
Abstract - This paper is concerned with the derivation of the 
kinematics model of the University of Tehran-Pole Climbing 
Robot (UT-PCR). As the first step, an appropriate set of 
coordinates is selected and used to describe the state of the 
robot. Nonholonomic constraints imposed by the wheels are 
then expressed as a set of differential equations. By 
describing these equations in terms of the state of the robot 
an underactuated driftless nonlinear control system with 
affine inputs that governs the motion of the robot is derived. 
A set of experimental results are also given to show the 
capability of the UT-PCR in climbing a stepped pole.  
 
Index Terms – Climbing robot, wheel-based, kinematics 
modeling, nonholonomic constraints, singularity. 
 

I. INTRODUCTION 

Climbing robots have various applications in industrial 
and hazardous environments. Inspection of vertical and 
inclined pipes in nuclear power plants, wiring on high 
voltage power transmission towers, and inspection of high 
chimneys are some well known examples of such 
applications [1, 2]. Moreover, some new and important 
tasks for climbing robots can be introduced. Cleaning 
electric lights on lampposts in highways is one of these 
new tasks.  

Air pollution in metropolitan areas is the main cause 
of dirt on highway light bulbs. Therefore, the highway 
lighting systems should be cleaned on regular bases in 
order to have the required light in the highways without 
resorting to more powerful and energy consuming lighting 
systems.  

Manual cleaning of highway lighting systems is a very 
dangerous and traffic disturbing task. Therefore, Robotics 
and Artificial Intelligence Laboratory of the University of 
Tehran is currently engaged in the development of a 
wheel-based pole climbing robot named University of 
Tehran-Pole Climbing Robot (UT-PCR), see Fig. 1. The 
UT-PCR is light weight, fail-safe, relatively fast, 
nonholonomic and therefore underactuated, and is 
designed for climbing stepped poles with circular or near 
circular cross sections  [3]. The climbing part of the UT-
PCR consists of a triangular body and six limbs with 
ordinary wheels at their tips. Three lower wheels are 
actuated with DC motors. The upper limbs have passive 
wheels and act just to increase the system stability. 
 In  [3] related robots and the natural and artificial 
climbing mechanisms are reviewed and the design of the 
UT-PCR is described. As the first step 

towards nonholonomic path planning and control of the 
UT-PCR, in this paper, a set of suitable generalized 
coordinates for the climbing mechanism is identified. Then 
by considering the nonholonomic constraints on the 
wheels, the inverse kinematics model of the climbing part 
is developed and the robot’s singular configurations are 
found numerically. Some experimental results are also 
given to show the climbing capability of UT-PCR using a 
simple control system.  

II. ASSUMPTIONS AND NOTATION 

 To derive a set of differential equations describing the 
motion of the robot with the wheel velocities as the affine 
inputs, a number of assumptions have been made in the 
modeling. The UT-PCR as shown in Fig. 1 is over-
constrained, as will become apparent in the following 
sections. The three upper limbs only serve to increase the 
stability of the robot against tip-over and improve the 
grasp of the robot on the pole. Hence the wheels on these 
limbs should not add any constraints to the motion of the 
robot. Using holonomic passive wheels on these limbs will 
serve this goal. Although at this stage of development we 
have used ordinary passive wheels, we will assume that 
these wheels are holonomic and therefore the upper limbs 
can be neglected in the kinematics modeling.  
 Moreover we have assumed that the forces exerted by 
the springs produce large enough normal components to 
bring the lower wheels in good contact with the surface of 
the pole so that the wheels do not  slip. This  enables  us  to  

Fig. 1 The University of Tehran Pole Climbing Robot 
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use the classical model for the wheel constraints  [4]. 
 Finally we have assumed that the distance from each 
corner of the body to the contact point of its wheel with the 
pole is constant, no matter what the configuration of the 
robot is. This is a valid approximation when the radius of 
the wheel is much smaller than the length of the limb.  
 Based on these assumptions the UT-PCR can simply 
be represented as shown in Fig. 2. The corner points of the 
body are denoted by 1C , 2C and 3C  while the corresponding 
contact points of the wheels with the cylindrical pole by 

1W , 2W  and 3W . By the word body we are referring to the 
triangle 321 CCC , whose sides are 21CC , 31CC  and 32CC . 
The limbs are the segments 11WC , 22WC and 33WC . 
 In the following sections we use different sets of 
coordinates to describe the position of points of interest. 
The z-axis of the Cartesian coordinate system is assumed 
to be aligned with the axis of the cylinder. We use the 
notation A to indicate the vector from the origin to point 
A . If the Cartesian coordinates of A  is denoted by 
( )AzAyAx  , A  can be written as 

[ ]TAzAyAxA = . (1)  
 The cylindrical and spherical coordinates of A  are 
respectively denoted by ( )AzAAr φ  and ( )AAAR φθ . 

 We use the notation AB  to indicate the vector from 
point A  to point B  hence 

ABAB −= . (2)  
 The length of the body sides, the limbs and the radius 
of the cylinder are respectively denoted by b , l  and r , as 
shown in Fig. 3. 

III. DIMENSION OF THE STATE MANIFOLD 

 We claim that the state space of the UT-PCR has a 
dimension of six. As the first step in the proof, the 
behavior of the joints is scrutinized. The joints connecting 
the limbs to the body at the corner points are 1 DOF 
revolute joints (hinges). Depicted in Fig. 4 is the locus of 

1W  as the angle of the joint at 1C varies, which is a circle 
of radius l  centered at 1C . By the symmetrical design of 
the UT-PCR, the plane in which this circle lies is the 
perpendicular bisector plane of the body side 32CC . As a 
result in addition to 1C , this plane passes through the 

midpoint of 32CC , denoted by 23M . The loci of 2W  and 

3W  are similarly found. In general words, iW  moves in the 
perpendicular bisector plane of kCjC ,  

0=⋅ iWiCkCjC , (3) 

and its distance from iC  is equal to l , 

liWiC = . (4) 

Moreover we have: 
0=⋅ jkMiCkCjC . (5) 

 Now we consider the body triangle with the limbs 
stretched apart from the pole. As a solid object in the 3D 
space the body has six degrees of freedom  [5]. Therefore 
one parameterization to describe the configuration of the 
body consists of the Cartesian coordinates of the center of 
the body triangle together with its Euler angles: 

[ ]TCMCMCMb zyxX ψθφ= . (6) 
If we release the stretched limbs, their springs pull them 
back towards the pole and they touch the surface of the 
pole. This is a deterministic process. Therefore the 
aforementioned parameterization can well be chosen as the 
state of the robot. 
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 Mathematically the contact point iW  is the intersection 
of the circle defined by (3) and (4) , with the cylindrical 
section which is obtained by cutting the pole with the 
plane of the locus, as defined by (3). This section is an 
ellipse in general, hence we have the intersection of a 
circle with an ellipse, which can be expressed as a fourth 
order equation in one variable (Fig. 5). This equation has 
at most four solutions for a given bX , two of which 
correspond to points on the opposite side of the cylinder 
(points No.1 and 2 in Fig. 5), which are not physically 
feasible, because the limbs cannot pass through the 
cylinder. Of the remaining two solutions, one corresponds 
to a point whose z  coordinate is greater than the 
corresponding corner of the body (point No.3 in Fig. 5). 
Because the limbs cannot move above the body, this 
solution is also rejected. Hence only one of these solutions 
is the point we are interested in, i.e. the position of iW  
(point No.4 in Fig. 5). Since the contact points iW  are 
located on the surface of the cylinder, the z  and φ  
components of the cylindrical coordinates of these points, 
give a complete description of their configuration: 

[ ]TWWWWWWw zzzX
332211

φφφ= . (7) 

Thus we have shown that the positions of the contact 
points wX  as described by (7) can uniquely be obtained 
from the state of the body bX  as described by (6), i.e. 

)( bIKw XfX = . (8) 

 This proves that the UTPCR has a six dimensional state 
manifold and as noted earlier (6) can be chosen as the state 
of the robot. 
 bX  contains the parameters to be controlled while 

wX  contains the parameters to be actuated, hence we may 
call the function 

IKf  the inverse kinematics of the UT-

PCR  [6]. In the next section we shall choose another set of 
parameters as the state to facilitate numerical calculations. 

IV. STATE SELECTION 

 In this section our aim is to select an appropriate set of 
parameters as the state which exploits the symmetries 

present in the system to simplify numerical calculations. 
We are particularly interested in the relative configuration 
of the robot with respect to the pole. It is easy to see that a 
translation in the z coordinates of all the wheels does not 
change this configuration as is the case with a rotation in 
their φ coordinates. To benefit from these symmetries we 
will choose the coordinates of one of the wheels as the 
base on which we shall construct the robot. In this way the 
relative configuration of the robot with respect to the pole 
is preserved under a translation or rotation in its base. 
 In Fig. 6 a simplified representation of the robot is 
shown. We claim that as long as the points 1W , 1C and 

23M  form a plane, bX  is uniquely determined by, and 
uniquely determines the positions of these points. If bX  is 

known, 1C , 2C  and 3C  are known, so is 23M . By the 

process explained in section 3 1W  can also be found. This 
proves the second part of the claim. To prove the first part 
it suffices to show that 2C  and 3C can be expressed in 
terms of the coordinates of these points. From (3) and (5): 

023132 =⋅ MCCC  (9) 

01132 =⋅ WCCC . (10) 

While the lengths of 232MC  and 233MC are equal to 
2
b , 

4

2
232232

bMCMC =⋅  (11) 

4

2
233233

bMCMC =⋅ . (12) 

By solving these equations the coordinates of 2C  and 3C  
are found as 

23111

23111
232 2 MCWC

MCWCbMC
×
×⋅+=  (13) 
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23111

23111
233 2 MCWC

MCWCbMC
×
×⋅−= . (14) 

This completes the proof. Based on this, if we choose a set 
of parameters which determines 1W , 1C and 23M with a 
one to one correspondence, we can well use it as the state 
of the robot instead of bX . 
 Referring to Fig. 6, we have chosen 

1Wz and 
1Wφ  as 

the first two components of this set. The spherical angles 
of 1C  relative to a basis whose origin is at 1W and 
whose x and y axes have been rotated by an angle of 

1Wφ  
are chosen as the next two components. These coordinates 
are denoted by Lθ  and Lφ . The last two components are 
the spherical angles of 23M  relative to a basis whose 
origin is at 1C  and whose x and y axes have been rotated 

by an extra angle of Lφ . These coordinates will be denoted 

by Mθ  and Mφ . The Cartesian coordinates of 1W , 1C  and 

23M  can be written as 
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If we collect the selected parameters in sX , 

[ ]TMMLLWWs zX φθφθφ
11

=  (18) 

and we have shown that 
)( sb XgX =  (19) 

where g  is an invertible function. Hereafter by the state of 
the UT-PCR we are referring to sX . Using (8) we have 

))(( sIKw XgfX = . (20) 

V. NONHOLONOMIC CONSTRAINTS 

 The nonholonomic constraints arise from the fact that 
a wheel in contact with a surface can only move in one 
direction  [4]. The line along which the wheel can move is 
the intersection of the tangent plane to the surface at the 
point of contact with the plane of the wheel (the wheel is 
modeled as a disk and the plane of the wheel is the plane 
of that disk). These planes are shown in Fig. 7 for a wheel 
of the UT-PCR ( 1W ). The tangent plane is a vertical plane 
tangent to the pole at the point of contact. The plane of the 
wheel is determined by the geometry of the design. For the 
UT-PCR this is the plane which passes through the point 

of contact of the wheel 1W , the corner of the body 

corresponding to that wheel 1C , and the midpoint of the 

opposite side of the body 23M . The line segment 231MC  
lies in this plane, so that its intersection with the tangent 
plane, as denoted by 1D , lies on both planes. Hence the line 
of intersection of the two planes includes 11DW  as a 
segment and this line segment determines the direction of 
motion for 1W . The directions of motion for the other two 
wheels can also be determined (using a similar notation by 
line segments 22DW  and 33DW ).  
 The position of 1D can be expressed in terms of the 
state: 

2311 )1( MCD ⋅−+⋅= αα , (21) 

[ ] 00 1111
=⋅ DWyx WW . (22) 

The former equation simply states that 1D  lies on 231MC  
while the latter states that it belongs to the tangent plane to 
the cylinder at 1W . Solving for 1D we have 

 

Fig. 7 The direction of motion for 1W  

23M

1W  
1C  

1D  

Tangent Plane Wheel Plane 

(23) 



















































−+
−
−+
−−

−

−+
−
−−

−

−+
−
−+

−

=

)(
)(

)(
)(

)(

)(
)(

)(
)(

)(
)(

)(
)(

1231

1231

2312311

2312311

123

1231

1231

2312311

123

1231

1231

2312311

123

2

2

2

1

CMW

CMW

MCMCW

MCMCW

CM

CMW

CMW

MCMCW

CM

CMW

CMW

MCMCW

CM

yyy
xxx

zyyzy
xzzxx

zzr

yyy
xxx

xyyxx
yyr

yyy
xxx

xyyxy
xxr

D

 

. 



The variables appearing on the right hand side are all 
functions of sX  described by (15), (16) and (17). 
 By choosing wX  from (7) as the coordinates 
describing the loci of the wheels on the cylinder, the 
nonholonomic constraints can be derived. Fig. 8 shows the 
tangent plane at iW . The coordinate axes chosen are 

iWẑ and 
iWφ̂ where 

iWẑ is parallel to the z-axis of the 

Cartesian system and 
iWφ̂ is parallel to its xy-plane. 

Denoting the linear velocity of iW  by iv  we have: 

i
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Substituting for the coordinates of iD  and iW  in terms of 
the state using (23) and (20), we can write these equations 
in matrix form as 

 
In the compact form we have:  

321 )()()(
321

vXfvXfvXfX stststw ⋅+⋅+⋅=& . (27) 

Under proper conditions this equation can be turned into a 
state space equation: wX&  can be expressed in terms of sX&  
using the Jacobian of (20), so that 

321 )()()(
321

vXfvXfvXfXJ stststs ⋅+⋅+⋅=⋅ & . (28) 

The next step needed to be taken is to invert the Jacobian 
3

1
2

1
1

1 )()()(
321

vXfJvXfJvXfJX stststs ⋅⋅+⋅⋅+⋅⋅= −−−&   

332211 )()()( vXfvXfvXf sss ⋅+⋅+⋅= . (29) 

The question of invertability of the Jacobian matrix is 
addressed in the next section. As is apparent, (29) is the 
desired state space description. 

 

VI. KINEMATICS SINGULARITIES 

 Studies on similar platforms has established that these 
systems may have singularities in their forward and 
inverse kinematics  [7]- [9]. This is also true for the UT-
PCR, as our simulations show, but only occurs away from 
the equilibrium point. Therefore if the state of the robot is 
properly bounded, the robot will not enter these zones. 
 The dimensions used for the simulation are the true 
dimensions of the robot and pole, namely: b = 550mm, l = 
350mm and r = 80mm. The equilibrium point, is the point 
where the body triangle is horizontal and its center is 
located on the axis of the pole, i.e. 

T
eqsX





















 ⋅⋅= ππ
2

0
350

80-2/3/235501-sin00)( . (30) 

As a measure of singularity for the Jacobian matrix, the 
ratio of its largest eigenvalue to its smallest, commonly 
known as the condition number, was chosen. The larger 
the value of this function, the closer the Jacobian to a 
singular matrix. Fig. 9 shows the condition number as each 
of the coordinates are varied around the equilibrium point. 
We have used the gradient method to find its local 
maxima. The region of interest is the 4-cell (4 dimensional 
cube) centered at the equilibrium point with each side 
equal to 0.2 radians. This is equivalent to a variation of at 
most 5 degrees in each of the state angles. (Due to 
symmetry the first two coordinates of the state are of no 
significance and are ignored.) All corner points of a 

5555 ×××  grid in this region were used as initial points. It 
has been proved numerically that the maxima occur on the 
boundary and therefore the Jacobian is invertible in this 
region. 
 Fig. 10 depicts the condition number as Mθ  varies 
over a wider range. As can be seen singularities are 
observed. It has been proved numerically that the 
singularities form a 5-dimensional submanifold of the 6-
dimensional state space, i.e. by loosing one of its degrees 
of freedom, the robot can be posed in a continuous set of 
states, in all of which the Jacobian matrix is singular. 
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VII. CONCLUSIONS AND FUTURE RESEARCH 

 In this paper the kinematics model of the UT-PCR was 
derived. The dimension of its state space was determined 
and an appropriate set of coordinates were chosen to 
parameterize this space. By using the nonholonomic 
constraints imposed by the wheels, an underactuated 
driftless nonlinear control system (29) with the wheel 
velocities as the affine inputs was obtained. 
 The presence of singularities was also studied. In the 
literature classification of singularities has also been of 
concern (see e.g.  [10]). Of particular interest are two cases; 
In the first case the range of the Jacobian matrix may not 
include the control-input vector field (the right hand side 
of (28)). In this case a certain combination of inputs acts 
contrary to the constraints and may lead to sideway 
slipping of the wheels. In the second case, there may exist 
a singular path in the state space on which the robot has 
free uncontrolled motion. Special measures should be 
taken to avoid these cases in controlling the UT-PCR if 
they exist. These issues are to be studied in more depth in 
future research. 
 In the experimentation, we have used PID controllers 
for the DC motors, and the capability of the robot to climb 
a stepped pole has been tested. A filmstrip of the operation 
is shown in Fig. 11. Performing complex motions using 
nonholonomic path planning is our goal in future research. 
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