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Abstract

This paper outlines a continuous-time economic
dispatch (CTED) problem that intrinsically
embeds dynamic constraints arising from the
electromechanical behavior of synchronous generators
and enables near-to-real-time optimal scheduling
of generation. In its original form, the CTED
problem is infinite-dimensional, however, we present
a linear-programming reformulation that offers
computational burden comparable to traditional
economic dispatch. The resulting optimal dispatch
trajectories are continuously differentiable and induce
only small-signal variations in automatic generation
control signals. In addition to yielding better system
frequency response, this improves economic efficiency
since the dispatch cost is better aligned with the
actual cost of operating the system. We demonstrate
the economic advantages and dynamic-performance
improvements of the proposed method with time-domain
simulations for a detailed differential algebraic
equation model of an illustrative power network.

1. Introduction

The primary goal of real-time power system
operation is to economically dispatch generation to
meet net system load while regulating frequency.
Presently, this is accomplished by modulating generator
setpoints via a systematically engineered combination
of: i) online proportional-integral control based on
frequency and tie-line-flow errors (automatic generation
control (AGC)); and ii) offline optimization that
minimizes cost of generation based on the load forecast
(economic dispatch (ED)). In this paper, we propose
a continuous-time economic dispatch (CTED) problem
and a companion solution algorithm, which reconciles
the temporal gap that separates look-ahead dispatch and
real-time control in an attempt to reduce generation cost,
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improve market efficiency, and enhance power quality.

Under prevailing practices, real-time markets do
not systematically acknowledge frequency regulation
provided by AGC as a market-based service [1].
By and large, a congestion-corrected version of
incremental cost at the anticipated optimal operating
point also dictates the cost of operating the system
in real time [2, 3]. This is tolerable and justifiable
in networks dominated by high-inertia synchronous
generators serving slow-varying loads. However, the
retirement of synchronous generators and integration of
grid-following power-electronics-interfaced renewable
energy sources is resulting in faster, larger, and
more frequent deviations away from synchronous
operation [4, 5]. Hence, there is a pressing need
to accurately schedule generation over shorter time
horizons so as to minimize the reliance on AGC
regulation that—while engineered to encourage—does
not guarantee economic optimality for large excursions
away from ED setpoints. This aspect motivates the
proposed continuous-time alternative to traditional ED.
The formulated CTED problem incorporates pertinent
dynamic constraints and yields dispatch trajectories
that respect power balance at faster time scales, hence
minimizing effort expended by AGC.

The existing architecture for frequency regulation
comprising AGC and ED is illustrated in Fig. 1. While
written accounts vary and practical implementations
may differ, the consensus in technical literature is
that classical ED is typically performed approximately
every five minutes [6]. Optimizers of this problem
present large-signal reference changes to AGC, which
continually corrects synchronous-generator setpoints in
an effort to match load in real time. The control
effort exerted by AGC during the relatively long period
of time that punctuates successive executions of ED
may be significantly high given the expected outlook
in contemporary power systems. Consequently, of the
total accumulated cost over a given time period, the
dispatch cost may be overshadowed by the cost of
effecting real-time frequency control. Now consider



Figure 1. Prevailing architecture: ED is performed approximately once every five minutes. Dispatch signals are

piece-wise constant and may involve large-signal changes. Cost of providing AGC—for which there is no

established market—may constitute a significant portion of the total cost of operation.

Figure 2. Proposed architecture: CTED is performed over a shorter scheduling horizon with fine-grained load

samples. Dispatch signals are continuously differentiable. Cost of look-ahead dispatch—for which there is a

well-established market—closely aligns with the total cost of operation. System frequency is better behaved since

AGC control action does not involve aggressive changes in the generator setpoints.

the proposed architecture sketched in Fig. 2. We put
forth a continuous-time version of the conventional ED
problem, with constraints that respect the impact of
actuation on generator dynamics and system frequency;
as a direct consequence, the scheduling horizon can
be reduced. Optimal trajectories corresponding to
this problem are continuously differentiable by design,
rendering the corrective action to generator setpoints to
be fine-grained. With this strategy, control effort exerted
by AGC is lower, and the dispatch cost is more closely
aligned with the actual operating cost of generators.

Realizing the architecture sketched in Fig. 2
requires effort in modeling (to tease out the dynamical
constraints that are most pertinent) and computation
(to solve the formulated infinite-dimensional variational
CTED problem). We provide a brief overview
covering these aspects next. To reflect underlying
system dynamics in the CTED problem, we develop
an aggregate model for system frequency in a given
balancing area by suitably manipulating the swing
dynamics of synchronous generators under a set of

non-assumptive engineering-inspired approximations.
From an algorithmic viewpoint, the proposed solution
strategy to solve the formulated CTED problem
is grounded in reducing the dimensionality of the
continuous-time decision and parameter trajectories
by representing them in a finite-order function space
spanned by so-called Bernstein polynomials [7]. With
this strategy, the resulting optimization problem boils
down to a linear programming (LP) problem with
computational complexity on par with conventional
ED (typical realizations of which are LPs or linearly
constrained quadratic programming problems).

Recognizing the latent potential to improve dynamic
and economic performance, a variety of approaches
have been put forth recently to temporally align
economic dispatch with frequency regulation. A brief
overview of pertinent recent literature is provided
next. Primal-dual gradient methods are proposed
in [8–12] to solve optimization problems that jointly
consider generator scheduling and frequency regulation.
A similar philosophy that encourages the unified



optimization of AGC action and generator scheduling
dictates the problems formulated in [13, 14], albeit,
with differing solution strategies. Motivated by
the goal of improving dynamic performance, some
recent approaches have proposed embellishments to
classical AGC [15, 16]. We also bring to attention
(a very wide body of) recent work on the design
of feedback controllers that converge to the solution
of cost minimization problems for power-system
applications [17–24]. Finally, we point out the
work in [25–27] where similar variational problems
are solved with mixed-integer LP reformulations
in the Bernstein polynomial function space for
slower time-scale applications (unit commitment and
incorporating ramping constraints in ED).

We conclude our introductory remarks by
summarizing some features of the proposed method
that also place its contributions in context of prior
work highlighted above. First, we point out that
the proposed approach to dispatch is aligned with
current architectures (communication infrastructure and
computation resources) and it does not fundamentally
refashion either AGC or ED. Second, by minimizing
AGC effort and aligning dispatch and total costs,
we envision being able to efficiently allocate system
capacity and dedicate reserves for operations at
other time scales. Finally, we envision system
frequency would be better behaved through large-signal
variations in net load. This is because the solutions
of the proposed CTED problem are restricted to be
continuously differentiable trajectories that do not
present large-signal changes to AGC references. Along
these lines, we remark that the alternative of solving
ED at faster time scales neither guarantees continuity of
dispatch trajectories nor offers the option of capturing
dynamic constraints across successive executions.

The remainder of this paper is organized as follows.
In Section 2, we introduce the system dynamical
model and obtain an aggregate frequency-response
model for formulating the CTED problem. The CTED
problem and its interoperability with AGC is discussed
in Section 3. The function-space representation of
all trajectories pertinent to the CTED problem is
provided in Section 4. Finally, numerical simulations
that demonstrate the improved economic efficiency
and frequency response resulting from the proposed
architecture are given in Section 5. Section 6 offers
concluding remarks and directions for future work.

2. System Dynamics

This section introduces the synchronous-generator
dynamical model and outlines the development of an

aggregate representation of the generator dynamics that
is then leveraged to design the CTED problem.

2.1. Synchronous-generator Model

We assume the power network is composed of G
generators indexed in the set G = {1, . . . , G}. For each
generator g ∈ G, let θg(t), ωg(t), Pmec

g (t), and P ele
g (t)

denote the rotor angle, electrical angular frequency,
turbine mechanical power, and electrical-power output,
respectively. Assume each generator initially operates
at the steady-state equilibrium point with ωg(0) =
ωs = 2π60 rad/s, the synchronous frequency. Defining
∆ωg := ωg−ωs, pertinent dynamics of generator g ∈ G
are described by the celebrated swing equations:

θ̇g(t) = ∆ωg(t),

Mg∆ω̇g(t) = Pmec
g (t)−Dg∆ωg(t)− P ele

g (t),
(1)

where Mg and Dg denote, respectively, its inertia
and damping constants. We emphasize that the
above model is merely leveraged for analysis and
development of the CTED problem. Validation through
numerical simulations is performed with a detailed
synchronous-generator model.

2.2. Aggregate System Dynamical Model

Assume that the effective impedances between nodes
in the balancing area of interest are approximately the
same, so that all generator speeds follow the same
transient behaviour, i.e., ∆ωg = ∆ω in (1), ∀g ∈
G [28, 29]. Then, the angular-frequency dynamics of
each generator g in (1) can be expressed as

Mg∆ω̇(t) = Pmec
g (t)−Dg∆ω(t)− P ele

g (t). (2)

Summing (2) over all g ∈ G we get the following
aggregate system dynamical model:

Meff∆ω̇(t) =
∑
g∈G

Pmec
g (t)

−Deff∆ω(t)−
∑
g∈G

P ele
g (t),

(3)

where, we introduce the effective inertia constant, Meff

and the effective damping constant Deff below:

Meff :=
∑
g∈G

Mg, Deff :=
∑
g∈G

Dg. (4)

To facilitate subsequent discussion, we define:

Pmec
G (t) := [Pmec

1 (t), . . . , Pmec
G (t)]T, (5)



Pload(t) :=
∑
g∈G

P ele
g (t). (6)

The nomenclature adopted to denote the sum of
electrical-power outputs of the generators is indeed apt,
since the summation is equal to the total system load
along with losses. Leveraging these definitions, and
denoting the G-dimensional column vector with all
entries equal to unity by 1G, we can express (3) as:

Meff∆ω̇(t)=1T
GP

mec
G (t)−Deff∆ω(t)−Pload(t). (7)

In effect, we remark that (7) is a point-wise-in-time
power-balance constraint. For steady-state synchronous
operation, we see that it indeed captures supply-demand
balance, i.e., 1T

GP
mec
G = Pload.

3. Continuous-time Economic Dispatch

In this section, we leverage the aggregate system
dynamical model in (7) to derive the CTED problem
formulation. We then compare and contrast the problem
with classical ED. Finally, we provide a brief overview
of how optimizers of (either) economic-dispatch routine
are relayed to the synchronous generators via the AGC.

3.1. Problem Formulation

Denote the reference-power command issued by an
economic-dispatch routine to generator g at time t by
P ed

g (t), and collect instances ∀g ∈ G in the vector:

P ed
G (t) := [P ed

1 (t), . . . , P ed
G (t)]T. (8)

The proposed CTED problem assumes the following
form over scheduling horizon T :

min
P ed

G (t),t∈T

∫
t∈T

∑
g∈G

Cg(P ed
g (t))dt (9a)

s.t. 1T
GP

ed
G (t)−Deff∆ω(t)

−Meff∆ω̇(t) = Pload(t), (9b)

P ed
G ≤ P ed

G (t) ≤ P ed

G , (9c)
∆ω ≤ ∆ω(t) ≤ ∆ω. (9d)

Above, Cg(·) is the cost function for generator g ∈ G,
and (9a) represents the accumulated cost of generation
over the scheduling horizon. Notice that (9b) is
a point-wise-in-time power-balance constraint that is
inspired by and derives from (7), (9c) enforces box
constraints on generator dispatch points over the
scheduling horizon, and (9d) enforces box constraints
on system frequency.

The optimal trajectories corresponding to the
decision variables for the problem above, P ed?

g (t), ∀g ∈
G, t ∈ T , act as inputs to AGC, which then yields
reference values for the governors in the generators. We
overview this in the forthcoming Section 3.3.

3.2. Comparison with Classical Economic
Dispatch

The classical ED problem is of the following form:

min
P ed

G

∑
g∈G

Cg(P ed
g ) (10a)

s.t. 1T
GP

ed
G = Pload, (10b)

P ed
G ≤ P ed

G ≤ P
ed

G . (10c)

In the problem above, (10b) enforces a power-balance
constraint at each instant that the problem is solved.
With slight abuse of notation, Pload denotes the estimate
of net system load at that instant. Box constraints are
enforced as before, and the cost functions are the same
as the ones in (9).

It is worth pointing out the synergies and points
of departure of the problem in (9) and the classical
dispatch problem expressed above in (10). We do so
in a point-wise fashion and in no particular order next:

• The problem (9) is envisioned to be solved with
fine-grained estimates of net system load over
the scheduling horizon T . On the other hand,
classic ED in (10) is solved for pre-determined and
isolated snapshots in time.

• Constraints (9b) and (10b) both capture power
balance. While (9b) applies point-wise in time,
it boils down to (10b) in steady state and for
synchronous operation.

• Clearly, (9) is an infinite-dimensional problem.
We propose a solution strategy that is grounded
in projecting all continuous-time signals in
an appropriate function space to facilitate
computation. On the other hand, under mild
assumptions on the cost function, (10) is a
standard convex optimization problem.

• Even if problems (9) and (10) were solved with
the same temporal granularity, optimizers of (9)
would not be the same as those of (10). This is
because (10b) does not accurately capture power
balance as does (9b). Also, there is no means of
enforcing continuity on optimizers of (10).

• The dual variable corresponding to the
continuous-time power-balance constraint (9b)
would reveal the real-time optimal marginal
price of electricity. While analysis of dual



problems corresponding to the conventional
ED problem (10) is a mature field of study [6],
a detailed analysis of the dual to the CTED
problem (9) is beyond this paper’s scope.

Given the discussion above, we hypothesize that
the accumulated cost of scheduling generators would
be much closer to the actual operating cost with the
system dispatched by leveraging the optimizers of (9).
The principal reason for this being that the control
effort exerted by AGC would be minimized since power
balance is enforced at faster time scales over the entire
scheduling horizon. Furthermore, since the optimizers
of (9) are engineered to be continuously differentiable
trajectories (more on this in Section 4) and derived
for a problem that acknowledges the underlying system
dynamics (albeit only the swing equations), we also
anticipate the system frequency response to be better
behaved. We revisit both of these hypotheses in the
simulation studies in Section 5.

3.3. Integration with AGC

Once the optimization problem (9) is solved, the
optimal generator dispatch trajectories, P ed?

g (t), ∀g ∈
G, t ∈ T serve as inputs to AGC. For a single-area
power system, the generator reference-power setpoints
are obtained as [6]:

P ref
g (t) = P ed?

g (t) + αg

(
ξ(t)−

∑
`∈G

P ed?
` (t)

)
, (11)

where αg denotes the Area Control Error (ACE)
participation factor for generator g ∈ G, and ξ(t) is
recovered from the following dynamics:

ξ̇(t) = ACE− ξ(t) +
∑
g∈G

P ele
g (t). (12)

The ACE for a single balancing area is given by

ACE = −β 1

|G|
∑
g∈G

∆ωg(t), (13)

where β is the bias factor for the balancing area.
While practical implementations may differ, classical
references (see, e.g., [6]) suggest the following choices
for bias factor and generator ACE participation factors:

β =
∑
g∈G

(R−1
g +Dg), αg =

(IC?
g )−1∑

`∈G

(IC?
` )−1

. (14)

Above, Rg denotes the speed-droop regulation constant
and IC?

g denotes the optimal incremental cost of

generation for generator g. While there is limited
information in the literature on how this is to
be interpreted and implemented during real-time
operation, [6] advocates refreshing these every time an
economic-dispatch problem is solved. For simplicity,
in our simulations, we fix this to be the highest value
among all possible incremental costs for the adopted
piece-wise linear cost functions.

With classical ED, signals P ed?
g in (11) would

be constant between successive executions of the
problem, and with the outlined continuous-time
version of the problem, they would be continuously
differentiable trajectories. We also remark that
the AGC architecture discussed above is standard
and remains unperturbed with our approach. We
simply formulate a continuous-time counterpart (that
acknowledges generator dynamics) to classical ED.
The solution strategy to solve the infinite-dimensional
problem (9) is discussed next.

4. Function Space Representation of
Continuous-time Economic Dispatch

The proposed CTED problem in (9) is a constrained
variational problem with an infinite-dimensional
decision space, rendering it computationally intractable.
Thus, instead of solving (9) directly, we leverage the
approach outlined in [25, 27] to develop a scalable
and efficient function space-based solution method for
the proposed CTED problem. Central to the strategy
is to model decision and parameter trajectories in
a finite-order function space spanned by Bernstein
polynomials. The Bernstein polynomials of degree Q
include Q+ 1 polynomials defined as:

bq,Q(t) =

(
Q

q

)
tq(1− t)Q−q, t ∈ [0, 1], (15)

for q ∈ Q := {0, ..., Q}. Let us divide the scheduling
horizon T into N intervals of equal length T , and
construct a set of basis functions in each interval n using
Bernstein polynomials of degree Q. Thus, the vector of
basis functions spanning T :

e(Q)(t) = [e
(Q)
1 (t), . . . , e

(Q)
P (t)]T (16)

contains P =(Q+1)N components defined as:

e
(Q)
n(Q+1)+q+1(t) = bq,Q

(
t− tn
T

)
, t ∈ [tn, tn+1), (17)

for n ∈ {0, . . . , N −1} and q ∈ Q. To simplify the
notation, we define p := n(Q+1)+q + 1, and note that
p ∈ P := {1, . . . , P}.



With these fundamentals in place, we first discuss
how the constraints and cost function in problem (9) can
be expressed in the function space defined by Bernstein
polynomials. Finally, in Section 4.4 we present the LP
reformulation of the CTED problem (9).

4.1. Modeling Power-balance (9b)

Consider the system power balance constraint
in (9b). Let us project ∆ω(t), Pload(t), and entries
of P ed

G (t) := [P ed
1 (t), . . . , P ed

G (t)]T in function spaces
spanned by basis functions in (16) as follows:

∆ω(t) = ∆ωe(Q)(t), ∀t ∈ T , (18)

Pload(t) = Ploade(Q)(t), ∀t ∈ T , (19)

P ed
g (t) = Ped

g e(Q)(t), ∀t ∈ T ,∀g ∈ G. (20)

Above, ∆ω, Pload, and Ped
g are P -dimensional row

vectors of Bernstein coefficients.
The time derivatives of Bernstein polynomials of

degree Q can be expressed as a linear combination of
Bernstein polynomials of degreeQ−1 [7], which allows
us to define ∆ω̇(t) in the space spanned by Bernstein
polynomials of degree Q−1 as:

∆ω̇(t) = ∆ωė(Q)(t) = ∆ωMe(Q−1)(t)

=: ∆ω̇e(Q−1)(t), ∀t ∈ T .
(21)

Above,M is the P×(P−N) matrix that relates ė(Q)(t)
and e(Q−1)(t) [7], and ∆ω̇ is the (P −N)-dimensional
row vector of the Bernstein coefficients of ∆ω̇(t).
From (21), the Bernstein coefficients of ∆ω̇(t) are
linearly related to those of ∆ω(t) as follows: ∆ω̇ =
∆ωM. Substituting the function space representation
of ∆ω(t), Pload(t), P ed

g (t), and ∆ω̇(t) respectively
from (18)–(20) and (21) and eliminating the Bernstein
basis function vectors from both sides of the equality,
the continuous-time power balance constraint in (9b) is
converted to the following set of algebraic equations:

Meff∆ωMN =
∑
g∈G

Ped
g −Deff∆ω −Pload, (22)

whereN is the (P −N)×P degree-raising matrix that
relates e(Q−1)(t) to e(Q)(t) [7].

4.2. Modeling Inequalities (9c)–(9d)

Due to the convex hull property of Bernstein
polynomials, the projection coefficients form a
control polygon that encompasses the continuous-time

trajectories [7]. Thus, in order to project the
continuous-time inequality constraints (9c) and (9d) into
the Bernstein function space, the Bernstein coefficients
of the associated trajectories are confined to their
minimum and maximum limits as below:

P ed
g 1T

P ≤ Ped
g ≤ P

ed

g 1T
P , ∀g ∈ G, (23)

∆ω1T
P ≤∆ω ≤ ∆ω1T

P , (24)

where 1P is a P -dimensional column vector of all ones.

4.3. Modeling the Objective Function in (9a)

Suppose a piece-wise linear cost function for
generator g with Sg linearization segments. Let us

associate positive auxiliary variable trajectories P̂ ed
g,s(t)

to each of the segments s ∈ Sg := {1, . . . , Sg}.
The dispatch trajectories of generators, as well as the
associated cost functions, are cast in a linear form as
below ∀t ∈ T , ∀g ∈ G:

P ed
g (t) = P ed

g +
∑
s∈Sg

P̂ ed
g,s(t), (25)

Ĉg(P ed
g (t))=Cg(P ed

g )+
∑
s∈Sg

µg,sP̂
ed
g,s(t), (26)

where Ĉg(P ed
g (t)) and µg,s respectively represent the

linearized cost function of generator g and the slope
of its linearization segment s. In order to derive the
function space representation of the linearized objective
function, we first project auxiliary variables P̂ ed

g,s(t) into
the Bernstein function space as below ∀t ∈ T ,∀g ∈ G:

P̂ ed
g,s(t) = P̂ed

g,se
(Q)(t), ∀s ∈ Sg, (27)

where P̂ed
g,s represents the P -dimensional row vector

of Bernstein coefficients confined to the lengths of
linearization segments |P̂ ed

g,s| as follows ∀g ∈ G:

0 ≤ P̂ed
g,s ≤ |P̂ ed

g,s|1T
P , ∀s ∈ Sg. (28)

Substituting the function space representation of P ed
g (t)

from (20) and of P̂ ed
g,s(t) from (27) in (25) and

eliminating the vectors of basis functions from both
sides, we can recast (25) as:

Ped
g = P ed

g 1T
P +

∑
s∈Sg

P̂ed
g,s, ∀g ∈ G. (29)

Finally, substituting (27) in (26), integrating it over the
scheduling horizon T , and summing over all generators,



we can express (9a) as follows:∫
t∈T

∑
g∈G

Ĉg
(
P ed

g (t)
)
dt (30)

= T
∑
g∈G

Cg(P ed
g ) +

∑
g∈G

∑
s∈Sg

µg,sP̂
ed
g,s

∫
t∈T

e(Q)(t)dt

= T
∑
g∈G

Cg(P ed
g )+

1

Q+ 1

∑
s∈Sg

µg,sP̂
ed
g,s1P

 ,

where the last line above follows from the identity [7]:∫
t∈T

e(Q)(t)dt =
T

Q+ 1
1P . (31)

4.4. LP Reformulation of CTED in (9)

In summary, the variational problem (9) is converted
to an LP problem minimizing (30) subject to (22)-(24)
and (28)–(29). The final version of the problem is:

min
Ped

g ,P̂ed
g,s,∆ω

T
∑
g∈G

(
Cg(P ed

g ) +
∑
s∈Sg

µg,sP̂
ed
g,s1P

Q+ 1

)
(32a)

s.t.
∑
g∈G

Ped
g −(Deff +MeffMN )∆ω = Pload, (32b)

Ped
g = P ed

g 1T
P +

∑
s∈Sg

P̂ed
g,s, ∀g ∈ G, (32c)

0 ≤ P̂ed
g,s ≤ |P̂ ed

g,s|1T
P , ∀g ∈ G, s ∈ Sg, (32d)

P ed
g 1T

P ≤ Ped
g ≤ P

ed

g 1T
P , g ∈ G, (32e)

∆ω1T
P ≤∆ω ≤ ∆ω1T

P , (32f)

Ped
g,k = Ped

g,k+1, k ∈ K, (32g)

Ped
g,k −Ped

g,k−1 =Ped
g,k+2−Ped

g,k+1, k ∈ K, (32h)

∆ωk = ∆ωk+1, k ∈ K, (32i)
∆ωk−∆ωk−1 =∆ωk+2−∆ωk+1, k ∈K. (32j)

Set K ⊂ P introduced in constraints (32g)–(32j)
captures points that interconnect different sub-intervals.
These constraints ensure continuous differentiability of
trajectories across adjacent sub-intervals.

5. Simulation Results

Case studies that compare the performance of
the proposed CTED and classical ED are provided

for the 9-bus transmission system shown in Fig. 3.
Synchronous generators in this network are connected
at buses G = {1, 2, 3}, and loads are at buses
{4, 5, 6, 7, 8, 9}. Network- and generator-model
parameters as well as generator cost functions are
listed in the appendix. The network topology as well
as the corresponding transmission-line and generator
parameters are adopted from the Western System
Coordinating Council (WSCC) network [30].

Figure 3. Single-area 3-generator 9-bus test system.

The optimization problems (10) and (32) are
implemented in GAMS and solved using the CPLEX
12.6.2 solver [31]. Optimizers are then relayed to
time-domain simulations performed with the Power
System Toolbox (PST) [32]. Recall that the model
introduced in Section 2.1 for the generator dynamics
was primarily with the intention of formulating the
CTED problem. In addition to the swing dynamics
discussed in Section 2.1, our simulation includes a
nonlinear differential algebraic equation model that
considers lossy lines, turbine governor model, and
a detailed two-axis machine model. A simulation
period of 1 [min] is considered: the load takes values
230 [MW] and 430 [MW] during the first and last
20 [sec] intervals, and it grows linearly over t ∈
[20, 40] [sec]. We compare the performance of four
different scheduling strategies:

• [1pt ED] Conventional ED (10) is performed only
once at time t = 10 [sec] over the 1 [min]
simulation period.

• [2pt ED] Conventional ED (10) is performed
twice at times t = 10, 50 [sec] over the 1 [min]
simulation period.

• [3pt ED] Conventional ED (10) is performed
thrice at times t = 10, 30, 50 [sec] over the 1 [min]
simulation period.

• [CTED] The CTED problem in (32) is solved with
the simulation period divided into 5 sub-intervals.1

1The system load is approximated within each interval by
Bernstein splines of degree Q = 5. The projection coordinates of
the system load’s function space representation are derived by solving
a least squares error problem [27].



The extent of the load change in simulations is
intended to be illustrative. The results demonstrate that
with faster executions of conventional ED (i.e., going
from [1pt ED] to [3pt ED]), the dispatch cost is better
aligned with the total cost. [CTED], on the other hand,
ensures this alignment innately. We also demonstrate
that conventional ED may result in poor dynamic
performance if updates occur at instants when system
dynamics are not in steady state (a likely scenario if the
rate of executing ED is naı̈vely increased).

5.1. Economic Performance

Table 1 provides a breakdown of the total cost of
operating the system into control and dispatch costs over
the 1 [min] horizon with the four strategies highlighted

Table 1. Breakdown of accumulated total system

operating cost into dispatch and control costs.

Case Control Cost [$] Dispatch Cost [$] Total Cost [$]

[1ptED] 32.5703 66.7933 99.3636

[2ptED] 22.2502 77.0588 99.3091

[3ptED] 12.4967 87.1011 99.5978

[CTED] 2.3040 96.9128 99.2170

above. [CTED] provides the best alignment of dispatch
cost with the total cost of operating the system. As
the number of instances at which conventional ED is
performed are increased, we also observe the trend that
the control cost begins to constitute a smaller fraction
of the total cost (implying that AGC is less stressed)
and a majority of the total cost is the dispatch cost
(implying improved accuracy of scheduling to meet
load). The results above might suggest that as the
number of executions of conventional ED is increased,
we can expect economic performance on par with
CTED. (That is, a better alignment of dispatch and
total cost.) While this may indeed be the case, it can
only be achieved with (potentially prohibitively) many
executions of ED. In contrast, CTED is solved just
once over the scheduling horizon. Furthermore, there
is no guarantee on continuity and differentiability of
optimizers of ED with increasing number of executions.
We will examine the impact of this particular aspect on
power quality and generator dynamics next.

5.2. Dynamic Performance

The dispatch schedules and resulting generator
electrical output powers for [1ptED], [2ptED],

Figure 4. Generator electrical output-power [MW] values and solutions of optimization problems for the four

dispatch strategies: [1ptED], [2ptED], [3ptED], and [CTED]. Notice that large-signal changes in dispatch induce

undesirable transients in generator electrical output power with conventional ED for [1ptED], [2ptED], [3ptED].

In contrast, [CTED] yields improved dynamic performance.



Figure 5. Electrical frequency recorded at the

terminals of generator 1 obtained for the [CTED]

dispatch strategy does not exhibit undesirable

transients compared to [3ptED].

[3ptED], and [CTED] are plotted in Fig. 4. We
can immediately appreciate the benefit of the
dynamics-aware dispatch strategy. For all generators,
we see a close match between the electrical output
powers and the optimal dispatch schedules with
[CTED]. The optimizers of conventional ED as
obtained from [1ptED], [2ptED], and [3ptED]
undergo large-signal changes with every execution:
this ultimately translates to the electrical output powers
of the generators exhibiting undesirable transients.
In sharp contrast, the optimal dispatch trajectories as
yielded by [CTED] are engineered to be continuously
differentiable and anticipatory of system dynamics
across the scheduling horizon. Consequently, the
electrical output powers of the generators are also
smoother and do not deviate significantly from the
dispatch schedule. We plot the electrical frequency
at the terminals of generator 1 through the simulation
period in Fig. 5 for [CTED] and [3ptED] (trajectories
corresponding to the other generators are similar,
and therefore not shown). Undesirable transients in
frequency with [3ptED] seen in Fig. 5 are due to
large-signal changes in AGC setpoints initiated at a
time when the system dynamics (particularly those
attributable to generators) are not in steady state. On
the other hand, the electrical frequency through the load
transition with [CTED] is significantly better behaved.

6. Concluding Remarks and Future Work

This paper proposed a dynamics-aware
continuous-time economic dispatch problem aligned
with prevailing operational architecture in that it
requires no major retrofits to existing communication
infrastructure and computation resources. We
demonstrated several benefits (from the perspectives

of economics and power quality) over traditional
economic dispatch. A function space-based solution
method was leveraged to reduce the infinite-dimensional
variational problem to a finite-dimensional LP problem
to exercise available solvers. Time-domain simulations
implemented in PST with accurate nonlinear differential
algebraic equation models were provided to establish the
virtues of the proposed method. Future work includes
the addition of ramping constraints (on frequency
and generator outputs), investigating the suitability of
more representative higher-order dynamical models
in the CTED formulation, consideration of frequency
deviations caused by contingencies, and validating the
idea in a network with multiple balancing areas.

7. Appendix

7.1. Network and Dynamical-model Data

Unless otherwise specified, all reported values are
in per unit. The system base is 100 [MVA]. The
synchronous frequency, ωs = 2π60 [rad sec−1]. The
generator damping coefficients are: D1 = D2 = D3 =
1.28, inertia constants are: M1 = M2 = M3 =
12.8 [sec], speed droop regulation constants are: R−1

1 =
25, R−1

2 = 25 and R−1
3 = 25 (i.e., 4% droop slope),

turbine time constants are τ1 = τ2 = τ3 = 5 [sec].
Line parameters: y14 = j0.0576, y45 = 0.017 +
j0.092, y56 = 0.0.39 + j17, y36 = j0.0586, y67 =
0.0119 + j0.1008, y78 = 0.0085 + j0.072, y28 =
j0.0625, y89 = 0.032+j0.161, and y49 = 0.01+j0.085.
Bias factor, β = 78.84, ACE participation factors: α1 =
0.287, α2 = 0.345 and α3 = 0.368.

7.2. Generator Cost Functions

All generators used in simulations have minimum
and maximum limits of 35 [MW] and 200 [MW]
respectively. Linearized cost functions with three
linearization segments are adopted for all generators.
Lengths and slopes of the segments are reported next.

Table 2. Linearized Cost-function Data.

Generator Lengths [MW] Slopes [$/MWh]

|P̂ ed
g,1| |P̂ ed

g,2| |P̂ ed
g,3| µg,1 µg,2 µg,3

g = 1 65 50 50 17.94 21.16 24.62

g = 2 65 50 50 17.02 18.84 20.5

g = 3 65 50 50 17.66 18.44 19.24
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