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Abstract—This paper proposes a measurement-based method
to dispatch DER reactive-power output with the objective of min-
imizing distribution network loss and cost of DER reactive power.
Central to the proposed method is the estimation of network loss
and voltage sensitivities with respect to individual DER reactive-
power output from synchronized power-injection data collected
from distribution-level phasor measurement units. The estimated
sensitivities are embedded within gradient-descent iterations
that converge to DER reactive-power setpoints corresponding
to the optimal operating point. The proposed method respects
typical constraints on DER reactive-power outputs and bus
voltage magnitudes. Numerical simulations involving the IEEE
33-bus distribution test system demonstrate that the proposed
measurement-based method yields sufficiently accurate reactive-
power setpoints compared to those obtained from a model-based
benchmark solution to minimize network loss while regulating
bus voltages.

I. INTRODUCTION

The proliferation of distributed energy resources (DERs)
like solar photovoltaic (PV) systems in the distribution net-
work poses numerous challenges for grid operators. For
example, solar PV generation is intermittent, variable, and
uncertain, which may cause power quality issues related to
nodal voltages, network loss, and line flows [1]. On the
other hand, suitable control of DER reactive-power output
can offer significant benefit to system operation with little
added infrastructure. In this regard, a promising application for
DER reactive-power control is to minimize network loss and
regulate bus voltages (see, e.g., [2]). Optimal DER dispatch
generally requires an accurate and up-to-date network model,
but this may not be available to system operators in real
time [3]. Also, standard model-based DER dispatch may
lead to computationally challenging nonlinear optimization
problems. In recent times, many measurement devices, such
as smart meters and distribution-level phasor measurement
units (D-PMUs), are being deployed in power distribution
systems. This enables the development of measurement-based
monitoring and control tools [4].

Existing measurement-based methods that optimize DER
setpoints use estimated bus-voltage and injection sensitiv-
ities to improve the voltage profile across a distribution
network, regulate the power exchange between the distribu-
tion and transmission systems, and minimize cost of gen-
eration [5]–[8]. These measurement-based methods rely on
frequent re-optimization based on the estimated sensitivity
models and recent measurements. Instead of frequently solving
static optimization problems, another line of work uses so-
called feedback optimization to design controllers that achieve

distribution-level voltage regulation in centralized manner [9],
[10] and distributed fashion [11]–[13]. Feedback optimiza-
tion methods iteratively converge to optimal DER setpoints
by taking gradient-descent steps of the objective function.
Combined control of system voltages and substation power
setpoints is achieved via primal-dual gradient methods to solve
a saddle-point problem in a distributed fashion in [14]. The
general framework is further extended to include aggregations
of DERs, multi-phase systems, and discrete DER setpoints
through a bilevel optimization formulation in [15]. The afore-
mentioned feedback optimization methods all rely on some
prior knowledge of the underlying power network structure
to compute relevant gradients. Measurement-based loss min-
imization via reactive-power dispatch is developed using an
extremum seeking approach in [16] that requires structured
probing of DER injections with sinusoidal waveforms.

In this paper, we focus on the problem of optimally dis-
patching DER reactive-power outputs and propose a fully
measurement-based approach that does not rely on any prior
knowledge of the distribution-network topology or parameters.
Our proposed method makes several contributions over the
state of the art. First, we leverage synchronized measurements
of nodal power injections obtained from D-PMUs to estimate
linear sensitivities of the network loss and bus-voltage magni-
tudes with respect to reactive-power injections at DER buses.
By repeatedly estimating the loss and voltage sensitivities,
they readily adapt to operating-point and network-topology
changes. Subsequently, we directly embed the estimated sensi-
tivities into gradient-descent updates to enable DER reactive-
power outputs to converge to setpoints that minimize an
objective function consisting of network loss and DER costs.
This obviates the need to formulate nonlinear functions of
loss and voltage magnitudes in the optimization problem, as
is typically the case in model-based methods (see, e.g., [2]).
Furthermore, unlike the measurement- and sensitivity-based
voltage control in [5], [6] and DER dispatch [7], [8], we
achieve the optimal operating point with an iterative gradient-
descent approach. As a direct consequence, computational
burden incurred in updating DER setpoints is reduced. With
respect to existing feedback optimization methods [9]–[15],
our proposed method relies only on measurements, and numer-
ical simulations demonstrate that DER reactive-power outputs
converge to setpoints that correspond to the optimal operating
point. Finally, compared to [16], the proposed method requires
smaller injection perturbations for sensitivity estimation.

Via numerical simulations involving the IEEE 33-bus test



system, we demonstrate that the proposed method effectively
achieves the optimal operating point and yields accurate DER
reactive-power setpoints compared to a model-based bench-
mark solution, and it quickly adapts to operating-point and
network-topology changes. Furthermore, by embedding DER
costs in the objective function and considering bus voltage
constraints, the proposed measurement-based approach effec-
tively solves a general formulation of the volt-var optimization
problem without relying on any knowledge of system topology
or parameters.

II. PRELIMINARIES

In this section, we establish notation, describe the network
model, and motivate the need for a measurement-based ap-
proach to dispatch DERs.

A. Network Model

Consider a distribution system with N buses collected in
the set N = {1, . . . , N}. Also, consider a subset of D buses
D ⊆ N connected to DERs. Suppose D-PMU measurements
of pertinent system variables are sampled at time t = k∆t, k =
0, 1, . . . , where ∆t is the time interval between consecutive
samples. Let Vi,[k] denote the voltage magnitude at bus i and
time step k. Let Pi,[k] denote the net active-power injections
at bus i and time step k and collect them in vector P[k] =
[P1,[k], . . . , PN,[k]]

T. Similarly, let Qgen
i,[k] denote the reactive-

power injection from the DER at bus i ∈ D at time step k and
collect them in vector Qgen

[k] = [{Qgen
i,[k]}i∈D]T. Also, collect

bus voltage magnitudes at buses with DERs installed at time
step k in vector V[k] = [{Vi,[k]}i∈D]T. Furthermore, compactly
express the network loss P loss

[k] at time step k as a function of
DER reactive-power injections Qgen

[k] :

P loss
[k] = h[k](Q

gen
[k] ), (1)

where h[k] : RD 7→ R. In (1), the dependence on active-
and reactive-power loads, DER active-power injections, as
well as network topology and associated parameters (such as
line impedances), at time step k, are implicitly considered in
h[k](·). Given the notation established above, and assuming
all bus active-power injections Pi,[k] are measured, the total
network loss at time step k can be computed by

P loss
[k] =

∑
i∈N

Pi,[k]. (2)

B. Problem Formulation

Typically, DER reactive-power setpoints that optimize op-
eration in the distribution system are obtained by solving a
problem that relies on an offline network model with accu-
rate topology and line parameters. This approach formulates
f(·) : RD 7→ R as an objective function subject to network

power-flow equations, bus voltage limits, and DER operational
constraints in the following optimization problem:

minimize
Qgen

[k]
∈Q

f(Qgen
[k] ), (3a)

subject to V[k] = σ[k](Q
gen
[k] ), (3b)

Vmin ≤ V[k] ≤ Vmax, (3c)

where σ[k] : RD 7→ RD maps DER reactive-power outputs to
bus voltage magnitudes through the power flow constraint (the
dependence on bus active-power injections is implicitly con-
sidered in σ[k]), Vmin and Vmax respectively denote minimum
and maximum bus voltage limits, and Q denotes the feasible
region of DER reactive-power outputs.

The nonlinear optimization problem (3) may lead to signifi-
cant computational burden. Instead of solving (3) directly, we
leverage a gradient-descent method, in which optimal DER
setpoints are updated iteratively as follows:

Qgen
[k+1]=projQ(Qgen

[k] −α[k](∇f(Qgen
[k] )+ΣT

[k]∇g(V[k]))), (4)

where projQ(·) denotes the projection onto Q, Σ[k] is the
first-order sensitivity matrix of σ[k](Q

gen
[k] ) with respect to

the decision variable Qgen
[k] , g : RD 7→ RD is a convex

and continuously differentiable penalty function to ensure
constraint (3c) is satisfied, and α[k] is the step size. We can
evaluate Σ[k] by linearizing a suitable power flow model of
the system or by estimating it using online measurements (as
in our proposed framework).

The gradient-based approach in (4) reduces the compu-
tational burden in obtaining the optimal DER setpoints as
compared to solving the offline optimization problem (3). In
contrast to existing work on feedback optimization methods
that rely on model-based gradient updates (see, e.g., [10]), we
embed estimated sensitivities of network loss and bus voltage
magnitudes with respect to DER reactive-power injections in
updating the DER reactive-power setpoints. This enables the
system to reach the optimal operating point without any prior
knowledge of the system model.

III. MEASUREMENT-BASED DER DISPATCH

In this section, we estimate sensitivities of the network
loss and voltage magnitudes with respect to DER reactive-
power outputs. We then incorporate the estimated sensitivities
in a gradient-descent method to obtain optimal DER reactive-
power setpoints while respecting DER reactive-power output
limits and bus voltage constraints.

A. Estimation of Sensitivity Models

Suppose h[k](·) and σ[k](·) are continuously differentiable
with respect to Qgen

[k] . We approximate network loss and bus
voltage magnitudes at time step k+1, P loss

[k+1] and V[k+1], with
the following first-order Taylor series expansions:

P loss
[k+1] ≈ h[k](Q

gen
[k] ) +∇hT[k](Q

gen
[k+1] −Q

gen
[k] ), (5)

V[k+1] ≈ V[k] +∇σT
[k](Q

gen
[k+1] −Q

gen
[k] ), (6)



where ∇h[k] ∈ RD and ∇σ[k] ∈ RD×D denotes the gradient
of h[k](·) and σ[k](·) with respect to DER reactive-power
injections evaluated at the operating point Qgen

[k] , respectively.
The linearized models in (5) and (6) can be rewritten as

P loss
[k+1] ≈ κ[k] + ρT[k]Q

gen
[k+1], (7)

V[k+1] ≈ λ[k] + ΣT
[k]Q

gen
[k+1], (8)

where ρ[k] = ∇h[k] and κ[k] = h[k](Q
gen
[k] ) − ρT[k]Q

gen
[k] , and

similarly Σ[k] = ∇σ[k] and λ[k] = σ[k](Q
gen
[k] )−ΣT

[k]Q
gen
[k] . We

note that the linear model in (8) is similar to the LinDistFlow
model widely used in the literature (its derivation in matrix
form is provided in [17]). Furthermore, we equivalently ex-
press (7) and (8) as

P loss
[k+1] ≈

[
1 (Qgen

[k+1])
T
]
γ[k], (9)

V[k+1] ≈
[
1 (Qgen

[k+1])
T
]

Λ[k], (10)

with γ[k] = [κ[k], ρ
T
[k]]

T, and Λ[k] = [λT[k],Σ
T
[k]]

T. In order
to remove the reliance on an accurate network model, we
estimate the entries of γ[k] and Λ[k] using only online measure-
ments. Suppose that M measurements of bus net active-power
injections, P̂[k−M+1], . . . , P̂[k], are available so that the net-
work loss at time steps k−M+1, . . . , k, P̂ loss

[k−M+1], . . . , P̂
loss
[k] ,

can be computed using (2). Further suppose measurements
of DER reactive-power injections, Q̂gen

[k−M+1], . . . , Q̂
gen
[k] , and

DER bus voltage magnitudes, V̂[k−M+1], . . . , V̂[k], are avail-
able. Assuming that active- and reactive-power loads as well
as active-power DER injections remain relatively constant over
the M measurement samples, we stack up M instances of (9)
and (10) to yield

y[k] = X[k]γ[k], (11)
Z[k] = X[k]Λ[k], (12)

where y[k] ∈ RM and X[k] ∈ RM×(D+1) are given by

y[k] =


P̂ loss
[k−M+1]

...
P̂ loss
[k]

 , X[k] =


1 (Q̂gen

[k−M+1])
T

...
...

1 (Q̂gen
[k] )T

 , (13)

and Z[k] ∈ RM×D is given by

Z[k] =


(V̂ gen

[k−M+1])
T

...
(V̂ gen

[k] )T

 . (14)

Assume that M > (D + 1), then (11) and (12) are over-
determined systems of equations, and we can obtain the
ordinary least-squares estimates for γ[k] and Λ[k] as

γ̂[k] ≈ (XT
[k]X[k])

−1XT
[k]y[k], (15)

Λ̂[k] ≈ (XT
[k]X[k])

−1XT
[k]Z[k], (16)

from which we can extract the estimated κ̂[k] and ρ̂[k] in
the approximate network loss function (7), and similarly the

estimated λ̂[k] and Σ̂[k] in the approximate linear voltage
function (8). Note that in the proposed framework, we include
voltage magnitudes only at buses in the set D to build the
sensitivity model. However, this could easily be generalized by
including measurements from all buses in Z[k], to incorporate
voltage constraints at all buses in the set N in problem (3).

B. Optimal Reactive-power Dispatch with Gradient Descent

Instead of solving a potentially computationally burdensome
model-based optimal reactive-power dispatch problem (3), we
opt to embed the estimated loss and voltage sensitivities in
successive measurement-based gradient-descent updates. We
aim to minimize network loss and cost of DER outputs by
defining the objective function as follows:

f(Qgen
[k] ) = h[k](Q

gen
[k] ) +

1

2
(Qgen

[k] )TΥQgen
[k] , (17)

where Υ = diag(υ1, . . . , υD) ∈ RD×D is a diagonal coef-
ficient matrix with non-negative entries, i.e., υi ≥ 0, repre-
senting cost coefficients proportional to the square of DER
reactive-power outputs. We opt to have quadratic costs for
DER reactive-power output, but we note that proportional costs
could easily be accommodated in the proposed framework.

In order to solve (3) with objective function (17) using a
measurement-based gradient-descent method, we first derive
the derivative of f(·). Recognizing that ρ̂[k] corresponds to the
gradient of the loss function h[k](·) evaluated at the operating
point, we have:

∇f(Qgen
[k] ) = ρ̂[k] + ΥQgen

[k] (18)

Subsequently, we embed (18) and the estimated voltage sen-
sitivities Σ̂[k] into (4) to obtain the following DER reactive-
power setpoint updates:

Qgen
[k+1]=projQ(Qgen

[k] −α[k](ρ̂[k]+ΥQgen
[k] +Σ̂T

[k]βS(V[k]))),

(19)

where β is a weight parameter and S(·) is the soft-thresholding
operator associated with the penalty function g(·) given by:

S(V[k]) =


V[k] − 1, if V[k] ≥ Vmax,

0, if Vmin ≤ V[k] ≤ Vmax,

V[k] − 1, if V[k] ≤ Vmin,

(20)

We emphasize that in (19) all variables and parameters are
either directly measured or estimated from measurements,
which makes the DER updates independent from an offline
network model.

In the proposed framework, the DER reactive-power set-
points collected in Qgen

[k+1] are updated every M time steps
using (19), after the estimated sensitivities of network loss
ρ̂[k] and bus voltages Σ̂[k], are computed using (15) and (16),
respectively. Repeated and iterative estimations of the loss
and voltage sensitivities and dispatch of DER reactive-power
injections achieve convergence towards the optimal operating
point while adapting to changes in the network.
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Fig. 1. IEEE 33-bus test system with DER systems at buses 6, 12, 18, 25,
and 33. Switches SW1 and SW2 are normally open, and switches SW3 and
SW4 are normally closed.
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Fig. 2. Network loss resulting from the measurement-based DER reactive-
power dispatch method compared to the model-based method.

IV. CASE STUDIES

We perform simulations involving the IEEE 33-bus test
system in MATPOWER [18] (see Fig. 1), in which we set the
power base to 10 MVA. Five DER (e.g., solar PV) systems
are connected to buses in D = {6, 12, 18, 25, 33}. Assume that
synchronized measurements of net active-power injections at
all buses and DER reactive-power outputs as well as voltage
magnitudes at buses in D are available from D-PMUs at inter-
vals of 1/60 s, which is reasonable as D-PMUs are capable of
streaming up to 120 samples per second [4]. Also assume that
the DER active-power outputs remain approximately constant
over the time interval in which M = 10 sets of measurements
are collected. Each DER reactive-power output is constrained
within Qi = [−0.1, 0.1] p.u., i ∈ D, and Q = Πi∈DQi.
In order to estimate the network sensitivities in (7) and (8),
we perturb the reactive-power outputs of DER systems with
random Gaussian distributed variations of zero mean and
0.01% standard deviation relative to the their nominal values.

A. Loss Minimization

In the first case study, we simulate a scenario, in which we
focus on the capability of the method to minimize network
loss. To this end, we set entries in Υ to 0 and use voltage limits
of 1±0.15 p.u. (we find that voltage constraints are not binding
with these limits). We benchmark the measurement-based
DER reactive-power dispatch against the model-based method
assuming that an accurate network model is available. In a
time-domain simulation, the system initially operates with-
out DER reactive-power contribution. At time t = 2 s, DER
reactive-power dispatch capability is activated. Subsequently,
at time t = 5 s, the system topology is reconfigured by closing
switches SW1 and SW2 and opening switches SW3 and SW4,
and simultaneously, active- and reactive-power loads at all
buses in the system grow by 25%. The simulation runs until
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Fig. 3. Bus voltage magnitude Vi and DER reactive-power generation Qgen
i

at t = 4.9 s prior to changes in network topology and system load obtained
via (i) model-based method, and (ii) proposed measurement-based method.
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Fig. 4. Bus voltage magnitude Vi and DER reactive-power generations Qgen
i

at t = 7 s after changes in network topology and system load obtained
via (i) model-based method, and (ii) proposed measurement-based method.

time t = 7 s. The step size α[k] is set using the BarzilaiBorwein
method, in order to take steepest-descent steps: [19]

α[k] =

∣∣∣(Qgen
[k] −Q

gen
[k−1])

T(ρ̂[k] − ρ̂[k−1])
∣∣∣∣∣∣∣ρ̂[k] − ρ̂[k−1]∣∣∣∣22 . (21)

Time evolution of the network loss resulting from simulating
the scenario described above is plotted in Fig. 2. Once DER
reactive-power dispatch is activated at time t = 2 s, the
proposed measurement-based dispatch effectively converges
to the minimum-loss operating point obtained by the model-
based approach. Also, after network-topology and operating-
point changes at time t = 5 s, the proposed method updates
DER reactive-power setpoints to minimize loss. Figures 3
and 4 visualize bus voltages Vi and DER reactive-power
outputs Qgen

i at t = 4.9 s before network reconfiguration, and
at t = 7 s after network reconfiguration, respectively. Results
from the proposed method match very closely to those from
the model-based dispatch with accurate system model.

B. Loss and DER Cost Minimization

Here, we simulate a scenario that minimizes a combined
cost function comprising network loss and DER costs. To this
end, we set the diagonal entries in Υ between 0.22 and 0.3 in
order to give different costs to different DERs, and use voltage
limits Vmin and Vmax of 1 ± 0.05 p.u. (we find some of the
voltage constraints binding with these limits). Instead of the
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Fig. 5. Time-domain simulation via proposed measurement-based optimal
DER reactive-power dispatch. DER reactive-power dispatch is activated at
time t = 2 s. Top pane: bus voltages Vi at buses with DERs; Bottom
pane: substation reactive-power injection Q1 and DER reactive-power outputs
Qgen

i at controllable buses.
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Fig. 6. Evaluation of cost function value over time for the measurement-based
DER reactive-power dispatch method considering DER costs and voltage
constraints, compared to the model-based method.

value in (21), we fix the step size α[k] to 0.04. We further
set the parameter β = 50 to appropriately weigh the penalty
term for voltage constraint violations. We simulate the same
scenario as in the previous case study, except that there are no
changes in network topology or operating point.

In Fig. 5, we plot bus voltage magnitudes and DER
reactive-power outputs resulting from simulating the scenario
described above with the proposed measurement-based DER
dispatch method. Indeed, once DER reactive-power dispatch
is activated at time t = 2 s, we observe that the proposed
measurement-based framework effectively achieves the ob-
jective of minimizing network loss and DER costs. After
activation of DERs, the substation reactive-power injection
decreases sharply since DERs collectively provide voltage
support by injecting reactive power, as shown in the bottom
pane of Fig. 5. Furthermore, the evaluated cost function value
at each time step for the above scenario is plotted in Fig. 6.
We observe that the measurement-based method achieves a
slightly lower value compared to the model-based benchmark
at steady state, which is due to the “soft” voltage constraints
implemented in the measurement-based framework.

V. CONCLUDING REMARKS

In this paper, we present a measurement-based method to
optimally dispatch DER reactive power. We estimate linear
sensitivities of the network loss and bus voltages with re-
spect to DER reactive-power injections from synchronized
bus injection and voltage measurements. Subsequently, we
use the estimated sensitivities in gradient-descent iterations to

obtain optimal DER reactive-power setpoints. Simulations of
the IEEE 33-bus test system demonstrate that the proposed
measurement-based method yields accurate DER setpoints
compared to the model-based method, and achieves combined
objectives of minimizing network loss and DER costs while
considering bus voltage constraints without relying on any
knowledge of an offline system model.
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