?
=
∂C(P g?, Qg?)

∂Qg?
−(λQ?E )TM+ρ′+?−ρ′−?=0. (20)

Complementary slackness conditions are formulated analo-
gously to those in (9)–(12), but for only measured buses.

Remark 1 (Connection to Model-based DLMPs). Suppose
measurements are available at all buses so that E = N . Then
it is straightforward to deduce that the optimality conditions
of the measurement-based problem in (15) coincide precisely
with those of the model-based problem in (3) if and only if

ĴPθ[k] =
∂fP (θ?, V ?)

∂θ?
, ĴQθ[k] =

∂fQ(θ?, V ?)

∂θ?
, (21)

ĴPV[k] =
∂fP (θ?, V ?)

∂V ?
, ĴQV[k] =

∂fQ(θ?, V ?)

∂V ?
. (22)

In other words, the optimality conditions of the two problems
are equivalent if the estimated sensitivity matrices exactly
equal the first-order derivatives of the nonlinear power flow
equations with respect to voltage phase angles and magnitudes.
Practically speaking, sufficiently accurate DLMPs can be
estimated even with relatively sparse measurement coverage,
as we will show next in Section IV. �

IV. CASE STUDIES

In this section, we demonstrate the effectiveness of the
measurement-based method described in Section III to cal-
culate DLMPs. Numerical simulations are performed with
a 33-bus test system (see, e.g., [26]), as shown in Fig. 1,
where DERs are connected to buses in the set G =
{1, 6, 7, 12, 18, 22, 25, 33}. Note that, by definition, G includes
the substation bus modelled as a virtual DER. The operation
cost function is described in Appendix A. The active-power
(reactive-power) injection of the substation bus is constrained
within P g

1 ∈ [−1, 1] p.u. (Qg
1 ∈ [−1, 1] p.u.) while the active-

power (reactive-power) output of the g-th DER is limited to
P g
g ∈ [0, 0.25] p.u. (Qg

g = 0 p.u.). Assume that voltage phasors
and active- and reactive-power injections at buses in E are
sampled at 1-second intervals. The measurement-based OPF
problem in (15) is solved every minute where the sensitivity
model is estimated via the PLS algorithm with the previous 60
measurement sets. We use the MATLAB Interior Point solver
for quadratic programming to obtain the DLMPs from the
measurement-based OPF problem in (15). The simulations are
conducted in MATLAB R2020b on a personal computer with

Fig. 1. One-line diagram for 33-bus test system with DERs at buses
6, 7, 12, 18, 22, 25, and 33 and a virtual DER at bus 1. Switches SW1 and
SW2 are normally open, and switches SW3 and SW4 are normally closed.

Intel Core i7-10610U processor at 1.80 GHz and 16 GB RAM.
Estimating the sensitivity model and solving the measurement-
based OPF problem respectively take 0.048 and 0.035 seconds
(on average) for case studies presented in this section. Readers
may refer to [24], [25] for execution times in larger test
systems. For comparison, we solve the model-based OPF
problem (with nonlinear power flow constraints) in (3) via
the MATPOWER Interior Point Solver [27].

A. Benchmark Scenario

We benchmark the measurement-based DLMPs with the
ones obtained from the model-based problem in (3). Here,
we make the admittedly artificial assumption that the lin-
ear sensitivity model is estimated at the optimal operating
point. In Fig. 2, we plot DLMPs resulting from the OPF
problem obtained via (i) model-based approach assuming
that the topology and operating-point are accurately captured
by the model, (ii) measurement-based approach with 100%
measurement coverage, and (iii) measurement-based approach
with 25% measurement coverage (measuring only buses con-
nected to DERs). The DLMPs obtained from the proposed
measurement-based method and the model-based approach
indeed match, validating comments in Remark 1.

B. Adaptability to Topology Changes with Load Forecast

We reconfigure the test system topology by closing switches
SW1 and SW2 and opening switches SW3 and SW4 simulta-
neously. We collect 60 seconds worth of measurements after
the reconfiguration to estimate an updated linear sensitivity
model. We then ascribe a 2% increase at all buses as the
load forecast for the next 1-minute interval. In Fig. 3, we
plot DLMPs resulting from the OPF problem obtained via
(i) model-based approach with an up-to-date model captur-
ing the topology reconfiguration, (ii) model-based approach
assuming that model is out of date and still reflects the
network topology before reconfiguration, (iii) measurement-
based approach with 100% measurement coverage, and
(iv) measurement-based approach with 25% measurement
coverage (measuring only buses connected to DERs). The
DLMPs obtained from the proposed measurement-based
method closely match the model-based DLMPs with up-to-
date network topology for both measurement coverage levels
(with maximum absolute percent error being less than 1%).
In contrast, when the network reconfiguration is not captured
in the model-based OPF problem, the resulting out-of-date
DLMPs do not reflect the true market clearing conditions.
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Fig. 2. Comparison of DLMPs obtained via (i) model-based method,
(ii) measurement-based method with 100% measurement coverage, and
(iii) measurement-based method with 25% measurement coverage.
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Fig. 3. Comparison of DLMPs obtained after system reconfiguration via
model-based method with (i) up-to-date system model, (ii) out-of-date system
model, and measurement-based method with (iii) 100% measurement cover-
age, (iv) 25% measurement coverage. DLMPs resulting from the proposed
measurement-based method match the ones from model-based method with
up-to-date system model.

V. CONCLUDING REMARKS

In this paper, we proposed a measurement-based method
to calculate DLMPs where, in the pertinent OPF problem,
the nonlinear power flow equations are replaced with a linear
sensitivity model estimated from only online measurements
of bus voltages and power injections collected at a subset of
buses. The DLMPs attributed to active and reactive power are
respectively obtained as the optimal Lagrange multipliers of
the estimated active- and reactive-power balance constraints.
Simulation results highlight the effectiveness of the proposed
method to provide accurate DLMPs at the measured subset of
distribution buses. Future work includes measurement-based
pricing of combined energy and flexibility provided by DERs.

APPENDIX

A. Cost Function in (3) and (15)
In (3) and (15), we assume that the quadratic operation cost

function takes the form C(P g, Qg) = P gTdiag(a)P g+bP g+
c, where a = [0, 4, 1, 2, 1.5, 2.5, 3.5, 4.5] [$/(MWh)2], b =
[30, 40, 10, 20, 15, 25, 35, 45] [$/MWh], and c = 0 [$].
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