
Measurement-based Optimal Power Flow with
Linear Power-flow Constraint for DER Dispatch

Severin Nowak§, Liwei Wang§, and Yu Christine Chen†
§The University of British Columbia–Okanagan. Email:{severin.nowak, liwei.wang}@ubc.ca

†The University of British Columbia–Vancouver. Email: chen@ece.ubc.ca

Abstract—This paper proposes a measurement-based method
to obtain optimal power-flow (OPF) solutions that opti-
mize distribution-system operations by dispatching active- and
reactive-power outputs of distributed energy resources (DERs).
Central to the proposed method is the estimation of a lin-
ear power-flow model from synchronized voltage and power-
injection data collected from distribution-level phasor measure-
ment units (D-PMUs). The estimated model is then incorporated
into an OPF problem as an equality constraint. We formulate
a quadratic cost function that enables co-optimization of DER
active- and reactive-power costs, voltage deviations away from
prescribed reference levels, as well as active- and reactive-power
deviations from desired setpoints. Via numerical simulations of
the IEEE 33-bus distribution test system, we demonstrate that the
proposed measurement-based method yields sufficiently accurate
solutions compared to model-based OPF solutions. Furthermore,
we highlight the adaptability of the proposed method in case an
accurate network model is not available.

I. INTRODUCTION

Integration of distributed energy resources (DERs), such as
rooftop solar and battery storage, helps to alleviate environ-
mental concerns of conventional fossil fuel-based generation.
Moreover, DERs can be coordinated to provide grid support
to the transmission system in the form of frequency regulation
and reactive-power support [1], [2]. However, due to the wider
range of possible operating points brought forth by DERs,
power quality may be compromised for end-customers of
electricity [3]. Reliable and efficient operation of the integrated
power grid has motivated recent research into developing DER
management systems [2]. Such systems generally require an
accurate and up-to-date network model, which may not be
available to system operators in real time [4]. Furthermore,
optimal DER control requires repeated solutions of (possibly
nonconvex) AC optimal power-flow (OPF) problems con-
strained by nonlinear power-balance constraints, which may be
computationally burdensome in practical field implementation,
especially with rapidly varying operating points. Instead, in
this paper, we embed a linearized power-flow constraint in the
OPF problem. Compared to the full-blown AC OPF problem,
the proposed method incurs lower computational burden to
obtain sufficiently accurate OPF solutions. Furthermore, we
propose to estimate the linear power-flow model using syn-
chronized voltage and power measurements collected from
distribution-level phasor measurement units (D-PMUs). In
so doing, the proposed approach is amenable to real-world
implementation of DER management systems because it does

not rely on an accurate offline network model, and it adapts
to the evolving operating point.

We focus our review of relevant literature on measurement-
based methods for online applications in distribution system
operations. As a promising technology for such applications,
D-PMUs provide time-synchronized voltage- and current-
phasor measurements with phase angle accuracy of 0.01◦; and
they stream the phasor data through a standardized communi-
cation interface (e.g., IEEE C37.118) at intervals in the sub-
second range [5]. Recent research in the use of high-resolution
phasor data in distribution systems places emphasis on im-
proving monitoring and observability (see, e.g., [6], [7]). Addi-
tional applications of D-PMU data include detection and iden-
tification of abnormal events such as voltage sags and high-
impedance faults [8], [9]. Furthermore, high-resolution PMU
data can enable the estimation of evolving parameters and
operating points within the power grid via, e.g., a linearized
power-flow model [10] and pertinent voltage-to-power sensi-
tivities [11]. Furthermore, several research efforts were made
recently to compute the power-grid topology using only mea-
surements via estimation approaches [4], [12], [13]. In addition
to estimation and monitoring applications, measurement-based
DER management and control have received interest in recent
years. For example, methods to regulate distribution-system
voltages were developed in [14]–[16] by computing voltage-
sensitivities from measurements. Furthermore, [17] proposes
a measurement-based method to regulate the power exchange
between the distribution and transmission systems by provi-
sioning active power from DERs.

In this paper, we propose a measurement-based approach
to approximate OPF solutions aimed at optimizing several
aspects of distribution-system operations. In contrast to the
grid-topology estimation in [4], [12], [13], we estimate a
linear distribution-system power-flow model from online mea-
surements of bus voltages and active- and reactive power
injections via partial least-square (PLS) estimation, similar
to [10]. The estimated model contains key characteristics of the
actual system without explicitly recovering the grid topology.
We extend the work in [10] by incorporating the estimated
linear power-flow model into the OPF problem as an equality
constraint to compute optimal DER setpoints. Unlike [14]–
[17], the proposed formulation achieves combined objectives
of minimizing (i) DER active- and reactive-power costs and
(ii) deviations of bus voltages and bus injections away from
their respective setpoints.



II. PRELIMINARIES

In this section, we establish notation, describe power-flow
models, and formulate the AC OPF problem. We also motivate
the need for a measurement-based approach.

A. Network and Power-flow Models
Consider a distribution system with N buses collected in

the set N = {1, . . . , N}. Distribution lines are represented
by two directed edges and collected in the set of edges
L := {(i, j)} ⊆ N ×N . Suppose measurements of pertinent
system variables are sampled at time t = k∆t, k = 0, 1, . . . ,
where ∆t is the time interval between consecutive samples.
Let Vi,[k] and θi,[k] denote, respectively, the voltage mag-
nitude and phase-angle at bus i and discrete time step k.
Also let P load

i,[k] and Qload
i,[k] denote, respectively, the active-

and reactive-power load at bus i and time step k. Similarly,
let P gen

i,[k] and Qgen
i,[k] denote, respectively, the active- and

reactive-power generation at bus i and time step k. Further-
more, collect voltage phase-angles and magnitudes at time
step k in vector x[k] = [θ1,[k], . . . , θN,[k], V1,[k], . . . , VN,[k]]

T.
Also collect active- and reactive-power loads in vec-
tor yload[k] = [P load

1,[k] , . . . , P
load
N,[k], Q

load
1,[k], . . . , Q

load
N,[k]]

T. Simi-
larly, collect active- and reactive-power generation in vec-
tor y[k] = [P gen

1,[k], . . . , P
gen
N,[k], Q

gen
1,[k], . . . , Q

gen
N,[k]]

T. Then,
distribution-system power-flow equations at time step k can
be compactly expressed as

y[k] = g(x[k]) + yload[k] , (1)

where g : R2N → R2N . In (1), the dependence on network
topology and associated parameters (such as circuit breaker
status and line impedances) is implicitly considered in g(·).
Let x[k] = x[k−1] +∆x[k], where x[k−1] denotes the operating
point at the previous time step k − 1. Then, according to (1),

y[k] = g(x[k−1] + ∆x[k]) + yload[k] . (2)

Suppose g(·) is continuously differentiable with respect to x,
and assume that ∆x[k] is sufficiently small. Then we can
approximate y[k] as

y[k] ≈ g(x[k−1]) + J[k]∆x[k] + yload[k] , (3)

where
J[k] =

∂g

∂x

∣∣∣∣
x[k−1]

(4)

is the Jacobian matrix of the power-flow equations evaluated
at the previous operating point x[k−1]. Recall that ∆x[k] =
x[k] − x[k−1] and further substitute this into (3) to yield

y[k] ≈ J[k]x[k] + c[k], (5)

where c[k] = g(x[k−1])+y
load
[k] −J[k]x[k−1]. We note that, in the

model-based framework, the evaluation of both c[k] and J[k]
relies on the up-to-date operating point at time step k − 1 as
well as an accurate network model of the distribution system.

Power-flow analysis is a ubiquitous tool in power system
planning and operations. Exact and approximate variants are
commonly used in state estimation, contingency analysis, and
OPF problems, to name a few.

B. AC Optimal Power-flow Problem Formulation

The AC OPF problem minimizes a desired cost func-
tion (e.g., cost of generation, transmission losses, deviations
away from references, etc.) subject to nonlinear power-balance
and other operational constraints. It is formulated as [18]

min
x[k],y[k]

f(x[k], y[k]), (6)

s.t. y[k] = g(x[k]) + yload[k] ,

xmin ≤ x[k] ≤ xmax,

ymin ≤ y[k] ≤ ymax,

where f : R2N × R2N → R is the objective function to be
minimized; xmin and xmax represent, respectively, minimum
and maximum voltage phase-angle and magnitude limits;
and ymin and ymax represent, respectively, minimum and
maximum allowable active- and reactive-power generation.
Entries of ymin and ymax corresponding to DERs represent
their minimum and maximum output. The nonlinear OPF
problem in (6) is a nonconvex optimization program and is
consequently NP-hard to solve [18].

C. Problem Statement

The solution of the conventional OPF problem relies on an
offline network model with accurate topology and parameters,
which may not be available due to insufficient telemetry from,
e.g., circuit breakers, in the distribution system. Furthermore,
the nonconvex nature of the AC OPF problem in (6) may
pose significant computational hurdles for the utility operator,
especially with rapidly varying operating point. Recognizing
that the nonlinear power-flow equations in (6) cause the
optimization problem to be nonconvex, we seek to replace
them with a linear relationship. Furthermore, with a view for
practical field deployment where an accurate network model
may not be available, we use online measurements of nodal
voltages and injections to compute linear sensitivities that
make up the linear power-balance constraint. The proposed
method accomplishes the dual objectives of (i) eradicating the
reliance on an accurate offline model, and (ii) reducing the
computational burden in solving the optimal operating point.

III. MEASUREMENT-BASED OPF APPROACH

In this section, we formulate the proposed measurement-
based approach to obtain the linearized power-flow model
in (5). The relevant linear sensitivities are estimated via the
partial least-squares (PLS) method without relying on an
offline system network model. Subsequently, we incorporate
the measurement-based power-flow model into the the OPF
problem by replacing the nonlinear power-flow constraint with
the estimated linear one.

A. Estimation of Linearized Power-flow Model

Based on the linearized power-flow model in (5), we hy-
pothesize that there exists H[k] ∈ R(2N+1)×2N that satisfies
the following relationship:

yT[k] ≈
[
xT[k] 1

]
H[k], (7)



which is equivalent to (5) with H[k] = [J[k], c[k]]
T. In order

to eradicate the reliance on the accurate network model, we
propose to estimate the entries of H[k] using only online
measurements. To this end, suppose that M+1 measurements
of bus voltage angles and magnitudes, x[k−M ], . . . , x[k], and
active- and reactive-power injections, y[k−M ], . . . , y[k], are
available. Further suppose that the linear power-flow model
remains approximately constant over the M measurement
samples. Assuming that M > 2N , we stack up M instances
of (7) to yield the following over-determined system:

B[k] = A[k]H[k], (8)

where matrices A[k] and B[k] are composed of online mea-
surements, and they are given by

A[k] =

x
T
[k−M ] 1

...
...

xT[k] 1

 , B[k] =

y
T
[k−M ]

...
yT[k]

 . (9)

Since (8) is over-determined, we can obtain the ordinary least-
squares estimate for H[k] as

Ĥ[k] ≈ (AT
[k]A[k])

−1AT
[k]B[k]. (10)

In our setting, the bus voltage phase-angles and magnitudes
in A[k] are highly correlated due to similar evolving patterns in
operating-point changes, which may result in ill-conditioned
regressor matrix in (10). A more suitable solution approach
for regression problems with collinearity in A[k] is the PLS
method. The central idea is to project so-called latent features
or key components in A[k] and B[k] onto lower-dimensional
latent matrices T[k] and U[k], respectively, which best model
the relationship in (8). The decompositions of A[k] and B[k]

are performed in a way that they satisfy [19]

T[k] = A[k]G[k], B[k] = U[k]L
T
[k]. (11)

where T[k] and U[k] are latent matrices with extracted com-
ponents from matrices A[k] and B[k], and G[k] and L[k]

are loading matrices. Through the nonlinear iterative partial
least squares (NIPALS) algorithm, columns of A[k] and B[k]

are chosen to populate T[k] and U[k], respectively, so as to
maximize the covariance between them. This is reflected in the
loading matrices G[k] and L[k]. Then, PLS performs regression
on the latent variables instead of the original ones. With the
over-determined regression model U[k] = T[k]Θ[k], Θ[k] can
be estimated via ordinary LSE as

Θ[k] = (TT
[k]T[k])

−1TT
[k]U[k]. (12)

Substituting U[k] = T[k]Θ[k] into (11), we get

B[k] = T[k]Θ[k]L
T
[k] = A[k]G[k]Θ[k]L

T
[k]. (13)

Finally, recognizing that (13) is equivalent to (8) with H[k] =
G[k]Θ[k]L

T
[k], substitution of (12) into the above yields the PLS

estimate of H[k] in (8) as

Ĥ[k] ≈ G[k](T
T
[k]T[k])

−1TT
[k]U[k]L

T
[k]. (14)

Interested readers may refer to [19] for background on the
PLS method and details of the NIPALS algorithm.

B. Quadratic OPF Problem Formulation

The conventional OPF problem in (6) is nonconvex due to
the nonlinear power-flow equality constraint. To overcome the
challenges involved with solving the nonconvex optimization
problem, we leverage online measurements to estimate linear
sensitivities to construct the linear power-flow model in (7)
and incorporate this into (6) as follows:

min
x[k],y[k]

f(x[k], y[k]), (15)

s.t. y[k] = ĤT
[k]

[
x[k]
1

]
,

xmin ≤ x[k] ≤ xmax,

ymin ≤ y[k] ≤ ymax.

In the above, as described in Section III-A, the matrix Ĥ[k] is
estimated using online measurements collected at time steps
k −M, . . . , k. In practical implementations, Ĥ[k] may be the
most recent estimate available, or it may be computed using (5)
from a model if one is at hand.

In our setup, we utilize a quadratic cost function that
optimizes DER active- and reactive-power injections in order
to minimize a weighted combination of: (i) cost of DER active-
and reactive-power generation, (ii) deviations of voltage phase-
angles and magnitudes from their reference values, and (iii) de-
viations of nodal active- and reactive-power injections from
their setpoints. To capture the above, we fix the cost function
in (15) as

f(x[k], y[k]) = yT[k]Υy[k] + (x[k] − x◦)TΨ(x[k] − x◦)

+ (y[k] − y◦)TΦ(y[k] − y◦), (16)

where x◦ and y◦ denote desired setpoints for voltages and
injections, respectively. In (16), Υ = diag(υ1, . . . , υ2N ),
Ψ = diag(ψ1, . . . , ψ2N ), and Φ = diag(ϕ1, . . . , ϕ2N )
are diagonal weight matrices with non-negative entries, i.e.,
υi, ψi, ϕi ≥ 0, i = 1, . . . , 2N . The cost function in (16)
is general in the sense that weighting matrices Υ, Ψ, and
Φ, respectively, enforce minimization in the cost of power
injections, voltage-phasor deviations, and power-injection de-
viations. With positive semidefinite weight matrices, (15) is a
quadratic optimization problem with linear constraints where
the solution can be efficiently computed using standard convex
optimization solvers, e.g., [20]. Furthermore, by estimating the
linearized power-flow model in (7) from online measurements,
the up-to-date operating conditions and system configuration
are accurately accounted for, as opposed to an offline network
model which may not reflect operating-point changes and
switch re-configurations in real time.

IV. CASE STUDIES

We perform numerical simulations of the IEEE 33-bus test
system (see, e.g., [21]) in MATPOWER [22]. The single-
line diagram of the test system is shown in Fig. 1. We
assume that measurements of voltage phasors and active-
and reactive-power injections are available from D-PMUs
installed at all buses. Four DERs are connected to buses
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Fig. 1: IEEE 33-bus test system with 4 DERs installed at buses 6, 18, 25,
and 33. Switches SW1 and SW2 are normally open, and switches SW3 and
SW4 are normally closed.

i ∈ D = {6, 18, 25, 33}, and their active- and reactive-
power outputs are, respectively, constrained within P gen

i ∈
[−0.15, 0.15] p.u. and Qgen

i ∈ [−0.15, 0.15] p.u. to represent
DERs with four-quadrant operation, similar to e.g., [14], [17].
For all other buses i ∈ N \ D, P gen

i = Qgen
i = 0. In order

to estimate the linear power-flow model in (7), we perturb the
active- and reactive-power components of loads around their
nominal values with random Gaussian distributed variations
of zero mean and 0.05% standard deviation relative to the
nominal load values. Subsequent case studies use M = 200
measurements in order to have a sufficiently over-determined
regression problem in (8).

We compare OPF solutions obtained via three methods:
(i) model-based AC OPF in (6), (ii) model-based OPF with
linearized power-flow equality constraint in (5), and (iii) pro-
posed measurement-based OPF in (15) with estimated linear
equality constraint. For all three, we use a standard personal
computer and solve the OPF problem with CVX, a toolbox for
convex programs [20]. The AC OPF is solved via its convex
relaxation, which is exact for radial systems (see, e.g., [18]).

A. Accurate System Model

We benchmark the proposed measurement-based OPF
method against the model-based methods assuming that an
accurate network model is available. We intend to compute
DER active- and reactive-power setpoints to simultaneously
(i) minimize voltage-magnitude deviations from reference lev-
els (1 p.u. in our case studies), (ii) regulate the substation
active-power supply, and (iii) minimize cost of active- and
reactive power injections. To this end, we set the diagonal
entries in weight matrix Ψ such that ψ1, . . . , ψN = 0 (cor-
responding to voltage phase-angles) and ψN+1, . . . , ψ2N = 1
(corresponding to voltage magnitudes). Furthermore, we set
appropriate entries in x◦ to reference voltage magnitude 1 p.u.,
i.e.,1 x◦ = [0TN , 1

T
N ]T. Diagonal entries in weight matrix Υ are

set to 1 to reflect equal cost for all active- and reactive-power
injections. Finally, in Φ, ϕ1 is set to 1 while ϕi = 0 for
i = 2, . . . , 2N , and the first entry in y◦ is set to the substation
active-power reference of 0.1 p.u.

Figure 2 plots bus voltage magnitudes Vi, bus active-power
injections P gen

i , and reactive-power injections Qgen
i . From a

visual inspection of Fig. 2, we observe that the proposed
measurement-based method provides close approximations to

10N and 1N denote the length-N vectors of all 0s and 1s, respectively
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Fig. 2: Accurate system model: OPF results obtained via (i) model-based AC
OPF, (ii) model-based linearized OPF, and (iii) proposed measurement-based
OPF. Top pane: bus voltages Vi; Middle pane: active-power injections P gen

i ;
Bottom pane: reactive-power injections Qgen

i .

TABLE I: Accurate system model: comparison of cost-function, relative-error,
and computation-time metrics among (i) model-based AC OPF, (ii) model-
based linearized OPF, and (iii) proposed measurement-based OPF.

Cost Voltage- Active- Reactive- Execution
function magnitude power power time (s)

(p.u.) error (%) error (%) error (%)
AC OPF 0.0118 — — — 7.297
Linearized OPF 0.0182 0.510 17.497 16.141 2.094
Meas-based OPF 0.0124 0.190 4.799 6.766 2.000

the benchmark solution obtained from the model-based AC
OPF. Aggregate mean percent errors in voltage magnitude,
active-power injection, and reactive-power injection are re-
ported, respectively, in columns 3, 4, and 5 of Table I.
Additionally, as shown in column 2 of Table I, we note
that the cost function evaluated from the measurement-based
solution is very close to that of the benchmark AC OPF one.
Finally, column 6 highlights that the use of linear power-flow
constraint significantly reduces the execution time needed to
obtain the OPF solution. We hypothesize that the time dif-
ference between the model-based OPF with linearized power-
flow constraint and the measurement-based one may be due to
numerical properties of the iterative solver. Also note that the
injection at bus 1 deviates slightly from the specified setpoint
of 0.1 p.u. We can easily enforce this by weighing it more
heavily in the cost function.

B. Inaccurate System Model

In this case study, the system topology in Fig. 1 is re-
configured by closing SW1 and SW2 to establish electrical
connection between buses 22 and 12, and buses 25 and 29,
respectively. Simultaneously, SW3 and SW4 are opened to
disconnect the lines between buses 28 and 29, and buses
11 and 12, respectively. In addition, active- and reactive-
power loads grow by 25%. However, these changes are not
updated in the system model used by the model-based AC
OPF. The cost function is set up as in the previous case study
in Section IV-A. In Fig. 3 and Table II, we report simulation
results obtained from model-based AC OPF with the updated
system model, the same with the old inaccurate model from
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Fig. 3: Inaccurate system model: OPF results obtained via (i) model-
based AC OPF with accurate system model, (ii) model-based AC OPF with
inaccurate system model, and (iii) proposed measurement-based OPF. Top
pane: bus voltages Vi; Middle pane: active-power injections P gen

i ; Bottom
pane: reactive-power injections Qgen

i .

TABLE II: Inaccurate system model: comparison of cost-function, relative-
error, and computation-time metrics among (i) model-based AC OPF with
accurate system model, (ii) model-based AC OPF with inaccurate system
model, and (iii) proposed measurement-based OPF.

Cost Voltage- Active- Reactive- Execution
function magnitude power power time (s)

(p.u.) error (%) error (%) error (%)
AC OPF (acc.) 0.0060 — — — 6.234
AC OPF (inacc.) 0.0171 0.774 41.439 36.152 7.297
Meas-based OPF 0.0061 0.172 3.216 5.745 1.218

Section IV-A, as well as the proposed measurement-based
method. The results clearly indicate the superiority of the
measurement-based method, which is adaptive to the network
reconfiguration and operating-point change. It provides a much
more accurate solution compared to the model-based AC OPF
with the inaccurate model.

V. CONCLUDING REMARKS

In this paper, we present a measurement-based method to
determine optimal DER active- and reactive-power dispatch in
distribution systems. We estimate a linear power-flow model
from D-PMU measurements of voltage phasors and active- and
reactive-power injections using PLS estimation. We further in-
corporate the estimated model into an OPF problem as a linear
equality constraint. The OPF problem minimizes a quadratic
cost function that combines (i) DER active- and reactive-
power costs and (ii) deviations of bus voltages and injections
away from reference setpoints. Simulations of the IEEE 33-bus
test system demonstrate that the proposed measurement-based
method yields accurate OPF solutions compared to model-
based AC OPF, while incurring lower computational cost.
Furthermore, we demonstrate the adaptability of the proposed
method in case an accurate offline system model is not
available. The measurement-based OPF method is potentially
useful in various applications aimed at controlling distribution
systems and highlights the benefits of communication-based
DER control. Compelling avenues for future work include
(i) online implementation, (ii) extension to unbalanced net-
works, (iii) estimation using fewer measurements.
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