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Abstract—We examine the steady-state behavior of DC dis-
tribution systems with arbitrary topologies that couple a het-
erogeneous collection of power-electronic circuits modeled as
parallel connections of resistances, and constant current and
power sources (or loads). For this system, we provide analytical
closed-form expressions for sensitivities that capture variations of
line power flows due to: i) changes in nodal power injections, and
ii) line outages. Our results follow from a perturbative analysis
of the network power-balance expressions, and the approach
leverages contemporary results from circuit theory and structural
properties of the network conductance matrix. Simulations from
illustrative networks confirm the validity and accuracy of the
analytical expressions in estimating the impact of nodal power
injections and line outages.

I. INTRODUCTION

This paper provides analytical expressions for sensitivities
of line power flows in DC distribution systems with respect
to changes in nodal power injections and line outages. The
analysis applies to DC networks that consist of a hetero-
geneous collection of power-electronic circuits modeled as
parallel connections of resistances, and constant current and
power sources (or loads) operating in steady state. The net-
work topology is assumed to be connected and composed of
resistive interconnections. The analysis framework is intended
to outline strategies for online static security assessment of
complex DC distribution networks.

Advancements in semiconductor technologies, materials,
and distributed control of switching power-electronic circuits
have propelled DC distribution systems to the forefront in
applications including (but not limited to) HVDC transmission
systems, shipboard systems, telecommunication systems, and
microgrids [1], [2]. Advantages of DC distribution networks
such as higher power transfer capability, better wire utilization,
and improved system efficiency, are particularly appreciable
in islanded microgrid applications involving DC sources such
as photovoltaic panels and fuel cells [3]. Research in the
domain of DC distribution systems has dominantly focused on
the modeling, analysis, and control of the individual power-
electronic circuits. System-theoretic frameworks to study the
networked behaviors of collections of power-electronic circuits
are only recently receiving attention [4], [5]. It is worth men-
tioning that networked behaviors of synchronous generators
in the bulk AC power system have been investigated from
a variety of standpoints [6]. With particular reference to the

methods proposed in this work, security assessment tools that
indicate the ability of the system to withstand disturbances
have received significant attention in AC power networks [7].

We expect the sensitivity analysis framework outlined here
to be critical in online static security-assessment tools to
monitor and maintain the operational reliability of complex
DC distribution networks. To illustrate the relevance of ana-
lytically grounded approaches in such applications, consider
the ubiquitous N − 1 contingency analysis, which quantifies
the capability of the system to meet operational reliability
requirements in case of an outage in a particular asset [8].
For a large network with many contingencies to consider,
repeated simulations to quantify operational reliability are
computationally expensive, and do not yield any theoretical
guarantees. An alternative is to use an estimate of the current
operating point together with linear sensitivities—such as the
ones we derive in this work—to approximate the change in
power flows in the network to changes in nodal injections or
line outages.

The derivation of the sensitivities proceeds from the analysis
of a matrix-vector representation of power balance equations.
We also leverage contemporary results from circuit theory,
particularly, structural properties of the network conductance
matrix. Consequently, the expressions for the sensitivities
reflect the network topology, as well as the operating point
(i.e., the steady-state voltages). For AC power systems, analo-
gous sensitivities have been used extensively to verify system
operational reliability in steady-state operation. Of particular
relevance and related to the sensitivities that we analyze
here are the so-called injection shift factors and line outage
distribution factors (see, e.g., [9]–[12]).

The remainder of this paper is organized as follows. In
Section II, we establish notation, provide a few mathematical
preliminaries, and describe the electrical network model. In
Section III, we derive the current and power injection sen-
sitivities to bus injections and line outages. Case studies are
presented to validate the analysis for illustrative networks in
Section IV. To demonstrate the accuracy of our expressions,
we compare results with those recovered by solving the
nonlinear power-balance equations. Finally, we conclude this
paper in Section V by outlining a few pertinent directions for
future work.



II. PRELIMINARIES

A. Notation and Mathematical Preliminaries

The matrix transpose will be denoted by (·)T. The spaces
of N × 1 real-valued vectors is denoted by R

N ; and R
N×N

denotes the space of N ×N real-valued matrices. A diagonal
matrix formed with diagonal entries composed of entries of
the vector x is denoted by diag(x); and diag(x/y) forms a
diagonal matrix with the `th entry given by x`/y`, where x`
and y` are the `th entries of vectors x and y, respectively. The
vector recovered from the entry-wise product of two vectors,
x and y, is denoted by x ◦ y; and x2 denotes x ◦ x. The
N ×N identity matrix is denoted by IN ; 1M×N denotes the
M × N matrices with all ones; 1N and 0N denote N × 1
column vectors of all ones and zeros, respectively; ej denotes
a column vector of all zeros except with the jth entry equal
to 1; and ej` denotes a column vector of all zeros except with
the jth and `th entries equal to 1 and −1, respectively. The
(j, `)th entry of matrix X is denoted by [X]j`. The set 1⊥N
denotes the subspace of all vectors orthogonal to the span of
1N in R

N .
A matrix X ∈ R

N×N is irreducibly diagonally dominant
if [13]: i) X is irreducible; ii) X is diagonally dominant, i.e.,
|[X]jj | ≥

∑
` 6=j |[X]j`|, ∀ j = 1, . . . , N ; and iii) for some j,

it holds that |[X]jj | >
∑

` 6=j |[X]j`|. Irreducibly diagonally
dominant matrices are invertible [13].

B. Network description

Consider a DC electrical network with N nodes operating in
steady state. Each node may be connected to a shunt element
composed of the parallel connection of (a subset of) a resistive
element, a constant current source/load, and a constant power
source/load. The nodes of the network are collected in the set
N = {1, . . . , N}, and branches (edges) are collected in the
set E := {(j, `)} ⊆ N ×N . Denote the vectors that collect the
nodal current injections, voltages, and power injections in the
network by i = [i1, . . . , iN ]T ∈ RN , v = [v1, . . . , vN ]T ∈ RN ,
and p = [p1, . . . , pN ]T ∈ R

N , respectively. The circuit laws
that capture Kirchhoff’s current law and Ohm’s law in the
network can be expressed in matrix-vector form as

i = Gv, (1)

where G ∈ R
N×N is the conductance matrix with entries

specified as

[G]j` :=


gj +

∑
(j,k)∈E gjk, if j = `,

−gj`, if (j, `) ∈ E ,
0, otherwise,

(2)

with gj ∈ R≥0 denoting the shunt conductance at node j,
and gj` = g`j ∈ R≥0 the conductance of the line (j, `). For
a connected electrical network, the presence of a single shunt
resistive element guarantees invertibility of G by inducing irre-
ducible diagonal dominance (see Section II-A, and also [13]).
Power balance in the network can be written in the following
compact matrix-vector form:

p = diag(v)i = diag(v)Gv, (3)

where the second equality above follows from substituting for
the current injections from (1).

III. SENSITIVITIES OF CURRENT AND POWER FLOWS

We are interested in the power-injection sensitivities, by
which we mean, the sensitivities of the line power flows
to nodal power injections. To this end, we begin with a
derivation of the current-injection sensitivities in Section III-A,
by which we mean the sensitivities of the line current flows
to nodal current injections. We then derive the power-injection
sensitivities in Section III-B, and subsequently expressions for
sensitivities of power flows to line outages in Section III-C.

A. Current Injection Sensitivities

The current injected into the (j, `) line (measured at node
j) is given by

i(j,`) = (vj − v`) gj` + vjgj , (4)

where gj` is the conductance of the (j, `) line, and gj is the
shunt conductance of the j node. Since we are interested in
relating the line current flows to the nodal current injections,
we write (4) as

i(j,`) = (gj`e
T
j` + gje

T
j )v

= (gj`e
T
j` + gje

T
j )G−1i =: κT(j,`)i, (5)

where in the second equality above, we substitute for the nodal
voltages by inverting (1). It follows that the sensitivity of the
(j, `) line current to the nodal current injections is captured
by

∆i(j,`) = κT(j,`)∆i, (6)

where the current injection sensitivity vector, κ(j,`) ∈ R
N , is

specified by

κT(j,`) = (gj`e
T
j` + gje

T
j )G−1. (7)

Notice that the entries of κ(j,`) are independent of i, v, and p,
and they only depend on the topology and constitution of the
electrical network. In short, the sensitivity of the line flows to
the current injections are independent of the operating point
of the network.

We also consider the case when the DC distribution system
has no shunt conductance elements, i.e., gj = 0, ∀ j ∈ N .
Consequently, it follows that the conductance matrix, G, is
non-invertible, with the null space consisting of the vector
1N . In order to satisfy Kirchhoff’s current law and Ohm’s law
captured in (1), we restrict the nodal current injection vector,
i, to be in the vector space of 1⊥N . In this case, the current
through line (j, `) is

i(j,`) = gj`(vj − v`) = gj`e
T
j`v. (8)

Furthermore, the nodal voltages satisfy

v = G†i+
1

N
1N1

T
Nv, (9)



which follows from pre-multiplying both sides of (1) by the
pseudoinverse of the conductance matrix, G†, and recognizing
that G and G† are related by

GG† = G†G = IN −
1

N
1N×N . (10)

Substituting for v from (9) in (8), and utilizing the simple fact
eTj`1N×N = 0

T
N , we see that the current-injection sensitivity

vector in this case is specified as

κT(j,`) = gj`e
T
j`G
†. (11)

B. Sensitivities of Line Flows to Bus Injections

In this section, we derive closed-form expression for the
sensitivities of line power flows to variations in nodal power
injections. We start with the first-order sensitivity of power
injections to variations in terminal voltages in the DC network,
captured by ∆p ≈ J∆v, where ∆v = [∆v1, . . . ,∆vN ]T is
the vector that denotes variations in nodal voltages, ∆p =
[∆p1, . . . ,∆pN ]T denotes the vector that captures variations
in nodal power injections, and the Jacobian of the power flow
equations, J , is given by

J := diag(v)G+ diag(Gv). (12)

This expression is obtained from the matrix-vector represen-
tation of the power injections in the network, p = diag(v)Gv
(see (3)), as follows:

∆p ≈ diag (∆v)Gv + diag (v)G∆v

= (diag (Gv) + diag (v)G) ∆v =: J∆v, (13)

where the second equality above follows from the fact that
for two N dimensional vectors, x and y, diag (x) y = x◦ y =
y ◦ x = diag (y)x.

Remark. (Invertibility of J) For v, i 6= 0N , and ij ≥
−vjgj ,∀ j ∈ N , the Jacobian, J , is invertible. To show this,
first note that for networks with shunt conductance elements,
G is invertible since it is irreducibly diagonally dominant. For
v not identically equal to zero, it follows that diag (v)G is
irreducibly diagonally dominant. Finally, for i not identically
equal to zero, and ij ≥ −vjgj for all j ∈ N , it follows
that diag (i) + diag (v)G = diag (Gv) + diag (v)G = J is
irreducibly diagonally dominant and hence, invertible.

With the sensitivities of nodal power injections and voltages
quantified, we next move to the power-injection sensitivities.
Denote the power flow on the (j, `) line, measured at node j,
by p(j,`). This can be expressed as:

p(j,`) = vj · i(j,`)
=
(
eTj v

) (
κT(j,`)i

)
= eTj vκ

T
(j,`)diag

(
1N

v

)
p, (14)

where in the second equality above, we substitute for the line
current i(j,`) from (5), and in the third equality we substitute
for the terminal current-injection vector in terms of the power

injections from (3). The first-order sensitivities of the power
flows can then be obtained as:

∆p(j,`) ≈ eTj vκT(j,`) diag

(
1N

v

)
∆p

+ eTj J
−1∆pκT(j,`) diag

(
1N

v

)
p

− eTj vκT(j,`) diag

(
J−1∆p

v2

)
p, (15)

where we have substituted ∆v = J−1∆p from (13). Since
eTj J

−1∆p and κT(j,`)diag (1/v) p are both scalar quantities, it
follows that the second term in (15) can be written as

eTj J
−1∆pκT(j,`) diag

(
1N

v

)
p

= κT(j,`) diag

(
1N

v

)
peTj J

−1∆p. (16)

Rearranging quantities in the third term in (15), we get

eTj vκ
T
(j,`) diag

(
J−1∆p

v2

)
p

= eTj vκ
T
(j,`) diag

(
1N

v2

)
diag

(
J−1∆p

)
p

= eTj vκ
T
(j,`) diag

( p
v2

)
J−1∆p, (17)

where the second equality above follows from diag (x) y =
diag (y)x. Finally, substituting (16) and (17) into (15) and
suitably rearranging and collecting terms, we see that, to first
order, variation in the power-flow on the (j, `) line, ∆p(j,`),
induced due to variations in nodal power injections, ∆p, can
be expressed as

∆p(j,`) ≈ ρT(j,`)∆p, (18)

where, ρ(j,`) is given by

ρT(j,`) = eTj vκ
T
(j,`)

(
diag

(
1N

v

)
− diag

( p
v2

)
J−1

)
+ κT(j,`) diag

(
1N

v

)
peTj J

−1, (19)

with v ∈ R
N and p ∈ R

N denoting the nominal terminal
voltage and power injections in the network, respectively;
κ(j,`) denoting the sensitivities of current flows on the (j, `)
line (see (6)); and J is the Jacobian of the power-flow
equations defined in (12).

Remark. (Flat voltage profile) Suppose the voltage profile
across the network is flat, i.e., v` = vj ∀ `, j ∈ N , and
furthermore, suppose that the nodal voltages are fixed to
their nominal values (e.g., through local feedback control),
following which, ∆v ≈ 0. From (15), neglecting the terms
that are multiplied by ∆v, we get the following simplified
expression for the power-injection sensitivities:

∆p(j,`) ≈ eTj vκT(j,`) diag

(
1N

v

)
∆p

= κT(j,`) diag

(
vj1N
v

)
∆p = κT(j,`)∆p, (20)



where in the second equality above, we utilize the fact that
vj/v` ≈ 1,∀ `, j ∈ N . Notice that in this case, the power
injection sensitivities are independent of the operating point
of the network, and they boil down to the current injection
sensitivities (see (6)), as expected intuitively.

C. Sensitivities of Line Flows to Line Outages

In this section, we derive a closed-form expression for the
sensitivities of line power flows due to line outages. We present
the case where there is a single line outage; the case with
multiple outages can be derived as a straightforward extension.
To this end, consider there is an outage in the (m,n) line. The
post-outage conductance matrix is given by

G := G− gmnemne
T
mn. (21)

Consider the power flow on the (j, `) line as before. The
current-injection sensitivity vector, κ(j,`) ∈ RN , is

κT(j,`) = (gj`e
T
j` + gje

T
j )G

−1

= (gj`e
T
j` + gje

T
j )

(
G−1 +

gmnG
−1emne

T
mnG

−1

1− gmneTmnG
−1emn

)
= κT(j,`) + (gj`e

T
j` + gje

T
j )

(
gmnG

−1emne
T
mnG

−1

1− gmneTmnG
−1emn

)
=: κT(j,`) + ∆κT(j,`), (22)

where in the second line above, we have utilized the Sherman-
Morrison-Woodbury identity [13]; and κ(j,`) is the pre-outage
current-injection sensitivity vector given by (7).

In addition to the change in κ(j,`) described above, the
voltages across the network would also vary as a result of
the loss of the (m,n) line. We quantify this next. Beginning
with (3), we see that for fixed power injections, we can write

p = diag (v + ∆v)G(v + ∆v)

≈ diag(v)Gv − gmndiag(v)emne
T
mnv

+
(
J − gmndiag(v)emne

T
mn − diag(gmnemne

T
mnv)

)
∆v

=: diag(v)Gv − gmndiag(v)emne
T
mnv + J∆v, (23)

where we have defined

J := J − gmndiag(v)emne
T
mn − diag(gmnemne

T
mnv). (24)

In the third line of (23), J is the power-flow Jacobian
from (12), and we have neglected second-order terms. Since
we have p = diag(v)Gv, we can isolate ∆v from (23) to get

∆v = J
−1
gmndiag(v)emne

T
mnv. (25)

We next quantify the sensitivities of line power flows. The
power flow along the (j, `) line, p(j,`), is given by (14).
Assuming the power injections are unchanged, i.e., ∆p = 0N ,
we see that the first-order sensitivity of the line power flow to
outages is given by

p(j,`) + ∆p(j,`) ≈ eTj vκT(j,`) diag

(
1N

v

)
p (26)

+ eTj ∆vκT(j,`) diag

(
1N

v

)
p− eTj vκT(j,`) diag

(
∆v

v2

)
p.

g12

g
2
3g 1

3

g1 g2

g3

+

v2

−

+

v1

−

+ v3 −

i1 i2

i3

C
P
S

Fig. 1: Network topology for 3-node system.

Substituting κ(j,`) from (22) into the first term of (26), we get

eTj vκ
T
(j,`) diag

(
1N

v

)
p

= eTj vκ
T
(j,`) diag

(
1N

v

)
p+ eTj v∆κT(j,`) diag

(
1N

v

)
p

= p(j,`) + eTj v∆κT(j,`) diag

(
1N

v

)
p. (27)

After substituting (27) and (25) in (26), we then rearrange
quantities in the second and third terms in (26) in the same
manner as (16) and (17), respectively. We can then express
the variation in the power-flow on the (j, `) line, ∆p(j,`), as

∆p(j,`) = eTj v∆κT(j,`) diag
(
1N

v

)
p

+

(
κT(j,`)diag

(
1N

v

)
peTj − eTj vκT(j,`) diag

( p
v2

))
·
(
J
−1
gmndiag(v)emne

T
mnv

)
. (28)

IV. CASE STUDIES

In this section, we demonstrate the accuracy of the sensitiv-
ity expressions of line flows to bus injections and line outages
in (19) and (28), respectively, with numerical simulations.

A. Sensitivities of Line Flows to Bus Injections

Figure 1 illustrates the three-node network utilized for this
case study. Shunt elements at nodes 1 and 3 are parallel
combinations of resistors and constant current sources. The
shunt element at node 2 also includes a constant power source
(CPS). For simplicity, all conductances (line conductances, gij ,
and shunt conductances, gj) are set to 1 Ω−1. Nominal values
of the current sources connected at nodes 1, 2, 3 are 1.0 A,
2.0 A, and 5.0 A, respectively. The power source at node 2
injects a constant value of 2.0 W. With these nominal values,
the network voltages are given by v1 = 2.39 V, v2 = 2.64 V,
and v3 = 3.53 V. We focus on the power flows on the three
lines, p(1,2), p(2,3), and p(3,1) as the power injected by the
constant power source is varied. The percentage error between
the power flows computed by solving the circuit equations, and
those obtained by applying the expression in (19) is computed
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Fig. 2: Error in line flow sensitivities computed from (19) with
respect to results from a numerical circuit simulation as the power
injected by the CPS is varied from its nominal value of 2W.

as the power injected by the constant power source is varied
between ±20% from its nominal value of 2 W. Results are
plotted in Fig. 2 for all three lines; and they establish the
accuracy of the approach. In particular, for this case study we
observe errors of less than 1% for a ±20% variation in the
power injection.

B. Sensitivities of Line Flows to Line Outages

Fig. 3 illustrates the six-node network utilized for this case.
The shunt element at nodes 1 and 4 is a constant power load
(CPL), while nodes 2 and 6 are CPSs. The shunt element
at node 2 also includes a resistor. The conductances of the
network are the following: g12 = g23 = g34 = g45 = g56 =
g16 = 1 Ω−1, g13 = g15 = g35 = 0.5 Ω−1, and g2 =
0.001 Ω−1. The nominal values of constant power sources (or
loads) at nodes 1, 2, 4, 6 are (negative sign indicates CPL)
−1.0 kW, 2.5 kW, −2.0 kW, and 1.0 kW, respectively. In this
network, single-line outage events are simulated for all cases
that do not island the network. We obtain the percentage error
between the power flows from the circuit equations and from
the sensitivity expression in (28). The average percentage error
of the line flow sensitivities for each case is plotted in Fig. 4;
the errors are noted to be less than 0.025% for all cases.

V. CONCLUDING REMARKS

In this paper, we derived analytical closed-form expressions
for the first-order sensitivity of power flows in DC networks
to variations in nodal power injections and line outages. The
result leveraged current injection sensitivities and a perturba-
tive analysis of matrix-vector representations of power balance
expressions. Numerical case studies demonstrated the accuracy
of the approach. Future work could attempt to factor higher-
order sensitivities to improve accuracy, as well as extend the
analytical approach to acknowledge nodal dynamics.
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