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Abstract— Power networks have to withstand a variety of
disturbances that affect system frequency, and the problem
is compounded with the increasing integration of intermit-
tent renewable generation. Following a large-signal generation
or load disturbance, system frequency is arrested leveraging
primary frequency control provided by governor action in
synchronous generators. In this work, we propose a framework
for distributed energy resources (DERs) deployed in distribu-
tion networks to provide (supplemental) primary frequency
response. Particularly, we demonstrate how power-frequency
droop slopes for individual DERs can be designed so that the
distribution feeder presents a guaranteed frequency-regulation
characteristic at the feeder head. Furthermore, the droop slopes
are engineered such that injections of individual DERs conform
to a well-defined fairness objective that does not penalize them
for their location on the distribution feeder. Time-domain
simulations for an illustrative network composed of a combined
transmission network and distribution network with frequency-
responsive DERs are provided to validate the approach.

I. INTRODUCTION

Traditional approaches for regulating and maintaining
system frequency in power transmission systems leverage
inertial response, primary frequency response, and automatic
generation control provided by synchronous generators. In
the future, on the other hand, distributed energy resources
(DERs) at both utility level and in commercial/residential
settings are envisioned to complement traditional generation-
side capabilities at multiple time scales to aid frequency reg-
ulation and restoration due to disturbances arising from unex-
pected contingencies and intermittent renewable sources [1]–
[4]. For example, primary frequency response from (utility-
scale) DERs can significantly reduce the frequency nadir
and steady-state frequency deviation [5]. Aligned with this
emerging vision, this paper considers a distribution system
featuring DERs, and proposes a DER-control strategy that
enables a distribution feeder to emulate a virtual power plant
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Fig. 1. The proposed approach demonstrates how power-frequency droop
slopes for individual DERs (mk) can be designed so that: i) in aggregate, the
f distribution feeder presents a frequency-regulation characteristic, RF,f ,
at the feeder head, and ii) the injections of individual DERs (∆Pk) are
location agnostic, hence conforming to a well-defined notion of fairness.

effectively implementing a power-frequency-droop character-
istic at the interface with the transmission grid.

We discuss ideas with respect to the illustrative system in
Fig. 1. The objective is to design individual controllers for
DERs located throughout a feeder f , so that the active power
injected at the feeder head, P in

f , is collectively adjusted
in response to frequency deviations ∆ωf via the power-
frequency droop relationship ∆ωf = RF,f∆P in

f , where
RF,f is a given regulation constant. This approach enables a
system-theoretic stability analysis at the transmission level,
where distribution-level DER aggregations can be effectively
modeled as virtual power plants that provide prescribed
primary frequency response characteristics.

Targeting the goal outlined above, we develop a sys-
tematic procedure to design power-frequency droop char-
acteristics by leveraging suitable linear approximations of
the AC power-flow equations [6], [7]. The resultant droop
coefficients intrinsically embed information regarding the
locations of the DERs and, hence, the effect of each DER
power adjustment ∆Pk on the feeder-level response ∆P in

f

[cf. Figure 1]. The proposed methodology also accommo-
dates DER “participation factors,” which can be designed
either to ensure fairness across the DER power adjustments,
or, based on (albeit futuristic) distribution-level frequency-
support markets. Overall, the resultant droop coefficients
resemble traditional participation coefficients of large-scale
generators in secondary frequency control settings in the



bulk transmission system [8], [9]; in our case, these factors
model the contribution of each DER towards achieving a
prescribed (collective) regulation constant RF,f at the feeder
head, and account for both distribution-network power flows
and fairness/market principles.

Prior work in this context have considered primary fre-
quency control schemes for large-scale photovoltaic (PV)
and wind plants [1], [5], [10]. At the distribution level,
decentralized primary frequency control schemes have been
explored leveraging PV systems [11], energy storage sys-
tems [4], [12], [13], or based on switching on/off HVAC
systems, refrigerators, and water heaters when the magnitude
and duration of local frequency deviation and the tempera-
ture hit certain thresholds [2], [3]. Small-scale experiments
on residential appliances participating in frequency control
have also been performed [14]–[16]. Overall, the effects
of the DER location (and, hence, power flows within the
feeder), operational constraints, and participation factors on
the design and performance analysis of primary frequency
control are not considered. Furthermore, ad-hoc and network-
agnostic designs may not enable the distribution system to
achieve a prescribed regulation constant RF,f at the feeder
head. A simulation study has demonstrated effectiveness of
load-side participation in primary frequency control [17]. To
the best of our knowledge, this paper is the first to propose
a primary frequency control law for DERs that achieves a
target aggregate performance, while simultaneously ensuring
that the response of individual DERs is location agnostic.

The remainder of this paper is organized as follows. In
Section II, the mathematical notation, network model, and
dynamical models of generators and DERs are described. By
analyzing the steady-state frequency, Section III presents the
proposed method to engineer DER droop slopes while ac-
knowledging the distribution feeder network. In Section IV,
we present several numerical case studies to illustrate the
proposed design method. Finally, concluding remarks and
some directions for future work are highlighted in Section V.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we first establish notation and then describe
the power-system model.

A. Notation

Let R be the set of real numbers and C the set of complex
numbers. Given a finite set S ⊂ R we use S = |S|
to denote its cardinality. The matrix inverse is denoted by
(·)−1, transpose by (·)T, complex conjugate by (·)∗, real and
imaginary parts of a complex number by Re{·} and Im{·},
respectively, and j :=

√
−1. The magnitude of a complex

scalar is denoted by | · |. A diagonal matrix formed with
diagonal entries composed of entries of vector x is denoted
by diag(x). For a matrix X , Xmn returns the entry in the
m row and n column of X and Xn,· denotes nth row of X .
The N×1 vectors with all ones and all zeros are denoted by
1N and 0N , respectively. The spaces of N × 1 real-valued
and complex-valued vectors are denoted by RN and CN ,
respectively.

B. Network Model

In this section we introduce the notation used to describe
the transmission and distribution systems.

1) Transmission Network: We consider a classical power
network model for the transmission grid, which is repre-
sented by a graph, where N := {1, . . . , |N |} is the set of
buses, and E ⊂ N × N is the set of transmission lines. A
transmission line is denoted by (g, `) ∈ E . Partition the set
N = G ∪ L, where G is the set of buses that are connected
to conventional turbine-based generators (high inertia) and L
is the set of buses that are connected to loads (which can be
aggregate representations of distribution feeders). The set of
neighbors of bus g is defined as Ng := {` ∈ N| (g, `) ∈ E}.

2) Distribution Network: Denote, by F ⊂ L, the set of
buses in the transmission system where distribution feeders
are present. Node 0 denotes the secondary side of the
distribution transformer. Accordingly, nodes of the distribu-
tion feeder connected to transmission system bus f ∈ F ,
comprising Bf + 1 nodes, are collected in the set Bf ∪ {0},
Bf := {1, . . . , Bf}, and lines represented by the set of edges
Ef := {(m,n)} ⊂ (Bf ∪ {0})× (Bf ∪ {0})}. Furthermore,
for the distribution feeder connected to transmission system
bus f ∈ F , let Df ⊆ Bf with cardinality Df = |Df |
denote the set of buses where controllable DERs are present.
Let Vn ∈ C and In ∈ C denote the phasors for the line-
to-ground voltage at and the current injected into node n,
respectively, and define the Bf -dimensional complex vectors
v := [V1, . . . , VBf

]T ∈ CBf and i := [I1, . . . , IBf
]T ∈ CBf .

Also, let V0 denote the voltage at the secondary side of
the distribution transformer, and let I0 denote the current
injected into the distribution feeder from the transmission
system bus f . Using Ohm’s and Kirchhoff’s circuit laws,
the following linear relationship can be established:[

I0
i

]
=

[
y00 ȳT

ȳ Y

] [
V0

vg

]
=: Ynet

[
V0

v

]
(1)

where the system admittance matrix Ynet ∈ C(Bf+1)×(Bf+1)

is formed based on the system topology and the π-equivalent
circuit of the distribution lines (see e.g., [18, Chapter 6]
for additional details on distribution line modeling), and is
partitioned in sub-matrices with the following dimensions:
Y ∈ CBf×Bf , y ∈ CBf×1, and y00 ∈ C.

C. Power-flow Equations

Transmission line (k, j) is modeled using the lumped-
element π-model with series admittance ykj = yjk = gkj +
jbkj ∈ C \ {0} and shunt admittance ysh

kj = gsh
kj + jbshkj ∈

C \ {0} on both ends of the line. The power injections at
buses k ∈ N ∪ (∪f∈FBf ) are given by

0 = Pk −mkθ̇k −
∑
j∈Nk

Pkj , 0 = Qk −
∑
j∈Nk

Qkj (2)

where Pk and Qk are the net non-frequency-sensitive active-
and reactive-power injections at node k; and following stan-
dard power-flow computations, the branch flows Pkj , Qkj ,



are given by

Pkj = |Vk|2(gsh
kj + gkj)

− |Vk||Vj | (gkj cos θkj + bkj sin θkj)

Qkj = −|Vk|2(bshkj + bkj)

− |Vk||Vj | (gkj sin θkj − bkj cos θkj) .

(3)

In (3), at bus k, frequency-sensitive active-power injections
are −mkθ̇k if bus k is connected to DERs with droop slope
mk. We comment on this further in Section II-D.2 below.

D. System Dynamical Models

We describe the dynamical model for the generators in
the transmission network, and then discuss the frequency-
responsive DER model.

1) Transmission Network: Since we are interested in time
scales in the regime of primary frequency response, we
model the dynamics of angular position, frequency, and
mechanical-power input for the generators in the network. In
particular, for the g ∈ G generator, we adopt the following
third-order dynamical model:

θ̇g = ωg − ωs

Mgω̇g = Pm
g −Dg(ωg − ωs) + Pg −

∑
k∈Ng

Pgk

τgṖ
m
g = −Pm

g + P r
g −

1

RG,g
(ωg − ωs).

(4)

Above, θg, ωg, and Pm
g are the dynamical states for rotor

electrical angular position, generator frequency, and turbine
mechanical power, respectively, for the g generator, and ωs =
2π60 [rad sec−1] is the synchronous frequency. Furthermore,
Mg is the inertia constant, Dg is the load damping coefficient
(capturing the frequency-sensitive loads at bus g), RG,g
is the frequency-power speed-droop regulation constant, τg

is the turbine time constant, and P r
g denotes its reference

power setting (assumed to be constant since it derives from
secondary control). Finally, Pg is the injection at bus g
(negative, if we wish to model a constant power load).

2) Distribution Network: Assume the following model for
the power-electronics-based zero-inertia DERs connected to
buses k ∈ Bf in feeder f ∈ F

θ̇k = ωf − ωs

0 = Pk −
∑
j∈Nk

Pkj −mkθ̇k.
(5)

The above model is appropriate for DERs in a setting where
the frequency at the feeder head (connected to the transmis-
sion network) percolates down to all buses in the feeder [17].
The droop coefficient mk establishes the frequency response
of the DER at bus k. Recall that we define Df ⊆ Bf to
be the subset of nodes with frequency-responsive DERs and
note that mk > 0,∀ k ∈ Df ; and mk = 0, ∀ k ∈ Bf \Df . For
simplicity and ease of subsequent exposition, we assume that
the power rating of each DER is identical for each feeder.
Extensions to the case where DER capacities are significantly
different are beyond the scope of the present work, and they
remain the focus of ongoing investigations.

III. FREQUENCY RESPONSE OF TRANSMISSION AND
DISTRIBUTION NETWORK

In this section, we quantify the steady-state frequency
offset that results from a power imbalance in the network.
Subsequently, we describe how the DER droop slopes can
be engineered to yield a desired frequency regulation for the
combined transmission-distribution network while acknowl-
edging power flows in the distribution feeder.

A. System Steady-state Frequency

Assume the system initially operates at the synchronous
steady-state equilibrium point with ω◦g = ωs. Accordingly,
from (4), at the initial steady state, for generator g ∈ G,

0 = Pm◦
g + P ◦g −

∑
k∈Ng

P ◦gk

0 = −Pm◦
g + P r

g .

(6)

Then, suppose an imbalance in active-power generation and
consumption arises in the transmission network. The system
would eventually settle to a new steady state. Since we are
interested in a time horizon where secondary control has
not yet acted (i.e., P r

g remains constant), this steady state
does not correspond to the nominal (synchronous) frequency.
Define new steady-state quantities ω̃g = ωs + ∆ωg, P̃m

g =

Pm◦
g + ∆Pm

g , P̃g = P ◦g + ∆Pg, P̃gk = P ◦gk + ∆Pgk, ∀ g ∈
G, k ∈ Ng. With reference to the model in (4), at the new
steady state, for generator g ∈ G,

0 = P̃m
g −Dg(ω̃g − ωs) + P̃g −

∑
k∈Ng

P̃gk

0 = −P̃m
g + P r

g −
1

RG,g
(ω̃g − ωs).

(7)

Substituting the new steady-state variables defined above and
recognizing (6), we get from (7) that

0 = ∆Pm
g −Dg∆ωg + ∆Pg −

∑
k∈Ng

∆Pgk (8)

∆Pm
g = − 1

RG,g
∆ωg. (9)

Finally, substitute (9) into (8) to get, for each g ∈ G,

(R−1
G,g +Dg)∆ωg = ∆Pg −

∑
k∈Ng

∆Pgk =: ∆P g
dist. (10)

Similarly, define new steady-state quantities ω̃f = ωs +

∆ωf , ∀ f ∈ F ; P̃k = P ◦k + ∆Pk and P̃kj = P ◦kj + ∆Pkj ,
∀ k ∈ Bf and j ∈ Nk. With reference to the model for the
DERs in (5), at the new steady state, for the DER at bus
k ∈ Bf ,

0 = P̃k −
∑
j∈Nk

P̃kj −mk(ω̃f − ωs). (11)

Substituting the new steady-state quantities defined above
and recognizing that, initially, ω◦f = ωs, we get that for a
particular distribution feeder f ∈ F , and for all k ∈ Bf ,

mk∆ωf = ∆Pk −
∑
j∈Nk

∆Pkj . (12)



Summing (12) over all k ∈ Bf , we get∑
k∈Bf

mk∆ωf =
∑
k∈Bf

(
∆Pk −

∑
j∈Nk

∆Pkj

)
=: ∆P f

dist.

(13)
At the post-disturbance steady state, the power flows in the

network settle to a new equilibrium, and so for any pair of
buses k, j ∈ G∪F , θkj = θk−θj is a constant. Consequently,
we have that ∀ k, j ∈ G∪F , θ̇kj = θ̇k−θ̇j = ∆ωk−∆ωj = 0.
Thus, at the new steady state, we get that

∆ωk =: ∆ω?, ∀ k ∈ G ∪ F (14)

where ∆ω? denotes the system-wide steady-state frequency
offset. With this in mind, summing equalities in (10) over
all generators g ∈ G and (13) over all feeders f ∈ F , we get(∑

g∈G
(R−1
G,g +Dg) +

∑
f∈F

∑
k∈Bf

mk

)
∆ω?

=
(∑

g∈G
(R−1
G,g +Dg) +

∑
f∈F

∑
k∈Df

mk

)
∆ω?

=
∑
g∈G

∆P g
dist +

∑
f∈F

∆P f
dist =: ∆Pdist (15)

where the second equality follows from the fact that mk =
0,∀ k ∈ Bf \ Df . Rearranging terms in (15), and isolating
∆ω?, we get that

∆ω? =
∆Pdist∑

g∈G
(R−1
G,g +Dg) +

∑
f∈F

∑
k∈Df

mk

=:
∆Pdist

R−1
eff

(16)

where R−1
eff is the network-wide frequency regulation charac-

teristic, and it dictates the expected frequency offset given a
change in power balance from the pre-disturbance frequency-
synchronized equilibrium.

B. A Notion of Fairness

We will find it useful to disaggregate the frequency reg-
ulation expected from all feeders into a sum of expected
contributions from each feeder by defining the frequency
regulation constant for the f feeder as

R−1
F,f :=

∑
k∈Df

mk. (17)

With this definition in place, it follows straightforwardly that

Reff =
∑
g∈G

(R−1
G,g +Dg) +

∑
f∈F

R−1
F,f . (18)

Indeed, there are infinite options to pick the individual
mk’s such that (17) holds. Under the presumed modeling
constraint of the DERs having the same nominal power
rating, but we focus on a particular choice that guarantees
fairness of response. By this we mean that the change in
active-power outputs of DERs in feeder f ∈ F are such that

∆P1 = ∆P2 = · · · = ∆PDf
. (19)

With the definition of the per-feeder frequency-regulation
characteristic in (17), the design problem is the following:

How does one pick the power-frequency droop
slopes for individual DERs (mk) so that: i) in
aggregate, the distribution feeder presents a
frequency-regulation characteristic, RF,f , at the
feeder head, and ii) the injections of individual
DERs (∆Pk) can be engineered to conform to the
fairness objective in (19)?

At first glance, the solution to the above design problem
is not obvious, given the topological and compositional
complexity of distribution networks. However, we demon-
strate next how a linearization of the nonlinear power-flow
equations for each feeder can aid in this design.

C. Designing the Droop Coefficients

For a particular feeder f ∈ F , we would like to achieve

∆P in
f = R−1

F,f (ωf − ωs) (20)

where ∆P in
f is the change in power flowing in from the

feeder head into the distribution network. (See Fig. 1 for an
illustration.) The key idea is to disaggregate the change in
injection at the feeder head into individual contributions from
injection changes at different nodes in the feeder. Following
the developments in Appendix A, we reproduce (43) below:

∆P in
f =

∑
k∈Bf

ϕk∆Pk (21)

where ∆Pk is the change in injection at the DER installed
at bus k in the feeder, and ϕk takes the connotation of a
participation factor, that quantifies how much a change in
injection at a given node in the feeder contributes to the
total change in the flow at the feeder head. The approach
outlined in Appendix A leverages a straightforward lineariza-
tion of the power-flow equations on a per-feeder basis to
compute ϕk,∀ k ∈ Bf . The values of ϕk are different from
−1 in realistic settings (due to lossy lines, non-negligible
shunt loads, or, in the trivial case, the absence of frequency-
sensitive injections). We also note that the magnitudes of ϕk

tend to decrease for nodes that are farther away from the
feeder head. This makes intuitive sense, since it implies that
incremental changes in injections significantly downstream
from the feeder head tend to have less impact on the injection
change at the feeder head.1 With these introductory remarks
in place, we substitute (21) in (20), to obtain

ωf − ωs = RF,f

∑
k∈Bf

ϕk∆Pk. (22)

The k DER is then designed to respond as follows

∆Pk =
γk

RF,f ϕk
(ωf − ωs) =

γk
RF,f ϕk

θ̇k. (23)

Above, γk > 0, ∀ k ∈ Df , where Df ⊆ Bf is the subset
of nodes with frequency-responsive DERs; γk = 0, ∀ k ∈
Bf \Df . Furthermore, the γk values have to be picked such
that

∑
k∈Df

γk = 1.

1Demonstrating this analytically is beyond the scope of the work, but we
provide numerical results subsequently to substantiate this claim.
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Fig. 2. Power network used in the case study includes a transmission
network with 3 buses, and a 36-node distribution network connected to bus 2
in the transmission system. The distribution feeder includes nine frequency-
responsive DERs, D1, . . . ,D9.

While all choices of γk as described above yield the
required frequency-regulation characteristic for each feeder,
different choices lead to different participatory models for the
DERs. For instance, a straightforward (albeit naı̈ve) option
would be to choose

γk = D−1
f =: |Df |−1 (24)

which conforms to the requirement that
∑

`∈Df
γ` = 1. With

this choice, we get

∆Pk =
D−1

f

RF,f ϕk
(ωf − ωs). (25)

As noted earlier, since the (magnitude of) ϕk tends to
reduce as we move downstream from the feeder head, with
the model in (25), DERs that are electrically distant from
the feeder head contribute—admittedly unfairly—more while
providing primary-frequency response.

Alternatively, the design strategy that ensures fairness of
participation, i.e., ∆P1 = · · · = ∆PDf

, is to pick

γk =
ϕk∑

`∈Df

ϕ`
. (26)

Indeed, with this choice, it follows from (23) that

∆P1 = · · · = ∆PDf
=

1

RF,f

∑
`∈Df

ϕ`
(ωf − ωs). (27)

In this case, all DERs provide the same change in injection,
and they are not penalized for their location on the feeder.

We conclude by remarking that other choices of γk would
translate to alternative notions of fairness. Due to space
constraints, we restrict the scope of the present paper and
the subsequent numerical case studies to focus on the notion
of fairness discussed in (19).
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Fig. 3. Frequency at bus 3 after the load step at bus 2. The transient
and steady-state response with frequency-responsive DERs is significantly
improved. Steady-state results from time-domain simulations (solid lines)
match the analytical results (dashed lines).

IV. CASE STUDIES

We simulate a 3-bus transmission system, N = {1, 2, 3},
with a generator connected at buses G = {1, 3} and a
36-bus distribution feeder with frequency-responsive DERs
at F = {3}, as shown in Fig. 2. The distribution feeder
contains frequency-responsive DERs, D1, . . . ,D9, at nodes
D3 = {2, 5, 8, 12, 13, 15, 20, 23, 34}. The 3-bus transmission
system is a modified version of a test case in [19]. The
36-bus distribution feeder, whose head bus is connected to
transmission bus 3, is a suitably modified version of the IEEE
37-bus distribution test feeder [20]. The network parameters
of the 3-bus system, and power-flow states corresponding to
the pre-disturbance steady state are listed in Appendix B. For
convenience, voltage magnitudes are in per unit (pu) with a
4.8 [kV] base, and power and impedance values are also in
(pu), unless otherwise specified. Ensuing results are obtained
from time-domain simulations of the combined transmission-
distribution-network model from Section II, performed with
the Power System Toolbox [21].

At time t = 0 [sec], the load at bus 2 in the transmission
network undergoes a step increase of 0.00217. In our case
studies, we consider four possible scenarios in which primary
frequency response is provided due to the load change,
described as follows:

(A) Only the two generators in the transmission network
provide primary frequency response. None of the DERs
are frequency responsive, i.e., m` = 0, ∀ ` ∈ D3.

(B) In addition to the generators, 9 DERs across the 36-
bus distribution feeder collected in the set D3 also
contribute to primary frequency response. Here, the
prescribed frequency regulation constant at the feeder
head is R−1

F,3 = 0.5208. Droop slopes for individual
DERs are naı̈vely selected so that their outputs are given
by (25).

(C) The DERs continue to provide frequency support. Here,
we consider a set of arbitrary droop slopes that only
conform to the requirement R−1

F,3 = 0.5208.
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Fig. 4. (a) Relative contributions of each DER (with respect to the one installed closest to the feeder head) indicate how a naı̈ve choice of droop
coefficients penalizes the ones that are far from the feeder head. (b) An arbitrary choice of droop coefficients results in arbitrary contributions from the
DERs. (c) Droop slopes are engineered such that DERs provide the same injections irrespective of their location on the feeder.

(D) Finally, with the same prescribed aggregate droop
R−1
F,3 = 0.5208, and to promote a notion of fairness,

the droop coefficients for individual DERs are designed
such that their outputs are given by (27).

A. Transient Performance and Steady-state Frequency

Figure 3 shows the time evolution of frequency at bus 3 in
the transmission network for the cases without (i.e., case (A))
and with (i.e., cases (B), (C), (D)) DER frequency support.
In case (A), where only the generators provide frequency
support, from (16), we expect that

∆ω? =
∆Pdist∑

g∈G
(Dg +R−1

G,g)
= 0.002304

which corresponds to a steady-state frequency of 59.86 [Hz].
This is confirmed by the simulation result in Fig. 3. In
cases (B), (C), and (D), where the DERs are also engaged
in frequency response, we expect from (16) that

∆ω? =
∆Pdist∑

g∈G
(Dg +R−1

G,g) +
∑

`∈D3

m`

= 0.00149

which corresponds to a steady-state frequency of 59.91 [Hz],
also confirmed by simulation results shown in Fig. 3. Since
the 9 DERs are coordinated to provide the same frequency-
regulation constant at the feeder head, in all three cases, the
transient response and steady-state behaviour are the same.

Broadly speaking, the results shown in Fig. 3 confirm that
controlling the DERs leads to a better transient performance,
with faster convergence and smaller oscillations, than the
case where only the generators provide frequency response.
The main reason is that the DERs instantly respond to
frequency deviations unlike the generators. Furthermore, the
match in steady-state between the time-domain simulation
results (in solid lines) and the analytical results (dashed lines)
validates the analytical developments in Section III.

B. Comparison of Cases (B), (C), and (D)

By selecting droop coefficients as in (25), i.e., Case (B),
we obtain the trend that DERs farther away from the feeder

head contribute more active power while providing primary
frequency support. This makes intuitive sense, since incre-
mental changes in injections significantly downstream from
the feeder head tend to have less impact on the injection
change at the feeder head. In order to see this effect, we
plot the normalized quantity (∆Pk − ∆P1)100/∆Pdist in
Fig. 4a, where ∆P1 is the change in active-power injection
at the DER closest to the feeder head.

With the arbitrary droop coefficients discussed in case (C),
we plot the quantities ∆Pk/∆Pdist in Fig. 4b. In this
setup, we see that the injections are arbitrary and they are
not systematically engineered to conform to any fairness
objective. In contrast, with the allocation defined in (27),
i.e., case (D), we plot the quantities ∆Pk/∆Pdist in Fig. 4c.
This clearly promotes a sense of fairness among the DERs
since they all contribute equally to offer primary frequency
response.

Notice from Fig. 4b and Fig. 4c that although individ-
ual DER contributions vary (based on the choice of the
design coefficient γk), the total contribution of DERs (i.e.∑
k∈Df

∆Pk) remains the same.

V. CONCLUDING REMARKS AND ONGOING WORK

In this paper, we proposed a method to design power-
frequency droop characteristics for individual DERs in a
distribution feeder so that, in aggregate, they provide a pre-
scribed primary frequency response at the feeder head. The
method leverages linear approximations of the AC power-
flow equations to embed participation factors into the design
of the droop slopes such that the change in injections from
the DERs can be engineered to be location agnostic. In the
present work, DERs have been assumed to have the same
nominal power rating, however, ongoing research includes
extending this to consider DERs with different power ratings.
Other avenues for future work include developing systematic
methods for stability and convergence analyses, and real-time
implementations of proposed algorithms.



APPENDIX

A. Approximation of Power Flowing into Distribution Feeder

Let s ∈ CBf collect the complex-power injections at buses
in Bf in feeder f ∈ F . Then, using (1), the complex-power
injections can be compactly written as

s = diag (v) i∗ = diag (v) (Y ∗v∗ + ȳ∗V ∗0 ) . (28)

Central to the linearization approach is to express the volt-
ages v as v = vnom + ∆v, where vnom is the linearization
point, and entries of ∆v capture perturbations around vnom.
With vnom appropriately determined, we need to solve for
∆v that satisfies

s = diag (vnom + ∆v) (Y ∗(vnom + ∆v)∗ + ȳ∗V ∗0 ) . (29)

Neglecting second-order terms, we can show that ∆v satisfies

Γ∆v + Ξ∆v∗ = s− snom (30)

where Γ,Ξ ∈ CBf×Bf , and snom ∈ CBf are given by

Γ := diag (Y ∗v∗nom + ȳ∗V ∗0 ) (31)
Ξ := diag (vnom)Y ∗ (32)

snom := diag (vnom) (Y ∗v∗nom + ȳ∗V ∗0 ) . (33)

Decomposing all quantities in (30) into their real and imag-
inary parts, we can solve for Re{∆v} and Im{∆v} (and
hence, for ∆v) from[

Re{∆v}
Im{∆v}

]
= H

[
p
q

]
−H

[
pnom

qnom

]
(34)

where snom = pnom + jqnom and s = p + jq and we define
H ∈ R2Bf×2Bf as follows:

H :=

[
Re{Γ}+ Re{Ξ} −Im{Γ}+ Im{Ξ}
Im{Γ}+ Im{Ξ} Re{Γ} − Re{Ξ}

]−1

. (35)

To aid subsequent discussions, we will find it useful to denote
the Bf×Bf blocks that H is composed of by: H(11), H(12),
H(21), and H(22). This allows us to express

Re{∆v} = H(11)pinj +H(12)qinj + hr

Im{∆v} = H(21)pinj +H(22)qinj + hi
(36)

where hr := −H(11)pnom − H(12)qnom and hi :=
−H(21)pnom −H(22)qnom.

Consider one particular test feeder f ∈ F . Assume that
node 1 is connected to the substation via a distribution line,
and define the power entering the feeder by Sin

f = V0I
∗
01,

where I01 is the current flowing on the distribution line (0, 1).
With y01 ∈ C denoting the admittance of line (0, 1), ysh

00 ∈ C
any passive shunt elements connected to node 0, and ysh

01 the
shunt component of the line (0, 1), note that I01 is given by
I01 = y01(V0 − V1) + y0V0, with

y0 = g0 + jb0 := ysh
00 + ysh

01 . (37)

Thus, Sin
f can be rewritten as

Sin
f = |V0|2(y∗01 + y∗0)− V0(y∗01V

∗
1 ) . (38)

With {ei ∈ RBf }Bf

i=1 denoting the vector basis for RBf , it
follows that V1 can be rewritten as

V1 = eT
1 v = eT

1 (vnom + Re{∆v}+ jIm{∆v}) (39)

and, thus:

Sin
f = |V0|2(y∗01 + y∗0)− V0y

∗
01(eT

1 (vnom + ∆v))∗ . (40)

Substituting (36) in (40) and rearranging terms, an approx-
imate linear relationship between the power at the feeder
head Sin

f = P in
f + jQin

f and the net power injections p, q
throughout the feeder can be expressed as:[

P in
f

Qin
f

]
=

[
ϕ
ζ

]
p+

[
α
β

]
q + c (41)

with ϕ ∈ R1×Bf , ζ ∈ R1×Bf , α ∈ R1×Bf , β ∈ R1×Bf , and
c ∈ R2, each expressed as

ϕ
ζ
α
β

 =


−ψ1 0 ψ2 0
ψ2 0 ψ1 0
0 −ψ1 0 ψ2

0 ψ2 0 ψ1



H11

1,·
H12

1,·
H21

1,·
H22

1,·

 (42)

c = |V0|2
[

1 1 0 0
0 0 −1 −1

] [
g01, g0, b01, b0

]T
+

[
−ψ1 ψ2 −ψ1 ψ2

ψ2 ψ1 ψ2 ψ1

]
Re{vnom,1}
Im{vnom,1}

−H11
1,·pnom −H12

1,·qnom

−H21
1,·pnom −H22

1,·qnom


and where the following scalars are defined for conciseness:

ψ1 = |V0|(cos(θ0)g01 + sin(θ0)b01)

ψ2 = |V0|(cos(θ0)b01 − sin(θ0)g01).

Now, consider that small perturbations in entries of p result
in the following model for the change in active-power flow
at the feeder head:

∆P in
f ≈

∑
k∈Bf

ϕk∆Pk (43)

which follows from (41) by neglecting entries of α (we ob-
serve empirically that they are small; implying that reactive
power injections have minimal impact on the active-power
flow on the feeder head), and recognizing that c is a vector
with constant entries.

B. Simulation parameters

The synchronous frequency, ωs = 2π60 [rad sec−1]. All
values are reported in per unit unless otherwise noted.

Parameters of Transmission System: The generator damp-
ing coefficients are: D1 = D3 = 0.0434, inertia constants
are: M1 = M3 = 5 [sec], droop coefficients are: R−1

G,1 =

0.3472 and R−1
G,3 = 0.5208, turbine time constants are

τ1 = τ3 = 7 [sec], reference power values are P r
1 =

0.01736, P r
3 = 0.02634, Qr

1 = 0.00512 and Qr
3 = 0.0161.

The load injections values are P2 = −0.01558 and Q2 =
−0.00651. The transmission line parameters are given as
y12 = 0.5 + j5, y23 = 0.5 + j5 and y31 = 1 + j10. The



steady state values prior to disturbance for each transmission
bus is given by, V ◦1 = 1.01, V ◦2 = 0.984, V ◦3 = 1, θ◦1 =
2.682 [deg], θ◦2 = −0.817 [deg], and θ◦3 = 0 [deg].

Parameters of Distribution System: The network topology
and power injections are in accordance to the standard IEEE
37-bus test feeder [20]. We add ysh

kk = 0.004 + i0.005,∀ k ∈
{2, . . . , 19} ⊂ B3 and ysh

kk = 0.006 + i0.007,∀ k ∈
{20, . . . , 36} ⊂ B3. The base voltage is 4.8 [kV]. The droop
slope is R−1

F,3 = 0.5208.
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[11] A. Hoke and D. Maksimović, “Active power control of photovoltaic
power systems,” in Proceedings of IEEE Conference on Technologies
for Sustainability, Portland, OR, USA, 2013, pp. 70–77.

[12] P. Mercier, R. Cherkaoui, and A. Oudalov, “Optimizing a battery
energy storage system for frequency control application in an isolated
power system,” IEEE Transactions on Power Systems, vol. 24, no. 3,
pp. 1469–1477, Aug 2009.

[13] S.-J. Lee, J.-H. Kim, C.-H. Kim, S.-K. Kim, E.-S. Kim, D.-U. Kim,
K. K. Mehmood, and S. U. Khan, “Coordinated control algorithm for
distributed battery energy storage systems for mitigating voltage and
frequency deviations,” IEEE Transactions on Smart Grid, vol. 7, no. 3,
pp. 1713–1722, May 2016.

[14] D. Hammerstrom, J. Brous, D. Chassin et al., “Pacific Northwest Grid-
Wise testbed demonstration projects, part II: Grid Friendly Appliance
project,” Pacific Northwest National Laboratory, Richland, WA, USA,
Tech. Rep. PNNL-17079, 2007.

[15] U. K. Market Transformation Program, “Dynamic demand control of
domestic appliances,” Market Transformation Programme, Tech. Rep.,
2008.

[16] P. J. Douglass, R. Garcia-Valle, P. Nyeng, J. Ostergaard, and M. To-
geby, “Smart demand for frequency regulation: Experimental results,”
IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1713–1720, Sep
2013.

[17] M. Donnelly, D. Harvey, R. Munson, and D. Trudnowski, “Frequency
and stability control using decentralized intelligent loads: Benefits and
pitfalls,” in Proceedings of IEEE Power and Energy Society General
Meeting, Minneapolis, MN, USA, 2010, pp. 1–6.

[18] W. H. Kersting, Distribution System Modeling and Analysis. 2nd ed.,
Boca Raton, FL: CRC Press, 2007.

[19] C. Coffrin, D. Gordon, and P. Scott, “NESTA, the NICTA energy
system test case archive,” arXiv preprint arXiv:1411.0359, 2014.

[20] (2016) IEEE Power and Energy Society distribution test feeders.
[Online]. Available: https://ewh.ieee.org/soc/pes/dsacom/testfeeders/.

[21] J. Chow and G. Rogers, Power System Toolbox. Cherry Tree Scientific
Software, 2000.


