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Abstract—In this paper, we derive analytical closed-form
expressions for time-varying generator participation factors
that are valid throughout the post-contingency transient pe-
riod. Combining these with conventional injection shift factors
(ISFs) computed at the pre-disturbance steady-state operating
point, post-contingency dynamic transmission-line flows after
the outage of any one particular asset, such as a generator
or load, can be accurately predicted. This is advantageous
over conventional ISF-based contingency analysis, which is
applicable only for the post-disturbance steady-state operating
point. As such, operators can determine whether or not any
transmission lines exceed their operational limits during the
transient without repeated time-domain simulations for each
credible contingency. We validate the proposed methodology
via numerical case studies conducted on standard IEEE test
systems.

I. INTRODUCTION

This paper presents analytical closed-form expressions
for time-domain functions that uncover the mapping from
a generation-load imbalance to the active-power flow on
a line in the network. We refer to these as time-varying
injection shift factors (TVISFs). These are extensions to
the well-known injection shift factors (ISFs) [1]—which
indicate whether or not the system is N − 1 secure at
a post-disturbance steady state—to the entire time period
capturing the evolution of the post-disturbance generator
dynamics to the new steady state. The ISFs are computed
by linearizing the power-flow equations around a particular
operating point, and they specify the sensitivities of line
active-power flows with respect to variations in the active-
power injection (generation or load) at a particular bus.

In order to yield meaningful line-flow predictions, ISFs
must be used in conjunction with particular power allocation
schemes, which are based on the idea of a distributed
slack bus where any system power imbalance is absorbed
by injections at several buses with different participation
factors. These participation factors can be chosen based on
economic dispatch results to minimize generation cost; they
can also be gleaned from insights obtained based on post-
contingency transient generator dynamics. Conventionally,
each set of participation factors corresponds to the power
allocation scheme for all generators for a particular snapshot
in time. On the other hand, the proposed TVISFs are derived
by systematically augmenting ISFs with time-domain func-
tions that uncover the mapping between generator outputs

and the load disturbance—essentially, time-varying power
allocation participation factors that indicate the proportion
contributed by each generator to restore system generation-
load balance. This is done with the aid of a reduced-order
system frequency response model assuming all the buses have
the same frequency even during transients [2].

Traditionally, ISFs (in conjunction with constant par-
ticipation factors) have been used exclusively to predict
transmission-line flows at the post-disturbance steady state
after a load change, and to verify that the steady-state
operational reliability requirements are met [1], [3]–[5]. Thus,
conventional ISF-based contingency analysis yields little to
no insight during the transient period before steady state is
reached. The proposed TVISFs provide an analytical solution
precisely to this problem. In so doing, they offer a compelling
solution to computationally efficient dynamic contingency
analysis, which is typically accomplished by performing
repeated time-domain simulations of a full-order dynamical
model of the system [6].

The remainder of this paper is organized as follows. Sec-
tion II describes conventional ISFs and subsequently outlines
the problem statement. In Section III, we derive the proposed
TVISFs by developing several auxiliary and approximate
system dynamical models. The resulting TVISFs are verified
via numerical case studies in Section IV. Finally, Section V
offers concluding remarks and directions for future work.

II. PRELIMINARIES

Our goal is to predict the change in line active-power flow
corresponding to a change in nodal active-power injection
over the transient period experienced after the disturbance.
Along the time scales relevant to this work, dynamics of
synchronous generator g ∈ G, which denotes the set of
generators in the system, can be modelled as follows. For
each generator g ∈ G, let ωg(t), Pm

g (t), and Pg(t) denote its
rotor electrical angular speed, turbine mechanical power, and
electrical-power output, respectively. Assume each generator
initially operates at the steady-state equilibrium point with
ωg(0) = ωs = 2π60 rad/s, the synchronous frequency.
Defining ∆ωg := ωg − ωs, dynamics of generator g ∈ G
can be described by

Mg∆ω̇g(t) = Pm
g (t)−Dg∆ωg(t)− Pg(t),

τgṖ
m
g (t) = P r

g − Pm
g (t)−R−1

g ∆ωg(t),
(1)



where Mg and Dg denote, respectively, the inertia constant
and damping coefficient; and τg, P r

g , and Rg denote the
governor time constant, reference power input, and droop
constant, respectively.

A. Conventional Injection Shift Factors

The injection shift factor (ISF) quantifies the redistribution
of power through each transmission line following a change
in generation or load on a particular bus. Let N denote
the set of buses in the system, and let E denote the set of
transmission lines. The ISF of line (m,n) ∈ E with respect
to bus k, denoted by Γk(m,n), is the linear sensitivity of the
active-power flow in line (m,n) with respect to the active-
power injection at bus k. The change in active-power flow in
line (m,n), denoted by ∆P(m,n)(t), due to small variations
in bus active-power injections, denoted by ∆Pk(t), can be
approximated as

∆P(m,n)(t) =
∑
k

Γk(m,n)∆Pk(t), (2)

where
∑
k ∆Pk(t) = 0 (neglecting losses).

Consider the change in flow in line (m,n) when the active-
power demand at load bus ` increases by ∆Pload at time
t = 0, i.e., P`(t) = P`(0) + ∆Pload, t > 0. Leveraging the
relationship in (2), this scenario can be described by

∆P(m,n)(t) =
∑
g∈G

Γg
(m,n)∆Pg(t)− Γ`(m,n)∆Pload, (3)

where ∆Pg(t) represents the change in generator g output
as a result of the disturbance, and

∑
g ∆Pg = ∆Pload.

Ostensibly, there are infinitely many allocation schemes for
generators in the system to respond to this generation-load
mismatch, each leading to different predicted line flows. For
a particular snapshot at time t, the power allocation scheme
for each g ∈ G is expressed as

∆Pg(t) = fPg(t)∆Pload, (4)

where
∑

g∈G fPg(t) = 1. The participation factors fPg(t)’s
can take values based on insights gleaned from economic
dispatch, governor control, or synchronous generator inertia
characteristics [7]. For example, inertia- and governor-based
participation factors are obtained by defining

fPg =
Mg∑
k∈GMk

, fPk
=

R−1
g∑

k∈G R
−1
k

, (5)

respectively. The participation factors in (5) describe realiza-
tions of the distributed slack bus based on power-frequency
characteristics of generators in the system [7]. Next, we
illustrate the ideas introduced above via a numerical example.

Example 1 (Three-bus System): Consider the three-bus
lossless system with one-line diagram shown in Fig. 1.
Pertinent network parameters and pre-disturbance initial con-
ditions are detailed in Appendix A. The initial steady-
state active-power flows in lines (1, 2), (2, 3), and (1, 3)
are P(1,2)(t) = 0.042 p.u., P(2,3)(t) = 0.833 p.u., and
P(1,3)(t) = 1.517 p.u., respectively. Suppose the bus 3 load

Fig. 1: Network topology for three-bus system.
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Fig. 2: Line active-power flows in three-bus system due to
0.3 p.u. increase in active-power demand at bus 3.

experiences a step increase of 0.3 p.u. at t = 0 s, and gen-
erators in the system respond dynamically to this mismatch.
Pre- and post-disturbance line flows are obtained via time-
domain simulations in PSAT [8] and subsequently plotted in
Fig. 2.

We also predict line flows using ISFs in conjunction with
inertial- and governor-based participation factors in (5) due
to the load increase. Based on parameter values listed in
Appendix A, the inertia-based participation factors for the
synchronous generators are fP1 = 8/11.01 and fP2 =
3.01/11.01. Substituting these participation factors into (4),
we predict how the load increase is allocated between
the two generators based on their inertial characteristics.
Then, using (3), this inertia-based allocation corresponds
to line-flow changes of ∆P(1,2) = 0.0175 p.u., ∆P(2,3) =
0.1017 p.u., and ∆P(1,3) = 0.2 p.u. Similarly, the governor-
based participation factors fP1

= fP2
= 1/2 help to predict

steady-state line-flow changes as ∆P(1,2) = −0.0337 p.u.,
∆P(2,3) = 0.1189 p.u., and ∆P(1,3) = 0.184 p.u. These
predicted quantities are superimposed onto the actual line-
flow dynamics in Fig. 2. Indeed, we notice that the inertia-
based ISFs provide adequate line-flow predictions shortly
after the load disturbance, and the governor-based ISFs yield
satisfactory line-flow estimates over slower time scales.

While inertia- and governor-based participation factors
offer some intuition for predicting dynamic line flows, as
shown in Fig. 2, they do not fully describe the transient



behaviour of generators. In light of this, we extend the single-
snapshot participation factors into time-varying functions
that delineate how the generation-load mismatch is allocated
amongst generators over the entire transient period prior to
reaching the post-disturbance steady state. �

B. Problem Statement
To capture the mapping between the time-varying gen-

erator response to the load change, we acknowledge the
dynamics of generators in (1) and seek an explicit closed-
form time-domain function for the participation factor fPg(t).
With this in place, substituting (4) into (3), we formally
define the time-varying injection shift factor from bus ` to
line (m,n) as

γ`(m,n)(t) :=
∑
g∈G

Γg
(m,n)fPg(t)− Γ`(m,n), (6)

with which we can express

∆P(m,n)(t) = γ`(m,n)(t)∆Pload. (7)

The functions fPg(t) can be obtained in analytical closed
form from a suitable reduced-order model. We discuss this
next.

III. DERIVING TIME-VARYING INJECTION SHIFT
FACTORS

This section outlines several auxiliary and approximate
models that facilitate the derivation of TVISFs before delving
into the solution approach.

A. Auxiliary Models
In order to derive analytical closed-form expressions for

TVISFs, we will find it useful to define several approximate
models, which are detailed below.

1) Common-frequency Generator Dynamical Model: As-
sume common frequency for the model in (1), i.e., ∆ωg =
∆ω, ∀g ∈ G, then the dynamics of each generator g can be
expressed as

Mg∆ω̇(t) = Pm
g (t)−Dg∆ω(t)− Pg(t), (8)

τgṖ
m
g (t) = P r

g − Pm
g (t)−R−1

g ∆ω(t). (9)

Summing (8) over all g ∈ G we get

Meff∆ω̇(t) =
∑
g∈G

Pm
g (t)−Deff∆ω(t)− Pload(t), (10)

where the total electrical load is Pload :=
∑

g∈G Pg, the
effective inertia constant, Meff :=

∑
g∈GMg, and effective

damping constant, Deff =
∑

g∈G Dg. Furthermore, collecting
copies of (9) ∀g ∈ G, we can write

diag(τ)Ṗm(t) = P r − Pm(t)−R−1∆ω(t), (11)

where we define:1

τ := [τ1, . . . , τ|G|]
T, R−1 := [R−1

1 , . . . , R−1
|G| ]

T,

Pm := [Pm
1 , . . . , P

m
|G|]

T, P r := [P r
1 , . . . , P

r
|G|]

T.
(12)

1The notation adopted for the vector collecting the speed-droop regulation
constants is motivated by the desire to retain consistency.

Combining (10) and (11), we get the state-space model:

ẋ = Ax+Bu. (13)

The state vector and input, x, u ∈ R|G|+1, and system
matrices, A,B ∈ R|G|+1×|G|+1 are given by

x = [∆ω, (Pm)T]T, u = [Pload, (P
r)T]T, (14)

A =

[
−M−1

eff Deff M−1
eff 1T

|G|
−AR −Aτ

]
, B = diag{−M−1

eff , Aτ},

where Aτ := diag(τ)−1 and AR := AτR
−1.

2) Reduced-order System Model: Consider the following
second-order model to capture the frequency dynamics:

ẋ = Ax+Bu. (15)

The state vector and input, x, u ∈ R2, and system matrices,
A,B ∈ R2×2 are given by

x = [∆ω, P
m

]T, u = [Pload, P
r
]T, (16)

A =

[
−M−1

eff Deff M−1
eff

−τ−1R−1
eff −τ−1

]
, B =

[
−M−1

eff 0
0 τ−1

]
,

where τ > 0 represents the time constant of the aggregated
governor in the reduced-order model, P

m
is the mechanical

power of the aggregate model, and

P
r

=
∑
g∈G

P r
g , R−1

eff =
∑
g∈G

R−1
g . (17)

Various options have been proposed for τ in the literature.
The average of all entries in τ is utilized in [9], [10].
However, this does not yield any guarantees on the error
in trajectories generated by the original model (13) and the
reduced-order model (15). On the other hand, the choice

τ = arg min
τ̂≥0
‖(Γ(τ̂)− I|G|+1)A‖2, (18)

where Γ(τ̂) := diag{1, τ̂−1diag(τ)} as suggested in [11]
yields a rigorous error bound on |∆ω(t)−∆ω(t)|. Note that
when all entries of τ are identical, the matrix Γ(τ̂) reduces
to the identity matrix and (18) returns the average of entries
of τ .

3) Approximate Generator Dynamical Model: Using ∆ω
from (15) as a proxy for ∆ω in (8)–(9), define the auxiliary
dynamical model for generator g ∈ G

τgṖ
m

g (t) = P r
g − P

m

g (t)−R−1
g ∆ω(t), (19)

P g(t) = P
m

g (t)−Dg∆ω(t)−Mg∆ω̇(t). (20)

Since ∆ω(t) ≈ ∆ω(t), it follows that P g(t) ≈ Pg(t). This
is pertinent, since unlike Pg(t), P g(t) can be obtained in
analytical closed form (leveraging the second-order model
in (15) and the auxiliary model (19)–(20)) as a function of the
load disturbance. In other words, with the aid of the reduced-
order and auxiliary dynamical models, an approximation to
the function fPg(t) in (6) can be obtained in analytical closed
form. We outline this next.



B. Solution Strategy to Obtain fPg(t)

Define deviations ∆P g(t) = P g(t) − P g(0), ∆P
m

g (t) :=

P
m

g (t)−Pm

g (0), ∆P
m

(t) := P
m

(t)−Pm
(0) that occur due

to a step change in the load at time t = 0 of ∆Pload, so that
Pload(t) = Pload(0) + ∆Pload, t > 0. The transfer functions
from the load to frequency offset and the aggregated governor
mechanical power as suggested by (15) are:

∆ω(s)

Pload(s)
= − k(s+ ζ)

s2 + 2ξωns+ ω2
n

,

P
m

(s)

Pload(s)
=

kζR−1
eff

s2 + 2ξωns+ ω2
n

,

(21)

where the parameters k, ζ, ωn, and ξ are given by

k := M−1
eff , ζ := τ−1, (22)

ωn :=

√
R−1

eff +Deff

τMeff
, ξ :=

1

2

Meff + τDeff√
τMeff(R−1

eff +Deff)
.

Substituting Pload(s) = ∆Pload/s in (21) (to model the load
step at time t = 0), and taking the inverse Laplace transform
assuming the system is underdamped, i.e., 0 < ξ < 1, we get

∆ω(t) = ∆ωss

(
1− e−ξωnt√

1− ξ2

(
sin(ωdt+ ϕ)− ωn

ζ
sin(ωdt)

))
=: f∆ω(t)∆Pload, (23)

P
m

(t) = P
m

(0) + ∆P
m

ss

(
1− e−ξωnt√

1− ξ2
sin(ωdt+ ϕ)

)
=: P

m
(0) + fPm(t)∆Pload, (24)

where the parameters ωd, ϕ, ∆ωss, and ∆P
m

ss are given by

ωd = ωn

√
1− ξ2, ϕ = cos−1 ξ,

∆ωss = − ∆Pload

R−1
eff +Deff

, ∆P
m

ss =
R−1

eff ∆Pload

R−1
eff +Deff

.
(25)

Furthermore, (19) is a first-order differential equation with
solution that can be expressed in closed form as

P
m

g (t) = P
m

g (0) + ∆P
m

g,ss

(
1−

ωdτ
−1
g

ω2
d + θ2

g
· e−ξωnt√

1− ξ2(ωn

ζ
cos(ωdt)− cos(ωdt+ ϕ)

+
θg

ωd
(sin(ωdt+ ϕ)− ωn

ζ
sin(ωdt))

))
=: P

m

g (0) + fPm
g

(t)∆Pload, (26)

where the parameters ∆P
m

g,ss and θg are given by

∆P
m

g,ss = −R−1
g ∆ωss =

R−1
g ∆Pload

R−1
eff +Deff

, θg = τ−1
g − ξωn.

(27)
With the above, solving the first equation in (15), we get

∆ω̇(t) = M−1
eff

(
P

m
(t)−Deff∆ω(t)− Pload(t)

)
, (28)

0

0.02

0.04

0.06

0.08

P
(1

,2
)
[p
.u
.]

Actual
TVISF

0.85

0.9

0.95

P
(2

,3
)
[p
.u
.]

Actual
TVISF

0 1 2 3 4 5

Time [s]

1.5

1.6

1.7

P
(1

,3
)
[p
.u
.]

Actual
TVISF

Fig. 3: Three-bus system: actual and predicted line flows due
to 0.3 p.u. increase in active-power load at bus 3.

which can be substituted into (20) to yield

P g(t) = P
m

g (t) +
(
MgM

−1
eff Deff −Dg

)
∆ω(t)

−MgM
−1
eff

(
P

m
(t)− Pload(t)

)
. (29)

Due to the step change in load, for t > 0, Pload(t) =
Pload(0) + ∆Pload. Substitute this along with (23), (24), and
(26) into (29), we get

P g(t) = P
m

g (0)−MgM
−1
eff

(
P

m
(0)− Pload(0)

)
+ fPm

g
(t)∆Pload +

(
MgM

−1
eff Deff −Dg

)
f∆ω(t)∆Pload

−MgM
−1
eff (fPm(t)− 1) ∆Pload. (30)

Assuming that the system initially operates at synchronous
frequency, i.e., ∆ω(0) = 0, P

m
(0) = Pload(0), and P

m

g (0) =

P g(0), (30) can be simplified as

P g(t) = P g(0) + ∆P g(t) =: P g(0) + fPg(t)∆Pload, (31)

where

fPg(t) = fPm
g

(t) +
(
MgM

−1
eff Deff −Dg

)
f∆ω(t)

−MgM
−1
eff (fPm(t)− 1) . (32)

In (32), time-domain functions fPm
g

(t), f∆ω(t), and fPm(t)
can be readily extracted in closed form from (26), (23), and
(24), respectively. With this, we achieve the aim in (6)–(7)
albeit with the approximation that ∆Pg(t) ≈ ∆P g(t).

IV. CASE STUDIES

In this section, we illustrate concepts presented in Sec-
tions II–III via numerical case studies.

A. Three-bus Test System

Consider the lossless three-bus system from Example 1. To
predict the line active-power flows throughout the transient
period following a load increase at bus 3, i.e., ∆P3(t) =
0.3 p.u., t > 0, we begin by computing the time-varying
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Fig. 4: WECC system: actual and predicted line flows due to
0.5 p.u. increase in active-power load at bus 6.

participation factors using (32). Then, the TVISFs in (6)
allow us to map load disturbance contributions to line active-
power flow variations via (7). Indeed, as shown in Fig. 3,
the TVISFs not only capture the inertial- and governor-based
response, but the dynamics across the entire transient period.

B. WECC Test System

Suppose generators in the WECC system are responding
to a generation-load mismatch caused by a load increase
at bus 6, i.e., ∆P6(t) = 0.5 p.u., t > 0. Actual and
predicted line flows on three lines are plotted in Fig. 4. We
observe that the steady-state prediction errors are larger than
those observed in Fig. 3. Specifically, the average prediction
error over all lines is 0.0086 p.u., with a maximum error of
0.011 p.u., corresponding to line (3, 9). As shown in Fig. 5,
the average prediction error grows as the change in system
losses (from pre- to post-disturbance steady state) increase
due to varying load step changes.

V. CONCLUDING REMARKS

In this paper, we derive analytical closed-form expressions
for time varying ISFs, which are valid throughout the post-
contingency transient period. The utility of the proposed
expressions in accurately predicting post-contingency active-
power line flows was demonstrated via numerical case studies
involving the WECC test system. Compelling avenues for fu-
ture work include incorporating system losses, measurement-
based ISFs using real-time measurements obtained from the
system without relying on an offline model of the system, and
location-cognizant aggregate-frequency models that consider
the disturbance locational effect.

APPENDIX

A. Three-bus Test System Parameters

Synchronous generators are connected to buses 1 and
2, injecting P1 = 1.559 p.u. and P2 = 0.791 p.u., re-
spectively. A constant-power load is connected to bus 3,
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Fig. 5: WECC system: sensitivity of average error in line
flow predictions with respect to change in system losses.

with active- and reactive-power injections P3 = −2.35 p.u.
and Q3 = −0.5 p.u., respectively. Voltage magnitudes at
buses 1 and 2 are regulated at |V1| = 1.04 p.u. and
|V2| = 1.025 p.u., respectively. Transmission lines are mod-
elled using lumped parameters, where y12 = −j11.7647 p.u.,
ysh

12 = j0.088 p.u., y23 = −j6.2112 p.u., ysh
23 = j0.153 p.u.,

y13 = −j10.8696 p.u., and ysh
13 = j0.079 p.u. Additionally,

generator damping coefficients are D1 = D3 = 10 p.u.,
inertial constants are M1 = 16 s and M2 = 6.02 s, droop
coefficients are R−1

1 = R−1
2 = 25 p.u., and governor time

constants are τ1 = τ2 = 0.5 s.
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