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Abstract—This paper presents a reduced second-order power-
system dynamical model that accounts for locational effects of
load disturbances on system frequency dynamics over time scales
corresponding to inertial and primary-frequency response. The
locational aspects are retained in the proposed model by in-
corporating linearized power-flow balance into differential equa-
tions that describe synchronous-generator dynamics. Individual
synchronous-generator speed dynamics are then combined into
a single aggregate frequency state via weighting factors that can
be tuned to maximize the accuracy of the reduced-order model.
The proposed reduced-order model is general in the sense that its
parameters are related to those of the original full-order model
in analytical closed form, so that it can be constructed easily
for different systems. Time-domain simulations demonstrate the
accuracy of the reduced-order model with various choices of
weighting factors and highlight the effect of load disturbance
location on aggregate-frequency dynamics.

I. INTRODUCTION

Model-order reduction has been studied extensively for a
wide range of applications in the context of power system
static and dynamic simulation, analysis, and control (see,
e.g., [1] and references therein). The power system is a com-
plex critical infrastructure that is geographically expansive.
So reduced-order models are prudent and often necessary
to capture only the most relevant features for a particular
problem setting due to limitations in analytical tools or com-
puting resources. For example, reduced-order models have
been developed to study the power-flow problem [2], transient
stability [3], and interarea oscillations [4], to name a few. In
this paper, we develop a reduced-order aggregate-frequency
dynamical model that focuses on time scales corresponding
to system inertial and primary-frequency response. Such a
model is potentially useful to tackle a multitude of contem-
porary power-system problems, such as conducting dynamic
contingency analysis, assessing frequency deviations due to
renewable resource variations, and optimizing placement and
sizing of distributed energy resources to provide frequency
regulation support.

Since we aim to capture inertial and primary-frequency
response in a reduced-order model, our approach begins by
adopting a third-order model for each synchronous generator,
capturing its rotor-angle position, rotor-angle speed, and gov-
ernor dynamics. We further formulate linearized power-flow
equations and incorporate them into the generator dynam-
ical equations, thereby reducing the standard power-system

differential-algebraic-equation model into one that contains
only differential equations. In this way, the network topology
is embedded within the original full-order system dynamical
model, and the locational effects of different load disturbances
on frequency response are captured. Next, by applying tune-
able weighting factors to each synchronous-generator speed
state, we obtain a single aggregate frequency that represents a
weighted average of all generator speeds. Here, the weighting
factors may be designed to, e.g., minimize the error between
the reduced- and the full-order models.

Most related prior work in power system dynamic model-
order reduction can be broadly categorized into algorith-
mic or numerical approaches. Algorithmic methods, such as
repeated time-domain simulations [3], singular perturbation
techniques [4], and weak-coupling identification [5], have
been used to identify coherent groups of generators within a
large-scale power system. These and application of numerical
techniques, such as modal truncation [6], selective modal anal-
ysis [7], and Krylov-subspace methods [8] are generally de-
ployed on a detailed higher-order dynamical model. Typically,
due to the algorithmic and numerical nature of these methods,
they are unable to relate the parameters of the original full-
order system to those of the reduced-order one once it is
constructed. Recent work has addressed this issue by analyt-
ically reducing the full-order model while retaining original-
system parameters [9]–[11]. Our approach in this paper begins
with similar setup as in [10], [11], and the resulting reduced-
order model also retains parameters of the original model in
closed form. However, our proposed method differs in the
following two aspects. First, by choosing the contribution
of each generator speed to the aggregate-frequency response,
we have the flexibility of tuning the reduced-order model
so that its dynamical response more closely matches that of
the original full-order system. Furthermore, by embedding the
power-flow constraints within the reduced-order model, it can
distinguish between dynamics arising from load disturbances
that occur at different locations in the network.

II. SYSTEM DESCRIPTION

Consider a power transmission network with N buses
collected in the set N = {1, . . . , N} and transmission
lines in the set E ⊂ N × N . Let Vk(t) = |Vk(t)|∠θk(t)
represent the voltage phasor at bus k and time t. Denote,



by G = {1, . . . , G} ⊂ N , the set of G buses that are
connected to conventional turbine-based generators. Further
denote, by L = N \ G = {G + 1, . . . , N}, the set of L load
buses, which are connected to only non-frequency-sensitive
loads, e.g., constant-power loads. A transmission line with
current flowing from bus k to ` is denoted by (k, `) ∈ E .

A. Power-flow Model

Transmission line (k, `) is modelled using the lumped-
element Π-model with series admittance yk` = y`k = gk` +
jbk` ∈ C\{0} and shunt admittance ysh

k` = gsh
k`+jbshk` ∈ C\{0}

on both ends of the line. The active-power balance at bus
k ∈ N is given by

0 = Pk(t)−
∑
`∈Nk

Pk`(t), (1)

where Pk(t) is the net active-power injection at bus k, Nk is
the set of buses electrically connected to bus k, and Pk`(t)
represents the active-power flow in line (k, `).

1) AC Power-flow Formulation: If bus k is a load bus, i.e.,
k ∈ L, then

Pk(t) = PL,k(t), (2)

where PL,k(t) is the non-frequency-sensitive active-power
injection at bus k, which is a negative quantity if it corresponds
to a constant-power load. On the other hand, if bus k is
connected to a synchronous generator, i.e., k ∈ G, then

Pk(t) = PL,k(t) + P e
k (t), (3)

where, similar to (2), PL,k(t) is the non-frequency-sensitive
active-power injection at bus k. As for P e

k (t) in (3), using the
classical synchronous-machine model for generator k ∈ G,
which comprises a constant voltage Ek behind the transient
reactance jX ′d,k, P e

k (t) can be expressed as [12]

P e
k (t) =

Ek|Vk(t)|
X ′d,k

sin(δk(t)− θk(t)), (4)

where δk(t) denotes the rotor electrical angular position of
generator k. Finally, following standard power-flow computa-
tions, Pk`(t) in (1) is given by

Pk`(t) = |Vk(t)|2(gsh
k` + gk`)

− |Vk(t)||V`(t)|gk` cos(θk(t)− θ`(t))
− |Vk(t)||V`(t)|bk` sin(θk(t)− θ`(t)).

(5)

2) DC Power-flow Approximations: In transmission net-
works, the line resistance is much smaller than its reactance,
i.e., for line (k, `), gk` << bk` and gsh

k` << bshk`, so we
can approximate yk` = y`k ≈ jbk` and ysh

k` ≈ jbshk`. Also,
under typical operating conditions, the voltage phase-angle
differences between two buses are small, i.e., θk` << 1,
for all k, ` ∈ N , and δg − θg << 1 for all g ∈ G. Under
these assumptions, it follows that sin(θk − θ`) ≈ θk − θ`
and sin(δk − θk) ≈ δk − θk. Finally, in the per-unit system,
the numerical values of voltage magnitudes are typically
near 1 p.u., i.e., |Vk| ≈ 1, for all k ∈ N , and Eg ≈ 1, for

all g ∈ G. Taken together, these so-called DC assumptions
help to simplify (5) as

Pk`(t) = −bk`(θk(t)− θ`(t)). (6)

Similarly, (4) simplifies as

P e
k (t) =

1

X ′d,k
(δk(t)− θk(t)). (7)

B. Synchronous-generator Dynamical Model

Dynamics of synchronous generator g ∈ G can be mod-
elled as follows. For each generator g ∈ G, let δg(t) and
ωg(t) denote its rotor electrical angular position and speed,
respectively. Further let Pm

g (t) denote its turbine mechanical
power. Assume each generator initially operates at the steady-
state equilibrium point with ωg(0) = ωs = 2π60 rad/s, the
synchronous frequency. Defining ∆ωg := ωg − ωs, dynamics
of generator g ∈ G can be described by the following third-
order system:

δ̇g(t) = ∆ωg(t),

Mg∆ω̇g(t) = Pm
g (t)−Dg∆ωg(t)−

∑
`∈Ng

Pg`(t) + PL,g(t),

τgṖ
m
g (t) = P r

g − Pm
g (t)−Rg∆ωg(t), (8)

where Mg and Dg denote, respectively, the inertia and damping
constants, and τg, P r

g , and Rg denote the governor time
constant, reference power input, and inverse1 droop con-
stant, respectively. The system in (8) consists of the classical
synchronous-machine model combined with a speed-governor
model [12].

In (8), the generator dynamics are coupled to the network
through the

∑
`∈Ng

Pg`(t), thereby accounting for network
effects on machine dynamics. Motivated by this, we aim to
develop a corresponding reduced-order aggregate-frequency
model for the entire system, which incorporates network ef-
fects. Before delving into these aspects below, we first combine
synchronous-generator dynamics in (8) with the approximate
power-flow equations in (6)–(7).

C. Power-system Dynamical Model

With the individual-bus power balance and single-generator
dynamic equations described thus far, we next combine them
into a full-order system dynamical model. We begin by
defining relevant vector variables as follows. For the set of
synchronous generators G, collect rotor angular positions and
variation in their speeds into vectors δG = [δ1, . . . , δG]T

and ∆ωG = [∆ω1, . . . ,∆ωG]T, respectively. Similarly, collect
the voltage angles of generator buses and non-frequency-
responsive injections at these buses into θG = [θ1, . . . , θG]T

and PG = [PL,1, . . . , PL,G]T, respectively. Analogously,
collect these quantities for the set of load buses into
θL = [θG+1, . . . , θN ]T and PL = [PL,G+1, . . . , PL,N ]T.

1In most reference textbooks, Rg refers to the droop constant; in this paper,
we deviate from the standard to contain notational burden later.



1) Power-flow Algebraic Equations: Using the notation
established above, and by substituting (3) and (6) into (1),
we can express the active-power balance at generator buses
compactly in matrix form as2

0G = PG(t)+diag

(
1G

X ′d

)
δG(t)−BGGθG(t)−BGLθL(t), (9)

where X ′d = [X ′d,1, . . . , X
′
d,G]T, and matrices BGG and BGL

are constructed appropriately using (6) in conjunction with
the network topology. Similarly, by substituting (2) and (6)
into (1), the active-power balance at load buses can be com-
pactly expressed as

0L = PL(t)−BLGθG(t)−BLLθL(t), (10)

where, again, entries of BLG and BLL are evaluated using (6)
based on the network topology.

To further reduce notational burden in (9) and (10), define
θ := [θT

G , θ
T
L ]T and P := [PT

G , P
T
L ]T. Then, we combine (9)

and (10) and rearrange the resultant to get

θ(t) = B−1 (DδG(t) + P (t)) , (11)

where3

B =

[
BGG BGL
BLG BLL

]
, D =

[
diag

(
1G

X′
d

)
0L×G

]
. (12)

Entries in and structures of matrices BGG , BGL, BLG , and
BLL are detailed in Appendix A. Note that by making use
of partitioned matrix inversion, and assuming relevant sub-
matrices are invertible, (11) can be simplified as [13]

θ(t) = AδG(t) +B−1P (t), (13)

where

A =

[
diag(1G)
−B−1
LLBLG

]
(BGG −BGLB−1

LLBLG)−1diag

(
1G

X ′d

)
.

(14)
2) Synchronous-generator Dynamic Equations: For the set

of synchronous generators G, collect turbine mechanical power
states and reference power inputs into Pm

G = [Pm
1 , . . . , P

m
G ]T

and P r
G = [P r

1 , . . . , P
r
G]T, respectively. Then, we can express

generator dynamics in (8) compactly in matrix form as

δ̇G(t) = ∆ωG(t), (15)
diag(MG)∆ω̇G(t) = Pm

G (t)− diag(DG)∆ωG(t)

+Kθ(t) + PG(t), (16)

diag(τG)Ṗm
G (t) = P r

G − Pm
G (t)− diag(RG)∆ωG(t), (17)

where MG = [M1, . . . ,MG]T, DG = [D1, . . . , DG]T,
τG = [τ1, . . . , τG]T, and RG = [R1, . . . , RG]T. Also,
in (16), the entries of K ∈ RG×L are formed by appropriately
evaluating (6) based on the network topology as

K = −
[
diag

(
1G

X′
d

)
+BGG BGL

]
. (18)

2The M -dimensional vectors with all 0s and 1s are denoted by 0M and
1M , respectively. The diagonal matrix diag(x) is formed with entries of
the vector x stacked on the main diagonal; and diag(x/y) forms a diagonal
matrix with the ith diagonal entry given by xi/yi, where xi and yi are the
ith entries of vectors x and y, respectively.

3The M by N matrix of all 0s is denoted by 0M×N .

Fig. 1: Network topology for two-bus system.

3) Full-order Power-system Model: By substituting (11)
into (16), we obtain the full-order power-system dynamical
model as follows:

δ̇G(t) = ∆ωG(t), (19)

∆ω̇G(t) = diag(MG)−1
(
Pm
G (t)− diag(DG)∆ωG(t)

+HδG(t) +WP (t)
)
, (20)

Ṗm
G (t) = diag(τG)−1

(
P r
G − Pm

G (t)− diag(RG)∆ωG(t)
)
,

(21)

where matrices H ∈ RG×G and W ∈ RG×N capture network
effects and are expressed as, respectively,

H = KB−1D = KA, (22)

W = KB−1 +
[
diag(1G) 0G×L

]
. (23)

Furthermore, with a view that entries of P (t) represent inputs
to the power system, entries of W indicate the effects of load
variations at different buses on the speed dynamics of each
machine.

Next, we illustrate the ideas presented above on forming the
full-order power-system model via an example.

Example 1 (Two-bus System): In this example, we consider
the two-bus test system shown in Fig. 1, where each bus
is connected to a synchronous generator as well as non-
frequency-dependent injections. Using the notation established
in (12), for this system, we have

B =

[
1

X′
d,1

+ 1
Xl

− 1
Xl

− 1
Xl

1
X′

d,1
+ 1

Xl

]
, D =

[
1

X′
d,1

0

0 1
X′

d,2

]
.

Furthermore, making use of (18), we get that

K =

[
− 1

Xl

1
Xl

1
Xl

− 1
Xl

]
.

Then, using the expressions for B, D, and K above, we can
evaluate (22) to obtain

H =
1

X ′d,1 +Xl +X ′d,2

[
−1 1
1 −1

]
,

as expected via direct inspection of Fig. 1. Finally, using (23)
for the two-bus system, we get that

W =
1

X ′d,1 +Xl +X ′d,2

[
X ′d,2 +Xl X ′d,2
X ′d,1 X ′d,1 +Xl

]
.

As shown above, under DC assumptions, the input matrix W
is expressed as a function of only the network parameters. The
entries in W highlight the effect of load variations at different
buses on the speed dynamics of each synchronous machine. �



III. MODEL-ORDER REDUCTION

In this section, we sequentially present several reductions
of the full-order system in (19)–(21). Our goal is to obtain an
aggregate-frequency model that accounts for network effects.

A. Aggregate-frequency Model

Define system aggregate frequency ∆ω̃ := cT∆ωG ,
where the gth entry in c ∈ RG represents the contribution
of generator g rotor angular speed to the aggregate frequency.
From (20), we get that

∆ ˙̃ω(t) = cT∆ω̇G(t)

= cTdiag(MG)−1
(
Pm
G (t)− diag(DG)∆ωG(t)

+HδG(t) +WP (t)
)
. (24)

Also define scalar variable δ̃ := cTdiag(MG)−1HδG , and
from (19), we have that

˙̃
δ(t) = cTdiag(MG)−1H∆ωG(t). (25)

The governor dynamics for all generators are retained as
in (21). Later, in Section III-C, we will develop a reduced
governor state for the entire system.

Example 2 (Special Case–Canonical Two-area Reduced-
order Model): In order to study interarea oscillations in the
canonical two-area power system, it is common practice to
establish a two-machine interarea equivalent circuit [1]. This
system’s structure is similar to the one shown in Fig. 1, except
that the loads PL,1 = PL,2 = 0. The swing equations for
the two-machine equivalent can then be combined to form
a reduced second-order system that is similar in form to
the single-machine swing equation [1]. In this example, we
show that, with appropriate choice of weighting factor c, we
recover this reduced-order system, which is well established
in the literature. To do so, choose c = [1,−1]T, so that
∆ω̃ = ∆ω1 − ∆ω2. For simplicity, in addition to setting
PL,1 = PL,2 = 0, also let damping constants D1 = D2 = 0.
Then, (24) can be expressed as

∆ ˙̃ω(t) = M−1
1 Pm

1 (t)−M−1
2 Pm

2 (t) + δ̃(t), (26)

and, based on (25), as well as H evaluated from Example 1,

˙̃
δ(t) = − M−1

1 +M−1
2

X ′d,1 +Xl +X ′d,2
∆ω̃(t). (27)

Taken together, (27) and (26) form the proposed aggregate-
frequency model with c = [1,−1]T.

Next, to show that this model is equivalent to the reduced
second-order system model in [1], we define auxiliary angle
variable

δ := −

(
M−1

1 +M−1
2

X ′d,1 +Xl +X ′d,2

)−1

δ̃, (28)

so that δ̇ = ∆ω̃, (26) can then be expressed as

∆ ˙̃ω(t) = M−1
1 Pm

1 (t)−M−1
2 Pm

2 (t)

− M−1
1 +M−1

2

X ′d,1 +Xl +X ′d,2
δ(t). (29)

Furthermore, by defining aggregate quantities

M :=
M1M2

M1 +M2
, P

m
:=

M2P
m
1 −M1P

m
2

M1 +M2
, (30)

we simplify (29) as

M∆ ˙̃ω(t) = P
m

(t)− 1

X ′d,1 +Xl +X ′d,2
δ(t), (31)

the structure and form of which are reminiscent of the single-
machine swing equation, as desired. �

B. Common-frequency Model

Assume that the electrical distances between geographically
different parts of the network are negligible, so that all
generator speeds follow the same transient behaviour [14]. As
a direct consequence, in (8), ∆ωg = ∆ω, for all g ∈ G. Then,
the aggregate-frequency dynamics in (24) become

cT1G∆ω̇(t) = cTdiag(MG)−1
(
Pm
G (t)−DG∆ω(t)

+HδG(t) +WP (t)
)
. (32)

For simplicity, and without loss of generalization, we
impose a normalization condition on the weighting fac-
tor c, so that cT1G = 1. Also define scalar variable
δ := cTdiag(MG)−1HδG . Then we obtain the following
reduced (2 +G)th-order common-frequency model:

δ̇(t) = Heff∆ω(t), (33)

∆ω̇(t) = cTdiag(MG)−1Pm
G (t)−Deff∆ω(t)

+ δ(t) +WeffP (t), (34)

Ṗm
G (t) = diag(τG)−1

(
P r
G − Pm

G (t)−RG∆ω(t)
)
, (35)

where Heff ∈ R, Deff ∈ R, and Weff ∈ R1×N are expressed
as, respectively,

Heff := cTdiag(MG)−1H1G, (36)

Deff := cTdiag(MG)−1DG , (37)

Weff := cTdiag(MG)−1W. (38)

In this reduced-order model, Weff captures the effective loca-
tional effects of load changes across the network on aggregate-
frequency dynamics, and Deff represents the effective damping
constant. Furthermore, and of particular note, Heff = 0
because H1G = 0G; we offer a proof of this in Appendix B.
Assuming that the network topology does not vary, δ̇(t) ≡ 0,
so δ(t) ≡ δ(0), for t > 0, and thus we can remove the dynamic
state δ(t) from the system described by (33)–(35).

C. Aggregate-governor Model

To further reduce the model in (34)–(35) to a second-order
system, we aggregate the governor states by defining scalar
variable Pm := cTdiag(MG)−1Pm

G and, using (35), we get

Ṗm(t) = cTdiag(MG)−1Ṗm
G (t)

= cTdiag(MG)−1diag(τG)−1

·
(
P r
G − Pm

G (t)−RG∆ω(t)
)
. (39)
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Fig. 2: Comparison of trajectories resulting from full- and reduced-order mod-
els with various values of weighting factors c and load disturbance at bus 5,
∆PL,5 = −0.5 p.u. (a) Aggregate-frequency deviations. (b) Aggregate-
turbine-mechanical-power deviations.

In practice, the turbine-governor time constants are similar in
value, i.e., τg ≈ τ , for all g ∈ G [15]. Various options have
been proposed for the aggregate parameter τ in the literature.
The average of all entries in τG is utilized in [9], [16]. More
recently, other choices have emerged based on minimizing
the error between the reduced- and higher-order models [10].
Assuming that τg ≈ τ , for all g ∈ G, (39) can be simplified,
and we arrive at the following reduced second-order model:

∆ω̇(t) = Pm(t)−Deff∆ω(t) + δ(0) +WeffP (t),

Ṗm(t) = τ−1(P r − Pm(t)−Reff∆ω(t)),
(40)

where the aggregate reference power and effective inverse
droop constant are, respectively,

P r := cTdiag(MG)−1P r
G , (41)

Reff := cTdiag(MG)−1RG . (42)

The reduced-order model in (40) features the following key at-
tributes: (i) it combines all synchronous-generator speeds into
one aggregate frequency via the weighting factor c, and (ii) it
is network cognizant as it distinguishes the effect of different
load changes on system aggregate-frequency dynamics via the
vector Weff .

IV. CASE STUDIES

In this section, we demonstrate the flexibility of the pro-
posed reduced-order model and its effectiveness via numerical
case studies involving the Western Electricity Coordinating
Council (WECC) 3-machine 9-bus test system. The reduced
second-order model is verified with time-domain simulations
of a nonlinear differential-algebraic model that includes the
two-axis synchronous-generator, turbine-governor, and exciter
models performed using PSAT [17].
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Fig. 3: Comparison of trajectories resulting from full- and reduced-order
models with load disturbances at bus 5 or 8, which are distinguishable
with c = c?, but not with c = MG . (a) Aggregate-frequency deviations.
(b) Aggregate-turbine-mechanical-power deviations.

A. Varying Weighting Factor c

Consider the dynamic response following a load increase
at bus 5, i.e., ∆PL,5(t) := PL,5(t) − PL,5(0) = −0.5 p.u.,
t > 0. Using various values for the weighting factor c,
we compare the mismatch in frequency and mechanical-
power dynamics resulting from the full-order model versus
the proposed reduced-order one in (40). As shown in Fig. 2
by the blue traces, the naı̈ve choice of c = 1

3 [1, 1, 1]T (i.e.,
the average) results in large mismatch between the reduced-
and full-order models. With c = MG , on the other hand, the
mismatch greatly reduces. Finally, as shown by green traces
in Fig. 2, the choice c = c? = 1

25 [19, 4, 2]T (tuned via trial
and error) attains nearly perfect match between the dynamic
response resulting from the full- and reduced-order models.
Note that, in Fig. 2a, comparisons are made against the rotor-
angle speed deviations of generator 1, which is representative
of the other generators in the full-order model.

B. Varying Location of Load Disturbance

Suppose generators in the WECC system are responding to
a generation-load mismatch caused by a load increase located
at bus 5 or 8, i.e., ∆PL,5(t) = −0.5 p.u. or ∆PL,8(t) =
−0.5 p.u., t > 0. As shown by the solid traces in Fig. 3,
the two load disturbances lead to different dynamics in rotor-
angle speeds and turbine mechanical powers when the full-
order model is used to simulate the system. These locational
effects are captured in the reduced-order model with c = c?,
as demonstrated by dashed and dash-dot traces that nearly
overlap with the solid ones in Fig. 3. In contrast, the effect
of disturbance location is not evident with c = Mg, because
both load disturbances result in the same dynamic response,
as shown by the red dotted traces in Fig. 3.



V. CONCLUDING REMARKS

In this paper, we present a reduced second-order power
system dynamical model, which accounts for locational effects
of load disturbances on aggregate-frequency dynamics cor-
responding to inertial- and primary-frequency response time
scales. The utility of the proposed model was demonstrated
via numerical case studies involving the WECC test system.
Compelling avenues for future work include enhancing the
accuracy of the reduced-order model by optimizing the weight-
ing factors, incorporating network losses into the model, and
engineering inertial- and primary-frequency response using
distributed energy resources.

APPENDIX

A. Detailing BGG , BGL, BLG , BLL Matrices

Based on the structures of (9) and (10), matrices BGG , BGL,
BLG , and BLL can be expressed as

BGG = BGG − diag

([
BGG BGL

]
1N +

1G

X ′d

)
, (43)

BGL = BGL, (44)
BLG = BLG, (45)

BLL = BLL − diag
([
BLG BLL

]
1N

)
, (46)

where submatrices BGG, BGL, BLG, and BLL are extracted
from the standard (and appropriately reordered) network ad-
mittance matrix Y for a lossless system, i.e.,

Y = j

[
BGG BGL

BLG BLL

]
. (47)

B. Showing H1G = 0G

Substitute (14) and (18) into (22) to get

H = −
(

diag

(
1G

X ′d

)
+ J

)
J−1diag

(
1G

X ′d

)
= −diag

(
1G

X ′d

)(
J−1diag

(
1G

X ′d

)
+ diag(1G)

)
, (48)

where J = BGG −BGLB−1
LLBLG . Below, we proceed to show

that H1G = 0G by proving that

0G =

(
J−1diag

(
1G

X ′d

)
+ diag(1G)

)
1G, (49)

which is equivalent to showing that

0G =

(
diag

(
1G

X ′d

)
+ J

)
1G

=
1G

X ′d
+BGG1G −BGLB−1

LLBLG1G. (50)

We proceed to prove (50) as follows. First, using (43), we get

BGG1G = BGG1G − diag

([
BGG BGL

]
1N +

1G

X ′d

)
1G

= BGG1G −
[
BGG BGL

]
1N −

1G

X ′d

= −BGL1L −
1G

X ′d
= −BGL1L −

1G

X ′d
. (51)

where the last equality above follows by substituting (44).
Next, using (46), we have that

BLL1L = BLL1L − diag
([
BLG BLL

]
1N

)
1G

= BLL1L −
[
BLG BLL

]
1N

= −BLG1G = −BLG1G, (52)

where the last equality above follows by substituting (45).
Finally, we substitute (51) and (52) into the right-hand side
of (50) to obtain

1G

X ′d
−BGL1L −

1G

X ′d
+BGLB

−1
LLBLL1L = 0G, (53)

and H1G = 0G, as desired.
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