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The frequency bands used by secondary systems such as cognitive radio and ultra—wideband (UWB)
systems are expected to suffer from various forms of noise and interference with time-varying non—
Gaussian distribution such as the co—channel interference caused by the primary user and other
cognitive radios, UWB interference and man—made impulsive noise. To mitigate the harmful effect
of noise and interference, we propose a robust L,—norm metric for secondary systems that employ
the popular bit-interleaved coded modulation (BICM) scheme. We propose two approaches for
optimization of the L,—norm metric based on BER performance analysis and Maximum-Likelihood
parameter estimation principal. Based on both approaches we provide efficient adaptive algorithms
that can be used for online metric optimization. Numerical and simulation results show that the
proposed adaptive algorithms can effectively mitigate the adverse effects of noise and interference
with time-varying statistics. Furthermore, the optimized L,—norm metric is shown to significantly

outperform other popular metrics in secondary system environments.

!This work will be presented in part at the IEEE Global Telecommunications Conference (Globecom), New

Orleans, 2008.
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1 Introduction

The ever—increasing demand for high speed wireless access and inflexible methods of spectrum al-
location have made the radio spectrum an increasingly scarce resource. On the other hand, recent
studies have indicated that large portions of the frequency spectrum are rarely used in both space
and time [1, 2] . This observation has spurred the development of secondary cognitive radio (CR) [3]
and ultra—wideband (UWB) [4] systems that enable spectrum sharing by overlying and underlying the
existing licensed (primary) systems, respectively. The idea behind both CR and UWB is to allow the
secondary users to share the spectrum with primary users as long as the interference caused to the
primary users is not noticeable. In the following, we will refer to CR and UWB systems collectively
as secondary systems.

While most proposed secondary systems employ traditional methods of signal detection designed
for additive white Gaussian noise (AWGN), various forms of non—Gaussian noise and interference with
time—varying statistics can be expected to be present in practice. Examples include the narrowband
and co—channel interference caused by the primary user and other secondary systems [5, 6], respec-
tively, and man—made impulsive noise [7]. Therefore, the use of the Ly—norm metric (also referred to
as the Euclidean distance metric) for signal detection, which is optimal for AWGN, can result in signif-
icant performance losses in secondary user environments where non-Gaussian noise? is dominant. On
the other hand, optimal maximum-likelihood (ML) detection requires exact knowledge of the noise
distribution which may be difficult to obtain in practice and may change with time. This motivates
the use of suboptimal robust metrics that perform well for a large class of noises and have a low com-
putational complexity. These metrics should also have tunable parameters that can be adjusted to
the time—variant noise statistics. Important examples of such robust metrics in the literature include
Huber's AM—metric [8], Myriad and Meridian metrics [9], the generalized Cauchy metric [10], and the
L,—norm metric [11]. Among these metrics, the L,—norm metric is particularly interesting due to its
low complexity and the ability to perform well in both heavy—-tailed and short—tailed noise provided
that the metric parameters are adjusted accordingly. However, due to the time—varying nature of
noise statistics in secondary environments optimizing the metric parameters is a difficult task, as a

suitable approach for metric optimization has not been proposed.

2To simplify our notation, in this paper, “noise” refers to any additive impairment of the received signal, i.e.,

our definition of noise also includes what is commonly referred to as “interference”.
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In this paper, we consider secondary systems employing bit—interleaved coded modulation (BICM)
[12] in combination with either single—carrier (SC) or orthogonal frequency division multiplexing
(OFDM) modulation and multiple receive antennas. The motivation for considering BICM-SC and
BICM-OFDM systems is twofold. Firstly, BICM-SC and BICM-OFDM are very efficient in exploiting
the time and frequency diversity of wireless fading channels, respectively. Secondly, these techniques
have been adopted in a number of recent standards [13], such as the ECMA multi-band OFDM (MB-
OFDM) UWB system [14], and are also prime candidates for the air interface of future CR and UWB
systems [15]. We propose a robust L,—norm decoding metric for secondary BICM systems to mitigate
the harmful effects of non—Gaussian impairments. For metric optimization we propose two approaches
which are based on minimizing the bit—error rate (BER) of the secondary system and ML parameter
estimation, respectively. In the first approach we develop a general mathematical framework for BER
performance analysis of the secondary systems that allows us to obtain an accurate approximate upper
bound for the BER as well as closed—form expressions for the asymptotic BER. This framework is very
general and applicable to arbitrary linear modulation formats, all commonly used fading models, and
all practically relevant types of noise, and therefore can be used for accurate performance analysis
of BICM systems employing L,—norm metric. In the second approach we develop a ML estimator
for the L,—norm metric parameters based on the noise samples observed at the receiver. The latter
approach, although suboptimal, has the advantage of being independent of various system parameters
such as the channel type, code rate and modulation scheme, and also involves lower computational
complexity. Based on both approaches, we develop efficient adaptive multivariate finite difference
stochastic approximation (FDSA) algorithms that enable adaptive metric optimization.

Using numerical and simulation results we illustrate how the developed BER analysis and ML
parameter estimation frameworks can be used for metric optimization. We study the performance
of the proposed adaptive algorithms in a practical scenario with time—varying noise statistics and
show that both algorithms can effectively adapt to the variations in the noise statistics. In addition,
we show that using the optimized L,—norm metric significant performance gains can be achieved
compared to the conventional Lo—norm metric for various types of noise present in secondary user
environments.

Related Work: One approach to cope with interference in secondary BICM systems is to downscale
those branch metrics which are affected by interference [16]. The disadvantage of this approach is

that the location of the interference signals as well as their corresponding powers have to be accurately
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estimated both in time and frequency, which not only involves high computational complexity but
also is not possible if the interferers apply fast frequency/time hopping. Erasure marking was shown
to be an effective technique for BICM affected by narrowband interference and impulsive noise but
is computationally expensive as it requires joint erasure marking and Viterbi decoding [17, 18]. In
contrast to [16, 17, 18], the approach proposed in this paper is not limited to specific types of noise and
interference but leads to performance improvements for a large class of non—Gaussian impairments.
We note that the performance of BICM with Ly—norm decoding in non—Gaussian noise was studied
in [19], and L,—norm diversity combining was considered for uncoded transmission in [20]. However,
the results in [19, 20] are not applicable to BICM with L,—norm decoding.

Organization: The rest of this paper is organized as follows. In Section 2, the system model for
the considered secondary communication systems is introduced. The BER analysis and ML metric
parametere estimation frameworks are developed in Sections 3 and 4, respectively. In Section 5,
adaptive metric optimization is considered, and analytical and simulation results are presented in
Section 6. Finally, some conclusions in Section 7.

Notation: In this paper, [-]7, ()7, R{-}, || -||, det(-), and E,{-} denote transposition, Hermitian
transposition, the real part of a complex number, the Lo—norm of a vector, the determinant of a
matrix, and statistical expectation with respect to x, respectively. Moreover, I,; and 0,; are the
M x M identity matrix and the all-zero column vector of length M, respectively. Furthermore, we

use the notation u = v to indicate that v and v are asymptotically equivalent, and a function f(x)

is o(g(x)) if lim,_o f(x)/g(x) = 0.

2 System Model

We consider secondary BICM-SC and BICM-OFDM systems employing N, receive antennas and
L,—norm decoding. In this section, we describe the corresponding signal model and the L,—norm
metric. We also present the models for several practically relevant types of noise affecting secondary
user systems. For convenience, in this paper, all signals and systems are represented by their complex

baseband equivalents.
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2.1 Signal Model

The transmitter consists of a BICM encoder and either a SC or an OFDM modulator. The BICM
encoder comprises a convolutional encoder of rate R, an interleaver, and a memoryless mapper [12].
The codeword ¢ = [c1,¢2, .., Cm k] Of length m K, is generated by the convolutional encoder and
interleaved. The interleaved bits are broken up into blocks of m, bits each, which are subsequently
mapped to symbols z;, from a constellation X’ of size |X| £ M = 2™ to form the transmit sequence
x =& (1, xa,...,2k,] of length K.. The transmit sequence is broken up into B frames containing
N symbols each, i.e., K. = BN. In BICM-SC, the symbols in each fame are transmitted in
N consecutive symbol intervals, whereas in BICM-OFDM these symbols are transmitted over N
consecutive sub—carriers. Furthermore, we assume that frequency hopping is applied such that each
frame is transmitted with a different carrier frequency and the corresponding channels are statistically
independent. For example, the ECMA MB-OFDM UWB system employs frequency hopping over
B = 3 bands and future versions of the standard may use up to B = 15 bands [14].

Assuming perfect synchronization and demodulation, the observed signal for both BICM-SC and

BICM-OFDM can be modeled as
T = /Y hy 21 + 14, 1<k< K, (1)

where v, by 2 [hy ... by )T, and ny, = [y ... ng,]T denote the SNR per receive antenna,
the fading vector, and the noise vector, respectively. Here, hy, and ny, are the fading gain and the
noise at the vth receive antenna, respectively. Without loss of generality we assume E{||h;||*} = N,
and &{||nk||*} = N.,.

As customary in the literature, cf. e.g. [12, 21, 22], for our performance analysis we assume perfect
interleaving, which means that h, and m; can be modeled as independent, identically distributed
(i.i.d.) random vectors and only their first order probability density functions (pdfs) are relevant. We

note, however, that the elements of h; and n; may in general be statistically dependent, respectively.

2.2 L,~Norm Branch Metric

In this paper, we assume the secondary user employs an L,—norm branch metric for Viterbi decoding.

The employed branch metric for decoding bit 7, 1 < i < m,, of symbol z; is given by

)\Z—('I"k, b) £ min_ {Lq,p(rk — ﬁhk l’k)} (2)

"Ekexg
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where X} is the subset of all symbols in constellation X’ whose label has value b € {0, 1} in position

i. Furthermore, the generalized L,—norm metric, Ly ,(y), is defined as

Ny
Lap(y) =Y avluwl™, (3)
v=1

wherey = [y ... yn )T and ¢ = [q1 ... qn,]" and p = [p1 ... pn,|” denote the metric parameters.
To achieve high performance g and p should be adapted to the underlying type of noise. For the
special case ¢, =1 and p, =2, 1 < v < N,, (2) and (3) simplify to the well-known Ly—norm branch
metric, which is typically used in AWGN [12].

2.3 Fading Model

We assume that the fading gains can be expressed as hy; =S amej@k»l, where a;; and Oy, are
independent random variables (RVs). Specifically, Oy, is uniformly distributed in [—7,7) and ay,
is a positive real RV that follows the distribution p,(ay,). In this paper, we consider both spatially
independent and spatially dependent fading. For spatially independent fading the first order pdf
pa(ax,) is sufficient to fully describe the properties of random vector a, = [ag; ... apn,]”, while
for spatially correlated fading the joint pdf p,(ai) of the elements of ay is needed. However, as
shown in [19], for infinitesimally small fading amplitudes, a; — Oy, spatially correlated fading can

be modeled as spatially i.i.d. fading. Therefore, for a;, — Oy, the joint pdf can be expressed as

Ny
pa(ar) = [ palar.), (4)
v=1
where
pa(akﬂ/) = QOéc ai,aud_l + O(Qi,aud_l) (5)

with fading distribution dependent constants o, and . For correlated Rayleigh (C};, £ E{h,h}'}),
Ricean (u;, = E{h}, Cuy = E{(hy — p)(hy, — ,)7}), and Nakagami-m (C,, = E{a,al'})
fading as well as for spatially independent Nakagami—q and Weibull (with fading parameter ¢) fading,

the fading pdf p,(ax,;) and parameters o and «a, are specified in Table 1.

2.4 Noise Model

The analysis and adaptive metric optimization presented in this paper are applicable to a large class

of noises. The only restriction that we impose is that all joint moments of the elements of n; exist.
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This condition is fulfilled by most noises of practical interest. An exception is a—stable noise, which
is sometimes used to model impulsive phenomena [23]. However, other types of impulsive noise such
as Gaussian mixture noise are included in our analysis. To illustrate the generality of our analysis
and for future reference, we present in the sequel several practically relevant noise models that are

frequency encountered in secondary user environments.

2.4.1 Noise Models for BICM-SC

For secondary BICM-SC systems we consider two important time—domain noise models, namely
asynchronous co—channel interference (ACCI) and time—domain Gaussian—mixture noise (TD-GMN).

1) ACCI: In CR BICM-SC systems, ACCl may be caused by the primary user and/or other CRs
[24, 25] . To describe this noise model, we consider a BICM-SC system with B different hopping
frequencies and assume that at hopping frequency p, 1 < p < B, in addition to AWGN 7, ,, there

are I, Ricean faded ACCI signals leading to time—domain noise

Iy
Nk v = Z kl/u Z gn,u _I' Nk, 1 S v S Nm (6)

K=K]

where ﬁkyﬂ[z] are temporally i.i.d. Gaussian random variables which model the Ricean interference
channel gains with Ricean factor K; and b, ,[i] are the i.i.d. symbols of the ith interferer at the
pth hopping frequency. Furthermore, g, .[i] £ g,.:(kT + 7,.;), where g,.(t), T, and 7, are the
effective pulse shape, the symbol duration, and the time offset of the ith interferer at the uth
hopping frequency, respectively, and we assume that g, (kT + 7,;) = 0 for K < k; and K > K,.
Finally, we note that for K; — oo, the interference channel gains ﬁkw[z] will be constant values.
We refer to the resulting noise as unfaded ACCI (UF-ACCI).

2) TD—GMN: TD-GMN can be used to model the combined effects of Gaussian background noise
and man—made or impulsive noise, cf. e.g. [7, 26, 27], which may affect e.g. CRs using unlicensed
frequency bands. If the phenomenon causing the impulsive behavior affects the receive antennas

independently, the TD-GMN is spatially i.i.d. [28] and the pdf of ny , is given by [7]

I
(n LY Y. 7
k:l/ 2 ) SV Ny, ( )

0;

where ¢; > 0 and 0? > ( are parameters. In contrast, if all antennas are affected by the phenomenon

causing the impulsive behavior concurrently, the TD—GMN is spatially dependent and the joint pdf
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for the elements of the noise vector n is given by [28]

pulme) = 3 s (120, ©

N,
i=1 m TUZ' 7

Two popular special cases of both spatially independent and spatially dependent TD—GMN are Mid-
dleton’s Class—A noise [7] and e-mixture noise. For e-mixture noise I = 2, ¢; = 1 — ¢, c3 = ¢, and
05 = ko3, where € and k denote the fraction of time when the impulsive noise is present and the

ratio of the variances of the Gaussian background noise and the impulsive noise, respectively.

2.4.2 Noise Models for BICM-OFDM

For secondary BICM—-OFDM systems, we consider impairment by narrowband interference (NBI) and
frequency domain GMN (FD-GMN), as these two types of noise may impair both CR and UWB
systems.

1) NBI: We consider a secondary BICM-OFDM system with coding over B different hopping
frequencies. At hopping frequency p, 1 < o < B, the received frequency—domain signal is impaired
by AWGN 7y, and I, Rayleigh faded NBI signals. The corresponding frequency—domain noise

model is

I
nk,u,u = ng,u[i]bu[i]hk,u,p[i] + ﬁk,u,,ua 1 S v S Nm (9>
i=1

where ﬁkyﬂ[z] are temporally i.i.d. Gaussian random variables which model the Ricean interference
channel gains with Ricean factor K;. Furthermore, b,[i| are the symbols of the ith interferer
at the pth hopping frequency and g ,.[i] £ exp[—jm(N — 1)(k + fu.i/Af)/N + ¢, sin[r(k +
fui/ Af)]/ sin[m(k + f.:/Afs)/N] [29]. Here, f,; and ¢, ; denote the frequency and phase of the
1th interferer at hopping frequency p relative to the user, respectively, and Af, is the OFDM sub-
carrier spacing. For future reference, we denote the ratio of the total NBI variance and the AWGN
variance by s, cf. Section 6. We note that for K; — oo, the interference channel gains ﬁkuy[z] are
constant values. The resulting noise will be referred to as unfaded NBI (UF-NBI) in the rest of this
paper.

2) FD—GMN: FD-GMN can be used to model the combined effects of frequency—domain Gaus-
sian background noise and impulsive phenomena that only affect a small number of sub—carriers. For

example, it can be used to model the effect of a Rayleigh faded NBI interferer or a tone interferer in a
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BICM-OFDM UWB system. The mathematical model for FD-GMN is identical to that of TD-GMN

in (7) and (8) except that now k denotes the sub—carrier index instead of the time.

2.4.3 UWRB Interference

UWB interference may affect both secondary BICM-SC and secondary BICM-OFDM systems. In
this paper, we test the proposed L,—norm metric for impulse radio (IR) UWB and MB-OFDM UWB
interference. Thereby, we generate the UWB interference signals following the respective ECMA and

IEEE standards [14, 30].

3 BER Performance Analysis

In this section, we derive analytical expressions for the BER performance of the secondary BICM
systems described in Section 2 in non—Gaussian noise environments. The derived expressions are
obtained as a function of the metric parameters ¢ and p, and therefore can serve as objective
functions for metric optimization. In particular, in this section, we first provide an approximate upper
bound for the BER based on the expurgated union—bound. We then analyze the behavior of the
obtain BER bound for high SNR's to arive at a closed—form expression for the asymptotic BER. The
BER analysis provided in this section is based on the unified signel model presented in Section 2.1

and thefore the results are applicable to both BICM-SC and BICM-OFDM secondary systems.

3.1 Approximate Upper Bound for BER

Here, we provide an approximate upper bound for the BER performance of the considered BICM
secondary systems impaired by non—Gaussian noise®. Assuming a secondary BICM system with code

rate R, = k./n. (k. and n,. are integers) the union bound for the BER is given by [12]

B<— > wd)Ple, o) (10)

3We note that since our derivation is based on the expurgated union bound in [12], we cannot prove that the
proposed bound is a true upper bound, see discussion in [31, 32]. However, numerical evidence in e.g. [32, 19]
suggests that the expurgated union bound does result in tight upper bounds if Gray labeling is applied. Our own

results in Section 6 confirm this conjecture.
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where ¢ and ¢ are two distinct code sequences with Hamming distance d that differ only in [ > 1
consecutive trellis states, w.(d) denotes the total input weight of error events at Hamming distance
d, and dy is the free distance of the code. P(c, ¢) is the pairwise error probability (PEP), i.e., the
probability that the decoder chooses code sequence ¢ when code sequence ¢ # ¢ is transmitted.
Adopting the expurgated bound from [12], the PEP can be expressed as

c+j0o0

Ple. o) =5 [ ) (1)

c—joo

with

O T 3D B BENC (12)

where ¢ is a small positive constant that lies in the region of convergence of the integrand. Further-

more, P (s) = Epym,{e°2} is the moment generating function (MGF) of the metric difference

A £ Lgp(re — 7 heze) = Lap(ri — /7 by xi)

Ny Ny
= > @l — VA kw2 =Y @ — 7 b ™ (13)
v=1 v=1

conditional on the transmission of z;, € Xbi. Here, z; is the nearest neighbor of z; in Xg with b being
the bit complement of b. Since conditional on the transmission of z;, we have i, = /7 hy, Tp+n4,,,

1 <v < N,, we can rewrite (13) as

N N,
A= Z v |ﬁhk,u €k + nk,u|py - Z v |nk,l/|py (14)
v=1 v=1

where ¢, £ x;, — 2. The MGF ®(s) can therefore be obtained as

Ny
Pa(S) = Enymy {He—Sunhk,uewnk,uPv—m,mv)} : (15)

v=1
The approximate union bound is obtained by numerically evaluating (10), (11), and (15). In particular,
several different techniques can be used for evaluation of the complex integral in (11). One popular
option is the application of Gauss—Chebyshev quadrature rules, cf. [31]. An even more efficient
approach is the use of a saddle point approximation [31, 33]. In the latter case, the PEP is accurately
approximated as

3))(d+1/2)
P(c, &) ~ (WE) ™~ (16)

§1/2md W (3)
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where the saddlepoint § is defined as the value for which ¥'(8) = 0 is valid. Here, ¥'(s) and ¥"(s)
denote the first and the second derivative of W(s) with respect to s, respectively. ¥(s), ¥'(s), and
" (s) can be obtained efficiently by Monte—Carlo simulation. The saddle point is obtained by a
simple one—dimensional search (is this true, please provide more details???777777).

The saddle point approximation is an efficient technique for evaluation of the PEP and con-
sequently for calculation of the approximate BER bound in (10). Since the proposed BER bound
depends on the metric parameters g and p, it can be used for offline metric optimization if the
statistics of fading and noise are known a priori or a sufficient number of measurements for h; and
ny, are available to perform the averaging in (15). However, the required search for the saddle point
and the fact that (15) requires averaging over both fading and noise, make the approximate upper
bound unsuitable for adaptive metric optimization. In order to obtain analytical BER expressions that
are suitable for adaptive metric optimization, we perform an asymptotic high SNR analysis in the

next subsection.

3.2 Asymptotic BER

In this section, we analyze the asymptotic behavior of the BER bound provided in (10) for v — oo,

i.e., for asymptotically high SNR's. For this purpose, it is convenient to rewrite the PEP as

c+joo
. 1 ds
Ple, o) =5 [ Entotsin} a7)
c—joo
with
me 1
1 (&
P(s|ng) = H o ZZ Z Pa(s|m) | (18)
k=1 ¢ i=1 b=0 gyeX]
where N
(I)A<8|nk) —& {e—sA} o e—sz,lj\zl qv|ng,|PY H (I)ykW (qy S). (19>

v=1
In obtaining the last equality, we have used (14), vy, = |/ P € + [P, the asymptotic
independence of the fading gains (4), and @,  (s) = E{e~*¥»}. The pdf f,(ys.) of yx, for v — oo
is derived in the Appendix and given in (57). Based on this result, for v — oo, the MGF ®,, (s)

can be expressed as

200 a4 ) .
o _ c . , 2t —2(aqg—1)/pv —ayg 20
v (5) o () ;5 |72, 5 +o(y ), (20)
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where d,. = |eg|, ag £ [ag] — 1, &, = % and P is defined in (54). Substituting (20)
in (19) yields

Nr pv Nr

(QQC)NT e_SZuzl Qv Z 57,1/ |nk 1/‘ —9as—i “Noa

Dalsine) = (ydZ,)Nroa II DPuq Naa—i)/py ° s 2eam e +O(7 o d) (21)
Tz i—0 PvQu

v=1

Using (21) in (18) we obtain for ®(s|ny) the expression
B(sln) = X(era, Ny d) (200200 oo Dl i o

d Np
» H H (Z Siv |ij\/py —2<ad—z’>/pu> + o (y7Nra) (22)

k=1v=1 zopl/l’

with modulation and coding dependent constant

Xm(Oéd, Nm d =

me2me ZZ Z ngc Nrad ’ (23)

i=1 b= Oxke){l

After some manipulations, ®(s|n) can be rewritten as

dNyay
®(s|ny) = Xp(aa, Ny, d) (2ac>dNr,y—dNrad e S N gl P Z Z 5—221){21(dad—iu)/m

K=0 i14-+iyn, =K

JI S el Gulnan i (24)

2(1/ J1)/pv —2(aq—ja)/pv
v=1 ji1+-+jag=iv qv

where 0 < jp < @y, 1 <k <d,and 0 <i, < K, 1 <wv < N,. Applying (24) in (17) and using the
Residue theorem, we obtain for the PEP for v — oo the expression

dNyay

P(c, &) = Xp(og, Ny, d) (200) ™y NN My(in, ... in,) + o(y =), (25)

K=0 i14-+in, =K

where the generalized noise moment M, (i1, ...,iy,) is defined as

Ny
2 3 (dag—iv)/py

v=1

d N,
el T MG b (£ 2w

v=1j1+4-+jag=iv k=1
. . A
Mn(’Ll,...,ZNT,) ==

Nr .
) 2(dag—iv)/pv
( Z iy ) i pigdeain)/p
v=
(26)
We note that o(y~4r@a) in (24) contains sums of products of the elements of the noise vector m.

For these term to remain finite after expectation with respect to nj, we have to assume that all joint
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moments of the elements of n;, exist. Based on (25) and (10) a closed—form approximation for the

asymptotic BER can be obtained as

dirdd

X, Ny, dg) (2ot 5™ ST M, i) (20)

K=0 ii+-+in, =K

w0(df)
ke

P, =

In deriving (27), besides the assumption that all joint noise moments exist, we also have assumed
that (a) the approximate BER bound in (10) is tight for high SNRs and (b) the first term with d = d;
in (10) is dominant. Assumption (a) is confirmed by simulations in Section 6 and assumption (b) is
justified for high SNR.

The asymptotic expression for the BER in (27) is very general since it is applicable to all types
of fading whose pdf can be expressed as in (4), all types of noise whose joint moments exist, all
modulation formats, and arbitrary code rates. Eq. (27) can be used for fast evaluation of the
BER at high SNRs. For this purpose, it is most convenient to evaluate the generalized moments
My (i1, ... ,in,) by Monte-Carlo simulation. Note that this has to be done only once since these
moments do not depend on the SNR. For special cases, M, (i1,...,iy,) can be calculated in closed
form. However, we do not derive corresponding expressions here because of space limitation and since
the main goal of this paper is the exploitation of (27) for adaptive metric optimization, cf. Section

5. First, however, we consider some special cases and discuss some implications of (27).

3.2.1 Special Cases

In this subsection, we discuss some special cases that allow significant simplifications of the asymptotic
result in (27).

Fading Channels with «; = 1: For oy = 1, which is valid for e.g. (possibly spatially correlated)
Rayleigh, Ricean, and Nakagami—q fading, (25) can be significantly simplified. In particular, since we
have a; = 0, the double sum in (25) disappears and only the moment M, (0,...,0) is needed. This
moment is given by

N,
N, Zy;l 2df /pl/

M,(0,...,0) = L4, (0/p)) En ZquAnk,y\p“ - (28)

3 d: 2d:/py
F(Zi\le 2df/pu + 1)PfoIV /P k=1 v=1

Uncoded Transmission (d; = 1): For uncoded transmission we have dy = 1, k. = 1, and

w.(1) = 1. Furthermore, X (ay, N,,1) = Nmin/(mcdzadNT), where N, and d,,;, are the aver-

min

age number of minimum distance neighbors and the minimum distance of signal constellation X,



Nasri et al.: Robust L,~Norm Metric for UWB and Cognitive Radio BICM Systems 13

respectively. Hence, the asymptotic BER can be expressed as

Nyag

o Nmin(zac)NT _N,« . .
B e 3 Malinin) (29)
C¥'min K=0i1++in,.=K
where now
. , 250, (ea—in) /o
6, { T G sl (2 ) }
M'n,(il’---;iNr) == (30)

g <2 Ei\[;l(ad - ZV)/(pl/ + 1)) H;]/V;l pqu(ad_iV)/pu

If we assume additionally oy = 1, the double sum in (29) disappears and (30) simplifies in a similar
manner as (28). For uncorrelated Rayleigh and Ricean fading, the corresponding asymptotic BER can
be shown to be equivalent to [20, Egs. (10),(13)]. Note, however, that even for uncoded transmission,
the results in this paper, which are also valid for e.g. Nakagami—m and Weibull fading and correlated
Rayleigh and Ricean fading, are much more general than those in [20].

Simplified Metric: The general L,—norm metric in (3) requires the optimization of 2V, — 1
metric parameters (since the metric is invariant to a multiplication with a positive constant, we may
choose ¢; = 1 without loss of generality). In practice, for complexity reasons, a metric with just
one adjustable parameter may be more desirable. Therefore, me may choose g, = 1 and p, = p,

1 < v < N,. With this simplification, the relevant generalized noise moment can be rewritten as

N, dy [ 4 N, 2dsoalr—K)/p
En S TT XTI & e kzl Zl |72, |P
—1lv=

v=1 j1+~~~+jdf =iy k=1

My (i1, ... iN,) = (31)

[(2(dfagN, — K)/p + 1)pt ’
which only depends on p. Thus, the metric optimization is greatly simplified. Furthermore, if we
specialize (31) further to the Ly—norm metric (p = 2), (29) and (31) can be shown to be equivalent
to [19, Eq. (19), (20)]. On the other hand, if we make the additional assumption oz = 1, the double
sum in (19) disappears again and only

2dyog Ny /p

df N,
1
M,(0,....0) = c. b N
( ) I'(2dsagN, /p + 1)pdsNe =7 ZZV"@ | (32)

k=1 v=1

is needed. This is of interest, since closed—form results for the expected value in (32) have been

reported in [20] for various types of noise.
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3.2.2 Diversity and Coding Gain

It is convenient to express the asymptotic BER in terms of the diversity gain G; and coding gain G,
i.e., B, = (G.y)~% [34]. For the problem at hand, a comparison with (27) shows that diversity and

coding gain are given by

Gd = di,nOzd (33)
10 10 wc(df)Xm(Oéd,Nr,df)
B] = ——log,,(2a,) — — 1
G, [dB] y 0g19(20x) Gy ng( .
10 dNrayg

_G_d lOglO Z Z Mn(il, e ,iNT,) (34)

K=0 ’i1+~~~+iNT=K

From (33) we observe that the diversity gain is independent of the metric parameters, q and p, and of
the type of noise. Therefore, the asymptotic BER curves for all types of noise are parallel independent
of how g and p are chosen. Eq. (34) reveals that the coding gain consists of three terms. The first
and the second term depend on the fading parameter «. and on the modulation and coding scheme,
respectively, but are independent of the metric parameters g and p. The third term is a function of
g and p and also depends on the type of noise via the generalized moments M, (i1, ...,iy,). Thus,
optimizing the metric parameters based on (27) will shift the asymptotic BER curve as far as possible
to the left but has no influence on the slope of the BER curve. Another interesting observation from
(33) and (34) is that coding and mapping schemes with maximum free distance dy and minimum
we(dy) X (o, Ny, dy) are not only asymptotically optimal for AWGN and L;—norm decoding but
also for non—AWGN channels and L,—norm decoding. In other words, transmitter and receiver can
be independently optimized and the type of noise does not influence transmitter optimization, which

simplifies the optimization of secondary BICM systems considerably.

4 Metric Parameter Estimation

In this section, we formulate the metric parameter optimization problem as an ML parameter esti-
mation estimation problem. For this purpose we first introduce the generalized Gaussian (GG) pdf.
Using on this pdf, we then find the ML estimates for the L,—norm metric parameters q and p based
on the noise samples observed at the receiver. These estimates are then used as metric parameters

for the L,—norm metric employed in the secondary system. We note that this approach is suboptimal,
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i.e., the metric parameter estimates obtained using this approach will not necessarily minimize the
BER. However, the computational complexity of this approach is lower than the one presented in

Section 3 as it leads to simpler expressions for the objective function for metric optimization.

4.1 GG Probability Density Function

The GG pdf encompasses a wide range of distributions and is also a popular model for non—Gaussian

noise. This pdf can be expressed as

2/8
fea(z;a,B) = % exp (—a|z|5) , (35)

with the corresponding variance o2 given as

2 I'(4/5)
0Ga = 2IBT(2/R) (36)

where o, 0 < a < oo, is a scaling factor and (3, 0 < [ < oo, is a shape parameter. Smaller
values of the shape parameter 3 (0 < 3 < 2) correspond to heavier—tailed and thus more impulsive
distributions, whereas larger values of 5 (5 > 2) result in shorter—tailed distributions. Well-known
special cases of this density are Laplacian (5 = 1) and Gaussian noise (/3 = 2). Furthermore, in the
limiting case of § — oo the GG pdf converges to a uniform density on the |z| < 1/« circle.

The motivation behind considering the GG pdf for parameter estimation is two fold. Firstly, thid
pdf is very flexible and therefore can be successfully used to approximate a wide range of distributions.
Secondly, the L,—norm metric employed in this paper is closely related to the GG pdf. In fact, it is
not difficult to see that an optimized L,—norm metric can achieve ML performance in the presence a

non—Gaussian impairment distributed according to a GG pdf.

4.2 ML Parameter Estimation

The main idea behind the proposed ML metric parameter estimation method is to identify the GG
pdf that best approximates the distribution of the underlying noise in an ML sense [35]. Based on
the GG pdf given in (35), the ML parameter estimation problem can be formulated as follows. For
the observed noise samples n;, 1 < k < K,,, generated based on the pdf p,, (rn;), we define the the
log—likelihood function (LLF) L(n;q,p) as
1 Km Ny
L(n;q,p) £ K, log {H HPGG(%,V; qu,pu)} (37)

k=1v=1
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with n = [n1,n,,...,ng,]. The ML prameter estimates ¢ and p are the values of g and p that

maximize the LLF and therefre are given as

(q,p) = arg max {L(n;q,p)} (38)

Using (35) in (37) yealds

Ky Ny /
Pv g
timsan) = 533 e (2 ) |

™1 v=1
Ny 2/1171/
Pvqv .
=Y log [ o | — it (q, 39
2 0g <2WF<2/M> 1M, (q, P) (39)

with 7, (g, p) = Kll o S g nk | For K, — oo, the strong law of large numbers can be

invoked to concluded that 1, (q,p) — &n, {Ef/\”l q,,|nk7u|p"}. Therefore, (39) can be written as

/v
pl/qV v
L(n;q,p) E log (271’F2/p >— nk{E qy\nky\p} (40)

We further note that &,, {Ziv;l ql,|nk,l,|p”} = SN g (p,) where m,(p) 2 E{|nk,|P} is the

pth moment of the underlying noise. Therefore we obtain

2/pv

Pv G
1 (D 41
L(n;q,p) Zog<27rr2/py> qu pv) (41)

Close—form expressions for the noise moments m,,(p) have been provided in [19] for different types
of noise defined in Section 2. The corresponding noise moments can be used in (41) to arrive at a
close—form expression for the LLF.

Egs. (40) and (41) can be employed to calculate the LLF needed to solve the optimization
problem formulated in (38). In particular, (41) can be used when the noise statistics are known (cf.
Section 6.1) for offline LLF maximization whereas (40) cab be employed for adaptive minimization

of the LFF in scenarios where only the noise samples are available (cf. Section 6.2).

5 Adaptive Metric Optimization

In practice, the type of noise impairing a secondary user system is not usually known a priori and change

with time. In such scenarios, it is necessary to develop adaptive algorithms that solve the metric



Nasri et al.: Robust L,~Norm Metric for UWB and Cognitive Radio BICM Systems 17

optimization problem online only based on the noise samples observed at the receiver. Therefore,
in this section, we present adaptive algorithms that enable adaptive BER minimization and adaptive
parameter estimation based on the BER analysis and ML parameter estimation frameworks developed
in Sections 3 and 4, respectively. For this purpose, due to the random nature of the optimization
problem, a stochastic optimization algorithm has to be used. Although several types of stochastic
optimization algorithms are available in the literature, numerical evidence shows that the finite—
difference stochastic approximation (FDSA) algorithm [36] is the most suitable for the problem at
hand. In essence, the FDSA algorithm iteratively optimizes an stochastic objective function by
avoiding the computationally expensive calculation of the objective function’s gradient.

For adaptive BER minimization, we use the asymptotic BER results obtained in Section 4 as
objective function for the FDSA algorithm since the approximate upper bound derived in Section 3
is too cumbersome for adaptive optimization. In particular, based on (26) and (27) the objective
function for the FDSA algorithm is given by

dir'&d

Liper(0) = > Y Mp(ir,... in,;6) (42)

K=0 i1+~~~+’iNT=K

with

v=1 j1+-+jq=iv k=1

d 2 % (dyag—iv)/pv
1 k‘-‘rNe—l 2] f N’r » v=1
Dk H > H & [T, kZl Zlqulnk,u\ g

=lv=
My, (i1, ... in,; 0) =

r <2 ZT(dOéd —i,)/py + 1) 1—1 pgfqg(dfad—iu)/pu
v=1 v=1

(43)

where we have omitted all terms that do not affect the optimization and the vector 8 = [q; ...
qn, D1 ---PN,]T contains all metric parameters to be optimized. Furthermore, M, (iy,...,iy,;0) is
the instantaneous estimate for the generalized noise moment, and /N, denotes the length of the sliding
window used to calculate this estimate. We note that multiplying the elements of g with a constant
does not affect the value of the objective function in (43), and therefore we can assume ¢; = 1
without loss of generality. We further note that M, (i1,...,in,; @) can be significantly simplified if
the fading or the metric parameters are constraint (e.g., ag=1orq, =1, p, =p, 1 <v < N,),

cf. Sections 3.2.1.

For adaptive ML parameter estimation, the objective function for the FDSA algorithm can be
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formulated based on (40) as

L k+Ne—1 N,
tosns(@) = Yoo (2 ) TS bl m

i=k  v=1

Here, g1 = 1 can not be assumed as it affects the value of the objective function.
With the objective functions at hand, the FDSA algorithm can be formulated as follows. The
FDSA algorithm improves the parameter vector estimate at time &, 6, in the direction of the negative

gradient vector estimate g(6y) to obtain a new estimate 6., [36]:

Ori1 — 0, — 6, 9(60) (45)
3(6)) = Lix(0r + Crer) — Lix(0r — Cer)  Lix(0r + Crean, 1) — Lix(0x — Crean, 1) 1"
TR 2, o 2,

(46)

where X € {BER,MLE}, and 0, > 0 and (; > 0 are the gain sequences of the FDSA algorithm,
and e; denotes a vector with a 1 in position ¢ and Os in all other positions. The convergence theory
for the FDSA algorithm [36] states that if the gain sequence fulfills ;, — 0, {;, — 0, >, 0 = 00
and 377, 07 /¢ < oo, under some mild conditions on the cost function, the algorithm is guaranteed
to converge to a local minimum. However, in practice, it may be better to adopt 6, = 0 and (, = (,
where ¢ and ( are small constants, to give the algorithm some tracking capability.

In Section 6 we study and compare the performance of the proposed adaptive algorithms using a

practical example (cf. Figs. 3, 4, and 5).

6 Numerical and Simulation Results

For numerical and simulation results presented in this section, the standard convolutional code with
rate R. = 1/2 and generator polynomials [133, 171] (octal representation) is adopted and higher
code rates are obtained via puncturing. The considered type of fading, the assumed values for the
SNR and number of antennas, and the employed code rate and modulation scheme are specified in
the captions of the figures. The parameters for the considered types of noise are specified in the
figure captions as well. Furthermore, the BER bound and asymptotic BER are calculated using (10)

and (27), respectively.
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6.1 OfHine Metric Optimization

In Figs. 1 and 2 we consider a scenario where the noise statistics are known a priori, and therefore
the task of metric optimization can be performed offline. For this scenario we illustrate how the
BER analysis and ML parameter estimation techniques developed in Sections 3 and 4 can be used for
offline BER minimization and offline ML parameter estimation, respectively. Although the assumption
of known noise statistics is not realistic, it helps us study and compare the performance of the
aforementioned approaches for metric optimization. To simplify the exposition, we assumed that
N, = 1 is valid and therefore the only metric parameters that have to be optimized are ¢ and p,
where we have dropped the indices for convenience. The more general case of N, > 1 is considered
in the next subsection.

We illustrate in Fig. 1 how the BER performance measures obtained in Section 3 for the secondary
system can be used for offline metric optimization. Since for offline optimization computational
complexity is not a major concern, we use the analytical BER bound for offline BER minimization.
Thereby, assuming ¢ = 1 without loss of generality, in Fig. 1 we have shown the BER bound for
ACCI, NBI, and UF-ACCI noise vs. p for SNR = 15 dB. The value of p for which the BER bound
is minimized is denoted by pggr and the corresponding point of the BER bound curve is marked by
“x7” markers. For comparison, we have also shown the BER obtained via Monte—Carlo simulation
and the asymptotic BER. As seen, the BER bound, simulation and asymptotic results are in general
in good agreement The observed small differences between the curves are due to assuming a finite
value for SNR in this figure. Nevertheless, Fig. 1 shows that for each type of noise the minimum BER
happens at approximately the same value of p for all the three curves. Fig. 1 further shows that the
BER of the secondary system strongly depends on the metric parameter p and therefore significant
performance gains can be achieved by metric optimization.

The offline ML parameter estimation is illustrated in Fig. 2 for the same noise types as in Fig. 1.
Here, ¢ = 1 can not be assumed without loss of generality (cf. (40)). To avoid optimizing two
parameters, we assume that ¢ is determined based on p such that variance associated with the pdf
pcc(z,q,p) is unity. Therefore, in this figure we have shown the LLF obtained using (40) for the
considered noise types as function p. For each type of noise the value of p that maximized the

7

LLF is denoted by pyrg and the corresponding point of the LLF curve is marked by “*” markers.

We first note that the LFFs do not depend on the channel type, the value of SNR, or on the code
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rate and modulation scheme. Furthermore, comparing Fig. 2 with Fig. 1 reveals that although the
ML parameter estimation is a suboptimal approach for metric optimizatoin, the parameter estimate
PMLE is generally in good agreement with pggr and the incurred performance loss due to using Pk

instead of pggr is minimal.

6.2 Adaptive Metric Optimization

In Figs. 3, 4, and 5 we study and compare the performance of the adaptive BER minimization and
adaptive ML parameter estimation algorithms proposed in Section 5 for a scenario where the noise
statistics vary with time. In particular, we consider a BICM-OFDM secondary system impaired by
NBI noise for which the number of interferers and their power change at time indexes k = 5 x 10*
and k& = 10 x 10%, and are constant otherwise. The resulting impairments are denoted by N;, N,
and N3, and details about corresponding noise parameters are provided in the caption of the figures.
Furthermore, we have initialized both algorithms with ¢, =1, 1 <v <2, andp, =2, 1 <v <2
and shown the results for one typical adaptation process. In order to have fair comparison, for both
algorithms we have adopted 0, = § = 1073, (, = ¢ = 107® and N, = 1, and have not used the
normalization ¢; = 1 that is possible only for adaptive BER minimization.

In Figs. 3 and 4 we show the metric parameters estimates q and p resulting from adaptive BER
minimization and adaptive parameter estimation, respectively. The corresponding asymptotic BERs
as well as the asymptotic BER obtained for the Ly—norm metric are shown and compared in Fig. 5.
As seen, although similar gain sequences were chosen for both algorithms, the steady state values
are reached relatively faster in Fig. 3 compared to Fig. 4. The reason can be explained by noting
that the BER curves are relatively steeper than the LLF curves for similar values of g and p (cf.
Section 6.1). Nevertheless, both algorithms can effectively adapt to variations in noise statistics and
reach the steady state values fairly quickly. Fig. 5 reveals that both algorithms reach close to optimal
BERs and achieve significant performance gains compared to Lo—norm. Furthermore, this figure
confirms the robustness of the proposed L,—norm as the variations observed in the performance of

the optimized L,—norm are considerably smaller compared to the Ly—norm.
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6.3 Comparison with Other Metrics

We compare the performance of the optimized L,—norm metric with that of Ly—norm metric, op-
timized Huber's M—metric and ML metric in Fig. 6 for a BICM-SC secondary system impaired by
TD-GMN noise. The L,~norm metric was optimized using the offline approach described in Section 6
and the results are shown for both p = pggr and p = pyLe. Huber's M—metric was optimized using
simulation for SNR = 18 dB. For the Ly—norm and optimized L,—norm with p = pprr the BER
bound, asymptotic BER as well as simulation results as a function of the SNR. For the optimized
L,—norm with p = pyrg only the asymptotic BER is included to avoid crowding the figure. For
the Huber's M—metric only the simulation results are shown. Fig. 6 indicates that the performance
loss due to using p = purg instead of p = pggr is negligible. Furthermore, it is observed that at
BER = 107° the optimized L,—norm metric outperforms the Lo—norm metric and Huber's by 5 dB

and 2 dB, respectively, and the gap to the optimal ML metric is less than 1 dB.

6.4 Effect of Different Channel Types

We consider the effect of different channel types on the performance of the proposed L,—norm metric
in Fig. 7. In particular, in Fig. 7, we show BER of a BICM-OFDM secondary system impaired by
GMN-OFDM vs. SNR for Rayleigh, Rician, Nakagami-m and Weibul fading channels. For each
fading type we show the BER bound, asymptotic BER, and simulation results for the optimized
L,—norm and Ly—norm metrics. The L,—norm was optimized using the adaptive BER minimization
algorithm using a similar approach as explained in Section 6.2. Fig. 7 indicates that the optimized
Lo—norm metric achieves similar gains over the Lo—norm metric for the different types of fading
channels considered in this figure. This figure also confirms the validity of the asymptotic BER
analysis presented in Section 3 as it shows that the simulations, the BER bound, and the asymptotic
results are in great agreement for different types of fading, and in particular for Weibul fading for
which oy = 3/2 is a non—integer. As expected, it is observed that the diversity gain is the same for

Ly—norm and L,—norm metrics but differs for fading channels with different oy.

6.5 Effect of UWB Interference

In Fig. 8 we study the performance of the proposed L,—norm metric for a BICM-SC secondary system

impaired by impulse radio (IR) UWB interference. We have shown the BER bound, asymptotic BER,
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and simulated BER of the considered secondary system as a function of SNR for the Ls—norm
and optimized L,—norm metrics. The results are shown for two values of B;, where B, denotes
the total bandwidth of the BICM-SC system. The parameters for the IR UWB interference were
adopted from the |IEEE 802.15.4a standard [30]. Fig. 8 shows that the value of B, which governs the
impulsiveness of the noise [6], has a strong effect on the performance. This figure further suggests
that the performance gain obtained using the optimized L,—norm metric is larger when the underlying

impairment is for more impulsive.

6.6 Comparison with Erasure Decoding

We compare the performance of erasure decoding with that of the optimized L,—norm metric in Fig. 9
for a BICM-OFDM secondary system impaired by NBI noise. For the NBI noise we have assumed
B =10, Ny, = 64 and a total of N; = 60 interferers which are aligned with the center frequencies of
the BICM—OFDM subcarriers. Erasure decoding is achieved by erasing the bit metrics associated with
K, affected subcarriers with largest interference powers. In this figure we have shown the simulation
results for erasure decoding for different values of K, as well as the BER bound and simulation results
for Ly—norm and the optimized L,—norm metrics as a function of SNR. As seen, the performance of
erasure decoding strongly depends on the number of erased subcarriers K, and choosing the optimal
K. involves a tradeoff. In particular, increasing K. improves the performance for low SNR's as
the effect of interference from a larger number of subcarriers is suppressed. However, since erasure
adversely affect the free distance of the underlying convolutional code, increasing K, also results in
the reduction of diversity gain and/or an error floor and therefore performance degredation at high
SNR'’s. For the considered scenario the best tradeoff is achieved with K, = 30. We note that for
erasure decoding we have assumed ideal interference detection, i.e., we have assumed that the location
of the affected BICM—-OFDM subcarriers are perfectly known. In practice, the interference detection
would be non—ideal and therefore the performance of erasure decoding would be worse than what
shown in this figure. Nevertheless, Fig. 9 indicates that the optimized L,—norm metric outperforms

the best performance achieved by erasure decoding by more than 2.5 dB at BER = 107°.
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7 Conclusions

In this paper, we have proposed an adaptive L,—norm metric for secondary BICM systems operating
in the presence of non—Gaussian noise and interference with time—varying statistics. For optimization
of the proposed L,—norm metric we have developed two different approaches based on minimizing
the BER of the secondary system and ML parameter estimation. Based on both approaches we
have derived FDSA algorithms that enable adaptive metric optimization. Our numerical and sim-
ulation results show that optimized L,—norm decoding can substantially improve the performance
of secondary systems in non—Gaussian noise environments and yields significant performance gains
compared to other popular metrics. Furthermore we have shown that the proposed adaptive algo-
rithms can effectively optimize the L,—norm parameters in secondary environments with changing

noise statistics.

A Pdf fy(yk,y) Of y]{;W fOI' ¥ — o0

For convenience and without loss of generality, we drop all subscripts £ and v in this appendix.
Furthermore, we first consider the pdf fx(X) of X £ |,/7he + n|* and then calculate the pdf f,(y)
of y = X?/? using

Foy) = 2/p x(y*?) /P (47)
X can be expressed as

X = yad*d?, + 2\/7d.aR{n} + |n|?, (48)

where we introduced the definitions 7 = ne™® and d,. = |e|, and used the fact that h = ae’® (cf.

Section 2.2). The MGF of X can now be obtained as
(I)X<8) A 5[17@{6_8)(} _ e—s\n|25~a’@{e—s'yad§z e—s2\ﬁdzza§)‘k{ﬁ}} (49)

Using the Taylor series expansion e¢* = >~ a'/i!, we arrive at

(I)X(S) _ e_s|n‘25a7® {e_s,yaz di‘z f: (—2ﬁd&%{ﬁ}$)l } . (50>

7!
i=0
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For v — oo, (5) can be used along with the integral [ 2#~te 7" dz = p*/?I'(11/2) [37, 3.462] to
rewrite (50) as

—s|n|?
Ox(s) = e 2 Z?P G+ i/2)Eo{RAY L2 + 0 (7°4)
—s|n|?
= G adZmnF’swo( ) (51)

where 3; £ T'(ag +14)/(i!)2. In deriving (51), we have used

L \/3/112“2/21 In*, i even
Eo{R{n}'} = ) : (52)
0, 1 odd
Using the Taylor series expansion e~*I"I* = 3% (—1)i|n|?s' /! in (51) yields
29 1

where

p A Z ) ”;M. (54)

If g is an integer it can be shown that
v—1\2 . .
. ag—1— 1), 0<i<as—1
0, ag—1 <1
Thus, for integer ag, Px(s) is a finite power series in s, whereas it is an infinite power series for non—
integer ag, cf. (53). However, truncating the power series for non-integeger o after ay = [ay] — 1
terms results in a good approximation for ®x, ,(s). Applying this truncation, for v — oo, based on
(53), we obtain via the inverse Laplace transform
Qg

Qe P 2i yoag—i—1 0 —ay
X =z )adgr(ad_l) [ X o (7). (56)

Finally, f,(y) for v — oo can be found based on (56) and (47) as

200 o P % 2ogei
— ¢ L p|FyAleai/pml g (yT0d) 57
fu() D) ; oy — 1) n[*y (™) (57)

Note that (57) is exact for integer g and an approximation for non—integer .
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Tables and Figures:

Table 1: Pdf p,(a) of fading amplitude a and fading parameters «,. and a4 for various fading
models.

| Channel type | pa(a) of the fading amplitude a | Q. | o |
Rayleigh 2ae" det(Cp,)~V/Nr 1
ex (— Heyel ) a
Ricean 2K +1)ae K-(1+K)a* Iy <2a\/K(K + 1)) PATH = i 1
det(C’hh)
Nakagami-m an) mm q2m—1 g—ma® F(m det(C, )_m/NR m
Nakagami—q (1+q < exp < 1+‘1 ) ((1—424)&) % 1
Weibull (r(1 +2))2 e exp( (ar(1+2))") < (D(1+2))% c
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BER vs. p for NBI, ACCI, and UF-ACCI
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Figure 1: BER of BICM-SC and BICM-OFDM impaired by various types of noise
vs. p. Rayleigh fading, SNR = 16 dB, R. = 3/4, 4-PSK, and N, = 1. GMN-TD:
e-mixture noise, € = 0.1, kK = 3. ACCIL: One Rayleigh faded 4-PSK CCI signals, B =
10, L =1, I, = 0, 2 < p < 10, raised cosine pulses g11(t), with roll-off factor 0.3,
711 = 0.37, kK = 10. NBI: Five equal power sub—carrier—centered Rayleigh faded NBI
signals, N =64, B=1, I =5, Kk = 4. UF-ACCI: One 4-PSK CCI signals, B = 1,
I, =1, raised cosine pulses g;1(t), with roll-off factor 0.3, 71 = 0.37, k = 10. Solid
lines with markers: Simulated BER. Solid lines without markers: BER bound (?7).
Dashed lines: Asymptotic BER (77).
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Figure 2: LLFs vs. p for the same types of noise as in Fig. 1
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Adaptive BER minimization
4.5 T T T T T

Figure 3: Metric coefficients ¢,, and p,, vs. iteration t of FDSA algorithm. Rayleigh
fading, SNR = 11 dB, R. = 7/8, 4-PSK, and Nyr = 2. N1, N2 and N3, NBI with
N = 64 and B = 1 with equal power sub—carrier—centered Rayleigh faded NBI signals.
Nl: 1 =10, kg = ko =40. N2: [; =20, k1 = ko = 4. N3: I} = 10, k1 = 40,
ko = 10.
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Adaptive paramter estimation
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Figure 4: Parameters for N1-N3 are specified in the caption of Fig. 3
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Figure 5: Parameters for N1-N3 are specified in the caption of Fig. 3
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— % L,~norm (Simulation)

—o— Lp—norm (Simulation)
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o L2—norm (Asymptotic BER)
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Figure 6: BER vs. SNR. Rayleigh fading, R, = 3/4, 16-QAM, and N, = 1. TD-GMN:
e-mixture noise with ¢ = 0.05 and x = 50.
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Figure 7: BER of BICM-SC impaired by TD-GMN vs. SNR for different types of
fading channels. R, = 7/8, 4-PSK, and N, = 1. TD-GMN: e-mixture noise with
e = 0.1 and x = 100.
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Fig8, BER vs SNR for BICM-SC, UWB interference, k = 30
i T T M

— & IR-UWB, B_ = 4MHz, L

4 IR-UWB, BS =4MHz, L
A IR-UWB, BS =1MHz, L

— & IR-UWB, B_= 1MHz,
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Figure 8: BER of BICM-OFDM system (N = 64) with sub—carrier spacing Af, im-
paired by IR-UWB [30] vs. SNR. IR-UWB: N, = 32 bursts per symbol and L, = 128
chips per burst. Rayleigh fading, R. = 2/3, 4-PSK, and N, = 1. Solid lines with
markers: Simulated BER. Solid lines without markers: BER bound (??). Dashed
lines: Asymptotic BER (77).
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erasure decoding, BER vs SNR for BICM—-OFDM, Rc = 3/4, NBI with B = 10, Ns = 64, € = 60/640 =0.09, k = 100
10 e 3
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Figure 9: BER of BICM-OFDM system (N = 64) with K, erasures vs. SNR. Rayleigh
fading, R. = 3/4, NBL: B = 10, [, =6 for 1 < ;1 < 10, x = 100.
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