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Abstract—This paper identifies the importance of considering
the full-order virtual synchronous machine (VSM) dynamics
while tuning parameters in its cascaded voltage and current
control loops. Via a numerical example, we highlight that the
conventional tuning method of the voltage and current loops may
not ensure system stability. This is because the tuning method
does not consider full-order system dynamics. Thus, we improve
the tuning method for the VSM voltage and current loops using
small-signal analysis of the full-order VSM model. The proposed
tuning method ensures system stability in the small-signal sense,
and it is computationally inexpensive. We verify the effectiveness
of the proposed tuning method via numerical simulations.

I. INTRODUCTION

Growing environmental concerns are driving terrestrial and
shipboard power systems to transition from fossil fuels to
renewables, e.g., wind and solar [1], [2], buffered by battery
storage. The increasing share of converter-interfaced energy
sources is reshaping power system dynamics, and it is chal-
lenging stable grid operation in both terrestrial and shipboard
power systems. In this regard, grid-forming voltage source
converters (VSCs) have been extensively studied as they can
provide virtual inertia and help to stabilize the power sys-
tem [3]–[12]. Grid-forming converters typically adopt droop
control, virtual synchronous machine (VSM), or virtual oscil-
lator control [13]. Among them, the VSM aims to improve
power system dynamic performance by emulating dynamics
of a synchronous machine.

Cascaded voltage and current control loops are included
in most VSM designs, since they help to limit fault current,
dampen potential resonance and improve output current qual-
ity [14]. However, the voltage and current loops introduce
four additional proportional-integral (PI) controller parameters
that present challenges for tuning. The conventional method
to tune the voltage and current loops in [15] aims to maximize
their phase margin. Ill-advised PI controller parameters in the
voltage and current loops may deteriorate the system dynamic
performance and even lead to instability in the worst case [9],
[11]. In this paper, we demonstrate via a numerical example
that such undesired results of the conventional tuning method
arise because it does not consider full-order VSM dynamics.

There are two major technical routes to overcome the afore-
mentioned shortcoming in the conventional tuning method
in [15] for the voltage and current loops. The first is to
redesign the VSM voltage and current loops so that they have
greater achievable bandwidth and can be tuned independently.

In this vein, [16] replaces the voltage and current loops
with a model predictive controller, and [10] redesigns these
loops with the active disturbance rejection control. However,
these designs either make system stability analysis difficult or
complicate the controller design. An alternative solution is to
seek improvements over the conventional tuning method of the
standard voltage and current loops in [15]. For example, the
tuning method in [8] considers the full-order VSM dynamics,
but it requires cumbersome trial-and-error efforts. The tuning
method proposed in [4] based on the eigenvalue parameter sen-
sitivities requires less trial-and-error effort, but it may exhibit
oscillatory behaviour and converge to desired PI controller
parameters slowly. The method proposed in [12] searches for
desired PI controller parameters with the genetic algorithm.
However, this method requires manually selected parameter
ranges as inputs, and it is also computationally expensive.

Contributions in this paper are summarized as follows. First,
we identify the shortcoming in conventional tuning method
for the voltage and current loops. That is, the conventional
method does not consider the full-order VSM model and thus
cannot ensure the stability of the entire system. Indeed, we
identify the necessity of considering of the full-order VSM
dynamics while tuning its voltage and current loops. Then, by
performing small-signal analysis on the full-order VSM model,
we examine the impacts of the PI controller parameters in
voltage and current loops on the system dynamics. Finally,
based on the small-signal analysis results, we propose a
parameter tuning method for the VSM voltage and current
loop. The key improvement over the conventional method
is to set the integral controller parameter to be zero and
choose a larger proportional controller parameter value in the
voltage loop. The proposed tuning method ensures the system
stability in the small-signal sense, and it is computationally
inexpensive.

II. PRELIMINARIES

This section overviews the mathematical modelling of VSM
with the cascaded voltage and current control loops. Then we
provide a brief description of the conventional tuning method
for the VSM voltage and current control loops, which does not
consider full-order VSM dynamics. Finally, via a numerical
example, we demonstrate that the conventional tuning method
may lead to instability.



Fig. 1. VSM-connected system with cascaded voltage and current con-
trol loops. (a) Grid interface. (b) Active- and reactive-power loops, virtual
impedance, and cascaded voltage and current control loops.

A. Virtual Synchronous Machine Model

As shown in Fig. 1, the VSM-connected system model
typically consists of the grid interface, active- and reactive-
power loops, the virtual impedance, and cascaded voltage and
current control loops.

1) Grid interface: The VSC in Fig. 1(a) is connected to
the grid via an LCL filter. Let em, uc, and u∞, respectively,
denote the VSC AC-side terminal voltage, the VSM output
voltage (i.e., the voltage across the filter capacitor Cf ), and
the grid-side voltage. Further let is, ic, and ig , respectively,
denote the currents flowing through the converter-side filter
inductor L1 (with parasitic resistance R1), the filter capaci-
tor Cf , and the grid-side filter inductor L2. Then, in the d-q
reference frame, we express the dynamics of the LCL filter
and the transmission line as follows:

emd = ucd − ω∞L1isq + L1
disd
dt

+R1isd, (1)

emq = ucq + ω∞L1isd + L1
disq
dt

+R1isq, (2)

isd = igd − ω∞Cfucq + Cf
ducd
dt

, (3)

isq = igq + ω∞Cfucd + Cf
ducq
dt

, (4)

ucd = u∞d − ω∞(L2 + Le)igq + (L2 + Le)
digd
dt

+ (R2 +Re)igd, (5)

ucq = u∞q + ω∞(L2 + Le)igd + (L2 + Le)
digq
dt

+ (R2 +Re)igq, (6)

where ω∞ is the grid frequency, and subscripts d and q,
respectively, represent the d-axis and q-axis components.

2) Active- and reactive-power loops and virtual impedance:
In Fig. 1(b), the active- and reactive-power loops regulate the
VSM active-power output Pt and its reactive-power output Qt

to track their references P ?
t and Q?

t , respectively. Alternatively,
they are able to achieve frequency- and voltage-droop controls
based on predefined frequency and voltage references, i.e., ω?

g

and U?
t . These regulation actions are achieved by varying the

rotor angle θg and the voltage magnitude Eg . Also, the virtual

impedance branch Zv := Rv +jXv can be adopted to reshape
the VSM output impedance as follows:

u?cd = ωgψf −Rvigd +Xvigq, (7)
u?cq = −Rvigq −Xvigd, (8)

where ωg is the VSM rotating speed, ψf is the VSM excitation
flux, and their product Eg := ωgψf represents the voltage
magnitude reference generated by the power loops. In (7)
and (8), u?cd and u?cq are, respectively, the d- and q-axis
references of the VSM output voltage uc. According to [5]–
[7], the dynamics of the VSM power loops in Fig. 1(b) are
governed by the following time-domain dynamics:

Jg
dωg

dt
=
P ?
t

ωN
− Tef −Dp(ωg−ω?

g)−Df
d

dt

(
Tef

ψff

)
, (9)

dθg∞
dt

= ωg − ω∞, (10)

Kg
dψf

dt
= Q?

t −Qtf +

√
2

3
Dq(U?

t − Utf ), (11)

τf
dψff

dt
= ψf − ψff , τf

dTef

dt
=

Pt

ωN
− Tef , (12)

τf
dQtf

dt
= Qt −Qtf , τf

dUtf

dt
= Ut − Utf , (13)

where ωN denotes the rated angular frequency, θg∞ denotes
the phase-angle difference between the VSC AC-side terminal
voltage em and the grid voltage u∞, and Jg , Dp, Df , τf ,
Kg , and Dq are tuneable controller parameters. In (9)–(13),
ψff , Tef , Utf , and Qtf are filtered signals of the excitation
flux ψf , the electromagnetic torque Te := Pt/ωN , the reactive
power Qt, and the grid-side voltage magnitude Ut. Among
these signals, Pt, Qt, and Ut can be approximated by

Pt ≈
3

2
(ucdigd + ucqigq) , Qt ≈

3

2
(ucqigd − ucdigq) , (14)

Ut ≈
√

3

2

√
u2cd + u2cq. (15)

3) Cascaded voltage and current control loops: The control
loops highlighted in red in Fig. 1(b) ensure that the filter
capacitor voltage uc closely tracks its reference value u?c ,
which is generated by the active- and reactive-power loops
and the virtual impedance. Specifically, as detailed in Fig. 2,
the current control loop includes PI controllers as follows:

e?md = ucd − ωNL1isq +
kpcs+ kic

s
(i?sd − isd), (16)

e?mq = ucq + ωNL1isd +
kpcs+ kic

s
(i?sq − isq), (17)

where e?md and e?mq are the reference signals that serve as
inputs to the pulse width modulation (PWM), and i?sd and i?sq
are the reference signals of the current control loop. Likewise,
the voltage control loop also includes PI controllers described
by the following dynamics:

i?sd = igd − ωNCfucq +
kpvs+ kiv

s
(u?cd − ucd), (18)

i?sq = igq + ωNCfucd +
kpvs+ kiv

s
(u?cq − ucq). (19)



Fig. 2. Cascaded voltage and current control loops.

Fig. 3. Block diagram of closed-loop voltage and current control systems.

In the VSM voltage and current control loops, there are four
PI controller parameters to be tuned: kpc, kic, kpv , and kiv .

B. Conventional Tuning Method of Voltage and Current Loops
Based on (1)–(4) and (16)–(19), we obtain the block di-

agram representation of the closed-loop voltage and current
control systems, as shown in Fig. 3. Note that the conventional
tuning method does not consider the virtual impedance or the
active- and reactive-power loops. Targeted at obtaining fast dy-
namics and achieving desired phase margin, the conventional
method tunes the cascaded voltage and current control loops
based on the modulus and symmetrical optimum criteria [15].

1) Current controller tuning via modulus optimum: As-
sume that e?md ≈ emd and e?mq ≈ emq , take the Laplace
transform of (1) and (2), and subtract the resultant from (16)
and (17), respectively. We get the following open-loop transfer
funtion Gc(s) of the current control dynamics:

Gc(s) =
kpcs+ kic

s
· 1

L1s+R1
. (20)

Set the desired time constant of the closed-loop system in
Fig. 3 to be τc, and the conventional modulus optimum method
computes PI parameters kpc and kic from

kpc =
L1

τc
, kic =

R1

τc
. (21)

Then the zero in the PI controller z = − kic

kpc
cancels the slower

pole s = −R1

L1
in the filter inductor dynamics. The resultant

closed-loop transfer function of the current control dynamics
becomes

isd
i?sd

=
isq
i?sq

=
Gc(s)

1 +Gc(s)
=

1

τcs+ 1
. (22)

Note that τc should take a small value in order to achieve fast
current dynamics. At the same time, the minimum value of
τc depends on the VSM switching frequency fsw. The value
of τc is typically chosen within the range [0.5, 5] ms [15].

TABLE I
PARAMETERS OF VSM-CONNECTED SYSTEM IN EXAMPLE 1

Parameters Values Parameters Values

R1 1.4 Ω L1 25 mH

R2 0.38 Ω L2 6.7 mH

Re 1.4 Ω Le 39 mH

Rv 0 Lv 0

Rf 7.7 Ω Cf 1.4 µF

Dp 1407 N·m·s
rad

Jg 38 kg·m2

Dq 0 K 23333 Var·rad
V

ωN , ω
?
g 377 rad

s
U∞ 13.8 kVrms

fsw 5.0 kHz rated voltage 13.8 kVrms

rated capacity 1.0 MVA DC-link voltage 25 kV

2) Voltage controller tuning via symmetrical optimum:
With the well-tuned current control in place, the open-loop
transfer function of the voltage control system is

Gv(s) =
kpvs+ kiv

s
· 1

τcs+ 1
· 1

Cfs
, (23)

which has two poles at s = 0. The conventional sym-
metrical optimum method tunes PI parameters kpv and kiv
so that Gv(s) achieves desired phase margin δm, which
is typically selected within the range [30◦, 75◦] [15]. After
specifying δm, kpv and kiv are respectively given by

kpv = ωcCf , kiv = ω3
cτcCf , (24)

where ωc is the gain crossover frequency of Gv(s)

ωc =
1

τc

√
1 − sin δm
1 + sin δm

. (25)

Next, via a numerical example, we find that the conventional
tuning method above may result in instability of the VSM-
connected system.

Example 1 (Examining Conventional Tuning Method). In this
example (case I), we check whether or not the conventional
tuning method for the cascaded voltage and current loops leads
to desired VSM dynamics. We simulate the VSM-connected
system in Fig. 1 in PSCAD/EMTDC using the system param-
eter values reported in Table I. Without loss of generality, we
set the VSM virtual impedance Zv = 0 and adopt the well-
tuned VSM active- and reactive-power loops with the settling
time 0.2 s [5]–[7]. In this case, we tune the PI parameters kpc,
kic, kpv , and kiv based on the conventional voltage and current
loop tuning method. Specifically, by setting τc = 1.0 ms
and δm = 45◦ in (21), (24), and (25), we have kpc = 25,
kic = 1406, kpv = 5.8 × 10−4, and kiv = 0.10. With
these PI parameter values in place, we first check the step
response of the voltage and current loop in Fig. 2. As shown
in Fig. 4(a), the settling time of the voltage and current loops
is about 15 ms, which is over 13 times smaller than that of
the outer power loops, i.e., 0.2 s. However, by simulating the
active-power step response of the VSM in Fig. 1 and plotting
the active power Pt in Fig. 4(b), we find that Pt does not
stabilize at its reference value 1 p.u. Note that Pt remains



Fig. 4. System dynamics with kpv = 5.8 × 10−4 and kiv = 0.10 (case I).
(a) Step response of cascaded voltage and current loops in Fig. 3. (b) Active-
power step response of the VSM-connected system in Fig. 4.

bounded only due to the presence of current limiters. Indeed,
we observe similar behaviour with other δm within [30◦, 75◦].
Thus, the PI parameters tuned based on conventional method
destabilize the VSM-connected system in this case. �

C. Problem Statement

As shown in Example 1, the cascaded voltage and current
loops tuned based on the conventional method do not ensure
the stability of the VSM-connected system. This is because the
conventional tuning method only considers the dynamics of the
voltage and current control loops. Although the outer power
loops are associated with slower dynamics, they cannot be
neglected when tuning the voltage and current loops with faster
dynamics. Next, we verify the necessity of considering the
full-order system model through detailed small-signal analysis.

III. IMPROVED TUNING METHOD

This section first validates the necessity of considering the
full-order system model while tuning the cascaded voltage and
current loops. This is achieved by observing eigenvalues of
the full-order system model. Then we show the impacts of the
voltage controller PI parameters on system eigenvalues, and
accordingly, propose an updated parameter tuning method for
the cascaded voltage and current loops.

The VSM-connected system in Fig. 1 is fully characterized
by the 17th-order nonlinear dynamical model in (1)–(15).
Linearization around the equilibrium point x◦ leads to the
following small-signal state-space model:

d∆x

dt
= A∆x + B∆u, (26)

TABLE II
EIGENVALUES OF STATE MATRIX A IN EXAMPLE 1

λk Value of λk λk Value of λk

λ1,2 29.463 ± j34.461 λ3,4 −595.61 ± 3625.1

λ5,6 −613.46 ± j4365.6 λ7,8 −14.839 ± 26.403

λ9,10 −21.390 ± j8.0502 λ11,12 −100.00

λ13,14 −56.240 λ15 −97.969

λ16 −101.75 λ17 −35.269

Fig. 5. Eigenvalues of full-order VSM model. (a) δm increases from 30◦

to 75◦ with τc =1.0 ms. (b) δm increases from 30◦ to 75◦ with τc =5.0 ms.

where the state vector ∆x and the input vector ∆u are

∆x =[∆ωg,∆θg∞,∆ψf ,∆ψff ,∆Tef ,∆Qtf ,∆Utf ,∆isd,

∆isq,∆ucd,∆ucq,∆igd,∆igq,∆γd,∆γq,∆ξd,∆ξq]T,

∆u =[∆P ?
t ,∆Q

?
t ,∆U

?
t ,∆ω

?
g ,∆ω∞]T, (27)

respectively, with ∆(·) representing small variations of the
variable around its equilibrium. Note that (26) includes auxil-
iary variables γd, γq , ξd, and ξq to represent the states of the
integrators in (16)–(19). Denote the eigenvalues of the state
matrix A by λk, k = 1, ..., 17.

A. Necessity of Considering Full-order System Model

The full-order system model in (26) accurately captures the
unstable dynamics of the VSM-connected system observed in
Fig. 4(b). For the system in Example 1, its eigenvalues λk
are reported in Table II. Indeed, a pair of complex-conjugate
eigenvalues, i.e., λ1 and λ2, has positive real part, in agree-
ment with the instability observed in Fig. 4(b). However, the
conventional tuning method in Section II-B only captures the
4th-order voltage and current control system shown in Fig. 3,
and thus, does not fully capture the behaviour of the entire
system. We find that in Example 1, although the conventional
method tunes the 4th-order voltage and current control system
to be stable by setting the phase margin to be δm = 45◦, the
overall VSM-connected system is unstable. Indeed, this is also
true for all δm in the typical range [30◦, 75◦]. To see this, we
increase δm from 30◦ to 75◦ (τc is fixed at 1.0 and 5.0 ms),



Fig. 6. Eigenvalues of full-order VSM model. (a) kpv increases from 0.0006
to 0.044 with kiv = 0.40 (kpc = 25, kic = 1406). (b) kpv increases
from 0.0006 to 0.044 with kiv = 0.10 (kpc = 25, kic = 1406). (c) kpv
increases from 0.0006 to 0.044 with kiv = 0 (kpc = 25, kic = 1406).

compute kpv and kiv according to (24), and plot the resultant
eigenvalues λk of the matrix A in Figs. 5(a) and 5(b). It can
be found that the eigenvalues λ1 and λ2 lie in the right-half s-
plane, and thus, the VSM-connected system is unstable. Based
on the observations above, we conclude that the full-order
system model in (26) should be considered when tuning the
voltage and current loops.

B. Impact of Voltage Controller PI Parameters kpv and kiv
By observing the impact of kpv and kiv on eigenvalues λ1

and λ2, we find that increasing kpv or reducing kiv tends to sta-
bilize the VSM-connected system. In Figs. 6(a), 6(b), and 6(c),
we sketch three families of root loci when kpv increases with
different choices of kiv . Note that we retain the current loop
PI parameters, i.e., kpc = 25 and kic = 1406. By visually
inspecting each subfigure, we observe that increasing kpv
tends to move λ1 and λ2 to the left-half s-plane when kiv
takes different values. Also, by comparing the root loci in
Figs. 6(a), 6(b), and 6(c), we find that reducing kiv also enables
eigenvalues λ1 and λ2 to migrate toward the left-half plane.
This suggests that increasing the proportional parameter kpv
or decreasing the integral parameter kiv in the voltage control
loop tends to stabilize the VSM-connected system. However,
the conventional tuning method from [15] and as described
in Section II-B results in simultaneous increase or decrease
in kpv and kiv to achieve desired phase margin δm within its
typical range [30◦, 75◦].

C. Updated Parameter Tuning Method

Based on observations in Sections III-A and III-B, we
improve the voltage controller tuning method in Section II-B2
while the current controller tuning method in Section II-B1
may remain unchanged. Since reducing kiv in the voltage con-
troller improves the VSM stability, we propose to set kiv = 0
directly, thereby reducing the voltage controller to a propor-
tional controller. Note that the voltage signals ucd and ucq
still track their references u?cd and u?cq , respectively because
the resultant open-loop transfer function of the voltage control
system becomes

Gv(s) = kpv ·
1

τcs+ 1
· 1

Cfs
, (28)

which has a pole at the origin. According to (28), the voltage
control system still tracks step input without any steady-state
error [17].

As observed in Section III-B, larger value for kpv in the
voltage controller is needed to stabilize the VSM-connected
system. Thus, we may increase kpv until eigenvalues λ1
and λ2 move into the left-half s-plane. In this way, we
identify the minimum value of kpv , denoted by kmin

pv . Setting
the parameter kpv to a value greater than kmin

pv then ensures
stability of the VSM-connected system.

In summary, we propose to tune the PI parameters kpc, kic,
kpv , and kiv in cascaded voltage and current loops as follows.
First, we tune the current controller as in Section II-B1.
Specifically, we specify a current controller time constant τc
within its typical range [0.5, 5] ms and then compute param-
eters kpc and kic according to (21). Next, we set the voltage
controller integral parameter kiv to be zero. Then, we identify
the minimum value kmin

pv of the voltage controller proportional
parameter kpv needed for small-signal stability. This can be
achieved by gradually increasing kpv until the eigenvalues λ1
and λ2 of the system state matrix A lie on the imaginary
axis of the s-plane. Finally, we set the parameter kpv such
that kpv > kmin

pv and complete the tuning process. Note that the
VSM virtual impedance and power control loops are assumed
to be well tuned beforehand [6], [7].

Remark 1 (Model-order Reduction of VSM-connected Sys-
tem Caused by Setting kiv = 0). In addition to improving
the VSM stability, a side benefit of setting kiv = 0 is to
reduce the model order of the VSM-connected system by two,
and consequently, facilitate the VSM modelling and analysis.
This is because by setting kiv = 0, the two differential
equations (16) and (17), which describe the voltage controller
dynamics, degenerate into algebraic equations. �

IV. CASE STUDIES

In this section, via numerical studies of the system in Fig. 1,
we validate the analysis and proposed tuning method for
the voltage and current loops, which fully consider the full-
order system dynamics. In this way, we show the necessity
of leveraging the full-order VSM model for tuning parameters
in the voltage and current loops. Note that to ensure a fair



Fig. 7. System dynamics with kpv = 0.013 and kiv = 0 (case II). (a) Step
response of cascaded voltage and current loops in Fig. 3. (b) Active-power
step response of the VSM-connected system in Fig. 1

comparison with case I in Example 1, we adopt the same
system parameters as reported in Table I, unless otherwise
noted.

In the numerical case considered here (case II), we tune the
voltage and current loops with the proposed tuning method
in Section III-C. Specifically, by setting the current control
time constant τc = 1.0 ms, we leverage (21) to compute the
current controller PI parameters as kpc = 25 and kic = 1406.
As for the voltage controller, we set the proportional param-
eter kiv = 0, and also, identify that kmin

pv = 0.0057 results
in λ1 = j0.06969 and λ2 = −j0.06969 along the imaginary
axis of the s-plane. Thus, we can select kpv = 0.013 > kmin

pv

and complete the tuning process.
With the parameters kpc, kic, kpv , and kiv computed from

the proposed method, we first evaluate the step response of
the cascaded voltage and current loops in Fig. 3. As plotted
in Fig. 7(a), the step response of the voltage and current loops
is stable and the settling time turns out to be 8 ms. It is noted
that the obtained voltage and current loops settling time is 25
times smaller than the power loop settling time 0.2 s. Thus via
comparison with the case I in Example 1, case II here achieves
greater time-scale separation as a result of the proposed tuning
method. Thereafter, we simulate the VSM-connected system
in Fig. 1 in the PSCAD/EMTDC software and plot the active-
power step response in Fig. 7(b). We can find that the active
power Pt stabilizes at its reference P ?

t = 1 p.u. Also, the
settling time of the active-power step response is 0.2 s, which
matches our predesigned power loop dynamics precisely. In-
deed, for other choices of τc within [0.5, 5] ms, the proposed
tuning method still leads to stable active-power step responses.
In this way, we validate the accuracy of our proposed analysis
and tuning method of the cascaded voltage and current loops,
which fully consider the full-order system dynamics. Recall
that the conventional tuning method in Section II-B, which
does not consider the full-order system dynamics, leads to

unstable active-power step response in case I in Example 1.
By comparing the stable system dynamics in case II with the
unstable ones in case I, we further validate the necessity of
considering the full-order VSM-connected system dynamics
while analyzing and tuning the voltage and current loops.

V. CONCLUSION

In this paper, via a numerical example, we identified that
the conventional voltage and current controller tuning method
may not ensure the stability of the VSM-connected system.
The root cause is that the conventional method does not
consider the full-order VSM dynamics. Thus, we proposed an
updated voltage and current controller tuning method, which
considers the full-order VSM dynamics. Our proposed method
ensures the VSM to be small-signal stable and achieves desired
time-domain responses. Also, our tuning method significantly
facilitates the parameter tuning of the VSM-connected system.
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