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Abstract—This paper presents an optimization-based method
to detect the occurrence, estimate the magnitude, and identify
the location of load changes in the power system. The proposed
method relies on measurements of only frequency at the output
of synchronous generators along with a reduced-order power
system dynamical model that captures locational effects of load
disturbances on generator frequency dynamics. These locational
aspects are retained in the estimation model by incorporating
linearized power-flow balance into differential equations that
describe synchronous-generator dynamics. The sparsity structure
of load-change disturbances is leveraged so that only a limited
number of measurements are needed to estimate load changes.
Furthermore, a convex relaxation of the problem ensures that
it can be solved online in a computationally efficient manner.
Time-domain simulations involving the Western Electricity Co-
ordinating Council 9-bus test system demonstrate the accuracy
of the proposed method.

Index Terms—Convex optimization, event detection, load
change estimation.

I. INTRODUCTION

In this paper, we propose to simultaneously detect the
occurrence, estimate the magnitude, and identify the location
of load-change disturbances in the power system using on-
line measurements of frequencies collected at synchronous-
generator buses in conjunction with a reduced-order power
system dynamical model. The ability to estimate load (or in-
jection) changes is particularly relevant for operations and con-
trols tasks in future power networks given that the widespread
integration of rapidly varying renewable generation would
likely result in large and frequent excursions away from
the steady-state operating point. The proposed method ac-
knowledges system electromechanical dynamics by adopting
a third-order model for each synchronous generator, captur-
ing its rotor-angle position, electrical frequency, and turbine-
governor dynamics. We further incorporate linearized power-
flow equations into the generator dynamical models, thereby
reducing the standard power-system differential-algebraic-
equation (DAE) model into one that contains only differential
equations. In this way, pertinent attributes of the network
topology are embedded within the system dynamical model,
and the locational effects of different load disturbances on
frequency response are captured. Moreover, by leveraging
the sparsity structure of load changes in the system, we
accomplish the estimation task using only generator frequency
measurements sampled at a single snapshot in time. We further
utilize a well-known convex relaxation of the sparse-signal

estimation problem that can be solved with computationally
efficient algorithms. Taken together, the proposed framework
provides timely estimates of both magnitude and location of
potentially fast/large transients in loads or injections.

Timely detection and identification of disturbances in the
power system is crucial to maintain its operational reliability.
Most prior art has addressed the problem of detecting and iden-
tifying transmission-line outages [1]–[4], power-quality distur-
bances [5]–[7], and cascading events leading to blackouts [8]–
[11]. With respect to load estimation, nonintrusive load mon-
itoring has been widely studied to analyze load-state changes
at the individual household appliance level [12]–[14]. Unlike
these, our work focuses on estimating load changes in the
bulk transmission system by relying on online measurements
of synchronous-generator frequencies, which are commonly
collected to compute the system-wide frequency [15].

The proposed approach begins with a classical power-
system dynamical model perturbed around an initial operating
point [16]. Using DC power-flow assumptions, we embed
the impact of load changes on synchronous-generator dynam-
ics by algebraically manipulating and incorporating pertinent
admittance-like matrices in the dynamical model [17]. Then,
leveraging this model along with generator frequency mea-
surements collected at a particular sampling instant, we solve
a convex optimization problem to simultaneously estimate the
magnitude and location of load changes in a computation-
ally efficient manner. The main advantage of the proposed
method is that it uses online measurements of synchronous-
generator frequencies, which can be obtained from sensors,
such as phasor measurement units (PMUs), equipped at buses
connected to generators. Furthermore, unlike most previous
work in power-system change detection and identification, we
explicitly incorporate the underlying system dynamics that
give rise to measured quantities into the modelling framework,
thereby accomplishing the intended estimation task using
measurements of dynamic states prior to reaching the post-
disturbance steady state. We demonstrate the effectiveness of
the proposed method using synthetic measurements periodi-
cally sampled from a time-domain simulation of a detailed,
lossy, and nonlinear power-system DAE model.

The remainder of this paper is organized as follows. Sec-
tion II outlines the network power-flow formulation and per-
tinent synchronous-generator dynamics, which are combined
to establish the system dynamical model. In Section III, we



describe the proposed method to estimate load changes using
generator frequency measurements. The efficacy of the pro-
posed load-change estimation method is verified via numerical
case studies in Section IV. Finally, Section V offers concluding
remarks and directions for future work.

II. PRELIMINARIES

In this section, we describe the power network and dynamics
attributable to the synchronous generators. We then combine
these to formulate the system dynamical model that will be
used for load-change detection and identification.

A. Network Description

Consider a power transmission network with N buses
collected in the set N = {1, . . . , N} and transmission lines
in the set E ⊂ N × N . Let Vk(t) = |Vk(t)|∠θk(t) rep-
resent the voltage phasor at bus k and time t. Denote, by
G = {1, . . . , G} ⊂ N , the set of G buses that are connected
to conventional turbine-based synchronous generators. Each
generator g ∈ G is modelled as a voltage source Eg(t) =
|Eg|∠δg(t) behind constant reactance jX ′d,g. Furthermore, de-
note by L = N \ G = {G + 1, . . . , N}, the set of L
load buses, which are connected to non-frequency-sensitive
loads, e.g., constant-power loads. Finally, Pk(t) denotes the
non-frequency-sensitive active-power injection at bus k ∈ N ,
which is a negative quantity if it corresponds to a constant-
power load.1

A transmission line with current flowing from bus k to ` is
denoted by (k, `) ∈ E . Transmission line (k, `) is modelled
using the lumped-element Π-model with series admittance
yk` = y`k = gk` + jbk` ∈ C \ {0} and shunt admittance
ysh
k` = gsh

k` + jbshk` ∈ C \ {0} on both ends of the line. The
active-power flow in line (k, `) is denoted by Pk`(t), ` ∈ Nk

with Nk representing the set of buses electrically connected to
bus k. Since we aim to develop a perturbative model around
an initial operating point, we will find the definition of the fol-
lowing small-signal variables useful: ∆δg(t) := δg(t)− δg(0),
∆θk(t) := θk(t) − θk(0), ∆Pk`(t) = Pk`(t) − Pk`(0), and
∆Pk(t) = Pk(t) − Pk(0). Under so-called DC assumptions,
active-power flow variations in line (k, `) can be captured by

∆Pk`(t) = −bk`(∆θk(t)−∆θ`(t)). (1)

Also, the active-power balance at generator-connected bus g ∈
G is given by

0 = ∆Pg(t) +
1

X ′d,g
(∆δg(t)−∆θg(t))−

∑
k∈Ng

∆Pgk(t), (2)

and active-power balance at load bus ` ∈ L yields

0 = ∆P`(t)−
∑
k∈N`

∆P`k(t). (3)

1Notation: The M -dimensional vector with all 1s is denoted by 1M . The
diagonal matrix diag(x) is formed with entries of the vector x stacked
on the main diagonal; diag(x/y) forms a diagonal matrix with the ith
diagonal entry given by xi/yi, where xi and yi are the ith entries of
vectors x and y, respectively. The M × N matrix of all 0s is denoted by
0M×N . The vector xG = [x1, . . . , xG]T collects xg’s for all g ∈ G, and
yL = [yG+1, . . . , yN ]T collects y`’s for all ` ∈ L.

B. Synchronous-generator Dynamical Model

Let δG ∈ RG and ωG ∈ RG denote the vector of rotor
electrical angular positions and frequencies, respectively, for
all generators g ∈ G. Further let Pm

G ∈ RG represent the vector
of turbine mechanical powers. Also collect the variations in
non-frequency-sensitive injections at all generator-connected
buses into ∆PG ∈ RG. Assume each generator g ∈ G initially
operates at synchronous steady state with ωg(0) = ωs =
2π60 rad/s, the synchronous frequency. Define small-signal
variations ∆δG(t) := δG(t)−δG(0), ∆ωG(t) := ωG(t)−ωs1G,
and ∆Pm

G (t) := Pm
G (t) − Pm

G (0). Then, dynamics of gen-
erators can be described by the following model obtained
by combining the swing equations with a speed-governor
model [16]:

∆δ̇G(t)=∆ωG(t), (4)
diag(MG)∆ω̇G(t)=∆Pm

G (t)− diag(DG)∆ωG(t)

+K∆θ(t) + ∆PG(t), (5)

diag(τG)∆Ṗm
G (t)=∆P r

G−∆Pm
G (t)−diag(RG)∆ωG(t), (6)

where MG ∈ RG and DG ∈ RG denote, respectively,
vectors containing generator inertia and damping constants.
Furthermore, τG ∈ RG, ∆P r

G ∈ RG, and RG ∈ RG collect
the governor time constants, changes in reference power
inputs, and inverse droop constants, respectively.2 Also, in (5),
∆θ = [∆θ1, . . . ,∆θN ]T collects the variations in bus voltage
angles. Furthermore, matrix K ∈ RG×L is composed by
appropriately evaluating (1) for each g ∈ G, as follows:

K = −
[
diag

(
1G

X′
d,G

)
+BGG BGL

]
, (7)

where X ′d,G = [X ′d,1, . . . , X
′
d,G]T, and matrices BGG and BGL

are formed based on the network topology (see Appendix A
for details).

C. Load-change Estimation and Identification Model

Collect the load variations at all buses in vector ∆P =
[∆P1, . . . ,∆PN ]T ∈ RN . Next, we develop a model that helps
identify nonzero entries in ∆P . Substituting suitable instances
of (1) into (2) and (3), and collecting the resultant into matrix-
vector form, we obtain [17]

∆θ(t) = B−1 (D∆δG(t) + ∆P (t)) , (8)

where

B =

[
BGG BGL
BLG BLL

]
, D =

[
diag

(
1G

X′
d,G

)
0L×G

]
. (9)

Entries in and structures of matrices BGG , BGL, BLG , and BLL
are detailed in Appendix A. Then, we substitute (8) into (5)
to get the following:

diag(MG)∆ω̇G(t)=∆Pm
G (t)− diag(DG)∆ωG(t)

+H∆δG(t) +W∆P (t), (10)

2In most reference textbooks, Rg refers to the droop constant of generator g;
in this paper, we deviate from the standard to contain notational burden.



where matrices H ∈ RG×G and W ∈ RG×N are given by

H = KB−1D, (11)

W = KB−1 +
[
diag(1G) 0G×L

]
. (12)

With a view that ∆P (t) in (10) represents a disturbance
input to the power system, entries of W capture the effects
of load-variation disturbances at different buses on generator
frequency dynamics. Next, we outline a method to estimate
load changes in the network using generator frequency mea-
surements in conjunction with (10).

III. LOAD-CHANGE ESTIMATION AND IDENTIFICATION

In this section, we propose a method to estimate load
changes and identify their locations using measurements of
generator frequencies. We further leverage the sparsity struc-
ture of the load-variation vector to estimate load disturbances
using a limited number of measurements.

A. Problem Formulation

Suppose we have measurements of variations in
synchronous-generator frequencies sampled at t = k∆t,
k ∈ Z, where ∆t > 0 is the time interval between consecutive
samples. Denote the measurement at time t = k∆t (or time
step k) by ∆ωG [k]. Then, at time step k, we can rearrange
terms in (10) to get

∆y[k] = W∆P [k], (13)

where

∆y[k] = diag(MG)∆ω̇G [k]−∆Pm
G [k]

+ diag(DG)∆ωG [k]−H∆δG [k]. (14)

Our goal is to estimate the value of ∆P [k] that satisfies (13)
by evaluating ∆y[k] using online measurements of ∆ωG [k].
In addition to measurements of ∆ωG [k], (14) requires samples
of ∆ω̇G [k], ∆δG [k], and ∆Pm

G [k], which are easily computed
using measurements of ∆ωG [k], as shown next.

1) Computing ∆ω̇G [k]: We approximate ∆ω̇G [k] as the
slope between two consecutive measurements: ∆ωG [k−1] and
∆ωG [k]. Specifically,

∆ω̇G [k] ≈ ∆t−1 (∆ωG [k]−∆ωG [k − 1]) . (15)

2) Computing ∆δG [k]: Discretization of the differential
equation in (4) results in the following expression:

∆δG [k + 1] = ∆δG [k] + ∆t∆ωG [k]. (16)

Given the initial value ∆δG [0] = 0G, we can compute ∆δG [k]
at all time steps k > 0.

3) Computing ∆Pm
G [k]: We first note that variations in

reference power inputs, denoted by ∆P r
G(t), in (6) are the

output of automatic generation control (AGC), which is used
to restore system frequency back to synchronous value. In
the timescales that we consider, we assume that the reference
power inputs do not change significantly, i.e., ∆P r

G(t) ≈ 0G,
t ≥ 0, in (6). Then, discretization of (6) yields

∆Pm
G [k + 1] = A∆Pm

G [k] +B∆ωG [k], (17)

where matrices A,B ∈ RG×G are given by

A = exp(−diag(τG)−1∆t),

B = diag(RG)A− diag(RG).

Then, given the initial value ∆Pm
G [0] = 0G, we can compute

∆Pm
G [k], k > 0, using the recurrence relation in (17).

We close this discussion with a few remarks on the esti-
mation of ∆P [k] from (13). By suitably shifting time indices
in (15), (16), and (17), and substituting them into (14), we get

∆y[k] =
(
∆t−1diag(MG) + diag(DG)

)
∆ωG [k]

−
(
∆t−1diag(MG) +Bd + ∆tH

)
∆ωG [k − 1]

−Ad∆Pm
G [k − 1]−H∆δG [k − 1]. (18)

The observation in (18) indeed requires only measurements
of synchronous-generator frequencies, and information at time
step k − 1 is known from previous frequency samples. How-
ever, the estimation problem in (13) cannot be solved by
naı̈vely inverting W . This is because, in general, not all buses
are connected to a generator, i.e., G < N , hence W is not
a square matrix. In fact, the estimation problem in (13) is
under-determined, and it cannot be solved via conventional
least-squares estimation. One way to bypass this issue is to
assume that the load variations remain constant and stack
up observations over multiple time steps and formulate an
over-determined estimation problem. However, in an effort to
minimize the number of measurements needed, we next outline
a method to solve the estimation problem by leveraging the
expectedly sparse nature of load changes in the system.

B. Solution Approach

At any given point in time, we expect the vast majority
of loads in the system to remain close to their steady-state
operating point, i.e., for a given time step k ∈ Z, ∆P [k]
is a sparse vector. Thus, we cast the load-change detection
and identification problem as an optimization program that
minimizes the number of nonzero elements in ∆P [k]:

min
∆P [k]

‖∆P [k]‖0

s.t. ∆y[k] = W∆P [k]. (19)

The problem in (19) is NP-hard due to the unavoidable combi-
natorial search [18]. A common solution approach is to relax
the nonconvex and discontinuous `0-norm cost function with
the convex and continuous `1-norm, yielding the following
convex optimization problem:

min
∆P [k]

‖∆P [k]‖1

s.t. ‖∆y[k]−W∆P [k]‖22 ≤ ε, (20)

where ε ≥ 0 is a small tolerance introduced to facilitate
computations. The optimization problem in (20) is known as
the basis pursuit denoising (BPDN) problem and is widely
used in compressed sensing for signal reconstruction, where
noise is inherent in signal measurements [19]. There are
several algorithms that can be utilized to solve the BPDN



problem in (20), such as the alternating direction method of
multipliers (ADMM) [20] and the spectral projected gradient
for `1-norm minimization (SPGL1) algorithm [21], [22]. For
∆y[k] = W∆P [k] to have at least one solution, the matrix W
must be full rank. We utilize the SPGL1 algorithm in [21] to
solve the BPDN problem in (20), which relies only on matrix-
vector operations and is computationally tractable for large-
scale estimation problems [22].

IV. CASE STUDIES

We demonstrate the proposed method via numerical case
studies involving the Western Electricity Coordinating Coun-
cil (WECC) 3-machine 9-bus test system; the one-line diagram
for this system can be found in [16]. Synchronous generators
are connected to buses collected in G = {1, 2, 3}, loads are
connected to buses in L = {5, 6, 8}.

A. Simulation Setup

Although our analytical development is grounded in a
simplified synchronous-generator model and leverages sev-
eral approximations (e.g., lossless network, small voltage-
angle differences, etc.), we verify the proposed method with
time-domain simulations for a detailed, lossy, and nonlinear
DAE model of the power network that includes generator
dynamics from a two-axis synchronous-machine model, a
turbine-governor model, and an exciter model. The simulations
are performed using PSAT [23]. Synthetic measurements are
sampled from the PSAT simulation at discrete intervals of
∆t = 0.0333 s, which is within the capability of current
measurement technology [24]. In our setup, at time t = 0, the
load at bus 6 follows the Pennsylvania-New Jersey-Maryland
Interconnection’s (PJM) dynamic regulation signal (regD) tra-
jectory [25]. The PJM regD signal is fed over a period of 40
seconds, where the disturbance setpoint changes every time
step ∆t = 0.0333 s. Other loads remain constant.

B. Load-change Estimation

We restrict measurements sampled from the time-domain
simulation to only ∆ωG [k] and compute ∆ω̇G [k], ∆δG [k], and
∆Pm
G [k] using (15), (16), and (17), respectively. As shown in

Fig. 1a, the computed dynamic state trajectories match the ac-
tual ones reasonably well. With the measured ∆ωG [k], ∆y[k]
is evaluated using (18). Then, at each time step, we solve the
optimization problem in (20) using the SPGL1 algorithm [21],
[22]. The estimated load changes are plotted in Fig. 1b. The
load change is detected and its location is identified at k = 1.
The load changes estimated at bus 6 from measurements
obtained during the transient period follow the regD signal
closely, while other loads remain near zero, as desired. Indeed,
the proposed load-change detection and identification method
using only generator frequency measurements is very effective.

V. CONCLUDING REMARKS

In this paper, we proposed a method to estimate load
changes using generator frequency measurements along with
a reduced-order power system dynamical model. The model
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Fig. 1: WECC test system: load change detection, estimation, and identi-
fication algorithm performance evaluation. (a) Demonstrating that dynamic
state trajectories reconstructed from ∆ωG [k] measurements (dashed traces)
are accurate as compared to actual trajectories (solid traces). (b) Estimated
load changes due to PJM regD regulation signal disturbance in load at bus 6
using measurements ∆ωG [k].

accounts for locational effects of load disturbances on gener-
ator frequency dynamics. The utility of the proposed method
was demonstrated via numerical case studies involving the
WECC test system. Results show that we can accurately detect
and identify load disturbances in the network. Future work
includes extending the proposed framework for generator and
line outage detection as well as frequency-dependent loads.

APPENDIX

A. Details of Model in (10)
Based on the structures of (2) and (3), matrices BGG , BGL,

BLG , and BLL can be expressed as

BGG = BGG − diag

([
BGG BGL

]
1N +

1G

X ′d,G

)
, (21)

BGL = BGL, (22)
BLG = BLG, (23)

BLL = BLL − diag
([
BLG BLL

]
1N

)
, (24)

where submatrices BGG, BGL, BLG, and BLL are extracted
from the standard (and appropriately reordered) network ad-
mittance matrix Y for a lossless system, i.e.,

Y = j

[
BGG BGL

BLG BLL

]
. (25)
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