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Abstract—Direct load control enables load aggregators in
distribution networks to remotely curtail customers’ appliances
during peak time periods. This paper proposes a direct load
control algorithm for residential customers, while accounting for
the uncertainties in the customers’ discomfort from curtailing
their demand as well as the operational constraints imposed by
the distribution network. We model the load control problem
as a Markov decision process (MDP). Solving such an MDP is
challenging due to the ac power flow equations and the unknown
dynamics of the system states (i.e., price, demand, and cus-
tomer’s discomfort). We develop a deep reinforcement learning
algorithm based on the actor-critic method that enables the
load aggregator to consider the distribution network constraints
and the consequences of its past decisions to update the neural
network parameters for the policy and value function without any
knowledge of the system dynamics. Simulations are performed
on an IEEE 85-bus test feeder with 59 households. Results show
that the load aggregator learns to reduce the peak load by 16.7%,
while taking into account the distribution network constraints.
Also, the customers’ cost is decreased by 26.6% on average;
thereby reaching a win-win outcome.

I. INTRODUCTION

Proper management of distribution networks is crucial to
meet the electricity demand during peak load periods. A well-
designed direct load control program is a viable approach for
load aggregators to target peak reduction by remotely adjusting
the operation of appliances in residential households [1]. It can
prevent large-scale emergency outages, high network infras-
tructure investment for additional generation and transmission,
and voltage drop during peak load periods. At the same time,
customers can benefit from lower electricity bill payments.

Implementing a direct load control program involves chal-
lenges for the load aggregator due to the uncertainty in the
electricity prices and customer load demand. Also, the load
aggregator usually does not have information about the cus-
tomers’ discomfort from curtailing their load demand. More-
over, the load aggregator should account for the operational
constraints imposed by the distribution network, since the
power flow is sensitive to the load changes.

There are several studies in the literature that address the
uncertainties in the price, load demand, and customers’ prefer-
ences using mechanisms such as stochastic optimization [2],
[3], robust optimization [4], and dynamic programming [5].
These techniques, however, require knowledge of the uncertain
parameters’ stochastic process, which may not be available
in practice. To address this challenge, there have been some
efforts on applying deep reinforcement learning for load
control in microgrids [6], residential buildings [7]–[9], and
electric vehicles charging stations [10], [11]. Deep reinforce-
ment learning does not require knowledge of the parameters’
stochastic process. However, a load control policy may not

yield a feasible power flow solution in the distribution network.
Existing studies do not consider the constraints imposed by the
topology and operation of the distribution network.

In this paper, we apply deep reinforcement learning to
develop a load control algorithm for the load aggregator in a
distribution network. We take into account the uncertainty in
price, load demand variation, and customers’ discomfort from
curtailing their desirable demand. The main challenge that we
address is to include the distribution network constraints in the
learning process to guarantee that the obtained load control
action corresponds to a feasible power flow in the distribution
network. The contributions of this paper are as follows:
• Load Control Algorithm Design: We apply an actor-critic-

based [12] deep reinforcement learning [13], which is
more robust than actor-only methods (such as the policy
evaluation [6], [7]) and faster than critic-only methods
(such as the Q-learning [8]–[11]). It enables the load
aggregator to gradually update the neural network param-
eters associated with the policy and value function based
on its experience from the past load control decisions.

• Distribution Network Constraints: A challenge in learn-
ing algorithm design is to update the load control policy
considering the ac power flow equations. To address the
non-convexity of the power flow equations, we apply con-
vex relaxation and transform the problem of updating the
neural network parameters into a sequence of semidefinite
programs (SDPs). The load aggregator solves an SDP to
choose the global optimal load control action under the
given policy and distribution network constraints.

• Reducing Peak Load and Customers’ Cost: We evaluate
the performance of our proposed algorithm in reducing
the peak load and the average cost of 59 households in an
IEEE 85-bus test feeder. Compared with the benchmark
of not performing load control, our results show that the
load aggregator reduces the peak load by 16.7% and the
households’ average cost is decreased by 26.6%.

II. SYSTEM MODEL

Consider a distribution feeder consisting of N buses. Let
N = {1, . . . , N} denote the set of buses. We assume that bus
N corresponds to the substation bus and bus n ∈ N− corre-
sponds to household n, where N− = {1, . . . , N−1}. Let L ⊆
N ×N denote the set of transmission lines. Each household is
equipped with an energy consumption controller (ECC), which
is responsible for scheduling the appliances in that household.
The ECCs are connected to a load aggregator via a two-way
communication network, which enables the load aggregator
to remotely control the operation of some appliances in



the households based on an agreement. We consider long-
term load control (e.g., several weeks) and approximate the
load control problem with an infinite operation horizon. We
consider a discrete set T = {1, 2, . . . } of time slots, each
with equal duration, e.g., 15 minutes per time slot.

A. Household Action and State Models
The active power demand Pn(t) for household n ∈ N− in

time slot t ∈ T consists of the controllable load demand P c
n(t)

and the base load demand P b
n(t), which is uncontrollable. We

have Pn(t) = P b
n(t)+P c

n(t). The household’s appliances may
include electromagnetic devices require reactive power. We
consider the overall power factor ξn ∈ [−1, 1]\{0} for house-
hold n, which is known a priori by the ECC. The reactive
power demand of household n in time slot t is obtained as
Qn(t) = Pn(t) sign{ξn}

√
1
ξ2n
−1, where sign{ξn} = 1 with

lagging power factor and sign{ξn} = −1 otherwise.
The action for household n ∈ N− in time slot t is

defined as the scheduled controllable load P c
n(t). Let P c,min

n (t)
denote the lower bound for the controllable load of household
n in time slot t. Household n incurs a discomfort cost
dn(P c

n(t), P c,des
n (t)) in time slot t, which expresses the con-

sumer’s dissatisfaction with changing its controllable load de-
mand from the desirable value P c,des

n (t) to the scheduled value
P c
n(t). We take into account the uncertainty in the discomfort

cost of household n by assuming that the load aggregator
becomes aware of the discomfort cost dn(P c

n(t), P c,des
n (t))

at the end of time slot t, after scheduling the controllable
loads. We assume that the base load P b

n(t), and parameters
P c,min
n (t) and P c,des

n (t) for household n are revealed to the load
aggregator at the beginning of time slot t, before scheduling
the controllable loads. We define the state of household n in
time slot t as vector sn(t) = (P b

n(t), P c,min
n (t), P c,des

n (t)).
Let ρ(t) denote the electricity price in time slot t ∈ T . We

consider a stationary decision making for the load aggregator,
which only depends on the system state s(t) = (sn(t), n ∈
N−, ρ(t)), including the state of households and the elec-
tricity price. Considering stationary load scheduling, we can
replace time index t by the state index s in the variables and
parameters. We model the load control problem as a Markov
decision process (MDP), where the system state in the next
time slot t + 1 can be inferred from the state and action in
the current time slot t [14]. The load aggregator observes the
system state s and broadcasts the scheduled demand to the
households’ ECC. The load aggregator curtails the energy use
in the households. Thus, in state s, we have

P c,min
n (s) ≤ P c

n(s) ≤ P c,des
n (s), n ∈ N−. (1)

B. Power Flow Feasible Space

Let Y denote the distribution feeder admittance matrix. For
bus n ∈ N , let en denote the nth basis column vector in
RN and Yn = ene

T
nY . We use the lumped-element Π model

for transmission lines. Let ynm and ynm denote the series
and shunt admittance values at bus n for the line (n,m) ∈ L,
respectively. We define Ynm = (ynm+ynm)ene

T
n−ynmeneT

m,
so that the entries (n, n) and (n,m) of Ynm are ynm + ynm

and −ynm, respectively. Other entries of Ynm are zero. We
define matrices Yn, Yn, Ynm, Ynm, and Mn as follows:

Yn =
1

2

[
Re{Yn + Y T

n } Im{Y T
n − Yn}

Im{Yn − Y T
n } Re{Yn + Y T

n }

]
, (2a)

Yn =
−1

2

[
Im{Yn + Y T

n } Re{Yn − Y T
n }

Re{Y T
n − Yn} Im{Yn + Y T

n }

]
, (2b)

Ynm =
1

2

[
Re{Ynm + Y T

nm} Im{Y T
nm − Ynm}

Im{Ynm − Y T
nm} Re{Ynm + Y T

nm}

]
, (2c)

Ynm =
−1

2

[
Im{Ynm + Y T

nm} Re{Ynm − Y T
nm}

Re{Y T
nm − Ynm} Im{Ynm + Y T

nm}

]
, (2d)

Mn =
[
eneT

n 0

0 eneT
n

]
. (2e)

Let Vn(s) denote the voltage phasor of bus n in state s. Let
v(s) = (Vn(s), n ∈ N ) denote the vector of bus voltages. We
separate the real and imaginary parts of v(s) to define variable
vector x(s) = [ (Re{v(s)})T (Im{v(s)})T ]T in state s. We
also define variable matrix W(s) = x(s)(x(s))T in state s.
We use matrices in (2a)−(2e) to obtain the following con-
straints imposed by the distribution network [15] in state s:
Pn(s) = −Tr{YnW(s)}, n ∈ N− (3a)

Pn(s) sign{ξn}

√
1

ξ2
n

−1 = −Tr{YnW(s)}, n ∈ N− (3b)

0 ≤ Tr{YNW(s)} ≤ Pmax
N , (3c)

Qmin
N ≤ Tr{YNW(s)} ≤ Qmax

N . (3d)
(V min
n )2 ≤ Tr{MnW(s)} ≤ (V max

n )2, n ∈ N (3e)[
(Smax

nm)2 Tr{YnmW(s)} Tr{YnmW(s)}
Tr{YnmW(s)} 1 0
Tr{YnmW(s)} 0 1

]
� 0,

(n,m) ∈ L (3f)
rank{W(s)} = 1. (3g)

Constraints (3a) and (3b) represent power balance at buses
n ∈ N−. Constraints (3c) and (3d) represent the limits on the
injected active power PN (s) and reactive power QN (s) into
the substation, respectively. Constraint (3e) shows the limits
on the voltage magnitude of bus n ∈ N . Constraint (3f) is the
matrix form of inequality |Snm(s)| ≤ Smax

nm for the limit on
the apparent power flow in line (n,m) ∈ L. Constraint (3g)
ensures that W(s) is a rank-one matrix.

III. PROBLEM FORMULATION

In this section, we formulate the load control problem as
an MDP with an infinite operation horizon. The system state
is the vector s. We consider a finite set of states denoted
by S. The action in state s ∈ S is defined as a tuple
ϕ(s) = (W(s), P c

n(s), n ∈ N−). The feasible action space
Φ(s) is defined by constraints (1) and (3a)−(3g). We assume
that the load aggregator considers the social cost (i.e., sum of
the bill payment and discomfort cost of the households) as the
immediate cost in each state s ∈ S. That is, we have
c(s, ϕ(s))=

∑
n∈N−

(
ρ(s)Pn(s)+dn

(
P c
n(s), P c,des

n (s)
))
. (4)

The load aggregator considers a policy in state s ∈ S as a



probability distribution π(s) = (π(s, ϕ(s)), ϕ(s) ∈ Φ(s))
that specifies the probability π(s, ϕ(s)) of choosing an action
ϕ(s) in state s. A stationary policy is defined as π =
(π(s), s ∈ S). Under a given policy π, the value function
V π : S → R returns the discounted cost starting with state s:

V π(s) = E{Qπ(s, ϕ(s))}, (5)

where E{·} is the expectation over selecting different actions
ϕ(s) ∈ Φ(s) under the given policy π. Function Qπ(s, ϕ(s))
is the Q-function for action ϕ(s) in state s under the given
policy π. For a discount factor β ∈ [0, 1), we have

Qπ(s, ϕ(s)) = c(s, ϕ(s))

+ β
∑
s′∈S Pr(s′ | s, ϕ(s))V π(s′), (6)

where Pr(s′ | s, ϕ(s)) is the transition probability from system
state s to s′ with action ϕ(s). The load aggregator aims to
determine a policy π such that the value function in (5) is
minimized over all initial states s ∈ S. It is equivalent to
solving the following Bellman optimality equations:

P1 : V π(s) = minimize
ϕ(s)∈Φ(s)

E{Qπ(s, ϕ(s))}, ∀ s ∈ S.

Solving problem P1 is challenging, since the transition proba-
bilities between the states may not be available. We develop a
model-free learning algorithm that enables the load aggregator
to gradually update the policy and value function without any
knowledge on the system dynamics. It is difficult to obtain a
feasible action due to the rank-one constraint (3g). Hence, we
consider a modified policy in state s ∈ S as a probability
distribution π̃(s) = (π̃(s, P c(s)), P c(s) ∈ Φc(s)) that
includes the probability π̃(s, P c(s)) of choosing vector P c(s)
for scheduling the households’ controllable load in feasible
space Φc(s) defined by constraint (1). The load aggregator
uses its modified policy to select an action P c(s) ∈ Φc(s) in
state s. With P c(s), there may not exist matrix W(s) that
satisfies constraints (3a)−(3g). The load aggregator perturbs
the selected action P c(s) to obtain a new action P̂ c(s), for
which there exists rank-one matrix W(s). A viable approach
to obtain P̂ c(s) is to project vector P c(s) onto the feasible
action space. The load aggregator solves the following opti-
mization problem to obtain vector P̂ c(s) and matrix W(s):

P2 : minimize
P̂ c(s),W(s)

||P̂ c(s)− P c(s)||22

subject to constraints (3a)−(3g),

P̂ c(s) ∈ Φc(s).

Problem P2 is a nonconvex optimization problem due to the
rank-one constraint (3g). We relax constraint (3g) and replace
it with constraint W(s) � 0 that enforces matrix W(s) to
be positive semidefinite. Furthermore, we define an auxiliary
variable α(s), such that ||P̂ c(s) − P c(s)||22 ≤ α(s), which
can be expressed as the following linear matrix inequality:[

α(s)
(
P̂ c(s)− P c(s)

)T

P̂ c(s)− P c(s) I(s)

]
� 0, (7)

where I(s) is an |N−|×|N−| identity matrix. We replace the
objective function with α(s) to transform problem P2 into

the following optimization problem:
P3 : minimize

α(s), P̂ c(s),W(s)
α(s)

subject to constraints (3a)−(3f) and (7),
W(s) � 0,

P̂ c(s) ∈ Φc(s).

Problem P3 is an SDP and can be solved efficiently to obtain
action ϕ(s) = (P̂ c(s), W(s)), which is feasible for the
network. Next, we show that the optimal solution to P3 is
the global optimal solution to P2.
Theorem 1: The relaxation gap between problems P2 and P3

is zero. That is, the solution matrix W(s) to P3 is rank-one.
Proof sketch: We obtain problem P r

2 by relaxing rank-
one constraint (3g) in problem P2. The objective function
||P̂ c(s) − P c(s)||22 can be expressed as a sum of quadratic
functions of P c

n(s), n ∈ N−. Hence, we can interpret problem
P r

2 as an optimal power flow (OPF) problem in the underlying
distribution network, where the load in bus n has a quadratic
cost function. Practical distribution networks (including IEEE
test feeders) satisfy the sufficient conditions given in [15, Sec.
IV-C] for the network topology and constraints. Thus, the SDP
relaxation gap between problems P2 and P r

2 is zero. Problem
P r

2 is equivalent to P3. This completes the proof sketch. �
Another challenge to develop a learning algorithm is to

deal with a high-dimensional and large state space S and
continuous action space. We consider parametrized policy and
value function [13]. In particular, we use a deep neural network
with parameters vector ϑ, an input layer s, and an output
layer V π(s,ϑ) to obtain the optimal value function. Also,
we use a deep neural network with parameters vector θ, an
input layer s, and an output layer with softmax function to
obtain a discrete probability distribution as the modified policy.
Instead of updating the value function and policy directly, the
load aggregator determines the optimal values of the neural
network parameters ϑopt and θopt, such that the value function
and policy are the solution to problem P1.

IV. LEARNING ALGORITHM DESIGN

We apply an actor-critic-based reinforcement learning [12],
where the actor determines the policy and the critic uses the
value function to evaluate the policy. Algorithm 1 describes
our proposed algorithm. The actor and critic updates are
performed when the new system state is observed by the load
aggregator at the beginning of each time slot. Hence, the load
aggregator only goes through one iteration per time slot. We
use index k to refer to both iteration and time slot.

Line 1 describes the initiation phase. The loop involving
Lines 2 to 13 describes the actor and critic updates and the
action selection phase in iteration k. In Line 3, the load
aggregator observes state sk at the beginning of time slot k.
For k = 1, the load aggregator does not have any experience
from its past decisions. Thus, it performs the action selection
phase in Lines 9 to 11 to determine an action ϕ1(s1) and
receive the immediate cost c(s1, ϕ1(s1)). For iteration k > 1,
the load aggregator performs the actor and critic updates phase



Algorithm 1 Load Control Algorithm.
1: Set k := 1, ε := 10−5, and randomly initialize θ1 and ϑ1.
2: Repeat
3: Observe current state sk := (sn,k, n ∈ N−, Yk, ρk).
4: If k 6= 1,
5: Determine the TD error δk−1(ϑk−1) according to (8).
6: Determine the updated vector ϑk according to (9).
7: Determine the updated vector θk according to (10).
8: End if
9: Use policy π̃k(sk, θk) to select a vector P c

k(sk)∈Φc
k(sk).

10: Solve optimization problem P3 to obtain a feasible action
vector ϕk(sk) = (P̂ c

k(sk), Wk(sk)).
11: Receive the immediate cost c(sk, ϕk(sk)) for action ϕk(sk).
12: k := k + 1.
13: Until ||ϑk−1 − ϑk−2|| < ε and ||θk−1 − θk−2|| < ε, k > 2.

in Lines 5 to 7. In Line 5, the load aggregator computes the
temporal difference (TD) error δk−1(ϑk−1) corresponding to
the previous iteration k − 1 as follows:
δk−1(ϑk−1) = c(sk−1, ϕk−1(sk−1)) + βV π(θk−1)(sk, ϑk−1)

− V π(θk−1)(sk−1, ϑk−1). (8)

In (8), the value function in states sk and sk−1 can be obtained
using forward propagation in the neural network for the value
function under the given vector ϑk−1 [13]. In Line 6, the load
aggregator performs the critic update to obtain the updated
parameter vector ϑk using the following rule:

ϑk = ϑk−1 − αc
k−1∇ϑ δ2

k−1(ϑ)
∣∣
ϑ=ϑk−1

, (9)

where αc
k−1 is the step size for the critic update in iteration k.

The gradient vector ∇ϑ δ2
k−1(ϑ) is obtained using the back

propagation algorithm [13] in the neural network associated
with the value function. In Line 7, the load aggregator per-
forms the actor update to determine the updated parameter
vector θk using the following update rule:
θk =θk−1 − αa

k−1 δk−1(ϑk−1)

×∇θ
(
− ln

(
π̃(sk−1,P

c
k−1(sk−1),θ)

))∣∣
θ=θk−1

, (10)

where αa
k−1 is the step size for the actor update in iteration k.

The gradient with respect to θ is obtained using the back
propagation algorithm. Lines 9 to 11 describe the action se-
lection phase. In Line 9, the load aggregator selects vector
P c
k(sk) ∈ Φc

k(sk). In Line 10, it solves problem P3 to obtain
the feasible action ϕk(sk) = (P̂ c

k(sk), Wk(sk)). In Line 11,
the load aggregator broadcasts action ϕk(sk) to the ECCs
and computes the cost c(sk, ϕk(sk)) using (4). Next time
slot is started in Line 12. In Line 13, the stopping criterion is
given. For Algorithm 1 to converge to the solution of P1, it
is necessary that αa

k and αc
k are diminishing step sizes with∑∞

k=1α
a
k =
∑∞
k=1α

c
k = ∞ and

∑∞
k=1(αa

k)2 =
∑∞
k=1(αc

k)2<
∞, and

∑∞
k=1

(
αa
k/α

c
k)d<∞ for some d>0 [12].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
load control algorithm on an IEEE 85-bus distribution feeder
with 59 households. The network data can be found in [16].
The lower and upper bounds for bus voltage magnitudes are
0.9 pu and 1.1 pu, respectively. The maximum apparent power
flow through the transmission lines is 1.05 pu. Unless stated

otherwise, no limit is considered for the active and reactive
power flow in the substation bus. One day is divided into 96
time slots with duration of 15 minutes. We consider a real-time
pricing generated from a truncated normal distribution with the
average values shown in Fig. 1 and a standard deviation of 0.5
cents per kW. The random pricing scheme can be modeled as
an MDP. To obtain the MDP for the base load P b

n(t), and
parameters P c,min

n (t) and P c,des
n (t), t ∈ T , n ∈ N , we use

the state model in [14] by considering six controllable and six
uncontrollable appliances for each household. The discount
factor β is set to 0.9. The discomfort cost for a household
is chosen at random from the interval [0.5, 2] cents per time
slot between 3 pm and 6 am, and is set to 10 cents per time
slot otherwise. For the actor, we consider a neural network
with five hidden layers and 649 nodes in each layer (11 nodes
per household). For the critic, we consider a neural network
with five hidden layers and 295 nodes in each layer (5 nodes
per household). We use leaky rectified linear unit activation
functions. The step sizes are set to αa

k = 25/k and αc
k =

100/k0.6. We perform simulations using MATLAB/CVX with
MOSEK solver and PYTORCH library in PYTHON 3.7.

We first show how Algorithm 1 enables the load aggregator
reducing the peak load. For the sake of comparison, we
consider four load profiles: i) desirable demand without load
control, ii) scheduled demand with load control and learning
using Algorithm 1, iii) desirable demand with load control,
and iv) scheduled demand with load control but without
learning (i.e., untrained neural networks). Fig. 2(a) shows the
load profile of household 1 in day 30 as an example. By using
Algorithm 1, the peak load is reduced from 0.9 kW to 0.7 kW
(i.e., 23% reduction). Without learning, however, the load
aggregator chooses an action at random, and hence the load
control does not have an acceptable performance. Reducing the
controllable load in a time slot causes the desirable demand
increases in upcoming time slots. This can be interpreted
as shifting the load demand from one time slot to future
time slots. Fig. 2(b) shows the aggregate load demand of all
households in day 30. Peak load reduction by 16.7% (from
54 kW to 45 kW) is achieved using Algorithm 1.

Next we show that considering the distribution network
constraints is necessary, as it can affect the load aggregator’s
decision making. We consider an upper limit of 20 kW for
the active power injection into the substation from 12 am to
6 am. Fig. 3 shows that the supply limit affects the learning of
the load aggregator, resulting in a higher demand during the
period from 3 pm to 12 am to avoid shifting too much load
demand to time period 12 am to 6 am. Also, the load demand
increases slightly between 6 am and 12 pm of the next day
as a result of shifting the control load demands. Results show
that power networks constraints can affect the feasible action
space, and hence the load control policy of the load aggregator.

Finally, we study the convergence of Algorithm 1. Fig. 4(a)
shows the convergence of TD error during the first 30 days
(i.e., 2880 iterations). The joint goal of critic and actor updates
in (9) and (10) is to decrease the TD error and make its
expectation to be zero. Also, Fig. 4(b) shows that the value
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Figure 1. Average electricity price rates during one day.
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Figure 2. (a) Load demand of household 1; (b) Aggregate demand of 59
households in the feeder in day 30.

function decreases gradually and converges from $15 to $11
per time slot (i.e., 26.6% reduction). That is, the policy and
value function converge to the optimal solution of problem
P1 at the same time. Notice that Algorithm 1 can converge
to a near optimal solution in the first 10 days (in about 1000
iterations). Hence, Algorithm 1 is applicable in practice to
determine the optimal policy and value function.

VI. CONCLUDING REMARKS

In this paper, we studied the load control problem for a
load aggregator in a distribution network. We deployed deep
reinforcement learning approach to enable load management
under uncertainty in the electricity price, load demand, and
customers’ discomfort cost. To address the non-convexity of
power flow constraints, we transform the problem of updating
neural network parameters into a sequence of SDPs. By
simulations, we showed that the load aggregator can benefit
from 16.7% reduction in the aggregate load demand during
peak hours. A customer also can benefit from 26.6% reduction
in its expected cost. The proposed learning algorithm can
converge to the optimal solution in an acceptable number
of iterations, which is equivalent to a few days in practical
applications. For future work, we will study a distributed
algorithm design for the households’ appliances scheduling.
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