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Abstract—This paper aims to determine the optimal strategy to
operate the pump in a sanitary pump station (SPS) to minimize its
energy consumption over a specified time window. An SPS collects
sanitary waste from nearby neighbourhoods in a city and then
pumps the waste to a treatment plant for processing. Sustained
operation of SPSs, even during power outages, is critical for
the health and safety of urban dwellers. Energy storage can
be used to operate the SPS when power from the grid is
unavailable. Major challenges in minimizing energy consumption
include (i) the nonlinear power characteristic of the pump, and
(ii) the uncertainty in predicting the waste deposited into the SPS.
We formulate a chance-constrained nonlinear optimal control
problem and further devise a tractable solution strategy. We
illustrate the energy savings obtained with the proposed control
over the existing one.

Index Terms—Sanitary pump station, energy storage, chance
constraints, resilience.

I. INTRODUCTION

Rapid urbanization along with more intense and frequent
extreme weather events pose significant challenges for sustain-
able operation of critical city infrastructures, including water,
sewer, and energy systems. As an example, the City of Rich-
mond, located in British Columbia (BC), Canada, operates 152
sanitary pump stations (SPSs), and they ensure the collection
of sanitary waste is pumped to the wastewater treatment plant
for further processing [1]. Interruptions in SPS operation cause
sanitary waste to accumulate at the station site, which poses
serious health risks to residents of the city due to pathogens
that can lead to spread of communicable diseases [2], [3].
Moreover, toxic pollutants in untreated waste may adversely
affect ecosystems in nearby bodies of water [4]. Thus, essential
to maintaining the health and well-being of city’s residents and
their environment is uninterrupted operation of SPSs, but this
may be compromised during a power outage. Indeed, recent
natural disasters have caused severe damage to the distribution
system and deprived critical infrastructures of electricity for
prolonged periods of time [5], [6].

The City of Richmond has identified SPSs as critical infras-
tructures that require improved energy resilience in response
to potential natural disasters like earthquakes and tsunamis. A
compelling strategy to this end is to integrate local renewable
energy sources and battery storage systems into SPS opera-

tion [7]. A secondary benefit of this approach is that, during
normal operation when the SPS draws power directly from
the grid, the energy from the renewable source can be sold
back to the utility and the battery can be used to provide
ancillary services to the bulk system [8]. These may be a
useful source of income for the municipal government. As a
starting point to achieve the above, in this paper, we focus on
the scenario of operating an SPS in the City of Richmond
with local battery storage in the event of a power outage.
Particularly, given forecasts of sanitary-waste production, we
seek to minimize the energy consumed by the SPS over a
specified time window subject to operational constraints like
waste-reservoir and pump-power characteristics.

Related work in the literature falls under the following
categories: (i) sizing of and investment in distributed energy
resources (DERs), and (ii) optimal operational control of
critical-infrastructure systems. Sizing problems (see, e.g., [9],
[10]) address the problem of estimating the optimal capacity of
DERs like battery storage systems that satisfy the required load
demand while minimizing capital and management costs. Siz-
ing problems do not take into account operational management
of infrastructures using DERs. In problems concerning opti-
mal operational management of critical infrastructures (see,
e.g., [11]–[15]), various control and optimization strategies are
employed to minimize the energy consumed while keeping
the system under consideration within certain constraints.
However, existing literature in this domain does not explicitly
address the operation of SPSs. The optimization problem
addressed in this paper is similar to the one formulated
in [14], which solves the problem of pump scheduling for
a drainage system while minimizing the energy required to
operate the system. In addition to the application scenario,
our work differs from [14] in two ways. First, we consider
the operation of constant-speed pumps, as they are already
used in the City of Richmond, instead of variable-speed ones
as in [14]. Moreover, our optimization problem formulation
includes chance constraints to account for errors in predicted
incoming flow rates of the sanitary waste.

The remainder of the paper is organized as follows. In
Section II, we introduce notation and system models related
to operating an SPS. Also, via a numerical example involv-



ing the SPS installed at Works Yard in Richmond BC, we
motivate the need for improving pump operations to reduce
energy consumption. In Section III, the proposed optimization
problem is formulated and a companion solution approach
follows. Numerical simulations involving the SPS at Works
Yard is presented in Section IV to verify the proposed control
strategy. Finally, concluding remarks and directions for future
work are offered in Section V.

II. PRELIMINARIES

In this section, we introduce notation used throughout the
paper and describe models for the sanitary pump station
and its power consumption. We also outline the existing
implementation of the pump controller and provide motivation
for improving it.

A. Notation

The matrix transpose is denoted by (·)T. The spaces of N×1
real-valued vector are denoted by RN . The N×1 vectors with
all zeros and ones are denoted by 0N and 1N , respectively.
For a vector x := [x1, . . . , xN ]T, x2 := [x21, . . . , x

2
N ]T.

B. Sanitary Pump Station

The sanitary pump station comprises a cylindrical reservoir,
where the sanitary waste is collected. An electric motor
pumps the waste out of the reservoir periodically to prevent it
from overflowing. During normal operation, the pump draws
power directly from the grid, and the battery can be used to
provide ancillary service to the power system, e.g., frequency
regulation [16]. When energy from the grid is unavailable due
to, e.g., a power outage, the battery steps in to power the
pump. We illustrate the aforementioned architecture and other
pertinent modelling details in Fig. 1.

1) Reservoir Model: Since our goal is to synthesize con-
trollers aided by measurements of sanitary-waste flows, we
introduce the discrete-time index k ∈ Z≥0, which denotes the
time tk = k∆t when the physical system is probed or actuated,
where ∆t [s] is the time elapsed between consecutive samples.
Let qin(k) [m3/s] and qout(k) [m3/s] denote, respectively, the
rates of sanitary waste flowing into and out from the reservoir
at discrete time instant k = 0, 1, . . . Furthermore, let the
h(k) [m] denote the height dynamics of the sanitary waste
collected inside the reservoir at time instant k = 0, 1, . . .

Reservoir

qin(k)

qout(k)

h(k)

h

h

a

ω(k)

∼−

AC Grid

Pump

Battery

Fig. 1: Illustrating system architecture and pertinent variables.

Then, the height of the waste inside the reservoir can be
approximated by the following:

h(k + 1) = h(k) +
∆t

a
(qin(k)− qout(k)), h(0) = ho, (1)

where a [m2] denotes the area of the base of the reservoir
and ho [m] is the initial height of the sanitary waste in the
reservoir when the sanitary pump disconnects from the grid.

2) Pump Model: The electrical power consumed by the
sanitary pump at time instant k, denoted by p(k) [kW], is
given by [17, Eq. (11)]

p(k) =
ρgψ(k)

ηpump
qout(k), (2)

where ρ [kg/m3] is the density of the sanitary waste, g [m/s2]
is the gravitational acceleration, ψ(k) [m] is the head gain
generated by the pump, and ηpump is efficiency characteristic
of the pump and the efficiency of the pump is related to qout
via a nonlinear relationship. In (2), the head gain is related to
the outgoing flow rate by the following: [17, Eq. (1)]

ψ(k) = c1q
2
out(k) + c2qout(k)ω(k) + c3ω

2(k), (3)

where c1, c2, and c3 are empirically determined parameters,
and ω(k) is the ratio of actual to nominal pump speed at time
step k. For a constant-speed pump,

ω(k) ∈ {0, ω}, (4)

and for a variable-speed pump,

0 ≤ ω(k) ≤ ω. (5)

3) Battery Storage Model: In the event of power outage,
the sanitary pump would be operated with a battery storage
unit of size e [kWh]. The battery is discharged according to

e(k + 1) = e(k)− ∆t

ηdis
p(k), e(0) = e◦, (6)

where p(k) is the power consumed by the pump as expressed
in (2), ηdis is the constant discharging efficiency of the battery,
and e◦ [kWh] is the energy stored in the battery when the
power outage occurs.

C. Problem Statement

The SPSs in the City of Richmond use constant-speed
pumps, which operate at rated speed when the pump is on.
In the existing implementation, the sanitary waste collects in
the reservoir until the height of the waste rises above a certain
threshold level h [m], at which point the pump attached to
the reservoir turns on to dispose of the waste at constant flow
rate q?out ∈ [0, qout], which corresponds to the most efficient
operating point for the pump. The pump remains on until
the height of the waste reaches a particular minimum level
h [m], at which point the pump turns off, and the waste begins
to accumulate in the reservoir again. In the event of power
outage, the sanitary pump would be operated with a battery
storage unit. Next, we illustrate the existing control strategy via
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Fig. 2: Comparisons between existing pump control scheme and an alternate
one: (a) outgoing flow rates, (b) resulting trajectories of height of sanitary
waste in reservoir, and (c) energy remaining in battery storage over time
window of consideration.

a numerical example and motivate how a different sequence
of outgoing flows results in energy savings.

Example 1: We consider the Works Yard SPS in Richmond
BC. The reservoir has a base area of a = 2.6268 [m2]. The
minimum and maximum threshold heights are h = 1.935 m
and h = 2.255 m, respectively. Our simulations run for 200
time steps with ∆t = 2 s, for a total duration of 400 s. Under
the existing control scheme, when the height of the waste
reaches the maximum threshold level, the pump turns on and
disposes of waste at a constant outgoing flow rate of q?out =
0.0415 m3/s with power consumption of 7.457 kW. The pump
turns off when the height of the waste in the reservoir reaches
the minimum threshold level. We plot the outgoing flow rates
qout(k), k = 1, . . . , 200, under the existing control scheme
as the blue trace in Fig. 2a, and the corresponding waste-
height trajectory h(k), k = 1, . . . , 200, is plotted in Fig. 2b,
also in blue. Alternatively, we can use the outgoing flow
profile depicted as the red trace in Fig. 2a, with flow rate to
0.05 m3/s and power consumption 7.645 kW when the pump
is on. As shown by the red trace in Fig. 2b, this control scheme
still ensures that the waste height remains within prescribed
upper and lower limits over the specified time window. The
trajectories of energy remaining in the battery, corresponding
to the two control schemes, are plotted in Fig. 2c. Clearly,
the alternative option consumes less energy than the existing
control scheme over the time window under consideration. �

The numerical example above offers ample motivation to

solve for the optimal sequence of qout(k) that maximizes the
time of operation while the SPS is powered by the battery,
given predicted values of qin(k).

III. OPTIMAL CONTROL SYNTHESIS

In this section, we formulate an optimal control problem
to determine the sequence of qout(k) that maximizes time of
operation while the pump is powered by the battery system.
Chance constraints are incorporated to account for uncertainty
in qin(k) forecasts. We further solve the proposed problem
with a computationally tractable approach.

A. Problem Formulation

We assume that the rate of sanitary waste flowing into
the reservoir at time k can be predicted based on, e.g.,
historical data, with some confidence. Hence, we model qin(k),
k = 0, . . . ,K − 1, as independent Gaussian random vari-
ables with mean µq(k) and standard deviation σq(k), i.e.,
qin(k) ∼ N (µq(k), σ2

q (k)).
1) Cost Function: To reflect the above, we minimize the

energy used by the pump over a specified time window k =
0, . . . ,K − 1, as follows:

min
qout(k),ω(k)

K−1∑
k=0

p(k)∆t, (7)

where p(k) is given by (2) if the pump is on with ω(k) = ω,
and p(k) = 0 if the pump is off with ω(k) = 0.

2) Reservoir Constraints: The optimization problem is
constrained by height dynamics of the sanitary waste in the
reservoir given by (1). In (1), qin(k) is an uncertain disturbance
and qout(k) is the control input to be optimized. The height of
the sanitary waste must remain within some upper and lower
bounds, h and h, respectively. Since the sanitary-waste height
is not a deterministic quantity due to uncertainty in qin(k), we
formulate the following chance constraints:

P(h(k) ≤ h) ≥ 1− π, (8)
P(h(k) ≥ h) ≥ 1− π, (9)

for each k = 1, . . . ,K, requiring the probability of constraint
violation to remain below an acceptable level π ∈ [0, 0.5].

3) Pump Constraints: In addition to the above, pump
outgoing flow rates are constrained to

0 ≤ qout(k) ≤ qout, (10)

for each k = 0, . . . ,K − 1 which incidentally also constrains
the discharge rate of the battery. Moreover, for a constant-
speed pump, ω(k) ∈ {0, ω}, for each k = 0, . . . ,K − 1.

B. Solution Approach

The problem outlined in Section III-A is challenging to
solve due to several aspects:

(i) The decision variables ω(k), k = 1, . . . ,K, are discrete,
and as a direct consequence, the cost function in (7) is
discontinuous with respect to ω(k).



(ii) Uncertainty in inflow predictions render the problem non
deterministic.

(iii) Although the heights are recursively solved based on
current observations of inflows, chance constraints in (8)
and (9) are enforced at each k = 1, . . . ,K over the entire
specified time window.

Next, we address the aforementioned difficulties by refor-
mulating the chance-constrained optimal control problem in
Section III-A into a deterministic static optimization problem.

1) Reformulation of Cost Function: Using data provided in
the pump specifications (see, e.g., [17, Fig. 3],[14, Eq. 8]), the
power (equation (2)) consumed by the pump when it is on can
be approximated by

pon(k) ≈ αq3out(k) + βq2out(k) + γqout(k) + δ. (11)

where parameters α, β, γ, and δ are obtained by curve
fitting. The relationship in (11) incorporates nonlinear effects
in head gain and pump efficiency. Physically, when the pump
is on, it consumes some nominal power (i.e., δ) even when
qout(k) = 0. On the other hand, in this case, we may as well
turn the pump off to conserve energy. In order to reflect the
above intuition, we formulate the following relationship for
the power consumed by the pump:

p(k) = pon(k)(1− e−λqout(k)), (12)

where λ is sufficiently large so that for some ε1 > 0, there
exists ε2 > 0, such that e−λqout(k) < ε1 for all qout(k) > ε2.
In so doing, we use the continuous variable qout(k) as a proxy
for the discrete decision of the pump being on or off, i.e., the
pump is off when qout(k) = 0 and on otherwise. Also, by
using (12) in (7), the cost function becomes continuous in
qout(k).

2) Reformulation of Chance Constraints: Since qin(k),
k = 0, . . . ,K − 1, are independent Gaussian random vari-
ables, the linear transformation in (1) implies that h(k),
k = 1, . . . ,K, are also normally distributed. Particularly,
h(k) ∼ N (µh(k), σ2

h(k)), where µh(k) and σh(k) denote,
respectively, the mean and standard deviation of the Gaussian
random variable h(k). Based on the normality assumption, we
reformulate the chance constraints in (8)–(9) into deterministic
ones, as follows:

µh(k) + σh(k)Φ−1(1− π) ≤ h, (13)

µh(k)− σh(k)Φ−1(1− π) ≥ h, (14)

where Φ−1(·) is the inverse of the cumulative distribution
function [18].

3) Reformulation of Dynamics: Define vector variables

µQ := [µq(0), . . . , µq(K − 1)]T, (15)

σQ := [σq(0), . . . , σq(K − 1)]T, (16)

Qout := [qout(0), . . . , qout(K − 1)]T. (17)

Further let

µH := [µh(1), . . . , µh(K)]T, (18)

σH := [σh(1), . . . , σh(K)]T. (19)

Then, we evaluate entries of µH and σ2
H by repeatedly

applying the linear transformation in (1) and stacking up the
K instances of the resultant to get

µH = h◦1K +A(µQ −Qout), (20)

σ2
H = Bσ2

Q, (21)

where

A =
∆t

a


1 0 . . . 0

1 1
. . . 0

...
...

. . .
...

1 1 . . . 1

 , B =

(
∆t

a

)2


1 0 . . . 0

1 1
. . . 0

...
...

. . .
...

1 1 . . . 1

 .
C. Reformulated Problem

Based on the discussion above, we reformulate the problem
in Section III-A into the following deterministic static opti-
mization program:

min
Qout

K−1∑
k=0

pon(k)(1− e−λqout(k))∆t, (22)

subject to the constraints

µH = h◦1K +A(µQ −Qout), (23)

σ2
H = Bσ2

Q, (24)

h1K ≥ µH + Φ−1(1− π)σH , (25)

h1K ≤ µH − Φ−1(1− π)σH , (26)
0K ≤ Qout ≤ qout1K . (27)

IV. CASE STUDY

In this section, we present a case study in which we
apply the optimal control strategy described in Section III
to reduce the consumption of power by the SPS at Works
Yard, Richmond, BC. We solove the optimization problem
(equations (22)–(27)) using the MATLAB function fmincon.
We optimize the power consumption of the station between
5pm and 9pm during the month of September. Based on
energy usage data provided by the City of Richmond, the
average power consumption in this period is 6.080 kWh. We
assume that the incoming flow rate qin(k) belongs to a normal
distribution with mean µq(k) varying as shown in Fig. 3 and
constant standard variation equal to 8% of the average of the
profile in Fig. 3.

We compare the existing pump control scheme with the
following strategies (all solving the optimization problem
in (22)–(27)):

• Case 1: Optimization with actual incoming flow rates
qin(k) and no chance constraints (σQ = 0K in (24)).

• Case 2: Optimization with predicted incoming flow rates
µq(k) and no chance constraints (σQ = 0K in (24)).

• Case 3: Optimization with predicted flow rates µq(k) and
chance constraints (π = 0.05).

In all the cases mentioned above, we solve the problem
in (22)–(27) and compute the output flow rates every five
minutes for the next five-minute interval. We compare the
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Fig. 3: Predicted incoming flow rates in 5-minute intervals.

TABLE I: Comparison of existing control scheme with various solutions of
the proposed optimization problem.

Existing Case 1 Case 2 Case 3
Height-constraint Violations 344 0 56 1
Remaining Energy [kWh] 0.0233 2.2925 2.2949 2.2779

power consumed by the pump as well as the number of vio-
lations of the waste-height constraints for the existing control
scheme described in Example 1 and the three cases described
above. Initial battery energy is taken to be 6.080 kWh for all
scenarios. Energy remaining in the battery storage is plotted in
Fig. 4, and the final battery energy and the number of height
violations are reported in Table I.

From Table I, we observe that, under the ideal sce-
nario where the incoming-flow forecast is perfectly known
(i.e., Case 1), the outgoing flow rates obtained by solving the
proposed optimization problem enforces the level of sanitary
waste in the reservoir between the maximum and the minimum
limits at all times. On the other hand, many violations of the
height constraints occur in the existing scheme because the
pump is turned on (off) after the waste level crosses the max-
imum (minimum) limits. The height constraints are violated
in Case 2 and Case 3 because the optimization problem is not
aware of the actual incoming flow rates. In Case 2, the problem
in (22)–(27) assumes that the predicted incoming flow rates
are perfectly known, while Case 3 accounts for the forecast
uncertainty by including chance constraints. Thus, Case 3 has
fewer constraint violations than Case 2. On the other hand,
the pump consumes more energy in Case 3 than in Case 2,
because the resulting outgoing flow rates are more conservative
to account for forecast error. Finally, we note that pump
indeed consumes less energy using the proposed optimization
(in Case 1–Case 3) than under the existing control scheme.
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Fig. 4: Energy remaining in battery under existing control, Case 1, Case 2,
and Case 3.

V. CONCLUDING REMARKS

We formulated a computationally tractable algorithm for
operating an SPS that minimizes the energy consumed by
the pump while maintaining the waste level in the reservoir
within prescribed limits. In order to account for uncertainty
in the incoming flow data, we incorporated chance constraints
into the optimization problem, which reduced the number of
height-constraint violations. We observed that the proposed
control strategy enables the pump to consume less energy com-
pared to the existing method. Important directions of further
investigation would be to explore variable-speed pumps in the
operation of SPSs, and to incorporate renewable sources to
support the battery system while accounting for the uncertainty
in renewable generation.
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