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In the Name of God 

Abstract 
 
 
 
 

In this dissertation I study the motion planning problem for a two link free flying 
robot, the acrobot. As governed by the conservation of momentum law, the constraint 
on this system is a nonholonomic constraint. The goal sought is to steer the acrobot 
from an initial posture to a final one in a specified amount of time, while it is flying in 
the air with a constant angular momentum. Two different approaches based on 
differential geometric nonlinear control theory are adopted and used and a comparison 
between the results is made. The first is the so called path deformation method while the 
second one is an attempt of Nilpotentization. Simulations are made to validate the 
results. 
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Chapter 1 

 

Introduction 

 

One of the challenging aspects of nonlinear control theory is the motion planning 

problem for systems governed by nonholonomic constraints. As opposed to holonomic 

constraints they are by no means easily tractable. A holonomic constraint is a one which 

is described by an integrable 1-form (first order exterior differential form) on the state 

space manifold of the system. For example 0=dx  defines a holonomic constraint on 

3R . By integrating such kind of a constraint, a scalar function on the manifold is 

obtained, as is xzyxf =),,(  in our case. The level surfaces of this function, are in fact 

new imbedded submanifolds which define the true state space of the system, i.e. we 

have an algebraic relation between the state variables of the system or equivalently a 

reduction in the dimension of the state space. To see this, if the initial state of the system 

of our example has 1)0( =x  then because of the holonomic constraint, 1)( =tx  t∀ , 

so the true state space is now 2R . But for a nonholonomic constraint, no reduction in 

the dimension of the state space occurs. In fact a nonholonomic constraint is a constraint 

on the direction of the velocity of the system at each point of the state space, but a one 

which does not restrict your access to the whole possible states. The best example 

illustrating this concept is parking the car. When you want to park your car between two 

other parked cars, the moment you are beside the empty space, you cannot push your 

car sideways into the place, because of the nonholonomic constraint induced by your 

wheels. At that moment you can only go forward and backward, never the less this does 
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not mean that you can never park your car there. You have a restriction on the direction 

of your motion but no restriction on the accessible points. Now if you lock the steering 

wheel, the constraint becomes holonomic, which means you can only go straight 

(assuming you have locked your steering wheel in the middle position).  

The motion planning problem is now the systematic derivation of an open loop 

control which steers the system from an initial point in the state space to a final point, in 

an specified amount of time. Apart from its underlying mathematical beauty this 

problem is important from the practical and technological point of view. In fact 

automation of cargo handling using trucks and trailers, for example in airports, has been 

one of the hottest research issues in the field, attracting attention in the last decade. 

In this dissertation I use two different methods based on differential geometry to 

solve the problem for a two link flying acrobot. First in chapter 2 I derive the dynamical 

model of the system and formulate the problem introducing the necessary notation. In 

chapter 3 I use the path deformation method which is the extension of the continuation 

method used in solving nonlinear equations to the path planning of dynamic systems. In 

chapter 4 I use the nilpotentization method to first derive feedback control laws, which 

transform my system into a simple form (namely a system whose control vector fields 

generate a nilpotent Lie algebra), and then use this simple form to solve the motion 

planning problem. The first method is quite general and can be adapted to other systems, 

while the second one is more problem specific. At the end of each chapter simulation 

results are given. Chapter 5 is devoted to the conclusion. 
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Chapter 2 

 

Derivation of the Dynamical Model 

In this chapter I will formulate the dynamical model of the system I am going to use 

for the purpose of control. The mechanical system under consideration is a 2-link robot 

where the joint between the two links is actuated (Fig.1). This robot is a simplified 

model of an acrobat or a diver, consisting of the torso, the waist and the legs. (Fig. 2) 

 

 

 

 

 

 

 

 

Neglecting the friction with the air, the law governing the motion of the acrobot 

while it is falling, is the conservation of the angular momentum. In fact the motion of 

the center of mass of the acrobot, is not controllable and its trajectory is a hyperbola 

with its parameters depending on the initial velocity and location of the acrobot. So we 

are not concerned with that aspect but the posture of the acrobot, i.e. the angular motion 

of the two links. Fix a reference frame on the center of mass (CMRF) which moves with 

it but its orientation is fixed with respect to a reference frame connected to the ground. 

Let θ denote the angle between the leg and the positive x axis of CMRF and let φ 

Fig.1 The Acrobot Fig.2 The Diver 
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denote the angle between the torso and the leg where positive senses are 

counterclockwise(Fig.3).  

 

 

 

 

 

  

 

 

The total angular momentum of an n-link planar robot can be described as [1] 
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Where, 

iJ  is the angular momentum of link i about its center of mass. 

iθ&  is the angular velocity of link i with respect to CMRF. 

0m  is the total mass of the robot. 

im  is the mass of link i. 

ii yx ,  are the Cartesian coordinates of the center of mass of link i with respect to any 

point, moving or fixed. 

 We shall use the following notation (Fig.4) 

M the mass of the torso. 

m  the mass of the leg. 

φ x 
θ 

y 

Fig.3 The angles 
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L 
l 

J the moment of inertia of the torso about its center of mass. 

j  the moment of inertia of the leg about its center of mass. 

L  the distance from the center of mass of the torso to the joint. 

l  the distance from the center of mass of the leg to the joint. 

 

 

 

 

 

 Taking the joint as the reference point for coordinates and using formula (1) we 

have, 
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This is the basic equation from which the state space model of the system is derived. In 

this dissertation we assume that the actuator can determine the instantaneous angular 

velocity between the two links. In other words we assume that the value of φ&  can be 

determined at each instant, or equivalently it is a control input to the system. Although 

this assumption neglects the intrinsic electrical and mechanical dynamics of the actuator, 

by deriving a continuous control function for φ&  a piecewise continuous target 

trajectory for the torque of the actuator can be derived. Following this trajectory is a 

well understood problem for different types of practical actuators. 

 Now let us take φ  and θ  as the states and denote φ& , the control input by u . 

M 
m 

Fig. 4 The parameters 
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Using equation (2) the state space model of the system can be derived as, 
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Where the parameters are given by, 
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The state space model (3) will be used extensively in the following chapters. As is 

obvious because of the presence of the cosine terms, this is a nonlinear control system. 

The goal is, given the initial condition P=[θ(0) φ(0)]`, to find a nice control input 

u(t) which drives the system to state Q=[θ(T) φ(T)]` in the specified time T. So the 

control task has two outputs but only one input, so this is an underactuated system. 

Moreover in the terminology of nonlinear control systems, the presence of an 

uncontrolled vector field in the state space equations is described by drift. The presence 

of the drift term makes the control task very difficult, because for systems with drift, 

even when you do not apply any input, the system is moving by its drift term, so your 

control inputs must cope with the internal dynamics of the system. Finally if we write 

equation (2) as, 
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It can be easily checked out that this one-form is not a complete differential, so it cannot 

be integrated, and hence the system is nonholonomic. 
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Chapter 3 

 

Motion Planning Using the Path Deformation Method 
 

 

The model of the robot under consideration is 
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The goal is, given the initial condition P=[θ (0)  ϕ (0)]`, to find a nice control input 

u(t) which drives the system to state Q=[θ (T)  ϕ (T)]` in the specified time T. 

The Path Deformation Method is the extension of the continuation method used in 

solving nonlinear equations to path planning of dynamic systems. First we explain the 

continuation method and then its extension. 

Suppose M and N are smooth manifolds and N is connected. Suppose 

NM →Φ :  is a smooth map, and we want to solve the equation Φ(x)=y. To do this 

we first choose an arbitrary point x and find its image )(xy Φ= . Next we define a 

path from y  to y in N, i.e. a smooth function N→]1,0[:π  and then try to pull 

this path back to M. This means we seek for a path M→Π ]1,0[: such that ΦoΠ=

π. If we are successful then clearly Π(1)=x , the solution of our equation. Although 

this might seem more difficult than the original problem, since we have to solve the 

equation Φ o Π = π  for the unknown function Π , but in fact under certain 

nondegeneracy and nonexplosion conditions, this can be accomplished by solving an 

ordinary differential equation, which leads itself to a numerical solution for the problem. 
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Actually we want to have Φ (Π (τ ))=π (τ ) for τ∈ [0,1], and Π (0)= x . 

Differentiating the former equation we get, 

x
D

=Π
=Π⋅ΠΦ

)0(
)()())(( τπττ &&
       (1) 

It is clear that by solving this equations we can find the desired Π (for two real smooth 

functions whose derivatives are the same at every point and their values are the same at 

some point, are equal at every point). From equation (1) the nondegeneracy condition to 

be met, which was mentioned earlier is apparently: rank(DΦ(Π(x)))=dim(N), which 

means that Φ must be an immersion. Obviously this is not always the case. If DΦ has 

singularities, then still we may define a submanifold of M which we shall call M`, by 

excluding the points of singularity, and then use the restriction of Φ to M`, but we 

must note that now the image under Φ of M` is not N, it is a submanifold of it called 

N`, which might not be connected anymore. In this case more work must be done to 

choose the initial x so as to guarantee that y  is in the same connected submanifold of 

N` as y. Moreover the path π must be designed completely in N` and not in N, in 

order to avoid singularities. After this discussion we may choose a right-inverse for DΦ 

such as the pseudoinverse  

1))()(()()( −Φ⋅Φ⋅Φ= TT xDxDxDxP       (2) 

and express the equation (1) as 

)())(()( τπττ && ⋅Π=Π P        (3) 

x=Π )0(  

Under the conditions discussed above this differential equation can be solved for Π 

and Π(1) is the desired solution of our initial equation. 

To extend this method to our problem, we make the following considerations, 

1. Let U denote the set of admissible control inputs, in which we are seeking a solution. 
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In this research we take for U the set of all analytic functions on [0,T]. This set plays 

the role of M. 

2. Let S denote the state space of our dynamic system. This set plays the role of N. 

3. Define SUt
p →Φ : , where )(ut

pΦ  is the state reached by the system Σ at 

time t when the control input u(t) is applied to it, starting from the initial state p. 

Now we are interested in the state reached at time T, so T
pΦ  (superscript T) plays 

the role of Φ. 

In the new formulation, our goal is to solve the equation quT
p =Φ )(  for u. The method 

is exactly the same as the continuation method. The only thing left for writing down 

equation (1) is the differential of T
pΦ  at an input 0u , i.e. 0)( u

T
p uDΦ . This differential 

corresponds to the variation in the final state of the system due to a variation in the 

control input. To calculate this differential, consider the more general differential 

0)( u
t
p uDΦ (superscript t), which corresponds to the variation in the state of the system 

at time t due to a variation in the control input. Let us take the new input 

)()()( 0 tstutu ζ⋅+= . Then define, 

0

)()(
=

Φ=
s

t
p u

ds
dty        (4) 

Clearly y(t) is the value of 0)( u
t
p uDΦ  in the direction of the variation )(tζ (actually 

)(tζ  is a tangent vector to U at )(0 tu  ). We know that y(0)=0 (since pup =Φ )(0  

which does not depend on u hence neither on s). To calculate the value of y(T), let us 

differentiate equation (4), with respect to time 
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Therefore we have, 
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Using definition (4) we have, 
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This is a differential equation by which y(t) can be found (the initial condition is y(0)=0 

as was shown before). If we denote the solution of this equation by Y(t) clearly the 

mapping which assigns to each ζ(t) the value Y(T) is the long sought 0)( u
T
p uDΦ . (As 

a matter of fact this mapping assigns to each tangent vector to U at 0u  i.e. eachζ, a 

tangent vector to S at )( 0uT
pΦ , namely Y(T) evaluated using that 0u  and ζ). 

 Thus far the main tools have been developed. By assuming that an analytic 

control input exists which solves our problem, we take it’s Taylor series expansion 
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about t=0 and therefore have a basis for the tangent space to U at 0u , namely the it . 

Therefore we have 
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Now if )(0 tu  is applied to the system, we will have, 
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These equations are easily integrated, 
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formulae, so we arrive at, 
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As mentioned earlier the matrix A is exactly 0)( u
T
p uDΦ which can be used in an 

equation similar to equation (1) to find the desired control input u(t). 

 As a matter of fact as can be guessed from the form of equation (12) we might 

not need so many coefficients in ζ and two might be enough. In the simulation results 

also this was confirmed and the additional coefficients have little effect on the solution. 

So we used only two adjustable coefficients for matching equation (12), but the 

existence of additional conditions such as a certain value for the input at t=0 or for its 

derivative, forces us to assume more degrees of freedom for the input. In the below 

simulation 6 degrees of freedom was assumed for u(t). 5 successive points were to be 

passed through (6 points adding the initial state).  

T  =  [ 0 2  4  6  8  10] 

θ =  [ -0.5 0.9 2.3 3.7 5.1 6.5]*π 

ψ =  [ -1 -2 -2 -2 -2 -1]*π 

A cubic Spline interpolation was used to interpolate the (ψ,t) pairs with the condition of 

zero derivatives at the end points. Then the first and the second derivative of this 

interpolation at the 6 points of interest were used as additional conditions for the value 

of u(t) and its first derivative. The validity of the theory is well confirmed according to 

the simulation results. 

 

 



 18

 

 

Fig.1. Input u(t) 

 

 
Fig.2. States  
Upper : θ 
Lower : φ 
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Chapter 4 

 

Nilpotentization 

 

The model of the robot under consideration is 
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which can be written as, 

uYYY 21 +=&        (1) 

We want to replace 1Y  and 2Y  with two other vector fields 1Y ′  and 2Y ′  such 

that locally the distribution spanned by the latter is the same as the former (which means 

that we can transform the system through a feedback into one whose dynamics is 

described by 1Y ′  and 2Y ′ ), but with the property that the Lie Algebra generated by 

1Y ′  and 2Y ′  is nilpotent. If we are able, the system thus obtained has the good 

property that its solution can be expressed in a simple form by a finite combination of 

flows of some vector fields (in fact the P-Hall basis for the Lie Algebra mentioned 

above) with coefficients which are computable in terms of iterated integral(s) of the 

input(s). Assume that we are able to do so. By construction, 
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The problem is that to realize the above equation we must have control over 1Y  i.e. 

the drift term in the original system. To gain this control we use the idea of 
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reparameterization of the time, by introducing a new virtual time variable ε , 
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or in matrix form, 
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The strong restriction we must pay attention to is that we cannot go back in time so 

although the above system is similar to a driftless system, the input 1u  must always be 

greater than zero. We will see that this restriction will turn into a big obstacle to the 

designing of the control input for the transformed system. Now let 1Y  and 2Y  denote 

the vector fields in equation 3. The method for nilpotentization is based on the 

construction of a local model on 3R  by defining two model vector fields 1X  and 

2X  on 3R  such that the Lie Algebra generated by 1X  and 2X  is nilpotent. Then 

the next step is to find a diffeomorphism MR →Φ 3:  whose differential maps 1X  

and 2X  to span{ 1Y , 2Y } in fact the images of 1X  and 2X  under *Φ  are exactly 

the desired 1Y ′  and 2Y ′ . The main characteristic the model must posses for the 

existence of such a diffeomorphism is that Dim( iD { 1X , 2X }) = Dim( iD { 1Y , 2Y }) 

where iD  is the derived distribution defined recursively by, 
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For our case, some controllers have a singularity at 0=ϕ  because [ 1Y , 2Y ] 
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vanishes at 0=ϕ . We choose our region of interest a neighborhood of Y=0. In this 

neighborhood the Taylor expansion of the vector fields 1Y  and 2Y  prove to be a very 

appropriate choice. So we have 
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Using these model vector fields and doing some cumbersome calculations one finds 

out that, 
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To transform the original system into one described by 1Y ′  and 2Y ′  we have the 

feedback inputs, 
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It can be verified easily that the only nonzero elements of the P-Hall basis of the Lie 

Algebra generated by 1Y ′  and 2Y ′  are ]],[,[],,[,, 2122121 YYYYYYY ′′′′′′′  which 

means that if we were free to chose any 1v  and 2v , designing a local controller for the 

system would be very easy. But the main problem is the restriction 01 >u .  

In fact by assuming parameterized forms for the control inputs 1v  and 2v , say 

using im  the system can easily be integrated and the result is a set of equations in im  

together with an inequality in im  and ε  which must be satisfied for all values of ε  

in [0,1], when the solution of the equations is substituted for im . Although the 

equations are very easy to solve numerically, and many solutions can be found, a 

solution which satisfies the inequality for all ]1,0[∈ε  is astonishingly difficult to find. 

In fact the symbolic math software such as Matlab’s symbolic math toolbox and 

Mathematica are not able to solve this problem. As a typical example of the equations 

and the inequality involved we solve a typical example. The data are as follows, 
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Then the equations and inequality become (here the symbol t is used instead of ε ), 

m10+1/2*m11+1/3*m12+1/4*m13-8184110467507909/9007199254740992 = 0 

 

m20+1/2*m21+1/3*m22+1/4*m23+6283/4000 = 0 

 
1/32*m23*m13+1/28*m22*m13+1/21*m23*m12+1/24*m21*m13+1/18*m22*m12+1/12*m23*m11+1/
20*m20*m13+1/15*m21*m12+1/10*m22*m11+1/5*m23*m10+1/12*m20*m12+1/8*m21*m11+1/4*m
22*m10+1/6*m20*m11+1/3*m21*m10+1/2*m20*m10+5477995636129085/4503599627370496 = 0 
 
3/8*m20*m21*m10+4/63*m12*m20*m22+5/24*m10*m20*m23+1/9*m11*m20*m22+3/64*m11*m21*
m23+3/28*m10*m21*m23+5/144*m12*m21*m22+5/144*m20*m13*m23+5/216*m21*m13*m22+1/36
*m21*m12*m23+5/84*m11*m21*m22+3/160*m21*m13*m23+7/528*m22*m23*m13+7/360*m22*m2
3*m12+7/216*m22*m23*m11+5/56*m11*m20*m23+7/96*m22*m23*m10+4/15*m10*m20*m22+3/56
*m20*m21*m13+5/36*m10*m21*m22+1/12*m20*m21*m12+1/80*m23^2*m11+1/132*m23^2*m12+1
/42*m12*m21^2+1/48*m11*m22^2+1/64*m13*m21^2+1/192*m23^2*m13+3/20*m20*m21*m11+1/24
*m20*m13*m22+1/24*m20^2*m13+1/36*m23^2*m10+1/24*m11*m21^2+1/21*m10*m22^2+1/120*m
13*m22^2-5637776814438045/9007199254740992+1/15*m20^2*m12+1/10*m10*m21^2+5/96*m12*m
20*m23+1/81*m12*m22^2+1/8*m20^2*m11+1/3*m20^2*m10 = 0 
 
14400/1681*(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/205)/sin(m20*t+1/2*m21*t^2+1/3*
m22*t^3+1/4*m23*t^4+161/205)*(4021/4920-39/82*cos(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*
m23*t^4+161/205))^2*(m10+m11*t+m12*t^2+m13*t^3)+14400/1681*(m20*t+1/2*m21*t^2+1/3*m22*
t^3+1/4*m23*t^4+161/205)/sin(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/205)*(m10*t+1/
2*m11*t^2+1/3*m12*t^3+1/4*m13*t^4)*(4021/4920-39/82*cos(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/
4*m23*t^4+161/205))^2*(1/(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/205)-(-39/41+cos(
m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/205)*(4021/4920+39/82*cos(m20*t+1/2*m21*t^
2+1/3*m22*t^3+1/4*m23*t^4+161/205)))/sin(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/20
5)/(4021/4920-39/82*cos(m20*t+1/2*m21*t^2+1/3*m22*t^3+1/4*m23*t^4+161/205)))*(m20+m21*t+
m22*t^2+m23*t^3) > 0  
 

In the following page the result of a typical optimization made by hand is included. 
Because the inequality is not satisfied for all t, we see that we have to go back in time. 
In fact the trajectories generated in this way are orbit equivalent to the trajectories of the 
acrobot but are not trajectory equivalent. 
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Chapter 5 

 

Conclusion 

 

In this dissertation I studied the problem of motion planning for a two link free 

flying robot, the acrobat, from the differential geometric point of view. I applied two 

different methods to this problem, the path deformation and the nilpotentization. As the 

results show, although nilpotentization, is more rigorous and mathematically rich than 

the path deformation, but since its theory is not very well known yet, it is not very 

appropriate from the practical point of view. Nevertheless if it is solved the 

nilpotentized system can be easily integrated, so it gives a very straightforward solution 

to the problem. This is not the case with systems having drift, as our case, where one 

finally arrives at an equality, which cannot be solved easily at least until now. In future 

more powerful symbolic math packages may be able to deal with these problems. On 

the other hand the path deformation is a good method for solving these problems, even 

when the system contains drift. The open loop controls generated by this method can be 

set to satisfy different conditions such as continuity so they are very appropriate for 

practical applications. 

My prospect is that more work is on the way for the theory of Nilpotentization, 

while many practical problems might be solved using the path deformation method. 
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