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Abstract—The rapid growth in renewable energy resources
such as wind and solar generation introduces significant uncer-
tainties on the generation side of power systems. We proposea
method to assess whether static state variables, i.e., bus voltage
magnitudes and angles, remain within acceptable ranges while
the system is subject to uncontrolled disturbances caused by
the uncertainty in local installations of renewable resources.
The method uses ellipsoidal-shaped sets to bound uncertainty
in power injections and the linearized power flow equations to
compute approximate bounds on system static states. Numerical
results for benchmark 4-bus and 34-bus systems are presented.

I. I NTRODUCTION

The push toward environmentally responsible energy usage
requires increased penetration of renewable resources of elec-
tricity, such as wind and solar generation, into the existing
grid. Since these resources are highly intermittent, variable,
and difficult to forecast accurately, they present notable un-
certainties to the operation of today’s power systems. This
paper focuses on a particular aspect of the impact of renewable
resource penetration on power system static performance and
proposes an analytically tractable method, which assesses
whether static state variables, i.e., bus voltage magnitudes and
angles, remain within acceptable ranges while the system is
subject to uncontrolled disturbances caused by the uncertainty
in local installations of renewable resources.

Statistical and worst-case analyses are complementary in the
assessment of risk involved with power systems operations.We
study the worst-case approach, as this provides a guaranteeof
system security. Uncertain renewable generation is modeled
as an unknown quantity constrained between minimum and
maximum bounds. We assume the uncertainty introduced by
renewable resource penetration is sufficiently small to justify
the use of a small-signal approximation around a nominal
operating point determined by the forecasted renewable power
injection. In our methodology, the uncertainty in generation
can be viewed as forecast error, which provides bounds on
the variation of the renewable-based generation in the system.
These bounds, in conjunction with the linearized model, are
used to approximate the set that contains all possible static
variable realizations arising from all possible power injections.
If this set is contained within the region of static state space
defined by system operational requirements, such as minimum
and maximum bus voltage values, then we conclude that the

renewable generation uncertainty does not have a significant
impact on system static performance.

Load flow analysis is the fundamental tool used by power
engineers to determine a snapshot of the state of a power
system. In a real system, line parameters are subject to
modeling inaccuracies and loads contain uncertainties. Inorder
to handle these uncertainties, methods such as probabilistic
load flow (PLF) [1], [2] were developed. In PLF, uncertainties
in load and generation are modeled as random variables and
the output of the power flow computation are probability distri-
butions. A different approach using fuzzy sets to characterize
uncertainties in the nodal injections was proposed in [3] and
applied to wind generation in [4]. Interval methods [5] provide
strict bounds on the solutions of the power flow problem given
the input uncertainties lie within a fixed interval. This method
has several disadvantages in that the output solution interval
may be excessively conservative, containing non-solutions in
addition to solutions points. Such a shortcoming is a direct
result of bounding the solution interval with a convex hull
of the solution points. Ellipsoidal methods applied to network
parameter and measurement uncertainties were explored in [6].
This paper extends the work of [6] to incorporate uncertainties
on the generation side from renewable resources and uses mul-
tiple bounding ellipsoids to approximate the exact bounding
set, yielding more accurate bounds than those in [6].

The paper is organized as follows. In Section II, the power
flow formulation and the corresponding linearization are de-
scribed. This is followed by the development of the unknown-
but-bounded power injection uncertainty model in Section III.
In Section IV, the proposed methodology is used on several
benchmark systems, including a34-bus distribution test case.
Finally, concluding remarks are made in Section V.

II. POWER SYSTEM MODEL

In this section, we derive a linearized static model of the
power system from the nonlinear power flow equations. This
linearized model is later used in the case studies.

A. Power Flow Formulation

The power flow problem is the computation of voltage
magnitude and phase angle at each bus in a power system
under balanced three-phase steady-state conditions [7]. For
every busi = 1, . . . , n in the network, letVi denote the



voltage magnitude,θi the voltage angle,Pi the net real power
injection, andQi the net reactive power injection. Then,

Pi = Vi

n
∑

k=1

Vk [Gik cos(θi − θk) + Bik sin(θi − θk)] , (1)

Qi = Vi

n
∑

k=1

Vk [Gik sin(θi − θk)−Bik cos(θi − θk)] , (2)

whereGik and Bik are the real and imaginary parts of the
(i, k) entry in the network admittance matrix, respectively.
Each load busi has two unknowns,Vi andθi, related to both
Pi and Qi equations. Each PV busi has one unknown,θi,
corresponding to thePi relation only. Letm be the number of
load buses in the network, then there aren−m−1 PV buses.
Therefore, in the power flow problem, there aren + m − 1
equations corresponding to the same number of unknowns.

To consider uncertainty in power injections arising from
renewable resources only, we make the proper distinction in
the net real and reactive power for each load bus in (1)-(2) as

Pi = Pgi − Pli , (3)

Qi = Qgi −Qli , (4)

wherePgi andQgi are the real and reactive power injections
at bus i respectively,Pli and Qli are the real and reactive
power demanded at busi.

B. Model Description

The solution to the power flow equations in (1)-(2) can be
rewritten as

v = f(x, u), (5)

wheref : Rn+m−1 × R
n−m−1 7→ R

n+m−1, x ∈ R
n+m−1

represents unknown quantities to be solved for and includes
Vi and θi for load buses andθi for PV buses,u ∈ R

n−m+1

represents the known bus voltages in PV buses,V1 and θ1
for the swing bus, andv ∈ R

n+m−1 represents the uncertain
inputs and includesPi for PV buses andPi andQi for PQ
buses.

Accounting for the distinction between power generation
and consumption at each bus as in (3)-(4), (5) can be re-written
as

w − ul = f(x, u), (6)

wherew ∈ R
n+m−1 represents the vector of real and reactive

power injections andul ∈ R
n+m−1 represents the vector of

real and reactive power demand in the system. We assume the
uncertainty in system load is negligible compared to that of
renewable generation, since accurate load forecasts are usually
available.

In this work, we model the uncertainty inw as unknown-
but-bounded and assume thatw—power injection from dis-
tributed generation—is restricted to some margin around an
operating pointw0. Then,w is bounded to some setW around
w0. Corresponding toW , the set that contains all the possible

resulting x is denoted byR. Accordingly, we rewrite the
system description in (6) as

w = f(x, u) + ul,

w ∈ W , x ∈ R. (7)

C. Linearized Model

Suppose the system described by (6) is solved with nominal
uncertain inputw = w0. Let x0 represent the nominal solution
to the power flow problem with inputs(u, ul, w

0). In other
words,

w0 = f(x0, u) + ul.

Let x = x0+∆x, w = w0+∆w. If the variations inw around
w0 are sufficiently small, then

∆w ≈

[

∂f

∂x

]

(x0,w0)

∆x, (8)

where ∂f/∂x is the Jacobian of the power flow equations.
The inverse of this Jacobian matrix evaluated at solutionx0 is
guaranteed to exist if the power flow converges to that solution.
Thus, near the nominal solutionx0,

∆x ≈ H∆w, (9)

where

H =

[

∂f

∂x

∣

∣

∣

∣

(x0,w0)

]

−1

.

III. U NCERTAINTY ANALYSIS

In this section, we quantify the uncertainty in the complex
bus voltages of a distribution system subject to uncertain
power injections arising from renewable resource penetration.
In a distribution system, the feeder root is connected to the
transmission system at bus1, which is assumed to be an
infinite bus with a constant voltage. All other buses on the
distribution feeder are load buses. In our studies, small-scale
renewable resources, modeled as negative loads, are installed
throughout the distribution system.

A. Unknown-but-Bounded Framework

If the variations inw aroundw0 are sufficiently small, we
can approximateR by a set, denoted by∆R, that contains
all possible∆x in (9). The variations in∆w are bounded by
∆W , where1 W = w0⊕∆W . Even though the shape of∆W
is arbitrary, it can always be enclosed by an ellipsoid∆Ω:

∆w ∈ ∆W ⊆ ∆Ω = {∆w : ∆w′Ψ−1∆w ≤ 1},

whereΨ is a positive definite matrix. In this case,∆R, is
upper bounded by∆X = {∆x : ∆x′Γ−1∆x ≤ 1}, whereΓ,
also a positive definite matrix, is obtained by solving

Γ = HΨH ′,

as shown in [8]. Moreover,∆X is the exact set that contains
all possible∆x if the input set is, indeed,∆Ω.

1⊕ denotes the vector sum of the vectorw
0 and the set∆W .



Fig. 1: Approximation of the input space as intersection of
ellipsoids.

The set∆W is usually a symmetrical polytope, i.e., each
entry in w is assumed to lie within some interval. In this
paper, each entry inw represents the power injected at a bus
originating from renewable resources, such as a residential
solar panel installation. A symmetrical polytope can always be
approximated to a high degree of precision by the intersection
of a family of ellipsoids, each of which is tight to the polytope
in a specific direction, as shown in Fig. 1. When several
ellipsoids are used to bound the disturbance set∆W , the set
∆X can be computed for each of the ellipsoids bounding∆W ,
and then the intersection of the resulting bounding sets (for
each bounding ellipsoid) yields a high-fidelity approximation
of the exact set∆R. In this case,∆W ⊆

⋂

i ∆Ωi, where

∆w ∈ ∆Ωi = {∆w : ∆w′Ψ−1
i ∆w ≤ 1},

each of which bounds∆W . The resulting set that bounds∆x
for each ellipsoid∆Ωi, denoted by∆Xi, is solved as

∆Xi = {∆x : ∆x′Γ−1
i ∆x ≤ 1}.

Thus,∆x ∈ ∆R ⊆
⋂

i ∆Xi.

B. Performance Requirements

Static performance requirements on distribution systems
generally consist of constraints in the form of interval ranges
on bus voltages. For example, bus voltage magnitudes are
generally required to be between0.95 p.u. and1.05 p.u. These
requirements constrain the excursion of the state vectorx
aroundx0 to some region of the state spaceΦ defined by
the symmetric polytope

Φ = {x : |π′

i(x− x0)| ≤ 1 ∀i = 1, 2, . . . , p}.

The computation of the set that contains all possiblex,
given uncertainty in power injections, allows us to determine
whether the system violates performance requirements that
impose maximum deviations of system variables. In fact,
verifying that the system meets performance requirements for
anyw ∈ W is equivalent to checking that∆R ⊆ Φ.

IV. CASE STUDIES

In this section, we illustrate the concepts developed in
this paper by presenting the results of several benchmark
systems. The benchmark systems are taken from the IEEE

TABLE I: Two-bus system nominal power flow solution.

w0 ul u x0

P 0

g2
Q0

g2
P 0

l2
Q0

l2
V1 θ1 V 0

2
θ0

2

0.3 0 0.8 0.5 0.97 0◦ 0.9564 −0.0618◦

PES Distribution System Analysis Subcommittee, which are
modified to include power injection at certain buses. In these
systems, the power base is100 kVA and voltage base is4.16
kV.

Example 1 (Two-bus model):This simple example is illus-
trated in Fig. 2, whereR = 0.01 p.u. andX = 0.02 p.u.. We
assume there is a wind turbine or an aggregate of several wind
turbines installed at bus2, which is forecasted to inject0.45
p.u. real power. In addition, there is uncertainty in the power
injected at bus2, Pg2 , and the power demanded at bus2, Pl2 .
The admittance matrix for this network is

Y =

[

20− j40 −20 + j40
−20 + j40 20− j40

]

,

and the power flow equations are

P2 = V2V1 [−20 cos(θ2 − θ1) + 40 sin(θ2 − θ1)] + 20V 2
2 ,

Q2 = V2V1 [−20 sin(θ2 − θ1)− 40 cos(θ2 − θ1)] + 40V 2
2 ,

whereP2 = Pg2 − Pl2 andQ2 = Qg2 − Ql2 . The nominal
solution is shown in Table I, where all numerical values are
per unit unless otherwise indicated. The linearized systemis

[

∆Pg2

∆Qg2

]

=

[

∂P2

∂θ2

∂P2

∂V2

∂Q2

∂θ2

∂Q2

∂V2

]
∣

∣

∣

∣

∣

(V 0

2
,θ0

2
)

[

∆θ2
∆V2

]

,

where
∂P2

∂θ2
= 20V1V2 sin(θ2 − θ1) + 40V1V2 cos(θ2 − θ1),

∂P2

∂V2
= V1[−20 cos(θ2 − θ1) + 40 sin(θ2 − θ1)] + 40V2,

∂Q2

∂θ2
= −20V1V2 cos(θ2 − θ1) + 40V1V2 sin(θ2 − θ1),

∂Q2

∂V2
= V1 [−20 sin(θ2 − θ1)− 40 cos(θ2 − θ1)] + 80V2.

Thus, evaluating the Jacobian about nominal power flow
solution, we obtain

[

∆Pg2
∆Qg2

]

=

[

36.925 18.5614
−18.7125 37.6467

] [

∆θ2
∆V2

]

.

Suppose wind turbines are installed at bus2 at a rated
capacity of0.45 p.u. and they are forecasted to produce0.3

_

+

Fig. 2: Two-bus example.
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Fig. 3: Modified 4-bus feeder system with renewable power
injection.

p.u. real power with a forecast error of±0.1 p.u. and no
reactive power. Let∆w = [∆Pg2 ,∆Qg2 ]

′, then the input
disturbance is bounded by∆Ω = {∆w : ∆w′Ψ−1∆w ≤ 1},
where

Ψ =

[

0.12 0
0 0

]

.

In this case,∆W = ∆Ω, since there is only uncertainty in
one dimension. Let∆x = [∆θ2,∆V2]

′, then∆R = ∆X =
{∆x : ∆x′Γ−1∆x ≤ 1}, where

Γ =

[

0.00222 0.00152

0.00152 0.00112

]

.

We project the set∆R onto theV2-axis to obtain worst-case
deviations of the variable as±0.0011 p.u. about its nominal
operating value0.9543 p.u. Therefore, we conclude that with
0.3± 0.1 p.u. renewable power injection at bus2, its voltage
magnitude lies in the range[0.9532, 0.9554], which is within
voltage constraints. �

TABLE II: Four-bus system nominal power flow solution

w0 P 0

g2
Q0

g2
P 0

g3
Q0

g3
P 0

g4
Q0

g4

0.4 0 0.3 0 0.5 0

ul
Pl2

Ql2
Pl3

Ql3
Pl4

Ql4

0.8 0.25 0.5 0.1 0.9 0.5

x0 V 0

2
θ0

2
V 0

3
θ0

3
V 0

4
θ0

4

0.987 −0.124◦ 0.972 −0.273◦ 0.965 −0.302◦

A. 4-bus System

This test feeder system is shown in Fig. 3. Here, bus 1 is
the slack bus with voltage0.995∠0◦ and is connected to a
substation. The operating point as dictated by the power flow
solution is shown in Table II. We assume distributed renewable
resources installed at buses2, 3, and4 are forecasted to inject
0.4, 0.3, and 0.5 p.u. real power, at their respective buses.
The renewable power injections are assumed to vary between
±20% of the forecast values. None of the renewable resources
provide any reactive power, and there is no uncertainty asso-
ciated with reactive power injections.

The procedure described in Section III is used on the4-bus
system, and the variations inV2 andV3 are presented in Fig. 4.
We tightly bound the input disturbance space as the intersec-
tion of three ellipsoids centered around the operating point as
in Table II: ∆Ω1 and∆Ω2, which tightly bound∆W in two
orthogonal directions, and∆Ω3, which is a minimum volume
ellipsoid that circumscribes∆W . In Fig. 4(a), the ellipsoids
depicted in dashed lines are generated from sets∆Ω1 and
∆Ω2, and the ellipsoid with the solid trace is generated from
∆Ω3. The exact set∆R is bounded by the intersection of the
ellipsoids in Fig. 4(a), a magnified view of which is shown
in Fig. 4(b). For comparison, we also obtain solutions of the
nonlinear power flow relations by sampling the power injection
space, which are depicted as points in Fig. 4(b). We see that
the intersection of the resultant ellipsoidal sets obtained from
the linearized power flow equations are, indeed, an accurate
bound to the nonlinear solutions for±20% uncertainty. In fact,
we find that the linearized set approximation is valid for up
to ±50% input uncertainty.

B. 34-bus System

The one-line diagram and complete description of this radial
feeder system can be found in [9]. We assume that distributed
renewable resources are installed at buses3, 7, 10, 15, 18,
23, 27, 29, 30, and34, and their power outputs vary between
±50% of the forecasted values. Our methodology is applied
to this test system and select results are shown in Fig. 5.
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(a) Ellipsoidal bounds of the linearized4-bus test system, where the
set containing all possible voltage magnitude values is obtained as the
intersection.
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Exact solution

(b) Nonlinear power flow solutions using input bounds in comparison with
bounding set obtained for the linearized4-bus test system.

Fig. 4: Bounds on voltage magnitudes at buses2 and3 for the 4-bus test system.
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(a) Comparison between the bounding ellipsoid, exact solutions of the
linearized power flow relations, and the exact solutions of the nonlinear
power flow. Each renewable resource provides0.4 p.u. real power injection
at their respective buses.
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(b) Comparison between the bounding ellipsoid and the exactsolutions of
the nonlinear power flow. Each renewable resource provides1.0 p.u. real
power injection at their respective buses.

Fig. 5: Ellipsoidal bound of the linearized34-bus test system for voltage magnitudes at buses2 and 34, with renewable
resources installed at10 buses and power injection uncertainty of±50% of the forecast.

For simplicity, we assume all distributed resources are
forecasted to output the same amount of real power. We bound
the power injection space with a minimum volume ellipsoid
that circumscribes∆W . Fig. 5(a) depicts results for the case
in which each resource is forecasted to output0.4 p.u., while
Fig. 5(b) shows results for1.0 p.u. injection. We sample the
power injection and obtain the corresponding exact solutions
to the linearized power flow as well as those to the original
nonlinear power flow relations, depicted as squares and circles,
respectively, in Fig. 5(a). As expected, the resulting ellipsoidal
bounding set contains all the linearized power flow solutions
with the extrema coinciding with the edge of the ellipsoid.
The linearization is fairly accurate in this system; only one
nonlinear solution corresponding to the lower extreme point
of the input sample space is not contained in the linearized
solution set.

With the power injection and uncertainty levels represented
in Fig. 5(a), we do not detect any voltage magnitude violations.
In comparison, in Fig. 5(b), for higher levels of renewable
penetration, we see that a portion of the input space maps to
a region in the solution state space that violates voltage con-
straints, which are depicted with dashed lines. This conclusion
is, again, verified by sampling the input space and computing
the corresponding exact nonlinear power flow solution.

V. CONCLUDING REMARKS

This paper proposes a method for the assessment of the
impact of uncertain distributed generation on power system
static performance. The proposed method determines whether
system variables remain within prescribed ranges as dictated
by operational requirements. We formulate a set-theoretic
method, which provides a guarantee of system security, to
obtain the worst-case deviations of static system states.

We approximate the input uncertainty as the intersection
of several ellipsoids and calculate the set that encloses all
deviations of the system static variables. As shown in the test
cases, the bounding set obtained with our method matches

closely to those obtained from repeatedly solving the nonlinear
power flow for different power injections. Our method is
computationally attractive since linear approximations are used
and only several ellipsoids are required to establish an accurate
approximation to the actual bounding set. In contrast, a Monte
Carlo type of simulation requires sampling the input uncer-
tainty set many times in addition to calculating the nonlinear
power flow for each sample point. Another advantage of our
method is its versatility: it can be used for uncertainty in real
and reactive power supply and demand alike.

Further work includes an analysis of the limits of the small-
signal approximation to the power flow relations. Another
aspect to be investigated is the scalability of the proposed
method; the results from the4-bus and34-bus test systems
are encouraging in this regard.

REFERENCES

[1] B. Borkowska, “Probabilistic load flow,”IEEE Transactions on PAS,
vol. 93, no. 3, pp. 752–759, Aug. 1974.

[2] P. Sauer, “A generalized stochastic power flow algorithm,” in IEEE 1978
Power Engineering Society Summer Meeting, 1978, pp. 544–9.

[3] A. Dimitrovski and K. Tomsovic, “Boundary load flow solutions,” IEEE
Transactions on Power Systems, vol. 19, no. 1, pp. 348–355, Feb. 2004.

[4] L. Hong, L. Shi, L. Yao, Y. Ni, and M. Bazargan, “Study on fuzzy load
flow with consideration of wind generation uncertainties,”in Transmission
and Distribution Conference and Exposition: Asia and Pacific, T and D
Asia, 2009.

[5] Z. Wang and F. Alvarado, “Interval arithmetic in power flow analysis,”
IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 1341–1349, Aug.
1992.

[6] A. Sarı́c and A. Stankovı́c, “Ellipsoidal approximation to uncertainty
propagation in boundary power flow,”Power Systems Conference and
Exposition, 2006., 2006.

[7] J. Glover, M. Sarma, and T. Overbye,Power System Analysis and Design.
Cengage Learning, 2008.

[8] F. Schweppe,Uncertain Dynamic Systems. Englewood Cliffs, NJ:
Prentice-Hall Inc., 1973.

[9] W. Kersting, “Radial distribution test feeders,”IEEE Transactions on
Power Systems, vol. 6, no. 3, pp. 975 –985, aug 1991.


