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ABSTRACT  
This paper presents an improvement to the Laplacian Eigenmaps 

technique for manifold learning. The Laplace-Beltrami operator 

on a Riemannian manifold is re-investigated and a discretization 

scheme based on the theory of Riemannian integration is 

proposed. The result is a more accurate analogue of the 

continuous operator for graphs, which by comparison, 

outperforms the previously reported operators in extracting the 

structure of the data. The proposed method, similar to Laplacian 

Eigenmaps, preserves both the local and global structures of the 

data. 
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1. INTRODUCTION 
In many practical machine perception problems, the sensory data 

belong to a high dimensional space. For instance in machine 

vision, a 40× 40 gray-scale image can be thought of as a point in 

a 1600-dimensional Euclidean space, whose components along 

the axes are the gray-scale values of different pixels. The 

question is: May all points in this space be considered as valid 

sensory data? A randomly selected point in our example, is 

nothing but salt-and-pepper noise. As a matter of fact the set of 

all images that belong to our context are rare events when 

considered as outcomes of a random selection in the high 

dimensional space. Mathematically speaking the set of data 

points which are outcomes of the sensing, have a singular 

distribution. This means that they do not fill the whole input 

space, but lie on a lower dimensional manifold, embedded in the 

high dimensional Euclidean space. 

Given a set of data instances which belong to a low dimensional 

manifold, embedded in a high dimensional Euclidean space, 

manifold learning seeks to find a possibly global coordinate 

system on the manifold and represent the data instances in this 

coordinate system. For example if the data instances are a set of 

images taken from an apple, in which the distance from the 

camera to the apple is constant, and the camera is aimed at the 

apple, the images differ by the two angles the camera can take 

while moving on a sphere. It is natural to expect that the images 

belong to an embedded sphere. Manifold learning seeks to find a 

low dimensional representation of this sphere. From this point of 

view, manifold learning is a concept abstraction tool.  

A growing interest in research on manifold learning has been 

witnessed during the past few years. Tenenbaum et al.  [6] 

proposed a method based on approximating the geodesic 

distances between data points by the length of the shortest path 

connecting the points on the proximity graph. This method acts 

well for isometrically embedded manifolds where the geodesic 

distances can be identified as the Euclidean distances of the 

points in their low dimensional representation. The method is 

named after this fact, ISOMAP. Later the authors extended their 

method to conformally embedded manifolds under some 

assumptions  [7]. Although ISOMAP preserves the global 

properties of the manifold, it is restricted to manifolds very 

similar to Euclidian spaces. It cannot handle a surface with a 

hole for instance. 

Another method proposed by Roweis and Saul  [5] is Locally 

Linear Embedding (LLE). The key idea in this method is that 

every smooth manifold is locally similar (mathematically 

speaking diffeomorphic) to a Eucledian space. By dividing the 

manifold into patches and realigning these patches one would 

expect to get a flat manifold, or a lower dimensional Euclidean 

space. LLE accomplishes this by preserving the local relative 

geometry of the data points, while representing them in a lower 

dimensional space. This method is local and fails to code the 

global properties of the manifold. 

Belkin and Niyogi [1, 2] have recently proposed a third method 

based on advanced topics from differential geometry. Laplacian 

Eigenmaps, as it is called, uses the eigenfunctions of the 

Laplacian-Beltrami operator on the manifold, as its natural 

global coordinates. A discretized version is used to deal with the 

fact that the data are sampled from the manifold. The important 

feature of these eigenfunctions is that they code the topological 

properties of the manifold, such as its De Rham cohomology, 

and as a result are able to handle manifolds with holes globally. 

In this paper we propose a more accurate method for 

discretization of the Laplace-Beltrami operator and derivation of 

the graph Laplacian based on the theory of Riemannian 

integration. The operator is applied to a number of artificial and 

real data sets. Superior results to previously proposed methods 

have been obtained, where both the local and global properties 

of the manifold are preserved in the low dimensional 

representation. 

The rest of this paper is organized as follows. In Section 2 we 

will introduce the Laplace-Beltrami operator on compact 

Riemannian manifolds. In Section 3 Laplacian eigenmaps is 

reviewed. The proposed method for defining the graph Laplacian 

is presented in Section 4. Section 5 is devoted to the algorithm 

outline and some examples. We conclude the paper in Section 6. 

2. THE LAPLACE-BELTRAMI 

OPERATOR ON RIEMANNIAN 

MANIFOLDS 
Let M be a compact m-dimensional Riemannian manifold 

embedded in 
n

R .Assume that the Riemannian metric on M is 

the one induced by the standard Riemannian metric on 
n

R . The 

Laplace-Beltrami operator on M    is a second order differential 

operator defined on C∞(M), i.e. the set of continuously 

differentiable real-valued functions defined on M:  
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)()(: MCMCL ∞∞ → , (1) 

(.)div(.): ffL ∇−→ . (2) 

A continuous real-valued function on M can be thought of as a 

function assigning a global coordinate to each point of the 

manifold. We look for a coordinate function, for which the 

points which are close on the manifold, have close coordinate 

values. Such a function presents an optimal 1-dimensional 

embedding of M, as it preserves the local properties. 

Assume that x  is a point on M and xx δ+  is a point in its 

vicinity. Assume that RMf →:  is a coordinate function for 

the points on M. The difference in coordinate values of x  and 

xx δ+  can be approximated by 

xfxfxxf δδ ∇≈−+ )()( , (3)  

where f∇  is the gradient of f. Hence if f∇  is small, 

neighboring points will have close coordinate values. An optimal 

coordinate function can thus be sought by solving  

∫ ∇
=

M
MLff

f
2

1)(2

minarg . (4) 

The restriction has been imposed on the integral of 
2

f  to 

normalize the function. 

To solve the optimization problem, we note that by Stoke's 

theorem, −div and ∇  are adjoint operators, i.e. for a real-valued 

function f  and a vector field A  defined on M  

∫∫ −=∇
MM

fAdivfA )(, . (5) 

We can apply this identity to (4) and obtain the following 

optimization problem,  

∫
=

M
MLff

ffL )(minarg
1)(2

. (6) 

It can be shown that the Laplace-Beltrami operator is a self-

adjoint positive semidefinite operator  [4]. Therefore the solution 

to the above optimization problem exists, and the function which 

minimizes ∫ ∇
M

f
2

 is an eigenfunction of L  corresponding to 

its minimum eigenvalue. 

Another important property of the Lapalce-Beltrami operator on 

compact manifolds is that it has a discrete spectrum  [4]. This, 

together with the fact that all eigenvalues are nonnegative 

enables us to sort them in ascending order. The operator always 

has an eigenvalue of zero which corresponds to the constant 

function on the manifold. For connected manifolds, it can be 

shown that this is the only eigenfunction with a zero eigenvalue 

 [2]. The next eigenfunction provides the global coordinate map 

we were seeking. 

An embedding of a higher dimension can similarly be sought. 

The details for the discrete case are presented by Belkin and 

Niyogi  [1]. In this case the eigenfunctions corresponding to the 

smallest nonzero eigenvalues are selected as the coordinates of 

the points in the embedding. 

3. LAPLACIAN EIGENMAPS 
In this section we review Laplacian Eigenmaps as proposed by 

Belkin and Niyogi [1, 2]. An expression for computing the 

Laplacian of a function at a point can be derived by studying the 

equation of heat diffusion. If RMf →:  is the initial 

temperature distribution on M and ),( txu  is the temperature 

distribution at time t, the PDE that governs the heat diffusion in 

M can be written as  

Lu
t

u
=

∂

∂
. (7) 

The solution to this equation is given by 

)(),(),( yfyxHtxu
tM∫=  where tH  is the heat kernel (the 

Green's function for this PDE). The heat kernel can be 

approximated locally by 












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t
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t
4

exp)4(),(

2

2/π , (8) 

where it is assumed that yx −  and t are sufficiently small and 

m is the dimension of M. Therefore )(xLf  can be written as  

∫ 











 −
−

∂
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=

∂

∂
=

−

=

M

m

t

dyyf
t

yx
t

t

t

u
xLf

)(
4

exp)4(

)(

2

2/

0

π
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and can be approximated by  
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In manifold learning applications rather than a complete 

description of the manifold on which the data lie, one is faced 

with a set of sample points belonging to this manifold. Let these 

points be denoted by kxxx ,,, 21 K  where 
n

i R∈x . The points 

are assumed to lie on a manifold M of dimension m. Belkin and 

Niyogi [1, 2] have proposed the following scheme for 

discretization of the Laplace-Beltrami operator, to give the graph 

Laplacian: 
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A number of points about the last equation are in order. First 

note the linearity in )( jf x , which makes it possible to 

represent the graph Laplacian by a matrix. Next note that the 

coefficient t/1  is global, and acts as a scaling factor. It does not 

affect the eigenfunctions of the operator and can be neglected if 

one is only interested in the eigenfunctions. Also note that for 



each ix  the summation is taken over jx 's which are in an є-

neighborhood of the point. This is due to the fact that when t → 

0 the exponential function decays very fast and the far-away 

points can be neglected to yield a sparse matrix which facilitates 

numerical calculations. And finally it seems that the dimension 

of M must be known to calculate the coefficient 
2/)4( m

t
−π . But 

this coefficient scales )( if x  i.e. the value of the function at the 

point where the Laplacian is being calculated, with respect to 

)( jf x , i.e. the value of the function at neighboring points. As 

mentioned before, the constant function is always an 

eigenfunction of the Laplace-Beltrami operator with an 

eigenvalue of zero. By artificially requiring the constant function 

to be an eigenfunction of the graph Laplacian with an eigenvalue 

of zero, one can dispose of this coefficient. 

Summing up, the graph Laplacian can be defined as the matrix L 

= D − W where  
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 (12) 

and D is a diagonal matrix defined as  

∑=
j

jiii WD . (13) 

The Laplacian of a real-valued function defined at kxxx ,,, 21 K  

is then given by 
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4. PROPOSED METHOD: IMPROVED 

LAPLACIAN EIGENMAPS 
In this section, we propose a more accurate discretization 

scheme for (10). First we review integration by Riemann sums 

from Edwards  [3]. A closed interval in 
n

R  is a set I = I1× I2× ⋯ 

× In, where Ij = [aj, bj]⊂ R,  j = 1,…, n. The volume of I is, by 

definition, )())(()( 2211 nn abababIv −−−= L . Assume 

that Q is an interval in
n

R . A partition of the interval Q is a 

collection { }kQQQP ,,, 21 K=  of closed intervals, with 

disjoint interiors, such that U
k

i iQQ
1=

= . By the mesh of P we 

are referring to the maximum of the diameters of the Qi. A 

selection for P is a set { }kS xxx ,,, 21 K=  of points such that 

ii Q∈x  for each i. If RRf n →:  is a function such that f = 0 

outside of Q, then the Riemann sum for f corresponding to the 

partition P and selection S is 

∑
=

=
k

i

ii QvfSPfR
1

)()(),,( x . (15) 

Theorem 3.4 from Edwards  [3] then reads: 

Theorem.(Edwards) Suppose RRf n →:  is bounded and 

vanishes outside the interval Q. Then f is integrable with 

Af =∫  iff, given ε > 0, there exists δ >0 such that 

ε<− ),,( SPfRA  (16) 

whenever P is a partition of Q with mesh < δ and S is a selection 

for P.  

The theorem actually says that if f is integrable, we can 

approximate its integral by its Riemann sum and the accuracy of 

the approximation increases as the intervals become smaller. 

In the case of manifold learning, we are dealing with general 

Riemannian manifolds, and not the Euclidian
n

R . Nevertheless, 

we do not see the need to go into the mathematical technicalities 

of dealing with a general metric. As noted before we assume that 

the Riemannian metric on M  is the one induced by the standard 

Riemannian metric on 
n

R . 

We now turn our attention to the problem of discretization of the 

Laplace-Beltrami operator as given by (10) and the derivation of 

the graph Laplacian. (For convenience we have repeated the 

equation here.) 
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As stated before in manifold learning applications rather than a 

complete description of the manifold on which the data lie, one 

is faced with a set of sample points belonging to this manifold. 

Let these points be denoted by kxxx ,,, 21 K  where 
n

i R∈x . 

The points are assumed to lie on the manifold M which has 

dimension m. These points are in essence a selection S based on 

which we would like to approximate the integral in (17). As can 

be seen from (15) the value of the integrand at these points is not 

enough for the formation of the Riemann sum. Rather the 

volume (or measure) of the interval (or patch) from which the 

selection was made is also necessary. Therefore the measure of 

these patches must be approximated. 

We note that there exists a fundamental difference between 

numerical integration of a function f on a manifold M and 

approximating this integral from samples of f. In the former case, 

one is able to freely partition the manifold, make a selection and 

then calculate the numerical sum (15) to get an approximation of 

the integral. In the latter case, the only available information is 

the selection, i.e. a set of points ix  and the value of f at these 

points. In this case one has to build the partition for numerical 

integration a posteriori (Fig. 1).  

Here we propose a method for approximating the measure of Qi 

in (15). By kii ,,1, K=κ  we denote the number of points jx  

in an є-neighborhood of 
ix . Therefore in a ball of volume 



n

nεα  centered at 
ix  there exist iκ  points.1 We would like to 

choose a ball around 
ix  such that it contains only one point, 

namely 
ix . So it is natural to choose the volume of such a ball 

as  

i

n

n
iv

κ

εα
= . (18) 

Due to the fact that the metric we have chosen on M is the one 

induced by the standard Riemannian metric on 
n

R , the measure 

of Qi can be approximated by the area of the intersection of this 

ball with M, i.e. 

i

m

m
iQv

κ

εα
=)( . (19) 

One should easily identify this measure as the inverse of the 

empirical approximation to the a posteriori pdf of points on the 

manifold. 

A more precise approximation of (17) can thus be made by the 

use of (19). Formation of the Riemann sum of (17) by the use 

(19) yields 
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The graph Laplacian can now be modified to take into account 

the effect of jκ . The W matrix is defined as  
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1 The coefficient nα  is actually equal to )2/1(/2/ nn +Γπ . 

and D and L are as before 

DWLWD
j

ijii −==∑ and . (22) 

A comparison of (21) and (12) reveals that in improved 

Laplacian eigenmaps, the columns of W are weighted by jκ/1 , 

where jκ  is proportional to the local density of points around 

the jth data point. This factor compensates for the nonuniform 

distribution of data on the manifold. Hence the proposed method 

extracts the structure of the manifold regardless of this 

distribution.  

5. CASE STUDIES 

5.1 Implementation 
The algorithm for implementation of improved Laplacian 

eigenmaps is the same as that for Laplacian eigenmaps and is 

outlined here for convenience  [1]. Given k points kxxx ,,, 21 K  

in 
n

R  the following steps are taken:  

1. (constructing the Proximity Graph) The neighboring 

points jx  of each data point ix  are determined. 

These are the points which satisfy  

ε<−< ij xx0 . (23) 

The number of these points is denoted by iκ .  

2. (Determining the Laplacian) The weight matrix of the 

proximity graph is determined from (21) and the graph 

Laplacian from (22).  

3. (Finding the Eigenmaps) The eigenvalues and 

eigenvectors of L are found 

yy λ=L . (24) 

The eigenvalues are sorted in ascending order 

1100 −≤≤≤= kλλλ L . (25) 

4. (Embedding) The optimal representation of ix  when 

embedded in 
m

R  is then given by  

[ ]T

m ii )(,),(1 yy K , (26) 

where jy  is the eigenvector corresponding to 

eigenvalue jλ , and )(ijy  is its ith component.  

In the following subsections we present the results of application 

of this algorithm to a number of artificial as well as a real-world 

data set. 

5.2 Case Study: Artificially Generated Data 

Sets 
Improved Laplacian eigenmaps has been applied to a number of 

artificially generated data sets and a comparison is made between 

this method and the weighted Laplacian eigenmaps as presented 

in  [1] and the Laplacian eigenmaps as presented in  [2]. Figure 2 

Figure 1. A comparison of (a) numerical integration and 

(b) integration from samples 



summarizes the results. In column (a) the original data is 

depicted. The points in the rows from top to bottom are sampled 

respectively from a circle, an eight shape, a disc, a ring, a square, 

a sphere, and a cylinder. Depicted in columns (b), (c) and (d) are 

the results of the retrieval of each manifold from its sample 

points using weighted Laplacian eigenmaps  [1], Laplacian 

eigenmaps  [2], and improved Laplacian eigenmaps respectively. 

Although the first two methods are able to preserve the structure 

of the manifold, deformations are present in the retrieved 

manifolds. Improved Laplacian eigenmaps on the other hand 

avoids these deformations.  

 

Figure 2. A comparison of (b) Laplacian eigenmaps, (c) weighted Laplacian eigenmaps, and (d) improved Laplacian 

eigenmaps. Column (a) represents the original data, while the other columns are the embeddings found by the three 

methods 

 



5.3 Case Study: Real-World Data Set 
The proposed method has been applied to a data set of 2000, 

40× 40 gray-scale images as used in Verbeek et al.  [8]. The 

images contain two degrees of variation in the pose of the 

face; The head turns from left to right, and from up to down. 

The data was first mapped to a 100-dimensional space using 

PCA, and improved Laplacian eigenmaps was applied. We 

shall note on the use of PCA in the last section. The results 

are depicted in Figure 3. Part (a) shows the two dimensional 

embedding found. Different regions of (a) have been 

magnified and shown in (b)–(f). In (b)–(e) every other 10th 

point has been labelled by its corresponding image. In (f) the 

labelling is done for every other 50th point. Part (g) shows 

different regions of the retrieved manifold for reference. Part 

(h) is the three dimensional embedding found. 

As can be seen the retrieved manifold is essentially two 

dimensional, which is consistent with our expectation; When 

we move from region (1) to (2) the head turns from right to 

left, and from region (3) to (4) then to (5) the head turns down 

and up again. Nevertheless, the folding in region 5 makes it 

impossible to embed the manifold in two dimensions, and a 

three dimensional ambient space as in (h) is required. The 

effect is seen in (f) where the right and left poses of the face 

interchange their places.  

 

Figure 3. Face image data set (a) two dimensional embedding (b)-(f) different regions of (a) zoomed in and labeled by 

images (g) regions of the manifold numbered for reference (h) three dimensional embedding 



6. CONCLUSION AND FUTURE WORK 
We have proposed a more accurate method for discretization 

of the Laplace-Beltrami operator on Riemannian manifolds. 

This was accomplished by weighting the integrand by the 

inverse of the empirical distribution of points on the manifold. 

When the points are selected from a nonuniform pdf on the 

manifold, this method compensates for the nonuniformity and 

retrieves the structure of the manifold, independent of the 

distribution of points. When the points are selected from a 

uniform pdf, still the posterior distribution of points on the 

manifold is nonuniform, and the method should be applied to 

compensate this nonuniformity. 

The method was applied to a number of artificially generated 

data sets and its superiority was demonstrated by a 

comparison with previously proposed methods. A real-world 

set of images was also studied and the data were mapped to a 

two dimensional manifold embedded in a three dimensional 

space. In this case the data were first projected to a 100-

dimensional space using PCA. As a matter of fact applying 

the method directly to the images does not yield a satisfactory 

result. This is due to a fundamental problem which arises 

when applying any manifold learning approach to image data 

sets. How should one choose the measure of similarity 

between images, such that it is proportional to the perceptual 

difference of them? The Euclidian distance 

( )∑ −=
ji

ijij BABAd
,

2
),(  (27) 

is by no means an appropriate measure, since it does not take 

into account the proximity information of the pixels in the 

image and all pixels are equally apart in this model. This is an 

issue to be addressed before any manifold learning approach 

can satisfactorily abstract the concepts present in image data 

sets. 
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