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Abstract— In this work, we aim to minimize the cost of
generation in a power system while meeting demand in near-
to real time. The proposed architecture is composed of two
sub-problems: continuous-time economic dispatch (CTED) and
optimal automatic generation control (OAGC). In its original
form, the CTED problem incorporates generator aggregate-
frequency dynamics, and it is infinite-dimensional. However,
we present a computationally tractable function space-based
solution method for the proposed problem. We also develop an
optimization-based control algorithm for implementing OAGC.
Theoretical considerations for decoupling the two problems are
explored. We validate the economic efficiency and frequency
performance of the proposed method through simulations of a
representative power network.

I. INTRODUCTION

One of the main challenges for a power system operator is
to continually schedule generation to meet demand [1], [2].
The prevailing practice involves two parts: i) an offline eco-
nomic dispatch (ED) problem, in which the system operator
minimizes the cost of generation based on load forecasts
while enforcing various operational constraints in steady
state, and ii) real-time automatic generation control (AGC),
which regulates system frequency to the synchronous value
and fixes power interchanges between different balancing
areas to their scheduled quantities. Typically, ED is per-
formed (approximately on the order of) every 5 minutes to
dispatch generators to meet the forecasted load. During real-
time operations, the proportional-integral control-based AGC
adjusts generator outputs around their ED setpoints based on
deviations in frequency and tie-line flows [3], [4].

The future grid will extensively integrate renewable gen-
eration, resulting in faster and less predictable frequency
deviations away from synchronous operation [5], [6]. If the
existing ED paradigm persists, significant AGC control effort
would be needed in real time to maintain synchronous fre-
quency and economic efficiency of the generators. Moreover,
the existing AGC does not guarantee system cost minimiza-
tion, especially if the real-time load deviates significantly
from the forecast. To this end, we propose a combined
architecture composed of: i) a continuous-time ED problem
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that acknowledges continuous load variations so that real-
time control effort is reduced, and ii) an optimal AGC
scheme that provides a mechanism to price AGC control
effort while minimizing total cost of generation in real time.

Recognizing the need to improve economic and dynamic
performance of power system operations in the face of
challenges such as increasing intermittency and variability,
a variety of approaches have been put forward to optimize
ED and AGC. Some approaches have proposed improve-
ments to classical AGC [7], [8]. Model predictive control
approaches have been proposed for developing economic
dispatch [9]–[11]. In [12], ED and AGC are connected by
reverse engineering AGC from an optimization point of view.
In [13], a joint problem is decomposed to a multi-period
ED and the AGC from [12]. A frequency-aware ED has
been proposed in [14]. Primal-dual gradient methods have
also been proposed to design decentralized feedback control
laws [15]–[19].

Our central idea is to include a continuous-time dynamic
model of the generators in existing methods for ED, and
also conceptualize an AGC approach that ensures economic
efficiency in real time. We begin with an ideal optimal
control problem for the system operator where total cost of
generation is minimized across timescales currently pertinent
to ED and AGC while dynamically enforcing operational
constraints. However, we will find that this optimal control
problem cannot be solved simultaneously for ED and AGC
actions since the real-time load is not known when ED is
solved. Recognizing this limitation, and the fact that the
objectives and constraints are required to be satisfied at
two different timescales, we define a combination of two
problems that can be solved and the solutions of which are
close to those of the ideal problem. We refer to these prob-
lems as: continuous-time economic dispatch (CTED) and
optimal automatic generation control (OAGC). The CTED
problem considers the dynamic constraints of generators and
minimizes cost of generation over a scheduling horizon on
the order of that considered for ED. We have developed
a function space-based method to reformulate the infinite-
dimensional CTED problem into a linear program [20].
(See also [21], [22] for related work.) With our previous
effort in [20] covering the dispatch timescale, for real-time
operation, the formulated OAGC problem minimizes the sum
of well-defined cost functions for generators while ensuring
frequency is restored to synchronous value. We develop
an optimization-based control algorithm to solve OAGC.
Importantly, the proposed approach embeds two different



cost functions for scheduling generation during CTED and
OAGC.

Salient features of the proposed architecture that distin-
guish it from similar approaches outlined in existing litera-
ture are as follows:
• As we incorporate the dynamic constraints of the gen-

erators, CTED yields continuously differentiable tra-
jectories as solutions, which ensures that large-signal
changes to AGC references are minimized.

• The proposed OAGC provides a systematic method to
price the cost of restoring frequency to nominal in real
time. In essence, it broadens the timescales over which
economic optimality of generators can be guaranteed in
power system operations.

• Unlike most of the existing literature, our method re-
tains communication, control, and computation archi-
tectures currently in place for existing ED and AGC.

• Our method enables two separate cost functions for
CTED and OAGC. This is appropriate since a generator
might need extra control effort for adjusting power in
real time versus scheduling beforehand.

The remainder of the paper is organized as follows. In
Section II, we summarize the ED and AGC architecture
that is currently in use, and introduce the aggregate dy-
namic model of the generators leveraged to develop our
optimal control problem. In Section III, we introduce our
ideal infinite-dimensional optimal control problem. We then
define an approximate problem with a companion solution
strategy that involves decomposition into CTED and OAGC
components. In Section IV-B, we describe the function space-
based method by which we convert the CTED problem into a
linear programming problem. In Section IV-A, we develop an
optimization-based control method for implementing OAGC.
Section V reports simulation results that demonstrate eco-
nomic efficiency of the proposed method across timescales
in a representative power network. Finally, we conclude and
outline directions for future work in Section VI.

II. PRELIMINARIES

In this section, we introduce fundamentals of conven-
tional economic dispatch (ED), automatic generation con-
trol (AGC), and the synchronous-generator dynamical model.
Leveraging the synchronous-generator dynamical model, we
develop an aggregate representation of generator dynamics,
which is then used to formulate the optimal control problem.

A. Current Practices: Economic Dispatch (ED) and Auto-
matic Generation Control (AGC)

Consider a single-area power system with G generators
connected to buses G = {1, . . . , G} that serve L loads
connected to buses L = {G + 1, . . . , G + L}. Currently,
ED involves the solution of an optimization problem of the
general form:

min
P ed

G ∈RG

∑
g∈G

Cg(P ed
g ) (1a)

s.t. 1T
GP

ed
G = Pload, (1b)

P ed
G ≤ P ed

G ≤ P
ed

G . (1c)

In the above problem, (1b) is the power balance constraint,
Pload and P ed

G := [P ed
1 , . . . , P ed

G ]T respectively denote the
estimate of system load and the vector of dispatched power
of generators. Furthermore, Cg(·) represents the cost function
for generator g ∈ G, and (1a) is the total cost of generation.
Limits on power outputs are enforced by (1c).

Once the optimization problem (1) is solved, the optimal
generator dispatch points, P ed?

g ,∀g ∈ G serve as inputs to
the AGC until the next solution instant. For a single-area
power system, the generator reference-power setpoints (we
discuss shortly how these relate to the generator dynamical
model) are given by:

P ref
g (t) = P ed?

g + αg

(
ξ(t)−

∑
`∈G

P ed?
`

)
, (2)

where αg denotes the area control error (ACE) participation
factor for generator g ∈ G. In (2), ξ(t) is recovered from the
following dynamics:

ξ̇(t) = ε(t)− ξ(t) +
∑
g∈G

P ele
g (t), (3)

where P ele
g (t) is the electrical power output of generator g.

Furthermore, ε(t) is the ACE, defined as:

ε(t) = −β 1

|G|
∑
g∈G

∆ωg(t), (4)

where β is bias factor for the balancing area, and ∆ωg(t)
denotes (measured) frequency offset of generator g ∈ G from
nominal. Following are common choices for the bias factor
and generator ACE participation factors:

β =
∑
g∈G

(R−1
g +Dg), αg =

(IC?′

g )−1∑
`∈G

(IC?′

` )−1
, (5)

where Rg denotes the speed-droop regulation constant, Dg

is the damping constant, and IC?′

g denotes the derivative of
the optimal incremental cost of generation for generator g.

B. Synchronous-generator Model

For each generator g ∈ G, θg(t), ωg(t), Pmec
g (t), and

P ele
g (t) are the rotor angular position, electrical angular

frequency, turbine mechanical power, and electrical power
output, respectively. Assuming each generator initially op-
erates at the steady-state equilibrium point ωg(0) = ωs =
2π60 rad/s, and defining ∆ωg := ωg − ωs, dynamics of
generator g are expressed by the swing equations (along with
a simplified turbine-governor model):

θ̇g(t) = ∆ωg(t),

Mg∆ω̇g(t) = Pmec
g (t)−Dg∆ωg(t)− P ele

g (t),

τgṖ
mec
g (t) = −Pmec

g (t) + P ref
g (t)−R−1

g ∆ωg(t),

(6)

where Mg, Dg, and τg denote the inertia constant, damping
constant, and governor time constant, respectively.



C. Aggregate System Dynamical Model

We assume that the effective impedances between nodes in
the network are approximately the same, so that all generator
speeds follow the same transient behaviour [23], i.e.,

∆ωg = ∆ω, ∀g ∈ G. (7)

The angular-frequency dynamics of each generator g in (6)
are then expressed as:

Mg∆ω̇(t) = Pmec
g (t)−Dg∆ω(t)− P ele

g (t). (8)

The system dynamics can be written by summing (8) over
all g ∈ G as follows:∑

g∈G
Mg︸ ︷︷ ︸

=:Meff

∆ω̇(t) =
∑
g∈G

Pmec
g (t)

−
∑
g∈G

Dg︸ ︷︷ ︸
=:Deff

∆ω(t)−
∑
g∈G

P ele
g (t)︸ ︷︷ ︸

=:Pload(t)

,
(9)

where, Meff is the effective inertia constant, Deff is the
effective damping constant, and the sum of electrical power
outputs of the generators is equal to the total system load,
Pload(t) along with losses. Then, we can express the overall
system dynamics with all the generators supplying the total
load as follows:

Meff∆ω̇(t) = 1T
GP

mec
G (t)−Deff∆ω(t)− Pload(t), (10)

where Pmec
G (t) := [Pmec

1 (t), . . . , Pmec
G (t)]T and 1G is a

length-G vector of ones. We will leverage the above dynamic
power balance constraint to ensure supply-demand adequacy
in the proposed optimization problems. Note that the gov-
ernor equations are not captured in this model to preserve
computational tractability and given that for the timescales
of interest, the above model suffices.

III. OPTIMAL CONTROL PROBLEM: ED + AGC

In this section, we outline an ideal and fundamental
optimal control problem that combines ED and AGC. Recog-
nizing the difficulty in solving such a problem, we then pass
on—through appropriate simplifications—to abstractions that
can be solved within typical computational constraints.

A. Fundamental Optimal Control Problem

The fundamental control task is to schedule generation
to ensure AGC action as well as economically operate the
system. Let the vector P ref

G (t) := [P ref
1 (t), . . . , P ref

G (t)]T

represent the reference power input of generators. Also, let
Vg(P ref

g (t)) denote the cost function of providing this refer-
ence power. Note that Vg(·) is not the same as Cg(·), since
Vg(·) also includes the cost of providing AGC action from
the generators. The problem of interest is the minimization
of total cost over scheduling horizon T (with length denoted
by |T |) subject to generator dynamic constraints:

min
P ref

G (t),t∈T

∫
t∈T

∑
g∈G

Vg(P ref
g (t))dt (11a)

s.t. 1T
GP

ref
G (t)−Deff∆ω(t)−Meff∆ω̇(t)

= Pload(t), (11b)

PG ≤ P ref
G (t) ≤ PG , (11c)

∆ω ≤ ∆ω(t) ≤ ∆ω, (11d)

where (11b) is the dynamic power-balance constraint for
the system that acknowledges generator dynamics as de-
scribed in (10). Box constraints for reference power input
and frequency deviation are enforced by (11c) and (11d)
respectively, where PG and PG are vectors of generator
capacity limits.

Though this problem is ideal for the operator, it cannot
be solved in practice for a variety of reasons. First, note
that Pload(t) can only be known in real time and current
forecasting practices do not yield accurate load samples even
in near-to real time. In addition, generators cannot change
their power outputs over a large range on very fast timescales,
and some level of prescient scheduling close to where they
would be operated in real time would be wise.

B. Problem Decomposition Strategy

Given the above considerations, our basic idea is to
schedule generation—acknowledging generator dynamics—
for the best estimate of look-ahead (i.e., forecasted) load,
P la

load(t), and then compensate for load variation in real time,
denoted by P rt

load(t), with an optimal AGC scheme. To this
end, we decompose the actual load as follows:

Pload(t) = P la
load(t) + P rt

load(t). (12)

Similarly, let us decompose the generator reference into
constituent parts attributable to dispatch and AGC:

P ref
g (t) = P ed

g (t) + P agc
g (t), g ∈ G. (13)

We then get the following problem from (11):

min
P ed

G (t),P agc
G (t),t∈T

∫
t∈T

∑
g∈G

Vg(P ed
g (t) + P agc

g (t))dt (14a)

s.t. 1T
G(P ed

G (t) + P agc
G (t))−Deff∆ω(t)

−Meff∆ω̇(t) = P la
load(t) + P rt

load(t), (14b)

PG ≤ P ed
G (t) ≤ PG , (14c)

PG ≤ P
agc
G (t) + P ed

G (t) ≤ PG , (14d)
∆ω ≤ ∆ω(t) ≤ ∆ω. (14e)

C. Continuous-time ED and Optimal AGC

We assume that the total cost of generation (Vg) can be
disaggregated into a sum of two functions: dispatch cost Cg

(corresponding to P ed
g (t) which is scheduled beforehand),

and real-time cost Fg (corresponding to P agc
g (t) intended for

real-time operation). In particular, we assume we can express
the total cost as

Vg(P ed
g (t) + P agc

g (t)) = Cg(P ed
g (t)) + Fg(P agc

g (t)). (15)

Furthermore, we approximate the supply-demand balance
in (14b) as the sum of two parts:

1T
GP

ed
G (t)−Deff∆ωla(t)−Meff∆ω̇la(t) = P la

load(t), (16)



1T
GP

agc
G (t) = P rt

load(t). (17)

Note that ∆ωla(t) in the above problem differs from the ac-
tual frequency deviation ∆ω(t) in (11b). In essence, ∆ωla(t)
is the frequency deviation that results by only considering the
look-ahead load in the power balance constraint. Substitut-
ing (15) into (14a) and replacing (14b) with (16) and (17),
the problem in (14) becomes:

min
P ed

G (t),P agc
G (t),t∈T

∫
t∈T

∑
g∈G

(
Cg
(
P ed

g (t)
)
+Fg

(
P agc

g (t)
))
dt

(18a)

s.t. 1T
GP

ed
G (t)−Deff∆ωla(t)

−Meff∆ω̇la(t) = P la
load(t), (18b)

1T
GP

agc
G (t) = P rt

load(t), (18c)

PG ≤ P ed
G (t) ≤ PG , (18d)

PG ≤ P
agc
G (t) + P ed

G (t) ≤ PG , (18e)

∆ω ≤ ∆ωla(t) ≤ ∆ω. (18f)

We next propose to decompose problem (18) into two sep-
arate optimization problems, namely continuous-time eco-
nomic dispatch (CTED) and optimal automatic generation
control (OAGC). The CTED problem is the continuous-
time alternative to conventional ED, and it is formulated
to schedule generators for supplying the look-ahead load
P la

load(t) over T at minimum cost. It is given by:

min
P ed

G (t),∆ωla(t),t∈T

∫
t∈T

∑
g∈G

Cg(P ed
g (t))dt (19a)

s.t. 1T
GP

ed
G (t)−Deff∆ωla(t)

−Meff∆ω̇la(t) = P la
load(t), (19b)

PG ≤ P ed
G (t) ≤ PG , (19c)

∆ω ≤ ∆ωla(t) ≤ ∆ω. (19d)

The power balance constraint (19b) acknowledges aggregate
generator dynamics, however, the frequency that results, i.e.,
∆ωla(t), is not the actual frequency measured in real-time.
The CTED problem (19) is solved over the look-ahead
horizon and once the optimal generator dispatch P ed?

G (t)
schedule is determined, the OAGC problem is solved in
real-time to economically operate generators in real-time and
compensate for load fluctuations from the look-ahead load:

min
P agc

G (t),t∈T

∫
t∈T

∑
g∈G

Fg(P agc
g (t))dt (20a)

s.t. 1T
GP

agc
G (t) = P rt

load(t), (20b)

PG ≤ P
agc
G (t) + P ed?

G (t) ≤ PG . (20c)

Theorem 1. The Problem (18) can be decomposed into the
CTED (19) and OAGC (20) problems.

Proof. The objective function of problem (18) is the sum of
the objective functions of CTED (19) and OAGC (20). The
constraints of CTED and OAGC are also decoupled and if we
add them we get the constraints of the problem (18). Thus,
by construction, the joint problem (18) can be decomposed
into CTED (19) and OAGC (20).

IV. SOLUTION STRATEGY FOR OAGC AND CTED

In this section, we present a solution strategy for the
OAGC problem in (20) and overview a function space-
based strategy to reformulate the infinite-dimensional CTED
problem in (19) to a linear programming problem.

A. An Optimization-based Controller to Implement OAGC

A cursory examination of the optimal control problem (20)
reveals that it is decoupled across time. Indeed, for each time
instant, it suffices to solve the following:

min
P agc

G (t)

∑
g∈G

Fg(P agc
g (t)) (21a)

s.t. 1T
GP

agc
G (t) = P rt

load(t), (21b)

PG ≤ P
agc
G (t) + P ed?

G (t) ≤ PG . (21c)

However, it is not possible to solve (21) because measure-
ments of P rt

load(t) are not available in practice. Furthermore,
there is no guarantee that the optimizers of (21) would elim-
inate frequency offset in steady state. To obtain a realizable
alternative that also ensures zero steady-state frequency error,
we revert to the AGC dynamics in (2) and (3) which indicate
how the generator references are determined. Summing both
sides of (2) over all generators, recognizing that

∑
g∈G αg =

1, and considering the decomposition in (13), we get:

1T
GP

ref
G (t) = ξ(t) = 1T

GP
ed?
G (t) + 1T

GP
agc
G (t). (22)

Thus we can write

1T
GP

agc
G (t) = ξ(t)− 1T

GP
ed?
G (t) (23)

where ξ(t) is obtained from (3) and P ed?
G (t) is obtained by

solving the CTED problem (updated every |T | units of time).

Hence, the OAGC problem can be written as follows:

min
P agc

G (t)

∑
g∈G

Fg(P agc
g (t)) (24a)

s.t. 1T
GP

agc
G (t) = ξ(t)− 1T

GP
ed?
G (t), (24b)

PG ≤ P
agc
G (t) + P ed?

G (t) ≤ PG (24c)

ξ̇(t) = ε(t)− ξ(t) +
∑
g∈G

P ele
g (t), (24d)

The problem (24) can be solved continually upon receival
of AGC signal ε(t). In essence, the above strategy retains
the AGC dynamics in (3) from current industry practice
but provides a systematic and optimal alternative to the
determination of corrective AGC action. This is in contrast
to how AGC control is currently determined as in (2).
In traditional AGC, the allocation of net AGC action to
individual generators through the ACE participation factors
only aspires toward—but does not ensure—operation close
to the economically optimal dispatch point.



B. A Linear Programming Reformulation for CTED

The problem (19) is analytically intractable since it is
patently infinite dimensional. We use a scalable and efficient
function space-based solution method to solve the problem.
An overview of this approach is provided next, and readers
are referred to [20] for details.

The basic strategy is to model all pertinent time-domain
trajectories in the CTED problem in a finite-order function
space spanned by so-called Bernstein polynomials. Bernstein
polynomials of degree Q, having Q + 1 polynomials, are
defined as follows for t ∈ [0, 1]:

bq,Q(t) =

(
Q

q

)
tq(1− t)Q−q, q ∈ Q := {0, ..., Q}. (25)

(See, e.g., [21], [22] for further details.) We consider the
horizon for dispatch T and divide it into N intervals of equal
length T . Next, we construct a set of basis functions in each
interval n using Bernstein polynomials of degree Q. Thus,
the vector of basis functions spanning T :

e(Q)(t) = [e
(Q)
1 (t), . . . , e

(Q)
P (t)]T (26)

contains P = (Q+1)N components defined as:

e
(Q)
n(Q+1)+q+1(t) = bq,Q

(
t− tn
T

)
, t ∈ [tn, tn+1), (27)

for n ∈ {0, . . . , N − 1}. Let us project ∆ω(t), P la
load(t),

and entries of P ed
G (t) := [P ed

1 (t), . . . , P ed
G (t)]T in a function

space spanned by basis functions (26) as follows:

∆ω(t) = ∆ωe(Q)(t), ∀t ∈ T , (28)

P la
load(t) = Pla

load(t)e(Q)(t), ∀t ∈ T , (29)

P ed
g (t) = Ped

g e(Q)(t), ∀t ∈ T ,∀g ∈ G, (30)

where ∆ω, Pla
load, and Ped

g are P -dimensional row vectors
of Bernstein coefficients. Then, CTED problem (19) converts
into the following linear programming problem as detailed
in Appendix I:

min
Ped

g ,P̂ed
g,s,∆ω

T
∑
g∈G

(
Cg(P ed

g ) +
∑
s∈Sg

µg,sP̂
ed
g,s1P

Q+ 1

)
(31a)

s.t.
∑
g∈G

Ped
g − (Deff +MeffMN )∆ω = Pla

load, (31b)

Ped
g = P ed

g 1T
P +

∑
s∈Sg

P̂ed
g,s, ∀g ∈ G, (31c)

0 ≤ P̂ed
g,s ≤ |P̂ ed

g,s|1T
P , ∀g ∈ G, s ∈ Sg, (31d)

P ed
g 1T

P ≤ Ped
g ≤ P

ed

g 1T
P , g ∈ G, (31e)

∆ω1T
P ≤∆ω ≤ ∆ω1T

P . (31f)

In Appendix A, we provide a brief overview of how
the cost function and constraints in (19) are transformed
into corresponding ones above as well as definitions of
all variables and parameters. The problem also includes
constraints that capture interconnections between different
intervals to ensure continuous differentiability of trajectories
across adjacent intervals. These are omitted for brevity.

V. SIMULATION RESULTS

We consider the single-area 9-bus 3-generator transmission
system with one-line diagram shown in Fig. 1. The network
and associated parameters are from the Western System
Coordinating Council (WSCC) network [24]. Generators are
connected at buses G = {1, 2, 3}, and loads are connected
at buses L = {4, 5, 6, 7, 8, 9}. The generator cost function
in the ED/CTED problem (19) is piece-wise linear, and the
cost function in the AGC/OAGC problem in (20) is quadratic.
We opt for different cost functions as generators may require
different control effort for power adjustment in real time. The
data for the network- and generator-model parameters as well
as cost functions are available online at [25].

Optimization problems are solved in GAMS using CPLEX
12.6.2 solver [26]. The optimizers of the ED/CTED prob-
lem are passed to Power System Toolbox (PST) [27] in
Matlab where AGC/OAGC is performed alongside dynamic
simulations. Although the CTED only considers generator
dynamics as described by (19b), the PST simulations include
a detailed system model that considers lossy lines, turbine
governor model, and a detailed two-axis machine model. A
simulation period of 1 minute is considered where load takes
a constant value of 230 MW during the first 20 seconds
and 430 MW during the last 20 seconds intervals and grows
linearly in between.

We compare the performance of the following five simu-
lation setups that include a mix of conventional ED, conven-
tional AGC, CTED, and OAGC:

• Case I (2-point ED + AGC): Conventional ED per-
formed at two instances, t = 10, 50 secs and dispatch
signals are sent to traditional AGC.

• Case II (3-point ED + AGC): Conventional ED per-
formed at three instances, t = 10, 30, 50 secs and
dispatch signals are sent to traditional AGC.

• Case III (3-point ED + OAGC): Conventional ED
performed at three instances, t = 10, 30, 50 secs and
dispatch signals are sent to OAGC.

• Case IV (CTED + AGC): CTED performed with the
simulation period divided into 5 intervals and the dis-
patch signal is sent to traditional AGC.

• Case V (CTED + OAGC): CTED performed with
the simulation period divided into 5 intervals and the
dispatch signal is sent to OAGC.

Fig. 1. Single-area 3-generator 9-bus test system [20].



A. Economic Performance

We report the dispatch and AGC costs for the five strate-
gies in Table 1. The following are key observations that
validate the proposed combined CTED+OAGC architecture.
• As we move from 2-point ED to 3-point ED to CTED,

the generator dispatch cost increases, while AGC and
total costs decrease. This demonstrates that as the
generator dispatch resulting from the ED/CTED solu-
tion becomes more closely aligned with the load, the
economic performance of the system improves.

• For all types of ED/CTED, integration with OAGC is
more economical in comparison to traditional AGC.

• As we have a separate cost function for AGC that
increases quadratically with respect to the real-time
generation-load mismatch, the cost can be very high if
the real-time power mismatch is large. We can see this
from the simulation results. Particularly, for the 2-point
ED case, the AGC cost is even greater than the ED cost.

TABLE I
BREAKDOWN OF TOTAL COST INTO DISPATCH AND AGC COSTS

Case Dispatch Cost AGC Cost Total Cost

I 77.06 127.41 204.47

II 87.10 39.84 126.94

III 87.10 34.98 122.08

IV 96.92 3.10 100.02

V 96.92 2.61 99.53

B. Dynamic Performance

As the dispatch schedule is more closely aligned with
the load in CTED, the dynamic performance of the system
congruently improves. Particularly, trajectories of generator
frequencies and power outputs are more smooth than those
resulting from classical ED. We plot the dispatch signal
resulting from ED/CTED and the actual electrical power
output from generator 1 for Case II and Case IV in Fig. 2.
We note that P ed?

g (t) has sharp changes in case of 3-point
ED whereas for CTED the changes are more gradual. Also
there is close match between P ed?

g (t) and P ele
g (t) in CTED

as compared to 3-point ED.

VI. CONCLUSIONS AND FUTURE WORK

Keeping in mind the large-scale renewable integration in
the power grid, this paper proposed a dynamics-aware con-
tinuous time economic dispatch integrated with an optimal
automatic generation control for power systems operations. A
function space-based method was used to reduce the infinite-
dimensional CTED problem to a finite-dimensional LP prob-
lem. An optimization-based control algorithm was developed
to implement OAGC. The real-time dynamic simulation
including OAGC was implemented in a power network with
accurate nonlinear differential algebraic equation models of
the system. The results show significant improvement in
economic and dynamic performance of the system compared
to standard ED and AGC architectures. Future work includes

Fig. 2. Reference power input (P ed?
g (t)) and electrical power output

(P ele
g (t)) of generator 1 in MWs.

a thorough theoretical examination of CTED and OAGC.
We aim to include additional constraints in CTED, uncover
the interpretation of dual variables, and validate the overall
CTED+OAGC strategy in a network with multiple balancing
areas and under different contingencies.

APPENDIX I

A. Details of Bernstein Polynomial Projection

The details pertaining to the Bernstein polynomial repre-
sentation of the CTED problem provided below are adopted
from [20].

1) Cost function (31a): We consider a piece-wise linear
cost function for generator g with Sg linearization segments.
Positive auxiliary variable trajectories P̂ ed

g,s(t) are associated
to each of the segments s ∈ Sg := {1, . . . , Sg}. The dispatch
trajectories of generators and the associated cost functions
are expressed in linear form as below ∀t ∈ T , ∀g ∈ G:

P ed
g (t) = P ed

g +
∑
s∈Sg

P̂ ed
g,s(t), (32)

Ĉg(P ed
g (t))=Cg(P ed

g )+
∑
s∈Sg

µg,sP̂
ed
g,s(t), (33)

where Ĉg(P ed
g (t)) and µg,s are linearized cost function

of generator g and the slope of linearization segment s,
respectively. Auxiliary variables P̂ ed

g,s(t) are projected into
the Bernstein function space as

P̂ ed
g,s(t) = P̂ed

g,se
(Q)(t),∀s ∈ Sg, t ∈ T , g ∈ G, (34)

where P̂ed
g,s is a vector of Bernstein coefficients. It is confined

to the lengths of linearization segments |P̂ ed
g,s| as follows

∀g ∈ G,∀s ∈ Sg: 0 ≤ P̂ed
g,s ≤ |P̂ ed

g,s|1T
P . Substituting the

function space representation of P ed
g (t) from (30) and of

P̂ ed
g,s(t) from (34) in (32) and eliminating the vectors of basis

functions from both sides, we recast (32) as follows ∀g ∈ G:

Ped
g = P ed

g 1T
P +

∑
s∈Sg

P̂ed
g,s. (35)



With the developments above, we can simplify (20a) as
follows:∫
t∈T

∑
g∈G

Ĉg
(
P ed

g (t)
)
dt (36)

= T
∑
g∈G

Cg(P ed
g ) +

∑
g∈G

∑
s∈Sg

µg,sP̂
ed
g,s

∫
t∈T

e(Q)(t)dt. (37)

The cost function in (31a) follows from applying the iden-
tity [28]:

∫
t∈T e(Q)(t)dt = T

Q+11P .
2) Power balance constraint (31b): The time derivatives

of Bernstein polynomials of degree Q can be expressed as a
linear combination of Bernstein polynomials of degree Q−1
[21]. In the context of our problem, this allows us to define
∆ω̇(t) in the space spanned by Bernstein polynomials of
degree Q−1 for t ∈ T as:

∆ω̇(t) = ∆ωė(Q)(t) = ∆ωMe(Q−1)(t) =: ∆ω̇e(Q−1)(t),

whereM is the P ×(P −N) matrix that relates ė(Q)(t) and
e(Q−1)(t) [21], and ∆ω̇ is the (P − N)-dimensional row
vector of the Bernstein coefficients of ∆ω̇(t). From here, we
see that ∆ω̇ = ∆ωM. This relationship, along with (28)–
(30) allows us to simplify the constraint (19b) into (31b),
with N denoting the (P −N)×P degree-raising matrix that
relates e(Q−1)(t) to e(Q)(t) [28].

3) Inequality constraints (31d)–(31f): These follow from
leveraging the convex hull property of Bernstein polyno-
mials [21] to confine the Bernstein coefficients of (19c)
and (19d) to their minimum and maximum limits.
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dispatch for power networks: A distributed economic model predictive
control approach,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), Dec 2017, pp. 6340–6345.

[10] L. Xie and M. D. Ilic, “Model predictive economic/environmental
dispatch of power systems with intermittent resources,” in 2009 IEEE
Power Energy Society General Meeting, July 2009, pp. 1–6.

[11] X. Xia, J. Zhang, and A. Elaiw, “An application of model predictive
control to the dynamic economic dispatch of power generation,”
Control Engineering Practice, vol. 19, no. 6, pp. 638–648, 2011.

[12] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control
and economic dispatch from an optimization view,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 3, pp. 254–264, September
2016.

[13] D. Cai, E. Mallada, and A. Wierman, “Distributed optimization
decomposition for joint economic dispatch and frequency regulation,”
IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4370–4385,
November 2017.

[14] A. A. Thatte, Fan Zhang, and L. Xie, “Frequency aware economic
dispatch,” in 2011 North American Power Symposium, Aug 2011, pp.
1–7.

[15] J. W. Simpson-Porco, B. K. Poolla, N. Monshizadeh, and F. Dörfler,
“Quadratic performance of primal-dual methods with application to
secondary frequency control of power systems,” in IEEE Conference
on Decision and Control, December 2016, pp. 1840–1845.

[16] Z. Wang, F. Liu, S. H. Low, C. Zhao, and S. Mei, “Distributed
frequency control with operational constraints, part I: Per-node power
balance,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 40–52,
January 2019.

[17] ——, “Distributed frequency control with operational constraints,
part II: Network power balance,” IEEE Transactions on Smart Grid,
vol. 10, no. 1, pp. 53–64, January 2019.

[18] S. Menta, A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler,
“Stability of dynamic feedback optimization with applications to
power systems,” in Annual Allerton Conference on Communication,
Control, and Computing, October 2018, pp. 136–143.

[19] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback-based
projected-gradient method for real-time optimization of aggregations
of energy resources,” in IEEE Global Conference on Signal and
Information Processing, November 2017, pp. 1040–1044.

[20] R. Khatami, S. Guggilam, C. Chen, S. Dhople, and M. Parvania,
“Dynamics-aware continuous-time economic dispatch: A solution for
optimal frequency regulation,” in Proceedings of the 53rd Hawaii
International Conference on System Sciences, 2020.

[21] M. Parvania and A. Scaglione, “Unit commitment with continuous-
time generation and ramping trajectory models,” IEEE Transactions
on Power Systems, vol. 31, no. 4, pp. 3169–3178, October 2015.

[22] M. Parvania and R. Khatami, “Continuous-time marginal pricing of
electricity,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp.
1960–1969, May 2017.
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