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Abstract—This paper proposes a method to assess the im-
pact of the uncertainty in electric vehicle (EV) charging loads
on system static performance reflected through the resulting
uncertainty in system states, i.e., bus voltage magnitude and
phase-angles. Historical EV charging data is fit to a Gaussian
mixtures model (GMM), which can capture generic probability
distributions. The GMM is then propagated through a linearized
power flow model to yield a probabilistic characterization of the
voltage magnitudes and phase-angles. As a direct consequence of
the linear model approximation, the resulting characterization
is also a GMM, the parameters of which can be computed
in closed form. Numerical simulations involving the IEEE 33-
bus distribution test system demonstrate the effectiveness of the
proposed method to assess uncertainty in system states.

I. INTRODUCTION

Owing to greater energy efficiency and lower emissions
of electric vehicles (EVs) as compared with conventional
internal combustion engine-based vehicles, EVs are gaining
global popularity in the automotive industry [1]. For example,
EVs are expected to contribute to 10% of the total load
demand in Great Britain by 2030 [2]. Most EVs are used in
cities, and they connect to the low-voltage distribution system
for charging purposes [1]. The charging loads are uncertain
due to the inherently unpredictable nature of human travel
behaviour. Coupled with high levels of EV penetration leading
to potentially heavy loading, the uncertainty in EV charging
loads may cause the distribution system to exceed prescribed
performance requirements, such as minimum and maximum
bus voltage magnitudes and line flows, in an unpredictable
fashion [3]. This paper develops an analytically tractable
method to determine the probability with which system static
state variables (bus voltage magnitudes and phase-angles) lie
within certain ranges given a probabilistic Gaussian mixtures
model (GMM) of EV charging loads synthesized from power
or energy consumption data collected at charging stations.

Deterministic power flow analysis is a fundamental tool
used by power engineers to compute the voltage phase-angles
and magnitudes at all buses given a particular instance of
generation and load. However, a single-snapshot solution of
the power flow problem does not offer insight into the prob-
abilistic system performance in the presence of uncertainty
arising from, e.g., EV charging loads. To address this, in
probabilistic power flow analysis, sources of uncertainty are
modelled as random variables, which results in the power flow

solution also being represented by random variables. Both
numerical and analytical methods have been proposed to solve
the probabilistic power flow problem.

Numerical methods for solving the probabilistic power
flow problem typically require thousands (or more) repeated
solutions of the nonlinear power flow problem, where the un-
certain independent variables therein, such as the load demand,
are sampled from a given probability distribution [4]. Such
methods can capture the impact of generic distributions with
complex correlation structures, but they are generally impracti-
cal for large-scale distribution systems due to the computation
burden involved. On the other hand, analytical methods aim
to directly compute the probability density function (PDF) or
cumulative distribution fuction (CDF) of the random variables
of interest without repeated solutions of the nonlinear power
flow problem. These typically prescribe a particular PDF or
CDF to the uncertainty in independent variables of the power
flow problem [5]. Common models include the Gaussian
distribution for load, beta distribution for solar irradiance, and
Weibull distribution for wind speed [5]. The input uncertainty
would then be propagated through (typically) linearized power
flow equations to the system state variables via convolution- or
cumulant-based methods [6]. Although these methods are less
computationally expensive than numerical methods, they may
be prone to reduced accuracy as the PDFs are approximated
as truncated series expansions. Furthermore, the uncertainty in
independent variables of the power flow problem may not fit
a well-defined PDF.

Modelling uncertainty in EV charging loads is challenging
as it depends on numerous factors, including arrival and depar-
ture times, the number of EVs at the station, charging voltage
and current levels, state of charge (SOC), battery capacity, and
charging duration. With respect to the aforementioned features,
a Poisson PDF is used to model EV charging start times [7],
and a uniform PDF is used to model the SOC [8]. Furthermore,
PDFs for EV charging loads can be inferred via travel statistics
and battery characteristics [9]–[11]. Another viable option,
given high-fidelity power and energy measurements collected
at charging stations, is to synthesize a probabilistic model for
EV charging loads directly from measured data. For this, the
Gaussian mixture model (GMM) is an attractive candidate as it
can capture generic distributions while retaining the analytical
tractability associated with Gaussian PDFs. The central idea



behind the GMM is to represent a generic multimodal PDF as
a convex combination of several unimodal Gaussian PDFs. By
using a sufficient number of Gaussian PDFs and by adjusting
their means and covariances as well as the weights in the
convex combination, generic PDFs can be approximated to
arbitrary accuracy [12]. The GMM has been used to ap-
proximate uncertainty in solar photovoltatic generation [13],
wind farm output [14], and load demand [15]. With respect
to EVs, [16] uses GMMs to predict a user’s departure time
and the associated energy consumption based on their known
arrival time, but the uncertainty in EV charging loads is not
directly modelled with the GMM.

Given the review of pertinent literature above, this paper’s
contributions are as follows. We directly fit historical measure-
ments of EV charging loads to a multivariate GMM obtained
as the solution of a maximum likelihood estimation problem.
Each Gaussian component is then propagated through a lin-
earized system power flow model. The result is a probabilistic
characterization of the uncertainty in bus voltage phase-angles
and magnitudes, which is also described by a GMM, owing to
the linear model approximation. Furthermore, the parameters
in the resulting GMM can be obtained in closed form with little
computational overhead. We can further assess the impact of
uncertainty in EV charging loads by evaluating the probability
with which voltage magnitudes lie within certain (permissible)
ranges. The effectiveness of using GMMs to represent EV
charging loads is verified using a dataset from the California
Institute of Technology (Caltech) [17], and the proposed
uncertainty propagation method is then verified via numerical
case studies involving the IEEE 33-bus test system [18].

II. PRELIMINARIES

In this section, we present the nonlinear power flow equa-
tions with a focus on distribution networks. We further derive
a linearized power flow model to be used later.

A. Power Flow Model

Consider an AC distribution system with buses collected in
set N = {1, . . . , N}. At each bus, the power flow equations
relate the bus voltage magnitude and phase-angle to active-
and reactive-power injections at all other buses in the system.
For each bus i ∈ N , let Vi denote the voltage magnitude, θi
the voltage phase-angle, Pi the net active-power load, and Qi

the net reactive-power load. Without loss of generalization, we
assume bus 1 is the substation with fixed voltage magnitude,
and it sets the phase-angle reference. Then, the power balance
at bus i ∈ N− = {2, . . . , N} can be expressed as follows:

0=Vi

n∑
k=1

Vk (Gik cos (θi−θk)+Bik sin (θi−θk)) + Pi, (1)

0=Vi

n∑
k=1

Vk (Gik sin (θi−θk)−Bik cos (θi−θk)) +Qi, (2)

where Gik and Bik are the real and imaginary parts of
the (i, k) entry in the network admittance matrix, respectively.
To contain notational burden, we assume that there is at most

one EV charging load at each bus i ∈ N−. In practice,
this may be the aggregate load of several (or even many)
EV charging stations. Collect all L buses that are connected
to EV charging stations in the set L ⊆ N−. To explicitly
consider the uncertainty in power injections arising from EV
charging loads, we distinguish between fixed and uncertain
load withdrawals in (1)–(2), as follows:

Pi = P i + P̃i, (3)

Qi = Qi + Q̃i, (4)

where P i and Qi are respectively the fixed active- and
reactive-power loads, at bus i, and P̃i and Q̃i are respectively
the uncertain active- and reactive-power loads at bus i.

Let y = [P2, . . . , PN , Q2, . . . , QN ]T contain net active-
and reactive-power loads, and let system state variable x =
[θ2, . . . , θN , V2, . . . , VN ]T contain bus voltage phase-angles
and magnitudes. Then (1)–(2) can be expressed compactly as

0 = g(x) + y = g(x) + y + Cỹ, (5)

where g : R2(N−1) 7→ R2(N−1), x is an unknown to be
solved, and y and ỹ are the (known) fixed and uncertain loads,
respectively. Also, C is a matrix of 1s and 0s that maps the
buses with EV charging stations in L to corresponding indices
in N−.

B. Linearized Model

Suppose (5) is solved with nominal uncertain load ỹ = ỹ?,
leading to the nominal power flow solution x?. Then, from (5),
we have

0 = g(x?) + y + Cỹ?. (6)

We can take the first-order Taylor series expansion of (5)
around x? to get

0 = g(x?) + J(x− x?) + y + Cỹ, (7)

where J = dg
dx |x? is the Jacobian matrix of the power flow

equations. Further rearrange (6) and substitute the resultant
into (7) to get

0 = J(x− x?) + C(ỹ − ỹ?), (8)

The Jacobian matrix evaluated at x? is guaranteed to be
invertible if the power flow converges to that solution. Thus,
we can rearrange (7) as

x = Hỹ + c, (9)

where
H = −J−1C, c = J−1Cỹ? + x?, (10)

are the linear- and constant-term coefficients of a linearized
power flow model evaluated at x?.

III. UNCERTAINTY ANALYSIS

We decompose the problem of assessing EV charging load
uncertainty on system performance into two distinct tasks. The
first is to fit historical EV charging load data to a GMM. Next,
we propagate the GMM through the linearized model in (9)
to compute the uncertainty in x.



A. GMM for EV Charging Loads

In general, the uncertainty in an EV charging load ỹ is not
Gaussian due to various physical (e.g., state and rate of charge)
and human (e.g., arrival and departure times) factors. Instead,
we approximate the uncertainty in ỹ as a GMM and show that
it indeed provides a realistic representation of the uncertainty
in EV charging loads via numerical case studies in Section IV.

We model the uncertainty in ỹ as convex combination of
K + 1 multivariate Gaussian PDFs of the following form:

ỹ ∼
K∑

k=0

fỹ,k(ỹ) =

K∑
k=0

ωỹ,kN (µỹ,k,Σỹ,k), (11)

where ωỹ,k is the weight given to the kth component of the
multivariate GMM, and

N (ỹ|µỹ,k,Σỹ,k) =
1

(2π)L/2

1

|Σỹ,k|1/2
·

exp

(
−1

2
(ỹ − µỹ,k)TΣ−1ỹ,k(ỹ − µỹ,k)

)
, (12)

with µỹ,k and Σỹ,k respectively denoting the mean and co-
variance of the kth Gaussian PDF. Furthermore, for the GMM
to be well-defined, the following must hold:

0 ≤ ωỹ,k ≤ 1, k = 0, . . . ,K, (13)
K∑

k=0

ωỹ,k = 1. (14)

Now, consider a historical dataset Z = ∪`∈LZ`, where Z`

contains EV charging load data for bus ` ∈ L. Within such a
dataset, the uncertain EV charging load at bus ` is either zero,
corresponding to the event that the charging station is idle, or
nonzero, corresponding to the event that the charging station is
actively charging a vehicle. Accordingly, we divide the dataset
Z into Z0 and Z∅ respectively, containing data points where
all charging loads are zero and where at least one charging
load is nonzero. These events are mutually exclusive, so that
Z0∩Z∅ = ∅, and Pr(ỹ = 0L)+Pr(ỹ 6= 0L) = 1. In (11), we
represent the event in which all EV charging loads are zero by
the first term in the sum fỹ,0(ỹ), and the remaining terms in
the sum capture the events in which at least one charging load
is nonzero. We next discuss the specifics of how to obtain the
terms in (11).

1) Zero-charging Event: We approximate the zero-charging
event as the following Gaussian PDF:

fỹ,0(ỹ) = ωỹ,0N (0L,Σỹ,0), (15)

where ωỹ,0 = Pr(ỹ = 0L) = |Z0|/|Z| is the weight
associated with the zero-charging event, and Σỹ,0 is a diagonal
matrix and diagonal entries are set to be very small.

2) Nonzero-charging Events: Given adequate historical
data points of nonzero-charging events in Z∅, we can fit the
following GMM to the data:

f∅ỹ (ỹ) =

K∑
k=1

f∅ỹ,k(ỹ) =

K∑
k=1

ω∅ỹ,kN (µỹ,k,Σỹ,k), (16)

where parameters ω∅ỹ,k, µỹ,k, and Σỹ,k, k = 1, . . . ,K, are
obtained as the solution of a maximum likelihood estima-
tion (MLE) problem. Interested readers may refer to [19] for
details of the expectation maximization (EM) algorithm to
solve the MLE problem. Furthermore, we apply the Bayesian
information criterion (BIC) to determine the number of Gaus-
sian components, i.e., K, to represent the uncertainty in EV
charging loads sufficiently well. The procedure involved with
applying the BIC is provided in [19]. To ensure that the area
under the final GMM (inclusive of zero-charging and nonzero-
charging events), we scale coefficients ω∅ỹ,k obtained from the
EM algorithm by the total probability of nonzero-charging
events, as follows:

ωỹ,k = ω∅ỹ,k · Pr(ỹ 6= 0L), k = 1, . . . ,K, (17)

where Pr(ỹ 6= 0L) = |Z∅|/|Z|.

B. Uncertainty Propagation

The uncertain EV charging load ỹ is modelled as the
multivariate GMM in (11), where the parameters therein
are obtained by fitting the model to a historical dataset Z .
Furthermore, given the linearized power flow model in (9),
our goal is to obtain a PDF that describes the uncertainty in
system states, i.e., bus voltage phase-angles and magnitudes
collected in x. Since Gaussian PDFs are closed under linear
transformation and we can apply the superposition principle
for linear systems, the PDF describing uncertainty in x is also
a GMM, which can be described as follows:

x ∼
K∑

k=0

ωx,kN (µx,k,Σx,k), (18)

where, for k = 0, . . . ,K, the weight, mean, and covariance
matrix of the kth Gaussian PDF are respectively given by

ωx,k = ωỹ,k, (19)
µx,k = Hµỹ,k + c, (20)

Σx,k = HΣỹ,kH
T, (21)

all in closed form [20]. Furthermore, the CDF can be obtained
by integrating (18), as follows:

Fx ∼
K∑

k=0

ωx,k

∫
N (µx,k,Σx,k). (22)

IV. CASE STUDIES

In this section, we demonstrate the effectiveness of mod-
elling EV charging loads as a multivariate GMM with his-
torical charging data obtained from Caltech [17]. We then
demonstrate propagation of uncertainty from EV charging
loads to system states via numerical case studies involving
the IEEE 33-bus test system [18].



TABLE I: GMM component parameters for EV charging data

Component k Weight ωỹ,k µỹ,k Σỹ,k

0 0.051

[
0
0

] [
0.073 0

0 0.073

]
1 0.158

[
4.906
6.845

] [
2.367 0.271
0.271 1.886

]
2 0.282

[
5.475
5.074

] [
2.623 0.597
0.597 2.631

]
3 0.261

[
1.618
1.602

] [
1.989 0.130
0.130 1.865

]
4 0.248

[
4.048
3.530

] [
2.619 1.264
1.264 3.374

]

A. Fitting Historical EV Charging Data to GMM

We consider a subset of the Caltech dataset related to the
charging loads at 1 pm of two EV charging stations from
January 1, 2018 to May 25, 2021. Within the dataset that we
consider, the zero-charging event where both charging stations
are idle occurs with probability Pr(ỹ = 02) = 0.051, implying
that nonzero-charging events where at least one charging
station is active occur with probability Pr(ỹ 6= 02) = 0.949.
As described in Section III-A, we model the zero-charging
events by a narrow Gaussian PDF, the parameters for which
are reported as component k = 0 in Table I with corresponding
weight ωỹ,0 = Pr(ỹ = 02). For the nonzero-charging events,
we apply the EM algorithm to the subset of data where at least
one of the two charging stations is actively charging a vehicle.
We use the built-in MATLAB command aicbic to evaluate
the BIC and determine that four Gaussian components are
sufficient to approximate variations in the charging loads. We
further use MATLAB command fitgmdist to determine
the parameters in the 4-component GMM. These are reported
in Table I for k = 1, . . . , 4, where the mean and covariance
matrix of each Gaussian component are in columns 3 and 4,
respectively. The weights reported in column 2 have been
scaled according to (17) to reflect the fact that the nonzero-
charging events make up the only portion of the dataset we
consider. To verify that the GMM represents a realistic model
for the EV charging load data, in Fig. 1, we plot intensity
maps representing probability distributions derived from the
continuous-valued GMM (Fig. 1a) with parameters given in
Table I and the original discrete-valued dataset (Fig. 1b). Based
on a visual inspection, we indeed find that the two plots are
very similar. We also observe that the uncertainty in the two
EV charging loads are positively correlated.

B. Propagating Uncertainty to System States

As depicted in Fig. 2, we modify the IEEE 33-bus test sys-
tem to include uncertain EV charging loads at buses 14 and 29
corresponding to charging stations considered in Section IV-A.
To mimic a case with greater EV penetration, the charging
loads used to obtain the 5-component GMM in Table I are
scaled by 10×. We then convert the actual EV charging load
values to per-unit quantities using a system power base of
10 MVA. Accordingly, the mean values in column 3 of Table I
are scaled by 10−3 and the entries in covariance matrices
in column 4 are scaled by 10−6. We linearize the power

(a)

(b)

Fig. 1: Probability distribution of two EV charging loads derived from (a) the
continuous-valued GMM and (b) the discreted-valued dataset.

Fig. 2: 33-bus test system with EV charging stations at buses 14 and 29.

flow equations for the test system and apply the uncertainty
propagation method described in Section III-B. Particularly,
the GMM describing the uncertainty in voltage phase-angles
and magnitudes due to that in EV charging loads can be
obtained using (18), where the parameters therein can be
computed in closed form. In Fig. 3a, we project the resulting
multivariate GMM and plot the marginal PDF of the voltage
magnitude at bus 3 as the red trace. The marginal CDF
obtained from (22) is similarly plotted as the red trace in
Fig. 3b. To verify the effectiveness of the proposed method, we
use 1046 EV charging load values from the dataset directly and
solve the nonlinear power flow equations for the corresponding
voltage phase-angles and magnitudes. In Fig. 3a, we plot a
histogram of voltage magnitudes at bus 3 in blue colour and
resulting probabilities are plotted in Fig. 3b also in blue colour.
Indeed, we observe that the analytical method described in
Section III yields a good approximation to the actual variations
in bus 3 voltage magnitude. For further verification, in Fig. 4,



(a)

(b)

Fig. 3: Comparison of the (a) probability density/mass function and (b) prob-
ability of bus 3 voltage magnitude values obtained via (i) repeated solutions
of the nonlinear power flow equations given historical EV charging data and
(ii) the proposed analytical GMM-based method.

we plot the maximum absolute error (MAE) in CDFs of
voltage magnitudes at all buses. As an example, the MAE
for bus 3 is the maximum absolute mismatch between the
blue-coloured histogram and the red trace in Fig. 3b.

V. CONCLUDING REMARKS

In this paper, we synthesized a probabilistic GMM of the
uncertainty in EV charging loads directly from historical
measurements of power or energy consumption at charging
stations. We then presented an analytical method to estimate
the uncertainty in bus voltage magnitudes and phase-angles
arising from that in EV charging loads modelled as a GMM.
The resulting characterization is also a GMM, the parameters
in which can be obtained in closed form. The utility of
the proposed method was demonstrated via numerical case
studies involving the IEEE 33-bus test system. Avenues for
future work include evaluating the proposed method with other
datasets and incorporating GMMs into a chance-constrained
optimal distributed energy resource dispatch problem.
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