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Abstract

In this paper, we study network—coded cooperative diversity (NCCD) systems comprising multiple sources,
one relay, and one destination, where the relay detects the packets received from all sources and performs Galois
field network coding before forwarding a single packet to the destination. We develop a simple generalized
cooperative maximum-ratio combining scheme for the destination which achieves a similar performance as
optimal maximum-likelihood combining. Furthermore, assuming independent Rayleigh fading for all links of
the network, we derive simple, elegant, and accurate closed—form approximations for the asymptotic symbol
and bit error rates of NCCD systems. The derived error rate expressions are valid for arbitrary numbers of
sources, arbitrary modulation schemes, and arbitrary constellation mappings and provide significant insight
into the impact of various system and channel parameters on performance. Moreover, these expressions can
also be exploited for optimization of the constellation mapping as well as for formulation of various NCCD

system optimization problems including optimal power allocation, relay selection, and relay placement.

I. INTRODUCTION

Cooperative diversity (CD) is an effective technique to exploit the spatial diversity offered by
wireless relay nodes. However, since the cooperating terminals typically use orthogonal channels for
transmission to simplify processing at the relays and the destination, CD entails a throughput reduction
[1], [2]. This throughput reduction is most noticeable in CD systems with multiple source terminals
since in such systems the relays use separate orthogonal channels to forward the signals received from
different sources. As a result, the relays can serve only a single source in a given time or frequency
slot, and therefore the available resources are not shared efficiently by the sources.

Network coding over Galois fields (GFs) is an efficient approach to increase the throughput of
multi—source CD systems [3]-[5]. The idea of network coding was originally developed for wired
networks as an efficient routing technique capable of enhancing the network throughput [6]. In the
context of CD, network coding can be employed to overcome the associated throughput bottleneck

by allowing relays to simultaneously serve multiple source terminals.
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The combination of CD and GF network coding, which we refer to as network—coded CD (NCCD)
in this work, has received considerable attention recently. In particular, the outage capacity of NCCD
systems was calculated in [3], [4], and their diversity—multiplexing tradeoff was analyzed in [5]. In
[7], for a network coding system employing an algebraic superposition of channel codes and iterative
decoding at the destination, optimal channel codes were designed based on an ad—hoc code search.
The diversity order of an NCCD system employing distributed error—correcting codes was analyzed in
[8], and it was shown that a maximum diversity order equal to the minimum distance of the employed
error—correcting code can be achieved. Also, physical-layer network coding (PNC) [9] and complex
field network coding (CFNC) [10] have been proposed as interesting alternatives to NCCD. However,
unlike NCCD, for both of these schemes the relay receives the transmissions of multiple sources
simultaneously, which makes time and frequency synchronization very challenging. Furthermore, the
relay transmit signals for PNC and CFNC do not belong to a standard signal constellation and, as a
result, may suffer from a high peak—to—average power ratio.

While error rate expressions which facilitate performance evaluation and system optimization are
desirable, existing works on NCCD systems [3]-[8] do not provide a general and accurate error rate
analysis. Furthermore, these works assume network coding in the GF of order two, and therefore do
not explore potential benefits of notwork coding over GFs of higher order. Thus, in this paper, we
investigate the error rate performance of NCCD systems comprising multiple sources, one relay, and
one destination, where network coding is performed over the GF of order M = 2™, m € {1,2,...},
and an arbitrary M —ary modulation is empolyed by the sources and the relay. In addition, in order
to obtain a simple combining scheme at the destination, which is amenable to analysis and achieves
a similar performance as optimal maximum-likelihood (ML) combining, we generalize cooperative
maximum-ratio combining (C-MRC), which was proposed in [11] for conventional CD systems, to
NCCD. For the resulting NCCD system we derive simple and accurate closed—form approximations for
the asymptotic symbol and bit error rates in Rayleigh fading. The developed closed—form expressions
give valuable insight into the impact of various system and channel parameters (e.g., the number
of sources, the signal-to—noise ratios (SNRs) of the involved wireless links, the signal constellation,
and the constellation mapping) on performance. For example, our analytical results reveal that the
achieved diversity gain for all source terminals is equal to two, irrespective of the number of sources.
In contrast, the network—coding gain is source dependent and is affected by various system and channel

parameters. Furthermore, the derived error rate expressions can be exploited for various NCCD system



optimization problems including optimal constellation mapping, power allocation, relay selection, and
relay placement.

The remainder of this paper is organized as follows. In Section II, some notations and definitions and
the system model of the considered NCCD system are introduced. Accurate asymptotic expressions
for the symbol error rate (SER) and the bit error rate (BER) of NCCD systems are derived in Section
III. Optimal power allocation for NCCD systems is discussed in Section IV, and numerical and

simulation results are presented in Section V. Finally, some conclusions are drawn in Section VI.

II. PRELIMINARIES
In this section, we describe the model for the considered NCCD system and introduce some

notations and definitions.

A. Notations and Definitions

In this paper, [-]7, (-)*, ®{-}, &{-}, (), L'(-, ), and 9(-) denote transposition, complex conjugation,
the real part of a complex number, statistical expectation with respect to x, the Gamma function, the
upper incomplete Gamma function, and the Digamma function, respectively. Q(z) = \/LTW f;o e /2t
denotes the Gaussian ()—function. Furthermore, we use the notation v = v to indicate that v and v

are asymptotically equivalent, and a function f(x) is o(g(x)) if lim, ¢ f(x)/g(z) = 0.

B. Signal Model

The considered NCCD system is depicted in Fig. 1 and comprises N, source terminals S;, 1 <
1 < N, one relay R, and one destination terminal D). Transmission from the source terminals to the
destination terminal is organized in two hops. The first hop comprises N, orthogonal time or frequency
slots (referred to as channel slots in the following), where each source terminal S;, 1 < ¢ < N,
transmits its message to the relay and the destination. In particular, a data symbol s; € A is generated
at source S;, where A = GF(2™) is the GF of order M = 2™, m € {1,2,...}. This data symbol
is mapped to a transmit symbol z; € X with £{|z;|*} = 1 using the mapping z; = ux(s;), where
X denotes an M —ary signal constellation such as M-ary phase—shift keying (M-PSK) or M-ary
quadrature amplitude modulation (M-QAM), and py : A — X is a one—to—one constellation mapping
function from A to X’. Subsequently, source .S; transmits symbol z; to the relay and the destination.

The signals received by the destination and the relay in the first hop are given by

rs,p =\ Fi fixi+np; and rgr=+PFgxi+ngr; 1<1i<N;, (1)



respectively, where P, is the average transmit power of the ith source, and f; and g; denote the fading
gains of the S; — D and the S; — R channels, respectively. Furthermore, np,; and ng; denote

the additive white Gaussian noise (AWGN) samples at the destination and the relay with variances

2 4

g
np,i

E{lnp*} and o7 = E{[ng,|*}, respectively.

The relay performs coherent ML detection and generates the detected symbols
TR, = arg mi}(lﬂ?“sm — VP g: 7|’} 1 <i< Ny, (2)
Ie

which correspond to detected data symbols §p; = ,u;(l(i" ri) €A 1 <i<N,.

The second hop comprises a single channel slot. In particular, in the second hop the relay performs
network coding and computes the data symbol g = 3z ®---®3r N, € A, where @ denotes addition
in GF(2™). The relay then forwards the transmit symbol #z £ py(3g) € X to the destination. The

signal received at the destination in the second hop, rzp, can be modeled as

rrp =V PRhR TR+ np R, 3)

where Py is the average transmit power of the relay, hy is the fading gain of the R — D channel,
and np g is the AWGN at the destination in the second hop having variance o7 £ E{|nprl*}.
Throughout this paper we assume independent Rayleigh fading for all links of the network. Thus,
the fading gains f; £ ay, e 9%, g; £ a, e7%, 1 <i < N, and hp = a;, e /% are independent
Gaussian random variables (RVs) with zero mean and variances 2y, = E{|fi|*}, Q, = £{|gi*}
1 <i < N,, and Qp = E{|hg|*}, respectively. Here, the channel amplitudes ay,, a,,, and ay,, are
positive real RVs and follow a Rayleigh distribution. Furthermore, the channel phases 0y,, 0,,, and

0p,,, are uniformly distributed in [—7, 7) and are independent from the channel amplitudes.

R

For future reference, we define the instantaneous SNRs of the S; — D, S; — R, and R — D links

2
nR,i’

2
np,R’

2
nR,i’

as v, = P, a3,/ O'%Dﬂ_, Yo = Pial /o and 7y, = Pg ap_ /o respectively. The corresponding

2
nD,R’

average SNRs are given by 7y = PZ-in/a,%D,i, Vo = PiQy, /o and Ypr = PrQg/o
respectively.

Remark 1: Based on the presented signal model, a total of N, + 1 channel slots are required for
transmission of the signals of all N, sources to the destination. In contrast, a conventional CD system
[1], [11] requires 2N, channel slots since the relay assists only a single source in a given channel

slot.



C. Equivalent Source—Relay Channel

In this subsection, we introduce an equivalent channel between the source terminals and the relay for
the considered NCCD system which will be particularly useful for developing the diversity combining
scheme in Section II-D and the performance analysis in Section III. The input of this equivalent
channel, zp, is the relay transmit symbol in the absence of noise, i.e., xp = px (sg) € X with sg =
s1@---@ sy, € A, and the output is the actual relay transmit symbol Z . Defining the source-relay
SNR vector v, 2 [Vors 7’YQNS]T’ this channel is characterized by the equivalent error probability
Peeq(7y) 2 Pr{ir # xzr}. For an M-ary signal constellation X, the equivalent error probability can
be approximated by P, cq(7v,) = BQ( 20476(1('79)), where o and 3 are two modulation dependent
constants (e.g. « = 8 = 1 for BPSK). Furthermore, 7.q(7,) is the instantaneous SNR associated with
the equivalent source-relay channel which can be expressed as Yeq(v,) = 5 (@ (Peeq(v,)/ ,6’))2. It
can be shown that for sufficiently high SNR, v.q(7,) can be accurately approximated as veq(7v,) =
min{~y,,,--- "YgNS}- As a result, since v,, 1 < i < N, is an exponentially distributed RV with
mean 7y,, Yeq(7,) is also exponentially distributed with mean Jeq = (1/74, + - +1/74,.)"". In the

following, we use 7cq instead of 7.q(,) for simplicity of notation.

D. Diversity Combining at the Destination

ML combining can be employed at the destination to optimally combine the signals received from
the sources and the relay. However, due to the possibility of erroneous decisions at the relay, the ML
decision metric is complex and not amenable to analysis. In order to avoid the problems associated
with the ML metric, we generalize the C—-MRC scheme proposed in [11] for conventional CD to
NCCD. As will be shown in Sections III and V, the simple C-MRC scheme performs close to the
ML combining and exploits the full diversity of NCCD systems for any number of sources. The
proposed generalized C-MRC metric is given by

N _ ~
- “rs.p — VP, fi T? rep — VPrhrZr|?
me(®) :Z S;D 2 i T +>\R’ RD : » WR TR| . @)
i=1 nD.i Ino.n

Here, vector & = [%;...7y,]7 € XN+ contains trial transmit symbols &; = ux(5;) € X, 1 <i < N,,
where 5; € A, 1 < i < N, are trial data symbols. Furthermore, in (4) we have introduced 7y =S

£5 @ - @3y, €A and the weighting factor A\ = % € [0, 1]. For
the case that all S; — R channels have higher SNRs than the R — D channel, Az = 1 is valid and

Hx (=§R> € X with sy

(4) reduces to conventional MRC. However, if at least one of the S; — R channels has a poorer



quality than the R — D channel, the metric in (4) assigns a smaller weight Ap < 1 to the part of
the metric associated with the signal received from the relay in order to take into account the effect
of possibly erroneous decisions at the relay. In order to compute Ap, the destination has to know
the SNR of the weakest source-relay channel. This SNR can be estimated at the relay, which has to
know all source-relay channel gains for coherent detection, and be forwarded to the destination over
a low-rate feedback channel.

Based on (4) signal detection at the destination can be performed as & = arg mingcxn. {m.(&)},
where &p 2 [Zp1...2p, NS]T € XNs contains the detected symbols at the destination for all sources
and the corresponding decoded data symbols are obtained as sp ; £ u}l (Zp,;) € A, 1 <i < N;. Brute
force determination of & p requires M Vs metric computations, i.e., complexity increases exponentially
with N,. However, detection complexity can be significantly reduced by exploiting the fact that the
data vectors s, = [s,--- ,sn.,5g]" € AV*! form an (N, + 1, N,) single—parity—check block code
over GF(2™). As a result, the signal detection at the destination can be efficiently implemented using
well-known soft—decision decoding algorithms for block codes from the literature [12], e.g. Viterbi
decoding based on the trellis representation of the corresponding single—parity—check block code [13].
However, a detailed discussion of such algorithms is beyond the scope and page limits of the current
paper.

ITI. PERFORMANCE ANALYSIS

In this section, we analyze the error rate performance of the considered NCCD system for high
SNRs, 1.e., V5,7, — 00, 1 <@ < N, and g — oo. In particular, we develop accurate asymptotic
closed—form expressions for the pairwise error probabilities (PEPs), SERs, and BERs of all sources.
For convenience, we introduce the source—destination SNR vector 7 = [, 5 Vw7, the normal-
ized noise samples np ; £ nD’,‘/anD’i, 1 <i< N, and npr £ nD,R/UnD,R, and the noise vector
n = [Mp.1, s DN, ﬁD,R]T.

Using a union bound over the pairwise error probabilities, for the ith source, the SER, Pj, can be

upper—bounded as

P;’ngNS Y > Px—a), (5)

xcXNs zeB;(x)
where P(x — &) denotes the PEP associated with the pair (a, Z) which is the probability that
x =2 [zy---2n,]T € AN was transmitted by the sources and & = [7,---Zn,]7 € AN, & # x, was

detected at the destination assuming that = and & are the only possible decision outcomes. The set



B;(x) in (5) is defined as
Bi(x) £ {&]z; € X\ {a;},j =i, & € X,j #i}. (©6)

In the following, we first derive an asymptotic expression for the PEP in Subsection III-A before we
use an expurgated version of the union bound in (5) to arrive at an accurate closed—form expressions

for the asymptotic SER and BER in Subsection III-B.

A. Asymptotic Pairwise Error Probability
The PEP for the considered NCCD system can be expressed as

P(x — &) = Pr{m.(x) > m.(Z)}. (7)

It is convenient to calculate first the PEP conditioned on the instantaneous SNRs (7,7, 7z) and noise
vector 1. To obtain such an expression, we assume that among the transmit symbols z;, 1 < j < NV,
at most one is received in error at the relay. Furthermore, we assumed that if transmit symbol z; is
received in error, the erroneous g ; at the relay is a nearest neighbor of z;, i.e., Tr; € N (:vj), where
set AV(x) contains all nearest neighbors of = in X'. The approximations related to these assumptions
are well justified for 7,, — oo, 1 < j < N,, and their accuracy will be confirmed by simulations in
Section V. The desired conditional PEP can now be expressed as

P(x— &|v;, 7y 7r 1) = Pr{:%R =ar} P (x = TR, ¥s: Yeq» VRo V)

+ Z ‘D Z /BQ 20[7_%) (m — i|£Ra7f77€Q77Ran) ) (8)

IED

where
Dj(x) £ {px (ux' (21) ® - @ px'(@n) |2, € N(@,), v =4, Ty =z, v # j}. 9)

Here, for a given transmit vector x, set D;(x) collects all possible values for 25 assuming that z; is
received in error at the relay, while all z;, ¢ # j, are correctly received. Furthermore, the conditional

PEP P (:1: — i}fR,vf,fyeq,fymn), Zg € {Tr, TR}, can be written as

P(w%j‘j377f7fyeqv’7}?7 ) Pr {mc > mc )“TR77f7rqua’yRan}
Ns
{ZAfz xl?xl>+)\RAR(xR’xR7xR <0’7f,'}/eq,")/R, }7 (10)
=1

where

A (2, 7;) & V7 (@ — ) + npil® — [npal? (11)



and

Ap(zg, Tr,Tr) £ |V YR(@R — Tr) + 1pR)* — |VAR(TR — TR) + Tip,R[*. (12)
For derivation of the unconditional PEP, we exploit the relations Pr{A < 0} = - ffjs Da(s)d,
which is valid for any random variable A with moment generating function (MGF) @A (s) = Ea{e™2%},
and Pr{ip = 2p} =1 — Poeq(v,) = 1 - BQ (« /200 %q), which follows from Subsection II-C. Using

these relations, we obtain the unconditional PEP from (8) and (10) as

c+joo
- - d
P(@ = &) = &, 5, mn {P (2 = &7 7,0 70,0 } = %] / (chﬂ ) ()= (13)

where c is a small positive constant that lies in the region of convergence of the integrand and
(I)fi(s) Y 8 i, i{e—sAfi(:m,:ii)}’ (14)

Dp(s) 2 D5(s) + Z‘D Z @RJ PR s (15)

with ®f . (2r;s) and ®f(s) as defined in the Appendix in Lemmas 2 and 3, respectively. Based on

(13) and (15) the PEP can be expressed as

1
Pl@— &) =P(@,&) + Y = Y Pojl@ & in) (16)
D), &
R
where .
1 c+700 N d
~\ A S
Piea o [ (TTouo)ae S an
c—joo =1
and .
c+joo N,
Pi(m & i) & — / ]2 (5) )@, (i 5) & (18)
e,] sy by LR) — 2’/Tj = fi R,j\' R s .
c—joo =

To facilitate the calculation of the asymptotic PEP, we now present the following proposition which
sheds some light on the asymptotic behavior of the PEP P(x — &).

Proposition 1: Assume without loss of generality that v;, = (f,7, 75, = (7> 1 < @ < N, and
Yr = Cr?Y, where (y,, (, and (g are finite (positive) constants, which are independent of 7, and
define the diversity gain associated with the PEP as Ggppp £ — limy o log (P(z — &)) /log(7).
The diversity gain is then given by Gyprp = du(x, &), where dy(x,Z) denotes the Hamming
distance between data vector s, and 8, = [31,--- ,Sn.,Sg]’ € AN+TL. Furthermore, for all possible

pairs (x, &) we have dy(x,x) > 2.



Please refer to the Appendix for a proof of Proposition 1. From Proposition 1 we conclude that
for calculation of the asymptotic SER based on (5), only error events with dy(x, Z) = 2 have to be
included since error events with dy (a, &) > 2 yield a higher diversity gain and thus, their contribution
to the asymptotic SER is negligible. Therefore, in the following, we calculate the asymptotic PEP
only for error events with dy(x, &) = 2. For clarity, we consider the cases xp # Tr and T = Tpr

separately.

Case 1 (xp # Tgr): It is easy to see that in this case, d; £ |:cj — £j|, 1 < j < N, is non—zero only
for a single value of index j, i.e., we have d; # 0, j =4, and d; = 0, j # 7. As a result, from Lemma

1 we obtain @y (s) = 1 = j =tand &y (s) =1, j # i. Therefore, using (17) and Lemma 3

ol —o\~ .
dis(1—s)y
we arrive at

c+joo

1 /2 1 2 2 B ds
Pc w7 53 é . / / Y <_ + Y 7 v ) s de,
(. %) 2125 Jo | dis(1 = sV, \Yeqds  VrdRs(1— ) Feadh(s + sin29d%) 5
c—J00
(19)

where dp £ |xr — Zg|. The inner complex integral in (19) can be calculated using standard inverse

Laplace transform techniques such as partial fraction expansion. This leads to

N ~
Pu(w,8) > - (cbfi(w, 5> -+ M) , (20)

ﬁ/fz i=1 ’791' ,7R
where
g( )A2_6+wa§fad% R( )A 3
P(x,x) = and ¢ (xz,x) = . (21)
28, 2,
Furthermore, from (18) and Lemma 2 we have
/2 ct+joo o
Py, @,in) = -2 / / — ! __ qedg= 2@
202 Jo - dis*(1 = s)(dr(Zr)s + 55) V1, V£ Vas
c—joo
with
_ Ba dn(i
O, &, 35) = 4 HRER) 2adn(an) /e tadn(in) wlon) =0 (23)
o~ ot dr(tr) <0

T (A A A S 12 L2
where dR(ZL‘R)—llL‘R—IR| —|ZER—JZR| .
Case 2 (xp = Tg): In this case, d; is non—zero for two values of index j, i.e., we have d; # 0,

j € {i1,iz}, and d; = 0, otherwise. Thus, based on Lemma 1, we obtain ®y (s) = m,
J J
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j € {iy, iz}, and @ fj(s) = 1, otherwise. Furthermore, in this case, dr = 0 is valid, and therefore,

based on Lemma 3, we obtain ®f(s) = 1. Thus, using (17) we obtain

c+jo0

1 bo(x, T)
——dsdf = =22 (24)
2m2j L/1 /[ a3 43,83 (1 — 8)2 7y, Ay, Vi, Vi

c—joo

P.(x,x) =

with ¢.(x, &) = Furthermore, from (18) and Lemma 2 we get

d2 d2
c+joo —
/2 ~ A
P. (2, %, ip) = / / T 4 dsdg = @ E:0n)
2n c— Joodudzzs (1 a S) (dR(xR)S + sin? )’yfq ,yflzfng Vi iz Vo

(25)

where ¢.(x, &, 7r) is a (positive) finite constant which does not appear in the final SER and BER
expressions.
With these asymptotic expressions for P.(x, Z) and P, ;(x, &, Zr) at hand, a closed—form expression

for the asymptotic PEP can be calculated based on (16).

B. Asymptotic SER and BER

In order to obtain an accurate expression for the asymptotic SER, we first expurgate the union bound
in (5) according to Proposition 1. In particular, we only include error events with dy(x,Z) = 2 in
the union bound since the contribution of error events with dg(x, &) > 2 to the asymptotic SER is
negligible (cf. Proposition 1). This expurgation is accomplished by replacing the set B;(x) in (6) with

subset
Ci(x) £ {&|z; € X \{a;},j =1, & € X,j #1, dy(m, &) = 2}. (26)

We are now ready to state our main result. In particular, in the following proposition, we combine
(5), (16), and (26) to obtain a general and accurate expression for the asymptotic SER which is valid
for arbitrary numbers of sources, arbitrary signal constellations, and arbitrary constellation mappings
(refer to the Appendix for a proof).

Proposition 2: For the NCCD system described in Section II, an accurate expression for the asymptotic
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SER of the ith source can be obtained as'

N, N,
» 1 <Oy, Cy C
Pgé_—<z_—gl+ _—f’+—R) 27)
VN Vi =1 V¥ YR
J#
where
% 1 -
Cgi £ Z Z < T 0N Z Cbe(m,w,l']{)), (28)
€XNs 3Ci(x) ’DJ(:’B)’ tRED; ()
T x x TRED;(x
_ _ 1 _
Cp = MNS Z Z ¢(x, @), and Cr= A Z Z O (@, &), (29)
zeXNs 3 () zeXNs zeCi(z)

In (28) and (29), C!(x), 1 <1 < N, is defined as
Cl(x) £ {&|%; # x;,j € {i,1}, &; = x;, otherwise, dy(@,&)=2}. (30)

Remark 2: The asymptotic SER in (27) is, in general, a function of the constellation mapping
f1x because the sets C!(x) and D;(x) and consequently the coefficients Cy , Cy,, and Cg depend
on the constellation mapping. We will study this dependency in Section V where we show that
some performance improvement can be achieved by optimizing the mapping py. In case of a BPSK
constellation, however, the two possible mappings are equivalent and lead to the same expression for
the asymptotic SER. Specifically, based on (27) the asymptotic BER of BPSK (which is identical to
the asymptotic SER) is obtained as

1 Y AC |
Py ppsk = T (0113PSK ZZI = + CBpsi {Z T + %} ) ; (31)
J#Z
h L L 45+V5 d C2 N 3
where CUppgk = —7gp- ald Lgpgk =

Remark 3: Letting ¢, = (1,7, Vg = Cglfy, 1 <@ < N, and Yr = (g7, where (y,, (4,, and (g are finite
(positive) constants, we can express the asymptotic SER of the ith source as P! = (G SERY) GQVSER,
where G&SER and Gi’SER are the SER-based diversity gain and network—coding gain, respectively.
Thus, GZ’SER and GQSER correspond to the negative asymptotic slope and a relative horizontal shift

of the SER curve when plotted as a function of 7 on a double—logarithmic scale, respectively. Based

"For BPSK modulation, the SER expression in (27) is asymptotically exact. A comparison with simulations suggests that for general

M—ary modulation, the SER in (27) is a tight upper bound, cf. Section V.
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on (27) we therefore obtain

< Oy,

+ —) (32)

ﬁi,SER =2, Z,SER[dB] = 510%10(@%) — 5logy <Z r

i=1 >9i

J#Z
From (32) it is evident that G gz = 2 is achieved irrespective of the number of sources Ni.

Furthermore, for the network—coding gain, Gf/,,SER, we make the following observations. GQSER is a
function of the number of sources N, the signal constellation X, the constellation mapping py, as
well as the relative link qualities (y,, (4, and (. Eq. (32) reveals that for (f, = (,, = (g, the network—
coding gain increases only logarithmically with increasing N,. Furthermore, for NCCD systems where
the R — D link is the bottleneck link, i.e., (r < (y,, (g 1 <@ < Ny, GE,SER can be approximated as
G;SER ~ 5log((Cf,Cr/Cr), implying that the network—coding gain is practically independent of the
number of sources. The above observations will be confirmed in Section V by simulation results.

Remark 4: Having obtained the asymptotic SER from (27), for Gray labeling, the asymptotic BER

of the ith source, P/, can be tightly approximated as P} = Tog, ( ) i

IV. OPTIMIZATION OF NCCD SYSTEMS

In addition to the mapping optimization discussed in the previous section, the obtained analytical
error rate expressions can be exploited to formulate various practically relevant optimization problems
for NCCD systems. In particular, as was done in [14], [15] for conventional amplify—and—forward CD,
we may formulate optimal power allocation (OPA), relay selection, and relay placement problems.
Due to space limitations, we concentrate in the following on OPA. In particular, in this section, we
investigate the optimal allocation of the source and relay powers, P;, 1 < i < Ny, and Pr in NCCD
systems for a given power budget.

Based on the asymptotic SER given in (27), the OPA optimization problem can be mathematically

cast as

Ns
P B b Z v (ngz {z:: pe, Z P, @j PRgRD (53a)

J#l
N
subjectto: Y P+ Pr< P (33b)
i=1
0< P < Pinax, 1<i<N (33¢)

0 S PR S PR,maxa (33d)
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where 1);(+) is an increasing convex cost function which can be chosen to achieve certain design goals,
P, is the total power budget, P; 1 ax and Pp . denote the maximum power available at the ith source
and the relay, respectively, and we have defined the link statistics &;, = Q;,/ agD’i, & =Q,/ aim,
and &g £ Qp/o) ., respectively.

It is easy to see that the solution set of the linear constraints (33b)—(33d) is non—empty, and therefore
the optimization problem is always feasible. Furthermore, using the transformation of variables P, =
log(lf’i), 1 <i< N, and Pr = 1og(PR) optimization problem (33) is transformed into a convex
optimization problem in the new variables P, and Pg. The resulting convex problem can be efficiently
solved using well-known interior point methods [16]. We note that as is customary in the literature, we
assume that the OPA is computed at the destination terminal, which subsequently informs the sources
and the relay of their assigned transmission power via a low-rate feedback channel. To compute the
OPA the destination requires knowledge about the channel statistics &y, &, 1 < ¢ < Ny, and &g.
The destination can estimate £y, 1 < ¢ < N,, and &g, directly as the required information is readily
available at the destination. §,,, 1 < i < N, can be estimated at the relay and then fed back to the
destination via another low—rate feedback channel.

For cost function ;(-), the two special cases, ¥;(z) = = and v¥;(x) = exp(px), p — oo, are of
particular interest which lead to a minimum average SER and a min—-max fair design, respectively.
For the purpose of OPA in NCCD systems the latter appears to be practically more appealing since
minimizing the average SER may favor sources with good link qualities and result in solutions
that are unfair to the other sources [17]. Therefore, in the following, we focus on the min—-max
fair design which aims at minimizing the maximum SER among all sources. In particular, letting
Yi(z) = exp(px), p — 00, in (33) the power allocation problem can be equivalently stated as

N, N,
min max { ! [Z Ca, + Z s, + Cr ] } (34a)

P,....,Pn,,Pr i Plfﬁ pr szgz = ijfj PRSR
J#i

subject to : Constraints (33b) — (33d). (34b)
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Introducing an auxiliary variable v, problem (34) can be further transformed into

min v (35a)
Py,...,Png,PR,v>0
N, N,
1 ~ C, ~ Cf, Cr 1
subject to : { E g4 E 4 <v, 1<i<N; (35b)
‘Plé-fz i—1 Pzggz j=1 ‘Pjgf] PRé-R
J#i
Constraints (33b) — (33d). (35¢)

Since both the objective function and constraints can be written in the form of posynomials,
optimization problem (35) is a geometric program (GP) which can be efficiently solved using standard

tools from the literature [16], [17].

V. RESULTS AND SYSTEM OPTIMIZATION
In this section, we use the derived the analytical results to investigate the impact of the various
system and channel parameters on the performance of NCCD systems and to optimize the performance
of these systems. For all figures shown in this section, the asymptotic BER of BPSK and the asymptotic
SER of higher order modulation schemes was obtained based on (31) and (27), respectively. Unless

specified otherwise, we assume generalized C—MRC detection at the destination.

A. Performance of NCCD Systems

In Fig. 2, we show the BER of an NCCD system with N; = 2 sources and BPSK modulation for
the generalized C-MRC detection scheme as well as ML detection. We assume 7, = ¥, = 7; and
Vo1 = Vo2 = 7, and show results for four combinations of the channel quality vector (7, 7,4, 7r). We
note that due to the symmetry of the network, the BERs of both sources are identical. For C-MRC
detection the the analytical results (dashed lines) are in excellent agreement with the corresponding
simulation results (solid lines with markers) for sufficiently high SNR, which confirms the accuracy
of the approximations made in Sections II and III. Furthermore, the simulated BER results for ML
combining at the destination (dash—dotted lines) are practically identical to the BERs achieved with
generalized C-MRC, which confirms the viability of generalized C-MRC. We also observe from
Fig. 2 that, as expected from the analysis in Section III (cf. Remark 3), the network—coding gain is
a function of the respective channels qualities but the diversity gain is equal to two for all channel

quality settings. Furthermore, having a relatively strong S — D channel is most beneficial in terms
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of BER performance. However, this scenario may not be realistic in practice since the relay is usually
closer to the sources than the destination.

In Fig. 3, we investigate the BER of an asymmetric NCCD system with Ny = 4 sources and
BPSK modulation. For this system, we have assumed 7y, 25, ¥, = +10dB, 74 = 7+ 16dB,
¥ =7 +20dB, and ¥, = Y9, = Vg3 = You = Yr = 7. The BER of each source as well as the
average BER of all sources are shown as functions of 7y for both generalized C-MRC (simulation and
asymptotic results) and ML combining. We observe that although the diversity gain for each source
is equal to two, the network—coding gain is source dependent because of the non—identical channel
qualities of the sources. Again, for generalized C—MRC the analytical results are in excellent agreement
with the simulations at high SNRs, and the performance gain achievable with ML combining compared
to generalized C-MRC is negligible.

In Fig. 4, we study the impact of number of sources on the performance of NCCD systems. Thereby,
we consider an NCCD system with BPSK modulation and 7y, = 7, = 7, 1 <1 < N, and show the
average BER for different values of 4z and different N, as a function of 74 for BPSK. Asymptotic
BER results are shown for three values of 75, but corresponding simulation results are shown only
for two i values for clarity of presentation. As expected, a diversity gain of two is achieved in all
cases irrespective of the number of sources. Furthermore, in accordance with Remark 3, we observe
that for 7 = 7 the network—coding gain increases only logarithmically with N,. In addition, as 7y
decreases (i.e., the R — D link becomes the bottleneck link), the network—coding gain becomes less
dependent on N, and is rendered practically independent of /N, for low enough 7. We also note that
although increasing N, results in some BER performance degradation, in general, this loss is more

than compensated by the associated gain in throughput (cf. Remark 1).

B. Performance Optimization

As discussed in Remark 2, the performance of NCCD systems with non—binary modulation can be
improved by optimizing the constellation mapping jy. The optimal mapping depends on the qualities
of the different channels. As an example, we consider two different channel quality settings for a
NCCD system with N, = 2: Case I with ¥¢, = 75, = Yr = 7, Y5, = Vg = 7 + 30dB and Case
II with ¢, = 54, = Y9 = Vg = 7> 7 = 7 — 30dB. For both cases, we performed a search over
all possible constellation mappings for 8—PSK and 16—-QAM modulation to find the mapping which

minimizes the asymptotic SER in (27), respectively. The results for this search along with a natural
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mapping for both constellations are shown in Figs. 5 and 6. We note that in both cases the optimal
mapping is not unique as rotations of the mapping do not affect performance.

For the 16-QAM mappings in Fig. 6, the simulated and asymptotic SERs are shown in Fig. 7
as functions of 7. Fig. 7 reveals that for non—binary signal constellations the agreement between
simulation results and analytical results is not as good as for BPSK modulation. The reason for the
discrepancy is the union bound in (5), which, despite the employed expurgation, still overestimates
the SER to some extent. Nevertheless, for both considered cases the analytical SER upper bound
accurately predicts the performance difference between the optimal and natural mappings, suggesting
that this upper bound is a useful tool for optimization of the constellation mapping. As can be observed
from Fig. 7, in both considered cases a performance gain of 1 dB is achieved by the optimal mapping
compared to the natural mapping.

For the 8—PSK mappings shown in Fig. 5, the optimal mappings achieve performance gains of 0.8
dB compared to the natural mapping for Cases I and II. However, in the interest of space, we do not
show corresponding SER results.

In Fig. 8, we consider the min—max fair OPA described in Section IV for an NCCD system with
BPSK, N, =2, Qp, = Q, = 1, Qp, = Q, = 50, Qg = 200, and 0, . = 02 =o0a =0’ In
order to investigate the maximum benefits of OPA, we omit the per—node power constraints (33c)
and (33d) in (35) by letting P, ax = 00, ¢ € {1,2}, and Pgyax = 00. The individual BERs of
both sources S;, i € {1, 2} as well as the average BER of both sources are shown as functions of
Plt/a2 for OPA (P, = 0.87 x P, P, =0.10 x B, Pr = 0.03 x F;) and equal power allocation EPA
(P, = P, = Pp = P,/3), respectively. Since S; has a weaker channel, and therefore a higher BER
compared to Sy, OPA aims at minimizing the BER of S; and improves the corresponding BER by 3.5
dB. This performance improvement is achieved by allocating more power to S; compared to S; and
the relay, and at the expense of a small degradation in the BER of S;. However, the BER degradation
suffered by S5, if OPA is applied instead of EPA, is small compared to the gain experienced by 5.
Consequently, OPA also improves the average BER by 3.2 dB over EPA.

VI. CONCLUSIONS
In this paper, we studied NCCD systems employing GF(2") network coding and developed a
simple generalized C-MRC scheme which achieves the maximum diversity of the considered system

even if erroneous decisions at the relay are taken into account. Assuming independent Rayleigh
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fading for all links in the network, we derived closed—form expressions for the asymptotic SER and
BER of the considered NCCD system. These simple and elegant expressions provide insight into the
impact of various system and channel parameters on performance and can be exploited for design and
optimization of NCCD systems. Simulation results confirmed the accuracy of the presented asymptotic
SER and BER results and facilitated the following insights: 1) The performance loss of generalized
C-MRC compared to optimal ML combining is negligible. 2) All sources achieve a diversity gain of
two irrespective of the number of sources while the source dependent network—coding gain is affected
by various system and channel parameters. 3) Both constellation mapping optimization and optimal

power allocation can considerably improve the performance of NCCD systems.

APPENDIX
In this appendix, we provide Lemmas 1-3 and prove Propositions 1 and 2.

Lemma 1: The asymptotic behavior of ®,(s), 1 <1i < N, for 75, — oo is given by
1
O(s) = 5———
(5) d?s(1 — )7y,
for d; £ |z; — #;] # 0 and ®;,(s) = 1 for d; = 0.

(36)

Proof: This result can be proved following the same steps as in [18, Section IV.A]. A detailed proof
is omitted here because of space limitations. [ ]
Lemma 2: The asymptotic behavior of ®f, ;(Zr;s) = &y 1nmps {5Q (\/2a7,) e ndnlrinin) }

for 7, — oo, 1 <@ < Ny, ygp — o0 1s given by

Or, (TR;s) = 1 /ﬁ/2 — g de, (37)
K ™ Jo ’79]’ (dR(‘IR)S + 511?29)

where CZR(LZ'R) £ |£i‘R — .’lAﬁR‘Q — ’.%R — -i'RP-

Proof: Using the alternative representation of the Q—function, Q(z) = % foﬂ/ ?em2/sin’040 we can

write
/2
e (n .y DB
®R7j<va s) = = SﬁDﬂR{fb(s,G)} dé, (38)
0
where ®(s, ) = 57977R{e_ﬁ e~ *rAr(rrIrER) Y - Furthermore, from (12) we have
. 7 2%m _
ARAR(TR, TR, TR) = Ym dr(Zr) + —— dr ®{Nip g}, (39)
( ) (Zr) N {nb.r}
with 7,,, £ min{7eq, 7r}. Using the Taylor series expansion e* = > °° z'/i! leads to
=, 2ip, -
D(s,0) = Z ? D, rl*s* Wi(s, 0), (40)

£ (2i)]
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A T(i+1/2)
with 7; = NGOy

5 d 21
(s, 0) éewm{e (ym dn(ER)st ogd) (%y:) }

24
= — C{R / / / —(ym dr(&R)s+ gng) 72@ Y& Nl /A e—’YR/’7R e—’yu/"yu d’)/g- dyg dv. 41)
Yo; VR Vu ’

and

The auxiliary RV 7, in (41) is defined as 7, = mini<<n,{7,}, and is thus an exponentially
i#]
distributed RV with mean 7, = (Zf\il ’7;1) . Based on the definition of +,,, we therefore have
i#]

J
Ym = min{vy,, Yu, Yr}. It can be shown that among the three possible cases v, = Vg, Vm = Yu,» and
Ym = g, the latter dominates the asymptotic behavior of W;(s) (the proof is omitted due to space
limitations). Consequently, we can write W;(s) = U} (s) + U?(s), where ¥}(s) and ¥?(s) correspond

to the two cases 7, < Yr < 7, and 7, < v, < Vg, respectively, and are defined as

d% > g, ([R(ER)s+ =% +:2) o [
0 gt

— 'Yu — .
d,yue—’vu/% / d,yRe—'YR/'YR,y;iz (42)
o

/ng'YR'Yu 95 95
and
d% o0 g (dr(ER)st—2—+L) . [ _ [ .
V(s 0) 2 / e IR ) i / dy,e /T / dype "/ Tyl (43)
Yg; VTR Yu o Yu

In the following, we investigate the asymptotic behavior of W} (s, #) and (s, 0) for 4y, , 3., 7r — 00,

respectively. For W!(s,6), according to (42), we can write

dzi OO ZR)s i
(s 9> /79 YRYu / d’Y o it Fiaa +1/Tay) 73]
i

X / df)/ueiwu/iyu [7}{7111(1 - i7 79;‘/?1?) - f_}/ll%ilr(l - Z.7 qu/ﬁR)] . (44)
it

9j
To determine the asymptotic behavior of U!(s,#) we consider the three cases i > 1, i = 1, and

i = 0, respectively, and exploit the asymptotic properties of the incomplete Gamma function I'(-, 2)

for z — 0 [19]

P(cr2) %(@D(m +1)—logz)+ 2= k>1 43)
—logz — 7y k=10
In particular, for < > 1 from (45) we have I'(1 — 4,7y, /r) = 1/(i — 1)(7,,/7r)"~". Therefore, (44)
reduces to
i
Vo, TRVu(i = 1)
=0(7,'7x"), (46)

Wi(s,0) =

/ d,ygje 'Yg] (dR(ﬂ?R)S+ -‘r—l/'}’g]) ,-ysjl <,.y;J—Z:)/u _ :}/,Z_ZF(Q _ Z,’Yg]/:)/u)>
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where we have again used (45) to obtain the last asymptotic equality.

For i = 1, we have I'(0,,,/7r) = —log(7y,/7r) and therefore, (44) can be written as

24

d 00 - o B © _
\IJ%(S, 0) —— _R _ / d,.)/gje—’ng (dR(IR)S-i-m‘i‘l/’ng) ,-ygj |:/ df)/u log ,-Yue—’Yu/’Yu _ log(ﬁ)/gj):}’u
”ng’YR’Yu 0 Y94

=0(7,, Tr' 1og(Tu))- (47)
Finally, for ¢ = 0, I'(1, veq/7r) = 1 is valid and therefore after using an appropriate transformation

of variables in (42), we arrive at

1 (o] Yu TR n(s *g5 = = =
\111(3,8) - / d%/ d'YR/ dvgje—(vgj RER)S* 235) 0™ 9;/ Va5 o= VR/TR = Vu/Tu
Yg; YR Yu Jo 0 0

Vu
N Ty (48)
Yo, (VR + Yu) (dr(ZR)s + s55)

For U?(s,0), we first write (43) as

d% o0 e ey o [ o
Wi(s,0) = ——= / g 0o (R R T ) / doyue /T T (L — 4,7/ 7r). (49)
'ng'YRqu 0 ! 'ng
Using an approach similar to that used in obtaining the asymptotic W} (s,#), for i > 1, we have
di
Va; VR Vo
which leads to W(s,0) = o(7, 757, ") for i > 2 and Wi (s,0) = o(7,' 757, " log(7u)) for i = 2.

Ui(s,0) =

— 1) / d,ygje—%ij (dR(iiR)s—l—sir’f‘Tg-i-l/’?gj) 792]2 (,75—1F(2 . ’i, Yo /,7“))7 (50)
0

Furthermore, for : = 1 and 7 = 0, we obtain

d2i o] - o B 00 B
Wi(s,0) = - / drgye % AR g+ ) 2 | / A% 10g(7) = Fu log ()|
79j7R7u 0 )

Vg
éo(w—/gfjl,—yél) 51)
and 1 o TR Yu dr (2 - 1
\I/?(S, 0) Sl — / dvr / d~, / d'ygje_’ygj( R(xR)8+m+?j) e TR/AR = Vu/Tu
’ng YRYu Jo 0 0
° - ’ (52)

B Yo, (VR + ) (dr(ZR)s + ﬁ)
respectively. As a result, based on (46)—(48) and (50)—(52) we obtain W,(s,0) = Ul(s,0) + ¥?(s,0)

. o(7,'9%") i>1
Tg; Tr
Ui(s,0) = { o(7,' 95 log()) i=1 (53)
L 1=10

5o, (dn(en)s+ 555)

in

Substituting this result into (40) leads to (37) upon using (38). [ |
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Lemma 3: The asymptotic behavior of ®5(s) £ &, rnap » L (1 — BQ(\/20 Yeq)) e~ ArARERTIRTR) L

for 7, — 00, 1 <1 < Ny, yg — 00 is given by

1 /2 2 2 ﬁ
o= [ (2 - — ) (54)
R( ) ™ Jo ’yeqd%%‘s /de%S(S - ]') ’)/eqd%z<8 + sin29d%)

for dg # 0, while ®5(s) = 1 is valid for dp = 0.

Proof: We first note that ®5,(s) = I(s)—Z;.V:Sl O, (xg;s) where I(s) £ &, ypnp , {e AR ERERTR) L
and we have employed Q(+/20 7eq) = S.n°, Q(+/2a7,,) which is valid for 7,, — oo, 1 < i < N..
Using a similar approach as in the proof of Lemma 2, the asymptotic behavior of I(s) for 7, — oo,
1 <i < N,, 4gr — oo can be obtained as /(s) = %qi%s — ﬁRd%;(s_l) and I(s) = 1 for dg # 0 and

dgr = 0, respectively. For dr # 0, using (37) readily results in (54). For dg = 0 based on (37) we

obtain ®5(s) =1 — ﬂleq Oﬁ/z Bsin’0 49 = 1. |

Proof: [Proposition 1] Based on Lemma 1, ®,(s) can be written as ®;,(s) = k; /7 for z; # Z; and
Py (s) =1 for x; = T;, where 151 is a finite (positive) constant. Furthermore, using Lemmas 2 and 3
in (15) yields ®g(s) = ];2/’7 for xr # Tg, where ko is a finite (positive) constant, and ®Pr(s) = 1
for xp = TR. Therefore, based on (13) we conclude that G pgp is given by the number of non-zero
elements of vector [z — &1, -+ , TN, — Tn.,Tr — Tg|". Since py : A — X is a one-to—one mapping
function, G4 prp is alternatively given by the Hamming distance between the transmit symbol vectors
s. and 8. denoted by dy(x,Z). To show that dy(x,&) > 2, we first note that by definition we
have « # , and therefore s; # 5; is valid for ¢ € Z, where Z is a non—empty index set. For
|Z| > 2, dy(x,&) > 2 immediately follows. For |Z| = 1 it is easy to see that sg # S, resulting in
dy(x, &) = 2. m
Proof: [Proposition 2] For a given transmit signal vector x, set C;(x) in (26) can be partitioned
into N, disjoints sets C!(z), 1 < | < Ny, ie., Ci(x) = U, C{(x), where C}(x) is defined in (30).
Therefore, using (5) and (26) the asymptotic SER can be approximated as

P MNS Z Z Z (x — ). (55)

xeXNs [=1 wECl ()

For & € C!(x), the asymptotic PEP can be obtained from (20) and (22) as

N R ~ N
P(w%é’s)é_i<¢§<w,i>2;+%)+zm Z 0@ Z.0r) (s
- =1 ]

j=1 79j f)/fz ngJ

For & € C!(x), | # i, using (24) and (25) yields
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(@, &) (T, T, 2R) . Oz, &
P(m—>:1;)—¢ +Z Z Ocl tr) o 9c(@,E) (57)
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. (27) can be obtained by combining (55)—(57). |
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Fig. 1. Block diagram of the considered NCCD system. Solid and dashed lines denote links belonging to first and second hop,
respectively.
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BER

Fig. 2. BER of a symmetric NCCD system with Ns = 2 sources and BPSK modulation vs. 7 for various channel quality settings
(%f,%g,Yr)- Solid lines with markers: Simulated BER. Dashed lines: Asymptotic BER approximation. Dash—dotted lines: Simulated
BER for ML combining at the destination.
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Fig. 3. BER of an asymmetric NCCD system with N5 = 4 sources and BPSK modulation vs. 4. Solid lines with markers: Simulated
BER. Dashed lines: Asymptotic BER approximation. Dash—dotted lines: Simulated BER for ML combining at the destination.
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Fig. 4. BER of an NCCD system with BPSK modulation vs. 4 for different N,. Solid lines with markers: Simulated BER. Dashed
lines: Asymptotic BER approximation.



Fig. 5.

Fig. 6.

(b)

8-PSK signal constellation with three different constellation mappings px : A — X. (a) Natural mapping, (b)
Optimal mapping for Case I, and (c) Optimal mapping for Case II.
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16-QAM signal constellation with three different constellation mappings px : A — X. (a) Natural mapping,
(b) Optimal mapping for Case I, and (c) Optimal mapping for Case II.
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Fig. 7. SER of an NCCD system with 16-QAM modulation, N; = 2, and the optimal and natural mappings depicted in Fig. 6
vs. 4. Two channel quality settings are considered (Case I and Case II). Solid lines with markers: Simulated SER. Dashed lines:
Asymptotic SER approximation for natural mapping. Dash—dotted lines: Asymptotic SER approximation for optimal mapping.
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Fig. 8. BER of an NCCD system with N; = 2 and BPSK modulation vs. P;/ o2 for max—min fair OPA and EPA. Solid lines
with markers: Simulated BER. Dashed lines: Asymptotic BER approximations.
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