
On The Effect of Graph Representation of Source
Code in Bug Detection

Amir Makhshari
University of British Columbia

Vancouver, BC, Canada
amirosein@ece.ubc.ca

Mifta Sintaha
University of British Columbia

Vancouver, BC, Canada
msintaha@ece.ubc.ca

Abstract—With the popularity of using machine learning in
source code analysis, the new research trend is to reduce devel-
opment time through automation. One such branch is enhancing
software development through automation using ML techniques.
Representing source code as graphs for the machine learning
models to capture the structure of the source code has become
a popular approach recently due to the ability of graphs to hold
extra information about the source code. This paper aims to
explore the effectiveness of different graph-based representations
and various GNN models in detecting simple one-off errors
studied in the DeepBugs paper.

Index Terms—Graph Neural Network, Defect Prediction, Bug
Detection, Machine Learning in Software Engineering

I. INTRODUCTION

Software bug is a flaw or error introduced by developers
that cause a failure in the system. Bug detection has been one
of the most challenging research areas in software engineering
research. There are many different features of source code that
can be leveraged for bug detection. First of all, developers tend
to use meaningful names for variable names. A lot of bug
detection tools do not make use of the semantic similarities
of tokens in the source code and they only rely on syntactical
similarities. Second, the structure of source code can also add
a lot of meaningful connections among tokens while a lot of
ML-based bug detection tools only consider the surrounding
tokens of a given token. Recently, there have been different
ML-based approaches to help with this task that leverage each
of these meaningful features of the source code [1], [2]. In
this work we aim to preserve the semantics of source code
tokens while exploring the effect of different graph-based
representation of the source code and GNN models on the
task of bug detection.

The main contributions of this paper are:

• Using three variations of GNN models for bug detection
and studying the results.

• Using two variations of graph-based source code repre-
sentation for bug detection and studying the results.

We propose the specific graph structure and GNN variation
that can achieve the highest accuracy when using graph-
based representation for detecting the bug patterns studied by
Deepbugs [2].

II. RELATED WORK

A. Automatic Bug Detection

There have been many studies on automatic bug detection
which are usually either rule-based approach or a learning-
based approach. In this paper, we compare our work with the
state-of-the-art learning-based approaches for automatic bug
detection. Bugram [3] uses n-gram models to rank methods
and then extracts the top-ranked methods as the buggy method.
Token sequences are ranked by probability The low probability
token sequences are marked as a bugs. Pradel et. al proposed
Deepbugs [2], which is a deep learning technique that uses a
name-based bug detection approach for detecting three kinds
of bugs. Their tool is capable of detecting one-off errors like
wrong operator or operand, and swapped method arguments.
The approach uses the semantic information conveyed by the
identifier names to learn an embedding that maps identifiers to
vectors using Word2Vec [4] neural network. From both these
approaches, our study differs in deep learning technique of
bug detection. Similar to DeepBugs, we use the same goal and
dataset for our task but we use a graph based learning model
R-GCN whereas their study uses a sequence based RNN model
to detect bugs. Li et. al [5] uses Program Dependence Graph
(PDG) and Data Flow Graph (DFG) as global context for bug
detection to connect the buggy method with other relevant
methods. Their approach uses an attention-based Gated Re-
current Unit (GRU) layer to encode and emphasize the order
of the nodes in an AST path and an attention Convolution
layer for the final classification. The context of their approach
is much larger than ours, however, this study focuses more on
the effectiveness of a graph representation learning approach
due to its increasing popularity and similarity to AST of source
code.

B. Graph Representation of Source Code

Graph representation of source code has been gaining
popularity due to the presence of deep semantic information
provided by the relations between nodes. Allamanis et. al. [6]
put forth the insight that graphs are able to leverage the
syntactic and semantic relations between the nodes via edges
and also consider long-range dependencies. This provided
us with a strong motivation to verify the effect of graph
representation learning on the task of bug detection. Their

1

study were on detection of VarMisuse and prediction of
VarNaming tasks whereas ours considered bug detection as a
task for verifying the effect of graph representation learning.
Hoppity [1] uses graph representation with additional data flow
edges and a GNN model for automatic program repair while
our study focuses on bug detection and effectiveness of graph
representation. W. Wang et. al. [7] used heterogeneous graphs
for representing source code on the task of code comment
generation and method naming. Their study compared hetero-
geneous graph representation performance for two tasks and
found that it outperformed the baselines. Our study revealed
that for simple one-off bugs, however, graph representation
learning for both homogeneous and heterogeneous graphs is
not as effective as sequence-based approach due to the simple
syntactic changes in the graph. We believe that for more
complex bugs, graph-based representation and learning will
be more effective when coupled with sufficient context.

III. BACKGROUND

In the literature, there are various studies of using graph
representation and GNN models for bug detection and program
repair. Graphs of source code are often generated by the
augmentation of Abstract Syntax Tree (AST) of the source
code with data-flow or control-flow edges. The addition of
these edges retain a lot of semantic information. A very recent
paper introduced Hoppity [1], which handles not only bug
localization, but also generates patches of the buggy code
of JavaScript code. Hoppity uses a GNN model to map the
program graph into a representation in a fixed dimensional
space. It uses a LSTM based GNN model to give out a
fixed version of the code which is a learned graph. However,
Hoppity only focuses on bug fixes, whereas we want to focus
on only bug detection. We also investigated another paper by
Y. Wang et al. [8] which detects static bugs in popular Java
projects but it uses a RNN model as the representation learning
for the source code. For bug classification tasks, it uses a GNN
model.

From these papers, we realized that it is hard to get a
sense of the better program representation. They are also
not compared against the same setup - some target specific
languages and some use varying representation and classifi-
cation models. Therefore, in this paper, we aim to investigate
the effect of graph representation of source code on the task
of bug detection. The bugs that we detected are the one-off
bugs in DeepBugs [2], which include wrong binary operator,
wrong binary operand and swapped arguments in functions.
The graph types and models used in this approach are outlined
below:

A. Graph Types

In this paper, we conducted studies on the different types
of graphs to see its effect on bug detection. The two types of
graphs used in this study are shown in Figure 1.

Homogeneous Graphs. Homogeneous graphs are graphs that
contain the same type of nodes and all edges represent rela-
tionships of the same type. Figure 3 shows the homogeneous

graphs for each bug types where each node is considered same
and each edge is assumed to have the same relationship type.

Heterogeneous Graphs. Heterogeneous graphs are graphs
that contain different types of nodes and edges. The different
types of nodes and edges tend to have different types of at-
tributes that are designed to capture the characteristics of each
node and edge type. As shown in Figure 4, the heterographs
for the three bug types have many different relation types to
each of the nodes.

B. GNN Models

To classify the bugs, we use three different models, where
two of them are implemented on homogeneous graphs and
remaining on heterogeneous graphs

Graph Convolutional Network (GCN). GCN is a type of
Convolutional Network that works on graphs and take advan-
tage of their structural information. A node in a graph can
send or receive messages with its connected neighbours and
this phenomenon is called message passing. Figure 1 illustrates
the graph message passing between neighbouring nodes. The
node features are aggregated by taking the average of its
neighbouring features and passed through a Neural Network
to produce a new vector. Mathematically, GCN follows the
formula below:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

H(l) is the lth layer in the network, σ is the non-linearity,
and W denotes the weight matrix for this layer. D and A, as
commonly seen, represent degree matrix and adjacency matrix,
respectively. The ∼ is a kind of re-normalization where a self-
connection is added to each node of the graph, and build the
corresponding degree and adjacency matrix. The shape of the
input H(0) is N × D, where N is the number of nodes and
D is the number of input features [9].

Graph Attention Network (GAN). In GCN, a graph con-
volution operation outputs the normalized sum of the node
features of neighbours. However, GAN introduces the attention
mechanism as a substitute for the normalized convolution
operation.

z
(l)
i =W (l)h

(l)
i (2)

e
(l)
ij = LeakyReLU(~a(l)

T

(z
(l)
i |z

(l)
j)) (3)

α
(l)
ij =

exp(e
(l)
ij)∑

k∈N (i) exp(e
(l)
ik)

(4)

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij z

(l)
j

 (5)

Equation (2) is a linear transformation of the lower layer
embedding and learnable weight matrix W (l). In equation
(3), a pair-wise un-normalized attention score between two
neighbors is computed. It first performs a concatenation of the
z embeddings of the two nodes, then takes a dot product of it
and a learnable weight vector ~a(l), and applies a LeakyReLU

2

Figure 1: This figure shows an example of how nodes perform
message passing throughout the graph. (a) In homogeneous
graphs all nodes and edges are from the same type. (b) In
heterogeneous graphs, there are categories of nodes (N1, N2,
N3) and categories of edges (E1, E2). Each node or edge has
a certain index in their category. For example, N1[0] means
the first node of the N1 node category. The message being
passed is the feature vector of the nodes.

in the end. Finally a softmax is applied to normalize the
attention scores of node’s incoming edges and the embeddings
are aggregated together scaled by the attention scores. In
this paper, both GCN and GAN are used for classifying
homogeneous graphs [9].

Relational Graph Convolutional Network (R-GCN). R-
GCN is used on heterogeneous graphs where the nodes and
edges are of different types. In R-GCN, different edge types
use different weights and only edges of the same relation
type are associated with the same projection weight W (l). The
hidden representation of entities in (l + 1)th layer in R-GCN
is formulated in the following equation:

hl+1
i = σ

W (l)
0 h

(l)
i +

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j

 (6)

Here Nr
i denotes the set of neighbor indices of node i under

relation r ∈ R and ci,r is a normalization constant. However,
this is not scalable for graphs with very high relational data.

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b (7)

So a basis decomposition is applied as outlined in the above
equation where the weight W (l)

r is a linear combination of
basis transformation V (l)

b with coefficients a(l)rb .

IV. METHODOLOGY

Our goal is to study the effect of graph representation of
source code in the task of bug detection. As previous stud-
ies [2] have shown, supervised machine learning approaches
can be used for bug detection and perform reasonably good.
In order to narrow down the problem, we focus on single
line buggy or correct code and we consider only three certain
bug patterns used in [2]. Focusing only on this limited space,

allows us to study the effect of graph representation in a more
fine-grained manner. To this end, we address the following
research questions in this work:
• RQ1: How accurate can graph representation of source

code be for detecting the bug patterns studied in Deep-
Bugs [2]?

• RQ2: Which types of GNN models and graph structures
are more helpful in bug detection??

• RQ3: How do different graph representations perform in
detecting different bug patterns?

In order to answer these questions, we followed the steps
described in Figure 2. Our dataset, model, and source code
is available in our replication package [10].

A. Dataset

In this section we describe how we collect data and discuss
some features of the dataset we use.

1) Data Collection: This step includes collecting a large
code corpus that will be used for training and validation of
our proposed automatic bug detector. Since we want to focus
on supervised learning, we need to have a labeled dataset with
each code snippet labelled as buggy or correct and use them
for training.

For this step, we use a JavaScript labelled dataset used
in [2], which also has been used by other studies. This dataset
consists of the AST of buggy and correct single line statements
with their labels. As observed by previous studies [11], a
huge amount of existing code is very likely to be correct.
Thus, in this dataset, a big corpus of code has been extracted
from GitHub and labeled as correct. However, the buggy
code is created artificially by simple code transformations that
each meant to represent a certain bug pattern. We used 150K
JavaScript files and folded the dataset such that 80% was used
for training and 20% for testing.

2) Bug patterns: In this section, we briefly introduce the
bug patterns we have studied in this paper and describe the
features they have in our dataset.
Swapped arguments. This bug pattern is about the use of
arguments in JavaScript function calls. In our dataset, all
function calls with two or more arguments have been added to
the correct examples. We have to note that for function calls
with more than two arguments, only the first and the second
arguments have been considered. Below we can see a correct
example of these extracted function calls:
this . retry_ (id , xhrIo)

The wrong examples are generated by swapping the order
of first and second arguments:
this . retry_ (xhrIo , id)

In addition, for each data point, some additional contextual
data are added to the data stored for that function call example
in the dataset. First of all, besides the called function (callee),
the base object (base) is added if the call is a method call.
Otherwise, an empty string is considered as the base node.
Also, the formal parameters of the callee is considered. Again,
empty strings are added if it is unavailable. Additionally, types

3

Figure 2: Overview of our approach

of first and second arguments are also added. If the arguments
are values other than literals, an empty strings is added as the
argument type.
Wrong binary operator. The next two bug patterns are about
mistakes in writing binary operations. Consider the below code
snippet as the correct example of a binary operation:
for (var i=0;i<len;i++) if (validBits >= 8)

Wrong binary operator is a mistake related to using the
wrong operator in binary operations. In the below example of
wrong binary operator, the correct >= operation is replaced
by another operator which is >.
for (var i=0;i<len;i++) if (validBits > 8)

In the dataset we use, wrong binary operator examples
are created by replacing the correct operator with a random
operator.
Wrong binary operand. Wrong binary operand is a mistake
related to using the wrong left or right operand in binary op-
erations. If we consider the correct binary operation discussed
for the previous bug pattern, in the example below, the correct
validBits operand is replaced by another operand which is
bitsSoFar.
for (var i=0;i<len;i++) if (bitsSoFar > 8)

In our dataset, wrong binary operand examples are created
by replacing the correct operand with a random operand
occurring in the same file. In this example, bitsSoFar occurs in
previous lines in the code and is chosen as the wrong operand.
We should note that the operand to be mutated (right or left
operand) will be chosen randomly.

In addition, some contextual data are also extracted for each
binary operation in our dataset. The parent (IfStatement
in this case) and grand parent (ForStatement in this case)
are extracted from the AST of the subject binary operation
line in the code. In addition, the operand types are also added
to the data for each data point, if their types are known. Since
JavaScript is a loosely typed language, some operand types
are left as unknown in our dataset.

B. Graph Representation of Source Code

The most prominent bug detection approaches such as [2]
use sequential representation of source code. However, in
this study, we represent source code as a graph and learn

a representation for the graph that can help GNN models in
detecting buggy and correct graphs. In order to do that, we
follow below steps:

Initial graph representation. We start with constructing an
initial graph representation for each code snippet. Our dataset
consists two types of code statements: binary statements and
function call statements. For each of these statements we use
a dedicated graph structure.

As it is discussed in section III, there are two main ap-
proaches to build graphs. We implemented both homogeneous
and heterogeneous graph structures of the source code to study
the effect of graph structures on the results. Thus, we have a
dedicated homogeneous and heterogeneous graph for binary
operations and for function calls. As an initial structure for
graphs, we started from the AST of each code snippet. Then,
similar to previous studies [1], [6], [8] that embed the AST
with some additional nodes and edges, we tried to follow the
same approach by adding meaningful connections between
nodes. Our goal for adding or removing any connection is
to leverage the message passing process to achieve better
accuracy in bug detection.

Figures 34 show how we construct homogeneous and het-
erogeneous graphs for all binary operations and function calls.
All the graphs show the correct version of the code and the
red circles in each bug pattern graph show the nodes that
should change in the graph in order to represent that certain
bug pattern.

Homogeneous graph of code. As Figure 3 shows, most
homogeneous graphs are similar to the AST version of the
code statements. As it is discussed in section III, none of the
nodes or edges have any sort of label. Thus, in these graphs, all
nodes and edges are the same except the node features which is
the Word2Vec embedding of the token assigned to that node.
As the red nodes show, all three bug patterns would have
the same structure as the correct version with only changing
the features of one node in wrong binary operator graph, two
nodes for wrong binary operand graph, and four nodes for
swapped arguments graph.

Heterogeneous graph of code. Figure 4 depicts how the
homogeneous graphs are evolved to be heterogeneous. One
important change that we applied, was making the nodes and

4

Figure 3: Homogeneous Graph

Figure 4: Heterogeneous Graph

connections meaningful, by creating categories of nodes and
edges by adding meaningful labels to them.

For node categories, in binary operation graphs, we put
the parent and grand parent nodes to the same category of
parent[0] and parent[1]. We did the same for the base and
callee of function calls by grouping them as callee[0] and
callee[1]. This way the model interprets these nodes as they
are both related to the same category. We followed the same
approach for binary operation tokens, their types, and function
arguments, their types, as well as function parameters in
method calls. Also, regarding edge categories, for all bug
patterns, meaningful labels such as parent_of, type_of, follows
and followed_by, parent_of, and is_param_of have been added
to edges.

Also, we removed some edges and replaced them with other
edges. First of all, regarding binary operations, we observed a
stronger relation between token types and the binary operator
compared to token types and parent node in our dataset. Thus,
we altered the binary operation graphs accordingly. First, a
new edge from the token types to the operator has been added.
This change helped our model in detecting wrong binary
operator bugs. Also, the edges from the parent node to the
token type nodes have been removed as they could mislead the

model to less important aspects. Since usually both left and
right token types are similar in correct versions, it is easier
for the model to distinguish an invalid type just by the node’s
own features and without looking at the parent node. Also,
as we investigated the binary operation examples, we could
see a fairly reasonable relation between the parent node and
the left and right token. For example, depending on whether
the parent node is a if or a while statement, the actual tokens
usually will be changed based on them. Thus, we concluded
that adding two new edges that connect the parent to the left
and right tokens might be helpful.

There are some edge additions and deletion on the graph
of method calls too. First of all, we removed the edge that
connects two parameters of the function as it is not so related
to the existence of any bug based on the examples we observed
in the dataset. In addition, we connect the method parameters
to called arguments as it was only connected to types of
called argument before. Our empirical investigation showed
that function parameters and called arguments can be very
related. In section V, we show how all these changes improve
the performance of our model.

Node embedding. Since machine learning models rely on

5

vector presentation of the input, we first embed graphs’ nodes
with a previously learnt vector of real numbers. The goal in
this step is to preserve nodes’ semantics so that nodes with
similar properties, such as lexical or syntactical similarities,
would lie closer to each other in the vector space. We used
the same embedding as the Deepbugs study uses for each
identifier and also each literal [2]. Also, whether each token
is an identifier (ID) or a literal (LIT) is embedded in the
representation of that token.

For identifiers, the embeddings are learnt via CBOW variant
of Word2Vec [4], which trains a neural network that can
predict a word via its’ sorounding tokens. For this training
process, the vocabulary has been limited to 10,000 tokens
by discarding infrequent tokens. Also, for the number of
surrounding tokens to consider, the size of 20 (10 left and
10 right) has been chosen.

However, we have to note that for identifier types (such as
boolean or int) and also AST node types (such as Call expres-
sion or While statement), a one-hot-encoding representation
has been used.

Graph representation learning and classification. This is
where representation learning takes place. In other words, a
machine learning model takes the graphs alongside the nodes’
embedding vectors and makes the representation of each node
better based on the graph connections. This step is done
through a process called “message passing” in Graph Neural
Networks which will ultimately cause each node to consider a
fair number of structurally connected nodes in its embedding.
More details about this step for the GNN models we used have
been discussed in section III.

After having the perfect graph representation for labelled
each code snippet, our GNN implementation uses this rep-
resentation as well as graph-level labels for training a bug
detection classifier.

C. Implementation

We implemented our approach on top of the Deepbugs
implementation. We start with Deepbugs’ correct corpus of
code and as the buggy code snippets are generated, we form
and save the graph structure on-the-fly for both correct and
buggy versions. We use the DGL library [9] to implement
the graph structures and classifiers. We use a batch size of
100 graphs at a time with 16 hidden layers for each of the
classifiers used in this study. The input feature length is 200
as the Word2Vec learned tokens extracted from DeepBugs [2]
dataset was of the same length. The operator, node type and
type vectors were of length 30 which were then padded to
keep up with the feature vector length of 200. The learning
rate was about 0.005 and the models were trained on 16GB
Intel Core i7 processor using the CPU. The training for each
of the models was done in 30 epochs which takes around 20
minutes to complete.

V. EVALUATION AND DISCUSSIONS

To address the research questions, we followed the method-
ology described in the previous section to measure the ac-

curacy of the graph-based bug detection model. The models
are given two kinds of graphs - one for binary operation and
another for function calls. As separate models are used to
classify each of the graphs, we report the accuracy of each of
the model’s accuracy in classifying the bugs. We also report
the accuracy of Homogeneous graph representation of source
code which will be discussed further in next sections. In the
following sections, we use gbuggy and gcorrect to denote the
buggy and correct graphs.

A. RQ1. How accurate can graph representation of source
code be for detecting the bug patterns studied in Deep-
Bugs [2]?

For classifying the bug patterns, we formulated it as a
graph classification task to represent each graph as gbuggy
and gcorrect. We used separate models for each of the bug
patterns since using the same model for classifying three
bug patterns and their correct versions was not yielding a
good accuracy. Using separate models also makes it a fair
comparison with DeepBugs [2] where they reported their
accuracy for each bug pattern. We also used the accuracy
reported for Word2Vec [4] embeddings in DeepBugs. We
found that using random embeddings yielded a lower accuracy,
therefore, we used the accuracy of WordtoVec embeddings in
DeepBugs as the baseline for comparison.

We report the accuracy of our approach and DeepBugs
approach in Table I. As shown in the table, for R-GCN
classifier on Heterographs, the bug pattern of "Wrong Binary
Operator" gave the highest accuracy (80.13%) among the three
bug patterns, followed by "Wrong Binary Operand" (73.17%)
and the lowest accuracy for "Swapped Arguments" (58.07%).

Compared to Deepbugs, the accuracy of the R-GCN model
is lower for all the bug patterns. One reason for the lower
accuracy can be using a structure dependent classifier for
predicting bugs. As shown in Figure 4, both gbuggy and
gcorrect use the same graph structure but the only aspect that
is different is the feature vector changed in the buggy nodes
denoted by the red dots, while the graph structure remains
exactly the same. Therefore it is evident from the results that,
for detecting simple one-off errors as used in DeepBugs [2],
graph-based representation cannot accurately help in detecting
bugs compared to a sequence-based approach.

B. RQ2. Which types of GNN models and graph structures
are more helpful in bug detection?

In Table I, we try to show the type of graph representation
that is suitable for source code representation of bugs by
reporting the accuracy of both graph types - homogeneous
and heterogeneous graph representations of the three bugs. In
the homogeneous graph, each of the nodes are considered the
same type derived from the basic AST representation of the
bug pattern, with edges flowing from parent to child nodes.
The only extra edge added in homogeneous graph is the edges
that link the binary expression. Initially, we ran the GCN
model on the graphs and found the accuracy was very low with
"Swapped Arguments" being the highest (50.89%) followed by

6

Table I: Accuracy of GNN models on different bug patterns

Classifier Graph Type Wrong bin operand Wrong bin operator Swapped arguments
GCN Homogeneous 49.81% 50.00% 50.89%
GAN Homogeneous 50.00% 50.00% 50.00%
R-GCN Heterogeneous 73.17% 80.13% 58.07%
Deepbugs NN n/a (sequence-based) 89.06% 92.1% 94.7%

"Wrong Binary Operator" (50%) and the lowest for "Wrong
Binary Operand" (49.81%). We believed that since GCN gives
structural attention to the graph representation, and the graph
structures were the same in gbuggy and gcorrect, it was not able
to accurately classify the bugs. To prove this hypothesis, we
used a GAN model which is feature dependent as opposed to
GCN which is structure dependent. However, we only achieved
a 0.2% improvement over GCN for "Wrong Binary Operand"
and a 0.89% decrease in accuracy for "Swapped Arguments".
From the results, it makes sense that homogeneous graphs
are not the correct way to represent source code AST of
bugs. Additionally, homogeneous graphs have only one type of
relation between the nodes, whereas heterogeneous graphs are
able to semantically distinguish the edge types from source
node to destination node. This is also proven by the fact
that each nodes in an AST are of different types containing
variables or control flow, and each edges signify different types
of relationship between the nodes.

Furthermore, in heterogeneous graphs, we found that adding
meaningful edges between the nodes can increase the accuracy.
While the AST of the buggy line is taken as the initial
structure, we added meaningful relations for connecting the
nodes to one another. For instance, in Figure 4, the graphs for
"Wrong Binary Operator" and "Wrong Binary Operand" have
a grand-parent precedes the parent node, while the parent
node is the parent of all left, right tokens and operator in a
binary expression. We also added separate relations to define
the type to token relation and connect the values with a
follows and followed_by edge labels. Each of the edge label
types semantically defines the relation between the nodes,
which yielded an accurate classification. This hypothesis is
also supported by [1] where special edges like ValueLink and
SuccToken were added to the gbuggy and gcorrect to connect
the node values and leaf nodes.

C. RQ3. How do different graph representations perform in
detecting the subject bug patterns?

To address RQ3, we highlight the steps to achieve an
optimum graph representation of bug patterns.

1) The Role of AST-based Context: As shown in the results,
we found that the bug pattern "Swapped Arguments" had the

lowest accuracy (58.07%) for classifying bugs, even though
in DeepBugs [2], it had the highest accuracy. One reason
for such accuracy can be the role of context in the graph
representations. In the gbuggy and gcorrect of "Wrong Binary
Operator" and "Wrong Binary Operand" shown in Figure 4,
we can see two additional nodes besides the affected code
statement, such as grand-parent and parent nodes. These
nodes hold the information of the surrounding statement nodes
of the buggy line, whether or not the statement is within
an IfStatement, ForStatement, ReturnStatement
etc. In DeepBugs dataset, the context is provided at two levels
which was why the graphs had parent and grand-parent nodes
types only. However, in the "Swapped Arguments" graph, we
can only see the method signature and the values passed,
with no information about the enclosing node types in the
statement. This intuition also holds in a real life scenario where
a programmer would require context of the surrounding node
to understand the semantic nature of the statement. Therefore,
with no context, the GNN model is not able to accurately
classify gbuggy and gcorrect.

2) The Role of Graph-level Connections: As discussed in
RQ2, heterographs provide the ability to distinguish the types
of relations between the nodes. Therefore, adding meaningful
relations is key to represent the AST of the buggy or correct
statement in graphs. Initially, we tried to connect the nodes
with a generic relation of precedes connecting from the source
to destination nodes of the AST. The only extra relation we
added was the nodes that follow one another in a single
statement. However, this yielded a really low accuracy as
shown in Table II.

We tried adding more edges to the graph with the goal of
increasing accuracy, but this actually lowered the bug detection
ability of the GNN model as shown in Table II. We can see
that with complex relation types, the accuracy of all three bug
patterns are slightly higher than the simple relations but lower
than the meaningful relation types.

VI. LIMITATIONS

Since we re-use Deepbugs dataset and leverage Word2Vec
embeddings, the limitations of these tools apply to our study
as well. First of all, in the dataset, tokens are represented as

Table II: Accuracy of R-GCN model for heterographs in different relation types

Relation Types Wrong bin operand Wrong bin operator Swapped arguments
Simple 58.12% 48.07% 50%
Complex 62.02% 50.13% 55.28%
Meaningful 73.17% 80.13% 58.07%

7

Figure 5: The role of graph-level connections on detecting binary operation bugs.

whole symbols and this might cause some missing semantic
information. For example, the tokens newArray and oldArray
are not parsed more and they have different embedding vectors
while they share a lot in common. In addition, the vocabulary
is limited to 10,000 frequent tokens which can cause the
model to not differentiate infrequent tokens from each other.
Additionally, like all other ML-based approaches, our results
are subject to over-fitting to dataset as well. However, we tried
to overcome this issue by using separate training, evaluation,
and test sets. This issue can be further resolved by using k-fold
cross validation.

Another limitation of our work is to be reliant on one-line
code examples. This prevents our findings to be generalized
for more realistic contexts. This means we cannot conclude
whether GNN models or graph-based representations are better
for bug detection compared to RNN models and sequence-
based representation. Some factors that are discussed in this
paper, such as the amount of contextual data, can be further ex-
amined to see whether they can make graph-based approaches
perform better even on these simple bug patterns.

VII. CONCLUSION AND FUTURE WORK

From this study, we can conclude four things. Firstly,
heterogeneous graphs are the way to represent source code
compared to homogeneous graphs, as they allow us to leverage
the rich syntactic and semantic relations between the nodes
and edges in the AST. Secondly, meaningful relations can
increase the accuracy of a R-GCN model in classifying bugs
and understanding the program structure. Thirdly, context
plays a crucial role in improving the accuracy of a model
for bug detection, as the intuition hold in a real life scenario
when developers use the surrounding context to debug a code.
Finally, for simple one-off bugs like wrong binary operator,
operand and swapped arguments, graph representation may
not be a good way to represent source code with the given
context compared to previous sequence-based approaches.

Our study suggests exploring some ideas that might lead
into new results and findings. First, exploring the performance

of our approach when more context of the source code is given
in the dataset can give us a good understanding of when to
use graph-based representations and when not to use them.
Second, it would be interesting to see how the results can
improve for other types of bugs rather than the three simple
bug patterns studied here to verify the effectiveness of graph
representation further.

REFERENCES

[1] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=SJeqs6EFvB

[2] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

[3] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram:
Bug detection with n-gram language models,” 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 708–719, 2016.

[4] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[5] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving
bug detection via context-based code representation learning and
attention-based neural networks,” Proc. ACM Program. Lang., vol. 3,
no. OOPSLA, Oct. 2019. [Online]. Available: https://doi.org/10.1145/
3360588

[6] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[7] W. Wang, K. Zhang, G. Li, and Z. Jin, “Learning to represent programs
with heterogeneous graphs,” 2020.

[8] Y. Wang, F. Gao, L. Wang, and K. Wang, “Learning a static bug finder
from data,” CoRR, vol. abs/1907.05579, 2019. [Online]. Available:
http://arxiv.org/abs/1907.05579

[9] DGL Library, March 2021, https://www.dgl.ai.
[10] M. Sintaha and A. Makhshari, Replication Package, April 2021, https:

//github.com/msintaha/BugClassificationWithGNN.
[11] P. Bielik, V. Raychev, and M. Vechev, “Phog: probabilistic model for

code,” in International Conference on Machine Learning. PMLR, 2016,
pp. 2933–2942.

8

https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1145/3360588
https://doi.org/10.1145/3360588
http://arxiv.org/abs/1907.05579
https://www.dgl.ai
https://github.com/msintaha/BugClassificationWithGNN
https://github.com/msintaha/BugClassificationWithGNN

	Introduction
	Related Work
	Automatic Bug Detection
	Graph Representation of Source Code

	Background
	Graph Types
	GNN Models

	Methodology
	Dataset
	Data Collection
	Bug patterns

	Graph Representation of Source Code
	Implementation

	Evaluation and Discussions
	RQ1. How accurate can graph representation of source code be for detecting the bug patterns studied in DeepBugs deepbugs?
	RQ2. Which types of GNN models and graph structures are more helpful in bug detection?
	RQ3. How do different graph representations perform in detecting the subject bug patterns?
	The Role of AST-based Context
	The Role of Graph-level Connections

	Limitations
	Conclusion and Future Work
	References

