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Abstract

This article examines the theoretical limitations of the local inversion

techniques for the measurement of the tissue elasticity. Most of these

techniques are based on the estimation of the phase speed or the al-

gebraic inversion of a 1D wave equation. To analyze these techniques,

the wave equation in an elastic continuum is revisited. It is proven that

in an infinite medium, harmonic shear waves can travel at any phase

speed greater than the classically known shear wave speed,
√

µ/ρ, by

demonstrating this for a special case with cylindrical symmetry. Hence

in addition to the mechanical properties of the tissue, the phase speed

depends on the geometry of the wave as well. The elastic waves in an

infinite cylindrical rod are studied. It is proven that multiple phase

speeds can coexist for a harmonic wave at a single frequency. This

shows that the phase speed depends not only on the mechanical prop-

erties of the tissue, but also on its shape. The final conclusion is that

the only way to avoid theoretical artifacts in the elastograms obtained

by the local inversion techniques is to use the shear wave equation as

expressed in the curl of the displacements, i.e. the rotations, for the

inversion.

PACS numbers: 43.80.Ev, 43.80.Jz, 43.80.Vj, 43.80.Qf.
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I. INTRODUCTION

Elastography is a fast developing field of medical imaging which strives to provide images

of the mechanical properties of tissue1–8. The main mechanical property of interest is the

elasticity or Young’s modulus E. Other mechanical properties of interest include viscosities,

relaxation times, nonlinearity parameters, harmonics, poro-elasticity and Poisson’s ratio8–22.

The majority of the elastography techniques have three components in common:

• an excitation mechanism which creates quasi-static or dynamic deformations in the

tissue23–31,

• a medical imaging system augmented by a motion estimation technique which is ca-

pable of providing displacement (or velocity) images of the tissue while it is being

deformed25,32–41, and

• an inversion technique which transforms the displacement images into elasticity im-

ages, the so called elastograms25,42–54.

For the inversion, different approaches have been devised. Most of them, however, fall under

one of the two following categories:

• Global inversion techniques44–48,55–57: These techniques typically use finite element

modeling (FEM) of the medium. The goal is to find the best local elasticity values

which would create the same displacement pattern as those observed inside the tissue,

under similar boundary and excitation conditions. To find the optimum elasticity val-

ues, the forward problem is solved iteratively. In each iteration the elasticity values

are adjusted until the computed displacements from the model match the measured

displacement from the tissue. In addition to the measured displacements, these tech-

niques typically require further information about the shape of the tissue, its boundary

conditions, and the excitation.

a)Electronic mail: baghani@ece.ubc.ca
b)Also at Department of Mechanical Engineering, University of British Columbia
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• Local inversion techniques11,25,27–30,37,50–52,58–61: Typically in these techniques, a par-

ticular wave equation is assumed to govern the displacements. This partial differential

equation (PDE) relates the spatial derivatives to the temporal derivatives of the dis-

placement with the local elasticity as the coefficient. If the displacement measurements

are available over a range of space and time, the elasticities can be found either by

an algebraic inversion of the wave equation or by estimating the phase speed from

the gradient of the phase. The next section is devoted to the presentation of these

techniques.

It is the objective of this research to:

• Study the theoretical limitations of the local inversion techniques for estimating the

tissue elasticity.

• Study the effects of the formulation of the wave equation on the inversion results.

• Study the effects of the choice of the exciter and imaging technique.

To this end, the general form of the elastic wave equation in a linear continuum is studied.

The hypothesis to be proven is that the phase speed, which is the final estimated quantity

in many of the local inversion techniques, does not exactly represent the local mechanical

properties of the tissue. The hypothesis is proven by showing that in addition to the local

mechanical properties of the tissue, the phase speed depends on the geometry of the wave

as well as the geometry of the tissue itself. This effect is known as the Lamb wave effect

specially in the context of thin plates62. The practical implication is that artifacts are

inevitably present in the elastograms, no matter how well the algorithm is implemented or

how accurate the displacement measurements are. Nevertheless, many of the elastography

techniques have been proven clinically to provide valuable information about the elasticity

of the tissue. The excitation in these techniques is chosen so that the actual displacements

created in the tissue satisfy the assumptions made, which in turn justifies the inversion

techniques used. These methods include quasi-static constant strain compression, pulsed

excitation with external exciters, and acoustic-radiation-force-based techniques.
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A previous study of the limitations of the local inversion techniques for estimating the

tissue elasticity can be found in63. In that work the authors experimentally measured the

displacements caused by a circular piston inside rectangular blocks of tissue mimicking

material and meat specimens. In their experiments the exciter would start to vibrate at

a single frequency (monochromatic excitation). Between the transient and steady state

regimes of vibration, a region was identified when transient shear waves are propagating

in the medium and phase speed measurements can be carried out. The deleterious effects

of the medium boundaries were dealt with by rejecting the steady state regime for phase

speed measurements. The effects of the boundary conditions imposed by the exciter were

also studied. An approximate model, the Rayleigh–Sommerfeld’s solution, and the Green’s

function were used in this analysis. They concluded that the size of the exciter affects the

measured phase speed. Another conclusion was that at very low frequencies, the effects of

the longitudinal wave on the phase speed cannot be neglected. The final preferred method

was to use a pulsed transient excitation with a small piston to get more accurate viscoelastic

measurements.

The analysis of the aforementioned article is limited to the particular configuration used,

which is very similar to a point source on a semi-infinite medium. In many elastography

applications, to get a desired level of displacements inside tissue, it is of interest to use

exciters with a larger footprint. We have shown previously that if the size of the exciter

is comparable to the size of the sample, the phase speed observed is the extensional wave

speed64. In the present article we look at the problems associated with phase speed mea-

surements from a more general point of view, and discuss some of the phenomena that affect

the accuracy of the measurements. We will show that neglecting these phenomena results

in un-accounted-for artifacts in the computed elastograms.

We start by a brief review of the state-of-the-art local inversion techniques in Section

II. Section III is a critique on the use of the terminology associated with the elastic waves.

The main theoretical results of the article are presented in Section IV. Simulation results

are presented in Section V. Section VI is devoted to the conclusion.
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II. LOCAL INVERSION OF THE WAVE EQUATION

The mechanical wave equation in an isotropic elastic continuum written in the Cartesian

coordinate system is62

ρ
∂2ui

∂t2
= (λ + µ)

∂

∂i
∆ + µ∇2ui i = x, y, z , (1)

where x = [x, y, z]T are the Cartesian coordinates which define the spatial location of the

point, t is the time variable, u(x,t) = [ux, uy, uz]
T is the displacement field, and the co-

efficients ρ(x), λ(x) and µ(x) are the density, the first, and the second Lamé constants

respectively. Here, we have adopted the notation of Kolsky62. The dilatation ∆ is defined

by

∆ =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
, (2)

and determines the voluminal changes as the wave propagates. ∇2 is the Laplacian operator:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (3)

We denote the Poisson’s ratio and the Young’s modulus by ν and E respectively.

The material of interest in the field of elastography is tissue in vivo. This material is

found to be nearly incompressible51,65, hence the values of ∆ are typically very small. Other

implications of the incompressibility in terms of the mechanical properties are as follows:

ν ≈ 0.5 , λ � µ and E ≈ 3µ . (4)

In the rest of this article it is assumed that the relations (4) hold.

To obtain a clinically useful image of the soft tissue, the contrast should be based on

a physical quantity which has a high degree of variability among different tissue types.

The density of most soft tissue is close to the density of water66, 1000kg/m3 so ρ is not

a candidate. Neither is the first Lamé constant λ which is found to be close to the λ of

water67, i.e. 2.3GPa. On the other hand, µ and E = 3µ, which determine the stiffness of

the tissue, vary over a wide range from a few to a few hundred kPa68. Moreover, a change

in the stiffness of the tissue is often associated with pathology69–71. Hence elastograms are
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preferentially based on the tissue elasticity E = 3µ. Given the displacements as a function

of time and space, the most that can be recovered from equation (1) are the ratios λ/ρ and

µ/ρ. In practice, the elastograms are based on E/ρ. Since the variability of ρ is small, the

obtained contrast is almost the same as the one obtained by using the absolute value of

elasticity E.

A number of issues arise when medical imaging devices are used to estimate the dis-

placement fields. In many cases it is not possible to acquire all three components of the

displacement field, i.e. ux, uy, and uz. In other cases the acquired displacement field may

not be available over a volume. For instance, in most cases of ultrasound elastography with

2D probes, only ux(x, y) is available and only on a single plane z =constant and not over a

volume. Some customized ultrasound systems can estimate the displacements over a volume

and in multiple directions37,41,72. MRI based techniques on the other hand, can acquire the

full displacement field over a volume, at the expense of longer acquisition times14,25,50,51,73–75.

Different approaches to the inversion of the wave equation have been taken. As men-

tioned earlier the dilatation ∆(x, t) levels in soft tissue are well beyond the accuracy of the

measurement systems. Therefore the wave equation (1) cannot directly be inverted to obtain

µ/ρ. Some state-of-the-art approaches to tackle this problem are as follows:

• Assuming zero dilatation or zero pressure gradient30,36,37,58,59: In this approach it is

assumed that the dilatation is identically zero, ∆ ≡ 0, or that the pressure has no

spatial variation in the medium. These assumptions reduces the wave equation to

ρ
∂2ui

∂t2
= µ∇2ui i = x, y, z . (5)

Note that for an anisotropic inversion all three components are necessary. If isotropy

is assumed, measuring one component of the displacement field, for instance ux, is

enough. In this case, it is natural to chose the measurement axis (the x-axis) aligned

with the axis on which the wave causes the greatest displacements. If the measurement

is only available on a plane, for instance ux(x, y), or on a single line, ux(x), then the

7



following assumptions are usually made

∇2ux =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ux

≈
(

∂2

∂x2
+

∂2

∂y2

)
ux

≈ ∂2

∂x2
ux . (6)

• Assuming a shear wave equation52: In this case it is assumed that the wave is a plane

shear wave. If the wave causes the greatest displacements in the x-direction, then this

component of the displacement field is measured and assumed to satisfy a 1D shear

wave equation,

ρ
∂2ux

∂t2
= µ

∂2ux

∂y2
. (7)

• Assuming a thin rod (extensional) wave equation64: When the size of a compressing ex-

citer is comparable to the dimensions of the tissue being imaged the tissue behaves like

a thin rod experiencing extensional waves. Under these conditions the component of

the displacement field parallel to the direction of the excitation, say the x-component,

satisfies

ρ
∂2ux

∂t2
= E

∂2ux

∂x2
. (8)

• Writing the shear wave equation for the rotations14,53,72–75: Define the rotation w(x,t)

as half the curl of the displacement field:

w(x,t) =
1

2
∇× u(x, t) (9)

From (1) each component of the rotation field satisfies a separate shear wave equation,

ρ
∂2wi

∂t2
= µ

∂2wi

∂i2
i = x, y, z . (10)

Note that this approach does not make any assumptions, but it requires the measure-

ment over a 3D volume of at least two components of the displacement field for an

isotropic inversion. For an anisotropic inversion, all the components are necessary.
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The local inversion algorithms (with the exception of the last approach) reduce the

general form of the wave equation (1) to a 1D wave equation of the form

ρ
∂2ux

∂t2
= f(E)

∂2ux

∂x2
, (11)

where f(E) is a function of the local elasticity. The quantity

cph =
√

f(E)/ρ (12)

in this 1D equation is called the phase speed. For a unidirectional harmonic solution,

ux(x, t) = a exp (jω(x/cph − t)) , (13)

this quantity gives the propagation speed of the constant phase surfaces.

Given ux(x, t), it is possible to invert equation (11) and find f(E)/ρ. This can be done

either by directly solving for f(E)/ρ:

f(E)

ρ
=

∂2ux/∂t2

∂2ux/∂x2
, (14)

This method is sometimes called the Algebraic Inversion of the Differential Equation

(AIDE)50. Another method is to use the concept of the phase speed,

√
f(E)/ρ = cph =

ω
∂
∂x
6 ux

, (15)

sometimes called the Phase Gradient method50.

If f(E) were only a function (even an unknown function) of the local mechanical prop-

erties of the tissue, the elastograms based on the phase speed,
√

f(E)/ρ would be free from

artifacts. However as we show in Section IV, f(E) is not only a function of the local me-

chanical properties of the medium but also a function of the geometry of the wave and the

geometry of the medium. An even more important result is proved; the reduction of (1) to

(11) may not be possible at all since multiple values of the phase speed can coexist.
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III. A CRITIQUE ON THE TERMINOLOGY ASSOCIATED WITH THE

WAVE EQUATION

Before we move on to our results on the phase speed we present our choice of the

terminology. By the fundamental theorem of vector calculus, or Helmholtz decomposition

theorem, any sufficiently smooth and decaying vector field can be written as the sum of a

divergence-free and a curl-free vector field76. The solutions of the wave equation (1) satisfy

the conditions of the theorem, and therefore it is possible to write a vibration pattern inside

an elastic medium as the sum of a divergence-free and a curl-free displacement field.

• Dilatational wave: or better termed irrotational component is a component of the

wave which is curl-free. This component of the wave phenomena is solely the result of

voluminal changes in the medium.

• Distortion wave: or better termed equivoluminal component is a component of the

wave which is divergence-free. This component of the wave phenomena preserves the

volumes of the infinitesimal elements.

There is some confusion however, over the definition and application of the terms “shear

wave”, “transverse wave”, “longitudinal wave” , and “compressional wave”. These terms

are sometimes defined as follows:

• Longitudinal wave: or compressional wave is a wave for which the particle velocities

are parallel to the phase velocity. For a harmonic wave the particle velocity would be

perpendicular to the equiphase surfaces.

• Transverse wave: or shear wave is a wave for which the particle velocities are per-

pendicular to the phase velocity. For a harmonic wave the particle velocity would be

tangent to the equiphase surfaces.

These definitions are very intuitive with respect to the literal meanings of the terms. However

a major problem exists with these definitions; to the best knowledge of the authors, there
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is no theorem proving that the quality of a wave being transversal or longitudinal (taken

these definitions) is invariant with respect to the wave equation. In other words, a wave

propagating in an infinite elastic medium might be purely longitudinal at one instant but

not so at a later instant (even without encountering a boundary and undergoing mode

conversion). This severely limits the applicability of these terms.

When these definitions are taken, a connection is usually assumed between longitudinal

and irrotational waves on one hand and transverse and equivoluminal waves on the other

hand. The origin of this connection could be the study of the simple case of a plane wave in

an infinite medium. Indeed a longitudinal plane wave propagating in an infinite medium has

no equivoluminal components and consists solely of a dilatational component. This wave

propagates at a phase speed of
√

(λ + 2µ)/ρ hence the name longitudinal wave speed. Simi-

larly a shear plane wave propagating in an infinite medium has no dilatational components

and consists solely of an equivoluminal component. This wave propagates at a phase speed

of
√

µ/ρ hence the name shear wave speed.

A better way to define these terms, however, is to take for them the same definitions

as presented for the “dilatational waves” and “distortion waves”. This is the accepted

nomenclature in the physics literature, specially in the field of the electromagnetic waves77:

• Longitudinal wave: or compressional wave is a component of the wave which is curl-

free.

• Transverse wave: or shear wave is a component of the wave which is divergence-free.

These are the definitions we use in this article and recommend.

A number of comments are in order. It is clear from the definitions that a wave can

contain both the longitudinal and transversal components, or may lack one. In some cases

one is not interested in the decomposition of the displacement field into these components,

but rather in the study of the total displacement itself. However since each of these compo-

nents separately satisfies a reduced wave equation with a definite wave speed, it is at other

times useful to study them separately. The speed of the longitudinal component and the
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transverse component is equal to
√

(λ + 2µ)/ρ and
√

µ/ρ respectively.

Since the wave equation can be reduced to the two aforementioned wave equations, it

is evident that in an infinite elastic medium, a purely longitudinal wave will remain purely

longitudinal, and a purely transverse wave will remain purely transverse. This invariance

property make the terms well-defined. The drawback is that the intuitive relationship be-

tween the directions of the particle velocity and the phase velocity is no longer valid. As a

matter of fact, the quality of a wave being longitudinal or transversal could be determined

solely from the displacement vector field at a single instant. The wave equation preserves

this quality as the time evolves.

As will become clear in the next section, the relationship between the phase speed and

the longitudinal and shear wave speeds,
√

(λ + 2µ)/ρ and
√

µ/ρ, is a complex relationship

which depends on the geometry of the wave, as well as the geometry of the medium.

IV. PHASE SPEED OF MECHANICAL WAVES IN ELASTIC MEDIUMS

A. Dependence of the Phase Speed on the Geometry of the Wave: Infinite

Mediums

Theorem. Consider an infinite homogeneous linear elastic medium with density ρ and Lamé

constants λ and µ. Given the angular frequency ω for a harmonic wave:

• for any number c such that √
µ

ρ
≤ c <

√
λ + 2µ

ρ
, (16)

there exists a shear beam form for the harmonic wave for which the phase speed is

equal to c.

• for any number c such that √
λ + 2µ

ρ
≤ c, (17)

there exists infinitely many beam forms for the harmonic wave for which the phase

speed is equal to c. These waves contain both longitudinal and shear components.
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The theoretical derivation which follows can be found in classical textbooks on elastic

waves62,78 as part of the solution to the wave equation in cylindrical coordinate systems.

However studying the implications in terms of the phase speed, as summarized in the theo-

rem, is novel.

Proof. Consider the elastic wave equation in the cylindrical coordinate system,

ρ
∂2ur

∂t2
= (λ + 2µ)

∂∆

∂r
− 2µ

r

∂ω̄z

∂θ
+ 2µ

∂ω̄θ

∂z
, (18)

ρ
∂2uθ

∂t2
= (λ + 2µ)

1

r

∂∆

∂θ
− 2µ

∂ω̄r

∂z
+ 2µ

∂ω̄z

∂r
, (19)

ρ
∂2uz

∂t2
= (λ + 2µ)

∂∆

∂z
− 2µ

r

∂

∂r
(rω̄θ) +

2µ

r

∂ω̄r

∂θ
, (20)

where (r, θ, z) are the cylindrical coordinates and u = (ur, uθ, uz) is the displacement field.

The dilatation in the cylindrical coordinates is given by,

∆ =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
, (21)

and the rotations are given by,

2ω̄r =
1

r

∂uz

∂θ
− ∂uθ

∂z
, (22)

2ω̄θ =
∂ur

∂z
− ∂uz

∂r
, (23)

2ω̄z =
1

r

[
∂

∂r
(ruθ)−

∂ur

∂θ

]
. (24)

Consider a cylindrical wave beam propagating along the z-axis with the center of the

beam on the z-axis. More specifically assume that uθ is zero, i.e. the particle displacements

are confined to the rz-planes. Also assume that the wave is symmetrical around the z-axis,

hence ∂/∂θ annihilates the variables. From (22) and (24) ω̄r = ω̄z = 0. The reduced wave

equation in this case would be,

ρ
∂2ur

∂t2
= (λ + 2µ)

∂∆

∂r
+ 2µ

∂ω̄θ

∂z
, (25)

ρ
∂2uz

∂t2
= (λ + 2µ)

∂∆

∂z
− 2µ

r

∂

∂r
(rω̄θ) . (26)
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We are interested in harmonic waves propagating along the z-axis, for instance in the

negative z-direction. The general form of such a wave is,

ur = U(r) exp (i(kzz + ωt)) , (27)

uz = W (r) exp (i(kzz + ωt)) , (28)

where kz is the wave number and ω is the angular frequency. U(r) and W (r) determine

the shape of the beam. Note that the phase speed of this wave is equal to cph = ω/kz.

Substitution in (21) and (23) yields the expressions for the dilatation and rotation:

∆(r, z, t) =[
∂U(r)

∂r
+

U(r)

r
+ ikzW (r)

]
exp (i(kzz + ωt)) , (29)

2ω̄θ(r, z, t) =[
ikzU(r)− ∂W (r)

∂r

]
exp (i(kzz + ωt)) . (30)

The forms (27) and (28) simplify the wave equation (25) and (26),

−ρω2ur = (λ + 2µ)
∂∆

∂r
+ 2iµkzω̄θ , (31)

−ρω2uz = ikz(λ + 2µ)∆− 2µ

r

∂

∂r
(rω̄θ) . (32)

By eliminating ω̄θ and ∆ between these equations, the longitudinal and transversal wave

equations are derived:

∂2∆

∂r2
+

1

r

∂∆

∂r
+ k∆

2∆ = 0 , (33)

∂2ω̄θ

∂r2
+

1

r

∂ω̄θ

∂r
− ω̄θ

r2
+ kω̄θ

2ω̄θ = 0 , (34)

where k∆ and kω̄θ
are the geometrical beam numbers defined by

k∆
2 =

ω2

λ+2µ
ρ

− kz
2 , (35)

kω̄θ

2 =
ω2

µ
ρ

− kz
2 . (36)

In the case that the desired phase speed, c, satisfies (16) the corresponding choice of the

wave number,

kz =
ω

c
, (37)
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results in a real k∆ and an imaginary kω̄θ
. In the other case (17) both k∆ and kω̄θ

are real.

The significance of this will become clear shortly.

The solution to (33) and (34) can be found by change of variables from r to k∆r and

kω̄θ
r respectively. The resulting equations are Bessel equations of the zeroth and first orders

respectively. The physically meaningful solutions which have bounded values at r = 0, are

∆(r, z, t) = G(z, t)J0(k∆r) , (38)

ω̄θ(r, z, t) = H(z, t)J1(kω̄θ
r) , (39)

where J0(·) and J1(·) are Bessel functions of the first kind and of zeroth and first orders

respectively. Now the forms for the dilatation and rotation are given in (29) and (30). For

these forms to match the solutions (38) and (39), U(r) and W (r) should have the following

forms,

U(r) = C1
∂

∂r
J0(k∆r) + C2kzJ1(kω̄θ

r)

= −C1k∆J1(k∆r) + C2kzJ1(kω̄θ
r) , (40)

W (r) = C1ikzJ0(k∆r) + C2
i

r

∂

∂r
[rJ1(kω̄θ

r)]

= C1ikzJ0(k∆r) + C2ikω̄θ
J0(kω̄θ

r) , (41)

where C1 and C2 are two arbitrary constants. From (29) and (30) the dilatation and rotation

become

∆(r, z, t) =

−2C1(kz
2 + k∆

2)J0(k∆r) exp (i(kzz + ωt)) , (42)

2ω̄θ(r, z, t) =

2iC2(kz
2 + kω̄θ

2)J1(kω̄θ
r) exp (i(kzz + ωt)) . (43)

The wave can thus be a mixture of the longitudinal and shear components with C1 and C2

defining the respective proportions.

Now if k∆ is imaginary, the Bessel functions J0(k∆r) and J1(k∆r) go to infinity as r goes

to infinity. This is not physically meaningful. Thus for a phase speed c which satisfies (16),

15



C1 must be zero in (40) and (41). In view of (42) and (43) this is a purely shear wave beam,

which travels at the phase speed c.

On the other hand if the phase speed c satisfies (17), both C1 and C2 can have nonzero

values. Therefore infinitely many beam forms exist for which the wave travels at the phase

speed c. Each of these beam forms contains both the longitudinal and shear components.

This completes the proof.

It follows that the phase speed depends not only on the mechanical properties of the

medium, but also on the geometry of the wave. Even for a purely shear wave (C1 = 0),

the phase speed can have any value which is greater than or equal to
√

µ/ρ. The shear

wave speed,
√

µ/ρ, is not the phase speed of every shear wave in an infinite medium. It is

however the phase speed of the uniform plane shear waves. This issue is in addition to the

main drawback of the use of the phase speed63 for tissue characterization; namely that the

phase speed can not be defined when multiple waves are traveling in different directions, for

instance when there are reflections of the wave from the boundaries.

B. Dependence of the Phase Speed on the Geometry of the Medium: Wave

Guides

In the previous section the medium was assumed to be infinite in size. This assumption is

also made in many of the elastography techniques63,79. However no part of the human body

is infinite in size. In this section we present some classical results on the wave guides and

study their implications in the field of elastography. The wave guides are infinite in at least

one direction and finite in at least another. Therefore they cannot model the tissue behavior

accurately either. However they can be considered as an intermediate step in moving from

the analysis of an infinite medium to a bounded medium. As such the insight gained from

studying them is useful in understanding and designing elastography systems.

The wave guide we study is an infinitely long cylindrical rod. Choose the cylindrical

coordinate system with the axis of the cylinder on the z-axis. As in the previous section,
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we are interested in harmonic waves propagating along the z-axis, i.e. along the axis of the

cylinder, which are symmetrical around the z-axis. The same analysis applies and the wave

pattern given by (27) and (28) with U(r) and W (r) given by (40) and (41) satisfies the wave

equation with phase speed c, provided that kz is chosen to satisfy ω/kz = c. However in this

case the boundary conditions impose restrictions on the permissible values of c.

The boundary of the cylinder is free from stresses. The expressions for stresses in the

cylindrical coordinate system are,

σrr = λ∆ + 2µ
∂ur

∂r
, (44)

σrθ = µ

[
1

r

∂ur

∂θ
+ r

∂

∂r

(uθ

r

)]
, (45)

σrz = µ

[
∂ur

∂z
+

∂uz

∂r

]
. (46)

By the assumptions σrθ vanishes everywhere. The boundary conditions require that σrr

and σrz vanish on the surface of the cylinder. Denote the radius of the cylinder by a.

Substitution of the expressions for ur and uz from (27), (28), (40), and (41) translates the

boundary conditions into the following two equations,

C1

[
2µ

∂2

∂r2

∣∣∣∣
r=a

J0(k∆r)− λρω2

λ + 2µ
J0(k∆a)

]
+2C2µkz

∂

∂r

∣∣∣∣
r=a

J1(kω̄θ
r) = 0 , (47)

2C1kz
∂

∂r

∣∣∣∣
r=a

J0(k∆r)

+C2

(
2kz

2 − ρω2

µ

)
J1(kω̄θ

a) = 0 . (48)

Note that these equations depend only on the ratio of C1/C2. Eliminating this variable

between the two, a single equation is obtained for the unknown kz. This equation is called

the Pochhammer frequency equation62. For a given material ρ, µ, λ and a are known. So

the equation basically describes the relationship between the wave number kz and angular

frequency ω of the wave, or equivalently the relationship between the phase speed c and ω.

As it turns out, unlike the infinite medium, not every phase speed is possible for a given ω.

The permissible speeds must satisfy the Pochhammer frequency equation. Substitution into
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either of the equations (47) or (48) determines the ratio C1/C2, i.e. the proportions of the

longitudinal and transversal waves that should be mixed together to obtain that particular

phase speed.

V. SIMULATION RESULTS

A. Shear Waves in a Tissue Mimicking Infinite Medium

To gain some insight into the theoretical results which were presented in the previous

section, we simulate the shear wave beam forms in an infinite medium for different angular

frequencies and phase speeds. For a chosen pair of angular frequency ω and phase speed c,

the wave number kz is found from (37). We choose the mechanical properties of the medium

to match those found in the soft living tissue such as the breast. These values are listed in

Table I. Given the mechanical properties of the medium, k∆ and kω̄θ
are found from (35) and

(36) respectively. In the next step U(r) and W (r) are found from (40) and (41), by setting

C1 = 0 and choosing an arbitrary value for C2. Note that C1 is chosen to be zero to obtain

a purely shear wave and the value of C2 only determines the overall amplitude and phase of

the wave, but does not change the waveform. If the time evolution of the wave is desired,

U(r) and W (r) can be substituted in (27) and (28) to obtain ur(r, z, t) and uz(r, z, t).

As shear waves can propagate at any phase speed above
√

µ/ρ =
√

10m/s, the choice

of the phase speed, c, becomes arbitrary. We simulated the beam forms using two chosen

values of c = 5m/s and c = 12m/s. The results are shown in Fig. 1 and 2 respectively. The

first and the second column in these figures show the displacement components ur((r, θ, z), t)

and uz((r, θ, z), t) respectively at t = 0. The three rows correspond to increasing frequencies

of the wave 40Hz, 65Hz, and 100Hz.

Note that because of the uniqueness of the solution to the wave equation, if a hypothetical

planar exciter could be built which would create the same harmonic motion as ur((r, θ, z), t)

and uz((r, θ, z), t) over an infinite cross section of the medium, for instance at z = 0, the

wave forms due to this cylindrically symmetric infinite exciter, in the steady state, would be
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the same as those depicted in these figures. The figures show how changing the excitation

pattern of such an exciter can result in a completely different phase speed, even if the

frequency of the excitation is not changed.

FIG. 1. Infinite medium; shear beam patterns for three different frequencies all sharing the

same phase speed of 5m/s. (a), (b), (c) radial components of the displacement (d), (e), (f)

z-component of the displacement at 40Hz, 65Hz, and 100Hz respectively. Note that only a

cubic portion of the medium near the axis of symmetry is shown; The medium extends in

all directions to infinity.

B. Waves in a Tissue Mimicking Cylindrical Rod

The Pochhammer equation has been studied for metallic rods such as steel beams. To

gain some insight into this equation when dealing with the living tissue, we consider a simple
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FIG. 2. Infinite medium; shear beam patterns for three different frequencies all sharing the

same phase speed of 12m/s. (a), (b), (c) radial components of the displacement (d), (e), (f)

z-component of the displacement at 40Hz, 65Hz, and 100Hz respectively. Note that only a

cubic portion of the medium near the axis of symmetry is shown; The medium extends in

all directions to infinity.

example here. We choose the mechanical properties of the medium to match those found in

the living tissue. These values are listed in Table II. Using these values, the Pochhammer

equation was solved numerically using MATLAB for different frequencies. Figure 3 shows

the plots of the values of c obtained for each ω. At higher frequencies, the equation has

multiple roots (modes), thus the multiples plots in this figure.

Mode 0 has a constant phase speed c =
√

µ/ρ, i.e. the shear wave speed for all

frequencies. However substitution of the shear wave speed into (40) and (41) results in
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U(r) = W (r) = 0. Therefore this mode is a trivial solution. As a matter of fact assuming a

phase speed equal to the shear wave speed results in vanishing displacements, independent

of the material properties. The implication is that no (axis symmetric) wave can travel

along the cylindrical rod with the shear wave speed.

FIG. 3. The first four modes of the cylindrical bar

At low frequencies (below 38Hz) only mode 1 is present (see Fig. 3). Therefore the low

frequency waves can only travel at a single speed. This is in contrast to the case of the

infinite medium studied before, in which the waves, independent of their frequency, could

travel at a range of speeds. The low frequency speed is equal to
√

E/ρ which is the familiar

value obtained from the thin rod approximation theory64. This also shows the theoretical

justification behind the assumptions made in (8). As the frequency goes higher, other modes

start to appear.

At high frequencies (above 38Hz) multiple waves of the same frequency can propagate

simultaneously, each with a different phase speed. For instance at a frequency of 100Hz,

three phase speeds of 3.0339m/s, 3.719m/s, and 5.630m/s are possible. The corresponding

beam patterns are shown in Fig. 4. In this case it may not be possible to recover a phase

speed from studying the displacement patterns inside the material.

To see this more clearly, assume that a harmonic exciter vibrating at a frequency of
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FIG. 4. Permissible beam patterns (modes) in an infinite cylindrical rod for waves having

a frequency of 100Hz. Three (and only three) phase speeds are possible. (a), (b), (c) radial

components of the displacement (d), (e), (f) z-component of the displacement for phase

speeds of 3.0339m/s, 3.719m/s, and 5.630m/s respectively.

100Hz is placed at infinity on the rod and has caused the following wave pattern:

ur(t) = 3Uc1(r) exp (i(207.1z + 2π100t))

+5Uc2(r) exp (i(168.94z + 2π100t))

+8Uc3(r) exp (i(111.60z + 2π100t)) , (49)

uz(t) = 3Wc1(r) exp (i(207.1z + 2π100t))

+5Wc2(r) exp (i(168.94z + 2π100t))

+8Wc3(r) exp (i(111.60z + 2π100t)) , (50)
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where the Uci
and Wci

are the solutions presented in Fig. 4 for the three phase speeds. Be-

cause of the linearity of the wave equation, any linear combination of the solutions presented

in Fig. 4 is a solution. In particular the above linear combination with the coefficients 3,

5, and 8 caused by the particular exciter used, is a solution. It is not hard to verify by

substitution that neither the direct inversion method (14), nor the phase gradient method

(15) results in a meaningful mechanical property for the homogeneous cylinder.

The implication in the context of elastography is that at higher frequencies, multiple

modes appear in the measured displacements which makes it impossible to recover a single

phase speed and determine the mechanical properties based on that.

VI. CONCLUSION

The propagation of elastic waves trapped in finite media, such as soft tissue, is a complex

phenomenon even without considering the viscous and nonlinear effects. The term wave

is generally applied to any vibration pattern inside the tissue. However the phase velocity

cannot be defined for all the cases of the vibration patterns. Usually multiple waves traveling

in different directions superimpose to create the vibration pattern. In this case the phase

velocity might be well-defined for each wave, but not for the resultant of the superposition.

Even in the simple case where a single frequency wave is traveling in a single direction,

the geometry of the wave and the medium create multiple permissible phase speeds, and thus

make it difficult to recover a meaningful phase speed for the traveling wave. The parameters

used in our simulations were chosen to be close to those of the living tissue. The diameter of

the cylindrical rod was chosen to be 10cm which is in the same size range as human organs.

Yet multiple phase speeds and modal behavior start to appear at frequencies as low as 38Hz.

This frequency is in the range of frequencies used in many dynamic excitation elastography

techniques.

One remedy seems to be the use of the natural decomposition of the vibrations into the

longitudinal (dilatational) and transverse (shear) components. Each of these components
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always satisfies its own wave equation with its own wave speed which is independent of

the geometry (note that this is not the phase speed however). Taking the divergence of

the measured displacement field yields the dilatation which satisfies the dilatational wave

equation with wave speed
√

(λ + 2µ)/ρ,

ρ
∂2∆

∂t2
= (λ + 2µ)∇2∆ . (51)

Since living tissue is incompressible, the dilatations will be very minute and impossible

to detect by taking the spatial derivatives of the measured displacements from any of the

currently available imaging techniques. Even if accurate measurements were possible, in-

verting this wave equation would result in the local values of the longitudinal wave speed,√
(λ + 2µ)/ρ, being known. However the change of this parameter is quite small in the soft

tissue (from 1400m/s for fat to 1540m/s for muscle). Therefore the contrast of the formed

elastogram would be minimal.

On the other hand, taking the curl of the displacement field results in the rotation fields,

∇× (ux, uy, uz)
T = (ω̄x, ω̄y, ω̄z)

T (52)

each of which satisfies a shear wave equation with wave speed
√

µ/ρ,

ρ
∂2ω̄i

∂t2
= µ∇2ω̄i i = x, y, z . (53)

Since living tissue is incompressible, E ≈ 3µ and inverting these equations results in local

information for tissue elasticity E. Moreover since these equations are naturally 1D, it is

possible to use the phase speed in their context.

From this discussion it is concluded that the only theoretically flawless method of imaging

tissue elasticity is by taking the curl of the displacement fields. This requires the measure-

ment of the displacements in all three directions over the volume of interest. In cases where

this is not feasible, such as ultrasound elastography, artifacts will always be present. These

artifacts are not just due to noisy measurements, poor algorithms, or imperfect setups but

due to the theoretical limitations of the systems themselves.
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There are some measures which could be taken to minimize the artifacts. The main goal

should be to create a single wave propagating in one direction at a single speed:

• The excitation amplitude should be chosen small enough to reduce the reflected wave

amplitudes to the level of other measurement noises. The damping present in the

tissue helps by reducing the amplitude of the reflected waves from the boundaries of

the tissue and bones.

• The frequency of excitation should be kept to a minimum to prevent the appearance

of higher modes. However lower frequencies result in lower damping, and therefore a

trade off exists here.

• The excitation pattern should be chosen so as to excite mainly the lowest mode.

From an engineering point of view, however, many factors beyond the analysis presented

here affect the success of an elastography system. Many of the devised elastography tech-

niques are proven to provide clinically valuable images and some of them have even found

their way into the market. Quasi-static constant strain, pulsed excitation with external

exciters, acoustic-radiation-force-based and other techniques are each designed to make the

displacements created in the clinical setting match the assumptions made about them. This

results in the validity of their inversion techniques and their valuable elastograms.

The presence of the artifacts, by itself, does not mean that an elastography system

should be dismissed. After all, each of the available medical imaging modalities has its own

artifacts, and yet they are very well proven to be useful in diagnosis and treatment.
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TABLE I. Mechanical property values used for the simulation

ρ λ µ

kg/m3 GPa kPa

1000 2.3 10
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TABLE II. Mechanical property values used for the simulation

ρ λ µ a

kg/m3 GPa kPa m

1000 2.3 10 0.05
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