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The frequency bands used by secondary systems such as cognitive radio and ultra–wideband (UWB)

systems are expected to suffer from various forms of noise and interference with time–varying non–

Gaussian distribution such as the co–channel interference caused by the primary user and other

cognitive radios, UWB interference and man–made impulsive noise. To mitigate the harmful effect

of noise and interference, we propose a robust Lp–norm metric for secondary systems that employ

the popular bit–interleaved coded modulation (BICM) scheme. We propose two approaches for

optimization of the Lp–norm metric based on BER performance analysis and Maximum–Likelihood

parameter estimation principal. Based on both approaches we provide efficient adaptive algorithms

that can be used for online metric optimization. Numerical and simulation results show that the

proposed adaptive algorithms can effectively mitigate the adverse effects of noise and interference

with time–varying statistics. Furthermore, the optimized Lp–norm metric is shown to significantly

outperform other popular metrics in secondary system environments.

1This work will be presented in part at the IEEE Global Telecommunications Conference (Globecom), New

Orleans, 2008.
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1 Introduction

The ever–increasing demand for high speed wireless access and inflexible methods of spectrum al-

location have made the radio spectrum an increasingly scarce resource. On the other hand, recent

studies have indicated that large portions of the frequency spectrum are rarely used in both space

and time [1, 2] . This observation has spurred the development of secondary cognitive radio (CR) [3]

and ultra–wideband (UWB) [4] systems that enable spectrum sharing by overlying and underlying the

existing licensed (primary) systems, respectively. The idea behind both CR and UWB is to allow the

secondary users to share the spectrum with primary users as long as the interference caused to the

primary users is not noticeable. In the following, we will refer to CR and UWB systems collectively

as secondary systems.

While most proposed secondary systems employ traditional methods of signal detection designed

for additive white Gaussian noise (AWGN), various forms of non–Gaussian noise and interference with

time–varying statistics can be expected to be present in practice. Examples include the narrowband

and co–channel interference caused by the primary user and other secondary systems [5, 6], respec-

tively, and man–made impulsive noise [7]. Therefore, the use of the L2–norm metric (also referred to

as the Euclidean distance metric) for signal detection, which is optimal for AWGN, can result in signif-

icant performance losses in secondary user environments where non–Gaussian noise2 is dominant. On

the other hand, optimal maximum–likelihood (ML) detection requires exact knowledge of the noise

distribution which may be difficult to obtain in practice and may change with time. This motivates

the use of suboptimal robust metrics that perform well for a large class of noises and have a low com-

putational complexity. These metrics should also have tunable parameters that can be adjusted to

the time–variant noise statistics. Important examples of such robust metrics in the literature include

Huber’s M–metric [8], Myriad and Meridian metrics [9], the generalized Cauchy metric [10], and the

Lp–norm metric [11]. Among these metrics, the Lp–norm metric is particularly interesting due to its

low complexity and the ability to perform well in both heavy–tailed and short–tailed noise provided

that the metric parameters are adjusted accordingly. However, due to the time–varying nature of

noise statistics in secondary environments optimizing the metric parameters is a difficult task, as a

suitable approach for metric optimization has not been proposed.

2To simplify our notation, in this paper, “noise” refers to any additive impairment of the received signal, i.e.,

our definition of noise also includes what is commonly referred to as “interference”.
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In this paper, we consider secondary systems employing bit–interleaved coded modulation (BICM)

[12] in combination with either single–carrier (SC) or orthogonal frequency division multiplexing

(OFDM) modulation and multiple receive antennas. The motivation for considering BICM–SC and

BICM–OFDM systems is twofold. Firstly, BICM–SC and BICM–OFDM are very efficient in exploiting

the time and frequency diversity of wireless fading channels, respectively. Secondly, these techniques

have been adopted in a number of recent standards [13], such as the ECMA multi–band OFDM (MB–

OFDM) UWB system [14], and are also prime candidates for the air interface of future CR and UWB

systems [15]. We propose a robust Lp–norm decoding metric for secondary BICM systems to mitigate

the harmful effects of non–Gaussian impairments. For metric optimization we propose two approaches

which are based on minimizing the bit–error rate (BER) of the secondary system and ML parameter

estimation, respectively. In the first approach we develop a general mathematical framework for BER

performance analysis of the secondary systems that allows us to obtain an accurate approximate upper

bound for the BER as well as closed–form expressions for the asymptotic BER. This framework is very

general and applicable to arbitrary linear modulation formats, all commonly used fading models, and

all practically relevant types of noise, and therefore can be used for accurate performance analysis

of BICM systems employing Lp–norm metric. In the second approach we develop a ML estimator

for the Lp–norm metric parameters based on the noise samples observed at the receiver. The latter

approach, although suboptimal, has the advantage of being independent of various system parameters

such as the channel type, code rate and modulation scheme, and also involves lower computational

complexity. Based on both approaches, we develop efficient adaptive multivariate finite difference

stochastic approximation (FDSA) algorithms that enable adaptive metric optimization.

Using numerical and simulation results we illustrate how the developed BER analysis and ML

parameter estimation frameworks can be used for metric optimization. We study the performance

of the proposed adaptive algorithms in a practical scenario with time–varying noise statistics and

show that both algorithms can effectively adapt to the variations in the noise statistics. In addition,

we show that using the optimized Lp–norm metric significant performance gains can be achieved

compared to the conventional L2–norm metric for various types of noise present in secondary user

environments.

Related Work: One approach to cope with interference in secondary BICM systems is to downscale

those branch metrics which are affected by interference [16]. The disadvantage of this approach is

that the location of the interference signals as well as their corresponding powers have to be accurately
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estimated both in time and frequency, which not only involves high computational complexity but

also is not possible if the interferers apply fast frequency/time hopping. Erasure marking was shown

to be an effective technique for BICM affected by narrowband interference and impulsive noise but

is computationally expensive as it requires joint erasure marking and Viterbi decoding [17, 18]. In

contrast to [16, 17, 18], the approach proposed in this paper is not limited to specific types of noise and

interference but leads to performance improvements for a large class of non–Gaussian impairments.

We note that the performance of BICM with L2–norm decoding in non–Gaussian noise was studied

in [19], and Lp–norm diversity combining was considered for uncoded transmission in [20]. However,

the results in [19, 20] are not applicable to BICM with Lp–norm decoding.

Organization: The rest of this paper is organized as follows. In Section 2, the system model for

the considered secondary communication systems is introduced. The BER analysis and ML metric

parametere estimation frameworks are developed in Sections 3 and 4, respectively. In Section 5,

adaptive metric optimization is considered, and analytical and simulation results are presented in

Section 6. Finally, some conclusions in Section 7.

Notation: In this paper, [·]T , (·)H , ℜ{·}, || · ||, det(·), and Ex{·} denote transposition, Hermitian

transposition, the real part of a complex number, the L2–norm of a vector, the determinant of a

matrix, and statistical expectation with respect to x, respectively. Moreover, IM and 0M are the

M × M identity matrix and the all–zero column vector of length M , respectively. Furthermore, we

use the notation u ⊜ v to indicate that u and v are asymptotically equivalent, and a function f(x)

is o(g(x)) if limx→0 f(x)/g(x) = 0.

2 System Model

We consider secondary BICM–SC and BICM–OFDM systems employing Nr receive antennas and

Lp–norm decoding. In this section, we describe the corresponding signal model and the Lp–norm

metric. We also present the models for several practically relevant types of noise affecting secondary

user systems. For convenience, in this paper, all signals and systems are represented by their complex

baseband equivalents.
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2.1 Signal Model

The transmitter consists of a BICM encoder and either a SC or an OFDM modulator. The BICM

encoder comprises a convolutional encoder of rate Rc, an interleaver, and a memoryless mapper [12].

The codeword c , [c1, c2, . . . , cmcKc
] of length mcKc is generated by the convolutional encoder and

interleaved. The interleaved bits are broken up into blocks of mc bits each, which are subsequently

mapped to symbols xk from a constellation X of size |X | , M = 2mc to form the transmit sequence

x , [x1, x2, . . . , xKc
] of length Kc. The transmit sequence is broken up into B frames containing

N symbols each, i.e., Kc = BN . In BICM–SC, the symbols in each fame are transmitted in

N consecutive symbol intervals, whereas in BICM–OFDM these symbols are transmitted over N

consecutive sub–carriers. Furthermore, we assume that frequency hopping is applied such that each

frame is transmitted with a different carrier frequency and the corresponding channels are statistically

independent. For example, the ECMA MB–OFDM UWB system employs frequency hopping over

B = 3 bands and future versions of the standard may use up to B = 15 bands [14].

Assuming perfect synchronization and demodulation, the observed signal for both BICM–SC and

BICM–OFDM can be modeled as

rk =
√

γ hk xk + nk, 1 ≤ k ≤ Kc, (1)

where γ, hk , [hk,1 . . . hk,Nr
]T , and nk , [nk,1 . . . nk,Nr

]T denote the SNR per receive antenna,

the fading vector, and the noise vector, respectively. Here, hk,ν and nk,ν are the fading gain and the

noise at the νth receive antenna, respectively. Without loss of generality we assume E{||hk||2} = Nr

and E{||nk||2} = Nr.

As customary in the literature, cf. e.g. [12, 21, 22], for our performance analysis we assume perfect

interleaving, which means that hk and nk can be modeled as independent, identically distributed

(i.i.d.) random vectors and only their first order probability density functions (pdfs) are relevant. We

note, however, that the elements of hk and nk may in general be statistically dependent, respectively.

2.2 Lp–Norm Branch Metric

In this paper, we assume the secondary user employs an Lp–norm branch metric for Viterbi decoding.

The employed branch metric for decoding bit i, 1 ≤ i ≤ mc, of symbol xk is given by

λi(rk, b) , min
xk∈X i

b

{Lq,p(rk −
√

γ hk xk)} (2)
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where X i
b is the subset of all symbols in constellation X whose label has value b ∈ {0, 1} in position

i. Furthermore, the generalized Lp–norm metric, Lq,p(y), is defined as

Lq,p(y) =
Nr
∑

ν=1

qν |yν |pν , (3)

where y , [y1 . . . yNr
]T , and q , [q1 . . . qNr

]T and p , [p1 . . . pNr
]T denote the metric parameters.

To achieve high performance q and p should be adapted to the underlying type of noise. For the

special case qν = 1 and pν = 2, 1 ≤ ν ≤ Nr, (2) and (3) simplify to the well–known L2–norm branch

metric, which is typically used in AWGN [12].

2.3 Fading Model

We assume that the fading gains can be expressed as hk,l , ak,le
jΘk,l, where ak,l and Θk,l are

independent random variables (RVs). Specifically, Θk,l is uniformly distributed in [−π, π) and ak,l

is a positive real RV that follows the distribution pa(ak,l). In this paper, we consider both spatially

independent and spatially dependent fading. For spatially independent fading the first order pdf

pa(ak,l) is sufficient to fully describe the properties of random vector ak , [ak,1 . . . ak,Nr
]T , while

for spatially correlated fading the joint pdf pa(ak) of the elements of ak is needed. However, as

shown in [19], for infinitesimally small fading amplitudes, ak → 0Nr
, spatially correlated fading can

be modeled as spatially i.i.d. fading. Therefore, for ak → 0Nr
the joint pdf can be expressed as

pa(ak) ⊜

Nr
∏

ν=1

pa(ak,ν), (4)

where

pa(ak,ν) = 2αc a2αd−1
k,ν + o(a2αd−1

k,ν ) (5)

with fading distribution dependent constants αc and αd. For correlated Rayleigh (Chh , E{hkh
H
k }),

Ricean (µh , E{hk}, Chh , E{(hk − µh)(hk − µh)
H}), and Nakagami-m (Caa , E{aka

H
k })

fading as well as for spatially independent Nakagami–q and Weibull (with fading parameter c) fading,

the fading pdf pa(ak,l) and parameters αc and αd are specified in Table 1.

2.4 Noise Model

The analysis and adaptive metric optimization presented in this paper are applicable to a large class

of noises. The only restriction that we impose is that all joint moments of the elements of nk exist.
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This condition is fulfilled by most noises of practical interest. An exception is α–stable noise, which

is sometimes used to model impulsive phenomena [23]. However, other types of impulsive noise such

as Gaussian mixture noise are included in our analysis. To illustrate the generality of our analysis

and for future reference, we present in the sequel several practically relevant noise models that are

frequency encountered in secondary user environments.

2.4.1 Noise Models for BICM–SC

For secondary BICM–SC systems we consider two important time–domain noise models, namely

asynchronous co–channel interference (ACCI) and time–domain Gaussian–mixture noise (TD–GMN).

1) ACCI: In CR BICM–SC systems, ACCI may be caused by the primary user and/or other CRs

[24, 25] . To describe this noise model, we consider a BICM–SC system with B different hopping

frequencies and assume that at hopping frequency µ, 1 ≤ µ ≤ B, in addition to AWGN ñk,ν,µ, there

are Iµ Ricean faded ACCI signals leading to time–domain noise

nk,ν,µ =

Iµ
∑

i=1

h̃k,ν,µ[i]

κu
∑

κ=κl

gκ,µ[i]bκ,µ[i] + ñk,ν,µ, 1 ≤ ν ≤ Nr, (6)

where h̃k,ν,µ[i] are temporally i.i.d. Gaussian random variables which model the Ricean interference

channel gains with Ricean factor Ki and bκ,µ[i] are the i.i.d. symbols of the ith interferer at the

µth hopping frequency. Furthermore, gκ,µ[i] , gµ,i(κT + τµ,i), where gµ,i(t), T , and τµ,i are the

effective pulse shape, the symbol duration, and the time offset of the ith interferer at the µth

hopping frequency, respectively, and we assume that gµ,i(κT + τµ,i) ≈ 0 for κ < κl and κ > κu.

Finally, we note that for Ki → ∞, the interference channel gains h̃k,ν,µ[i] will be constant values.

We refer to the resulting noise as unfaded ACCI (UF–ACCI).

2) TD–GMN: TD–GMN can be used to model the combined effects of Gaussian background noise

and man–made or impulsive noise, cf. e.g. [7, 26, 27], which may affect e.g. CRs using unlicensed

frequency bands. If the phenomenon causing the impulsive behavior affects the receive antennas

independently, the TD–GMN is spatially i.i.d. [28] and the pdf of nk,ν is given by [7]

pn(nk,ν) =

I
∑

i=1

ci

πσ2
i

exp

(

−|nk,ν |2
σ2

i

)

, 1 ≤ ν ≤ Nr, (7)

where ci > 0 and σ2
i > 0 are parameters. In contrast, if all antennas are affected by the phenomenon

causing the impulsive behavior concurrently, the TD–GMN is spatially dependent and the joint pdf
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for the elements of the noise vector n is given by [28]

pn(nk) =
I
∑

i=1

ci

πNrσ2Nr

i

exp

(

−||n||2
σ2

i

)

. (8)

Two popular special cases of both spatially independent and spatially dependent TD–GMN are Mid-

dleton’s Class–A noise [7] and ǫ–mixture noise. For ǫ–mixture noise I = 2, c1 = 1 − ǫ, c2 = ǫ, and

σ2
2 = κσ2

2 , where ǫ and κ denote the fraction of time when the impulsive noise is present and the

ratio of the variances of the Gaussian background noise and the impulsive noise, respectively.

2.4.2 Noise Models for BICM–OFDM

For secondary BICM–OFDM systems, we consider impairment by narrowband interference (NBI) and

frequency domain GMN (FD–GMN), as these two types of noise may impair both CR and UWB

systems.

1) NBI: We consider a secondary BICM–OFDM system with coding over B different hopping

frequencies. At hopping frequency µ, 1 ≤ µ ≤ B, the received frequency–domain signal is impaired

by AWGN ñk,ν,µ and Iµ Rayleigh faded NBI signals. The corresponding frequency–domain noise

model is

nk,ν,µ =

Iµ
∑

i=1

gk,µ[i]bµ[i]h̃k,ν,µ[i] + ñk,ν,µ, 1 ≤ ν ≤ Nr, (9)

where h̃k,ν,µ[i] are temporally i.i.d. Gaussian random variables which model the Ricean interference

channel gains with Ricean factor Ki. Furthermore, bµ[i] are the symbols of the ith interferer

at the µth hopping frequency and gk,µ[i] , exp[−jπ(N − 1)(k + fµ,i/∆fs)/N + φµ,i] sin[π(k +

fµ,i/∆fs)]/ sin[π(k + fµ,i/∆fs)/N ] [29]. Here, fµ,i and φµ,i denote the frequency and phase of the

ith interferer at hopping frequency µ relative to the user, respectively, and ∆fs is the OFDM sub–

carrier spacing. For future reference, we denote the ratio of the total NBI variance and the AWGN

variance by κ, cf. Section 6. We note that for Ki → ∞, the interference channel gains h̃k,µ,ν[i] are

constant values. The resulting noise will be referred to as unfaded NBI (UF–NBI) in the rest of this

paper.

2) FD–GMN: FD–GMN can be used to model the combined effects of frequency–domain Gaus-

sian background noise and impulsive phenomena that only affect a small number of sub–carriers. For

example, it can be used to model the effect of a Rayleigh faded NBI interferer or a tone interferer in a
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BICM–OFDM UWB system. The mathematical model for FD–GMN is identical to that of TD–GMN

in (7) and (8) except that now k denotes the sub–carrier index instead of the time.

2.4.3 UWB Interference

UWB interference may affect both secondary BICM–SC and secondary BICM–OFDM systems. In

this paper, we test the proposed Lp–norm metric for impulse radio (IR) UWB and MB–OFDM UWB

interference. Thereby, we generate the UWB interference signals following the respective ECMA and

IEEE standards [14, 30].

3 BER Performance Analysis

In this section, we derive analytical expressions for the BER performance of the secondary BICM

systems described in Section 2 in non–Gaussian noise environments. The derived expressions are

obtained as a function of the metric parameters q and p, and therefore can serve as objective

functions for metric optimization. In particular, in this section, we first provide an approximate upper

bound for the BER based on the expurgated union–bound. We then analyze the behavior of the

obtain BER bound for high SNR’s to arive at a closed–form expression for the asymptotic BER. The

BER analysis provided in this section is based on the unified signel model presented in Section 2.1

and thefore the results are applicable to both BICM–SC and BICM–OFDM secondary systems.

3.1 Approximate Upper Bound for BER

Here, we provide an approximate upper bound for the BER performance of the considered BICM

secondary systems impaired by non–Gaussian noise3. Assuming a secondary BICM system with code

rate Rc = kc/nc (kc and nc are integers) the union bound for the BER is given by [12]

Pb ≤
1

kc

∞
∑

d = df

wc(d) P (c, ĉ), (10)

3We note that since our derivation is based on the expurgated union bound in [12], we cannot prove that the

proposed bound is a true upper bound, see discussion in [31, 32]. However, numerical evidence in e.g. [32, 19]

suggests that the expurgated union bound does result in tight upper bounds if Gray labeling is applied. Our own

results in Section 6 confirm this conjecture.
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where c and ĉ are two distinct code sequences with Hamming distance d that differ only in l ≥ 1

consecutive trellis states, wc(d) denotes the total input weight of error events at Hamming distance

d, and df is the free distance of the code. P (c, ĉ) is the pairwise error probability (PEP), i.e., the

probability that the decoder chooses code sequence ĉ when code sequence c 6= ĉ is transmitted.

Adopting the expurgated bound from [12], the PEP can be expressed as

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

(Ψ(s))d ds

s
, (11)

with

Ψ(s) ,
1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(s) (12)

where c is a small positive constant that lies in the region of convergence of the integrand. Further-

more, Φ∆(s) , Ehk ,nk
{e−s ∆} is the moment generating function (MGF) of the metric difference

∆ , Lq,p(rk −
√

γ hk zk) − Lq,p(rk −
√

γ hk xk)

=
Nr
∑

ν=1

qν |rk,ν −
√

γ hk,ν zk|pν −
Nr
∑

ν=1

qν |rk,ν −
√

γ hk,ν xk|pν (13)

conditional on the transmission of xk ∈ X i
b . Here, zk is the nearest neighbor of xk in X i

b̄
with b̄ being

the bit complement of b. Since conditional on the transmission of xk, we have rk,ν =
√

γ hk,ν xk+nk,ν ,

1 ≤ ν ≤ Nr, we can rewrite (13) as

∆ =

Nr
∑

ν=1

qν |
√

γ hk,ν ek + nk,ν|pν −
Nr
∑

ν=1

qν |nk,ν|pν (14)

where ek , xk − zk. The MGF Φ∆(s) can therefore be obtained as

Φ∆(s) = Ehk,nk

{

Nr
∏

ν=1

e−sqν(|√γ hk,ν ek+nk,ν |pν−|nk,ν |pν )

}

. (15)

The approximate union bound is obtained by numerically evaluating (10), (11), and (15). In particular,

several different techniques can be used for evaluation of the complex integral in (11). One popular

option is the application of Gauss–Chebyshev quadrature rules, cf. [31]. An even more efficient

approach is the use of a saddle point approximation [31, 33]. In the latter case, the PEP is accurately

approximated as

P (c, ĉ) ≈ (Ψ(ŝ))(d+1/2)

ŝ
√

2πdΨ′′(ŝ)
(16)
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where the saddlepoint ŝ is defined as the value for which Ψ
′

(ŝ) = 0 is valid. Here, Ψ
′

(s) and Ψ
′′

(s)

denote the first and the second derivative of Ψ(s) with respect to s, respectively. Ψ(s), Ψ
′

(s), and

Ψ
′′

(s) can be obtained efficiently by Monte–Carlo simulation. The saddle point is obtained by a

simple one–dimensional search (is this true, please provide more details?????????).

The saddle point approximation is an efficient technique for evaluation of the PEP and con-

sequently for calculation of the approximate BER bound in (10). Since the proposed BER bound

depends on the metric parameters q and p, it can be used for offline metric optimization if the

statistics of fading and noise are known a priori or a sufficient number of measurements for hk and

nk are available to perform the averaging in (15). However, the required search for the saddle point

and the fact that (15) requires averaging over both fading and noise, make the approximate upper

bound unsuitable for adaptive metric optimization. In order to obtain analytical BER expressions that

are suitable for adaptive metric optimization, we perform an asymptotic high SNR analysis in the

next subsection.

3.2 Asymptotic BER

In this section, we analyze the asymptotic behavior of the BER bound provided in (10) for γ → ∞,

i.e., for asymptotically high SNR’s. For this purpose, it is convenient to rewrite the PEP as

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

Enk
{Φ(s|nk)}

ds

s
, (17)

with

Φ(s|nk) =
d
∏

k=1





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(s|nk)



 , (18)

where

Φ∆(s|nk) = E
{

e−s∆
}

⊜ e−s
PNr

ν=1
qν |nk,ν |pν

Nr
∏

ν=1

Φyk,ν
(qν s). (19)

In obtaining the last equality, we have used (14), yk,ν , |√γ hk,ν ek + nk,ν |pν , the asymptotic

independence of the fading gains (4), and Φyk,ν
(s) , E{e−syk,ν}. The pdf fy(yk,ν) of yk,ν for γ → ∞

is derived in the Appendix and given in (57). Based on this result, for γ → ∞, the MGF Φyk,ν
(s)

can be expressed as

Φyk,ν
(s) =

2αc

pν (γd2
xz)

αd

ᾱd
∑

i=0

ξi,ν |nk,ν|2i s−2(αd−i)/pν + o
(

γ−αd
)

, (20)
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where dxz , |ek|, ᾱd , ⌈αd⌉ − 1, ξi,ν ,
Γ(2(αd−i)/pν) Pi

Γ(αd−i)
, and Pi is defined in (54). Substituting (20)

in (19) yields

Φ∆(s|nk) =
(2αc)

Nr e−s
PNr

ν=1
qν |nk,ν |pν

(γd2
xz)

Nrαd

Nr
∏

ν=1

(

ᾱd
∑

i=0

ξi,ν |nk,ν|2i

pνq
2(αd−i)/pν
ν

s−2(αd−i)/pν

)

+ o
(

γ−Nrαd
)

(21)

Using (21) in (18) we obtain for Φ(s|nk) the expression

Φ(s|nk) = Xm(αd, Nr, d) (2αc)
dNrγ−dNrαd e−s

Pd
k=1

PNr
ν=1

qν |nk,ν |pν

×
d
∏

k=1

Nr
∏

ν=1

(

ᾱd
∑

i=0

ξi,ν |nk,ν|2i

pνq
2(αd−i)/pν
ν

s−2(αd−i)/pν

)

+ o
(

γ−dNrαd
)

(22)

with modulation and coding dependent constant

Xm(αd, Nr, d) ,





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

1

(d2
xz)

Nrαd





d

. (23)

After some manipulations, Φ(s|nk) can be rewritten as

Φ(s|nk) = Xm(αd, Nr, d) (2αc)
dNrγ−dNrαd e−s

Pd
k=1

PNr
ν=1

qν |nk,ν |pν

dNrᾱd
∑

K=0

∑

i1+···+iNr =K

s−2
PNr

ν=1
(dαd−iν)/pν

×
Nr
∏

ν=1

∑

j1+···+jd=iν

p−d
ν

ξj1,ν |n1,ν |2j1

q
2(ν−j1)/pν
ν

. . .
ξjd,ν |nd,ν |2jd

q
−2(αd−jd)/pν
ν

+ o
(

γ−dNrαd
)

(24)

where 0 ≤ jk ≤ ᾱd, 1 ≤ k ≤ d, and 0 ≤ iν ≤ K, 1 ≤ ν ≤ Nr. Applying (24) in (17) and using the

Residue theorem, we obtain for the PEP for γ → ∞ the expression

P (c, ĉ) = Xm(αd, Nr, d) (2αc)
dNrγ−dNrαd

dNrᾱd
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
) + o(γ−dNrαd), (25)

where the generalized noise moment Mn(i1, . . . , iNr
) is defined as

Mn(i1, . . . , iNr
) ,

Enk











Nr
∏

ν=1

∑

j1+···+jd=iν

d
∏

k=1

ξjk,ν |nk,ν|2jk

(

d
∑

k=1

Nr
∑

ν=1

qν |nk,ν|pν

)2
Nr
P

ν=1

(dαd−iν)/pν











Γ

(

2
Nr
∑

ν=1

dαd−iν
pν+1

)

Nr
∏

ν=1

pd
νq

2(dαd−iν)/pν
ν

.

(26)

We note that o(γ−dNrαd) in (24) contains sums of products of the elements of the noise vector nk.

For these term to remain finite after expectation with respect to nk, we have to assume that all joint
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moments of the elements of nk exist. Based on (25) and (10) a closed–form approximation for the

asymptotic BER can be obtained as

Pb ⊜
wc(df)

kc

Xm(αd, Nr, df) (2αc)
df Nrγ−df Nrαd

df Nrᾱd
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
). (27)

In deriving (27), besides the assumption that all joint noise moments exist, we also have assumed

that (a) the approximate BER bound in (10) is tight for high SNRs and (b) the first term with d = df

in (10) is dominant. Assumption (a) is confirmed by simulations in Section 6 and assumption (b) is

justified for high SNR.

The asymptotic expression for the BER in (27) is very general since it is applicable to all types

of fading whose pdf can be expressed as in (4), all types of noise whose joint moments exist, all

modulation formats, and arbitrary code rates. Eq. (27) can be used for fast evaluation of the

BER at high SNRs. For this purpose, it is most convenient to evaluate the generalized moments

Mn(i1, . . . , iNr
) by Monte–Carlo simulation. Note that this has to be done only once since these

moments do not depend on the SNR. For special cases, Mn(i1, . . . , iNr
) can be calculated in closed

form. However, we do not derive corresponding expressions here because of space limitation and since

the main goal of this paper is the exploitation of (27) for adaptive metric optimization, cf. Section

5. First, however, we consider some special cases and discuss some implications of (27).

3.2.1 Special Cases

In this subsection, we discuss some special cases that allow significant simplifications of the asymptotic

result in (27).

Fading Channels with αd = 1: For αd = 1, which is valid for e.g. (possibly spatially correlated)

Rayleigh, Ricean, and Nakagami–q fading, (25) can be significantly simplified. In particular, since we

have ᾱd = 0, the double sum in (25) disappears and only the moment Mn(0, . . . , 0) is needed. This

moment is given by

Mn(0, . . . , 0) =

∏Nr

ν=1(Γ(2/pν))
df

Γ(
∑Nr

ν=1 2df/pν + 1)p
df
ν q

2df /pν

ν

Enk















df
∑

k=1

Nr
∑

ν=1

qν |nk,ν|pν





PNr
ν=1

2df /pν











. (28)

Uncoded Transmission (df = 1): For uncoded transmission we have df = 1, kc = 1, and

wc(1) = 1. Furthermore, X(αd, Nr, 1) = Nmin/(mcd
2αdNr

min ), where Nmin and dmin are the aver-

age number of minimum distance neighbors and the minimum distance of signal constellation X ,
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respectively. Hence, the asymptotic BER can be expressed as

Pb ⊜
Nmin(2αc)

Nr

mcd
2αdNr

min

γ−Nrαd

Nrᾱd
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
), (29)

where now

Mn(i1, . . . , iNr
) =

Enk

{

∏Nr

ν=1 ξiν ,ν |nk,ν|2iν
(

∑Nr

ν=1 qν |nk,ν |pν

)2
PNr

ν=1
(αd−iν)/pν

}

Γ
(

2
∑Nr

ν=1(αd − iν)/(pν + 1)
)

∏Nr

ν=1 pνq
2(αd−iν)/pν
ν

. (30)

If we assume additionally αd = 1, the double sum in (29) disappears and (30) simplifies in a similar

manner as (28). For uncorrelated Rayleigh and Ricean fading, the corresponding asymptotic BER can

be shown to be equivalent to [20, Eqs. (10),(13)]. Note, however, that even for uncoded transmission,

the results in this paper, which are also valid for e.g. Nakagami–m and Weibull fading and correlated

Rayleigh and Ricean fading, are much more general than those in [20].

Simplified Metric: The general Lp–norm metric in (3) requires the optimization of 2Nr − 1

metric parameters (since the metric is invariant to a multiplication with a positive constant, we may

choose q1 = 1 without loss of generality). In practice, for complexity reasons, a metric with just

one adjustable parameter may be more desirable. Therefore, me may choose qν = 1 and pν = p,

1 ≤ ν ≤ Nr. With this simplification, the relevant generalized noise moment can be rewritten as

Mn(i1, . . . , iNr
) =

Enk







Nr
∏

ν=1

∑

j1+···+jdf
=iν

df
∏

k=1

ξjk,ν
|nk,ν|2jk

(

df
∑

k=1

Nr
∑

ν=1

|nk,ν|p
)2(df αdNr−K)/p







Γ(2(dfαdNr − K)/p + 1)pdf Nr
, (31)

which only depends on p. Thus, the metric optimization is greatly simplified. Furthermore, if we

specialize (31) further to the L2–norm metric (p = 2), (29) and (31) can be shown to be equivalent

to [19, Eq. (19), (20)]. On the other hand, if we make the additional assumption αd = 1, the double

sum in (19) disappears again and only

Mn(0, . . . , 0) =
1

Γ(2dfαdNr/p + 1)pdf Nr
Enk















df
∑

k=1

Nr
∑

ν=1

|nk,ν|p




2df αdNr/p










(32)

is needed. This is of interest, since closed–form results for the expected value in (32) have been

reported in [20] for various types of noise.
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3.2.2 Diversity and Coding Gain

It is convenient to express the asymptotic BER in terms of the diversity gain Gd and coding gain Gc,

i.e., Pb ⊜ (Gcγ)−Gd [34]. For the problem at hand, a comparison with (27) shows that diversity and

coding gain are given by

Gd = dfNrαd (33)

Gc [dB] = −10

αd

log10(2αc) −
10

Gd

log10

(

wc(df)Xm(αd, Nr, df)

kc

)

− 10

Gd

log10





dNrᾱd
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
)



 (34)

From (33) we observe that the diversity gain is independent of the metric parameters, q and p, and of

the type of noise. Therefore, the asymptotic BER curves for all types of noise are parallel independent

of how q and p are chosen. Eq. (34) reveals that the coding gain consists of three terms. The first

and the second term depend on the fading parameter αc and on the modulation and coding scheme,

respectively, but are independent of the metric parameters q and p. The third term is a function of

q and p and also depends on the type of noise via the generalized moments Mn(i1, . . . , iNr
). Thus,

optimizing the metric parameters based on (27) will shift the asymptotic BER curve as far as possible

to the left but has no influence on the slope of the BER curve. Another interesting observation from

(33) and (34) is that coding and mapping schemes with maximum free distance df and minimum

wc(df)Xm(αd, Nr, df) are not only asymptotically optimal for AWGN and L2–norm decoding but

also for non–AWGN channels and Lp–norm decoding. In other words, transmitter and receiver can

be independently optimized and the type of noise does not influence transmitter optimization, which

simplifies the optimization of secondary BICM systems considerably.

4 Metric Parameter Estimation

In this section, we formulate the metric parameter optimization problem as an ML parameter esti-

mation estimation problem. For this purpose we first introduce the generalized Gaussian (GG) pdf.

Using on this pdf, we then find the ML estimates for the Lp–norm metric parameters q and p based

on the noise samples observed at the receiver. These estimates are then used as metric parameters

for the Lp–norm metric employed in the secondary system. We note that this approach is suboptimal,
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i.e., the metric parameter estimates obtained using this approach will not necessarily minimize the

BER. However, the computational complexity of this approach is lower than the one presented in

Section 3 as it leads to simpler expressions for the objective function for metric optimization.

4.1 GG Probability Density Function

The GG pdf encompasses a wide range of distributions and is also a popular model for non–Gaussian

noise. This pdf can be expressed as

fGG(z; α, β) =
β α2/β

2π Γ(2/β)
exp

(

−α|z|β
)

, (35)

with the corresponding variance σ2
GG given as

σ2
GG =

Γ(4/β)

α2/βΓ(2/β)
, (36)

where α, 0 < α < ∞, is a scaling factor and β, 0 < β < ∞, is a shape parameter. Smaller

values of the shape parameter β (0 ≤ β < 2) correspond to heavier–tailed and thus more impulsive

distributions, whereas larger values of β (β > 2) result in shorter–tailed distributions. Well-known

special cases of this density are Laplacian (β = 1) and Gaussian noise (β = 2). Furthermore, in the

limiting case of β → ∞ the GG pdf converges to a uniform density on the |z| ≤ 1/α circle.

The motivation behind considering the GG pdf for parameter estimation is two fold. Firstly, thid

pdf is very flexible and therefore can be successfully used to approximate a wide range of distributions.

Secondly, the Lp–norm metric employed in this paper is closely related to the GG pdf. In fact, it is

not difficult to see that an optimized Lp–norm metric can achieve ML performance in the presence a

non–Gaussian impairment distributed according to a GG pdf.

4.2 ML Parameter Estimation

The main idea behind the proposed ML metric parameter estimation method is to identify the GG

pdf that best approximates the distribution of the underlying noise in an ML sense [35]. Based on

the GG pdf given in (35), the ML parameter estimation problem can be formulated as follows. For

the observed noise samples nk, 1 ≤ k ≤ Km, generated based on the pdf pnk
(nk), we define the the

log–likelihood function (LLF) L(n; q, p) as

L(n; q, p) ,
1

Km
log

{

Km
∏

k=1

Nr
∏

ν=1

pGG(nk,ν; qν , pν)

}

(37)
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with n , [n1, n2, . . . , nKm
]. The ML prameter estimates q̂ and p̂ are the values of q and p that

maximize the LLF and therefre are given as

(q̂, p̂) = arg max
q,p

{L(n; q, p)} (38)

Using (35) in (37) yealds

L(n; q, p) =
1

Km

Km
∑

k=1

Nr
∑

ν=1

[

log

(

pν q
2/pν
ν

2π Γ(2/pν)

)

− qν |nk,ν|pν

]

=
Nr
∑

ν=1

log

(

pν q
2/pν
ν

2π Γ(2/pν)

)

− m̂nk
(q, p) (39)

with m̂nk
(q, p) = 1

Km

∑Km

k=1

∑Nr

ν=1 qν |nk,ν |pν . For Km → ∞, the strong law of large numbers can be

invoked to concluded that m̂nk
(q, p) → Enk

{

∑Nr

ν=1 qν |nk,ν|pν

}

. Therefore, (39) can be written as

L(n; q, p) =

Nr
∑

ν=1

log

(

pν q
2/pν
ν

2π Γ(2/pν)

)

− Enk

{

Nr
∑

ν=1

qν |nk,ν |pν

}

. (40)

We further note that Enk

{

∑Nr

ν=1 qν |nk,ν|pν

}

=
∑Nr

ν=1 qνmn(pν) where mn(p) , E{|nk,ν|p} is the

pth moment of the underlying noise. Therefore we obtain

L(n; q, p) =

Nr
∑

ν=1

log

(

pν q
2/pν
ν

2π Γ(2/pν)

)

−
Nr
∑

ν=1

qνmn(pν). (41)

Close–form expressions for the noise moments mn(p) have been provided in [19] for different types

of noise defined in Section 2. The corresponding noise moments can be used in (41) to arrive at a

close–form expression for the LLF.

Eqs. (40) and (41) can be employed to calculate the LLF needed to solve the optimization

problem formulated in (38). In particular, (41) can be used when the noise statistics are known (cf.

Section 6.1) for offline LLF maximization whereas (40) cab be employed for adaptive minimization

of the LFF in scenarios where only the noise samples are available (cf. Section 6.2).

5 Adaptive Metric Optimization

In practice, the type of noise impairing a secondary user system is not usually known a priori and change

with time. In such scenarios, it is necessary to develop adaptive algorithms that solve the metric
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optimization problem online only based on the noise samples observed at the receiver. Therefore,

in this section, we present adaptive algorithms that enable adaptive BER minimization and adaptive

parameter estimation based on the BER analysis and ML parameter estimation frameworks developed

in Sections 3 and 4, respectively. For this purpose, due to the random nature of the optimization

problem, a stochastic optimization algorithm has to be used. Although several types of stochastic

optimization algorithms are available in the literature, numerical evidence shows that the finite–

difference stochastic approximation (FDSA) algorithm [36] is the most suitable for the problem at

hand. In essence, the FDSA algorithm iteratively optimizes an stochastic objective function by

avoiding the computationally expensive calculation of the objective function’s gradient.

For adaptive BER minimization, we use the asymptotic BER results obtained in Section 4 as

objective function for the FDSA algorithm since the approximate upper bound derived in Section 3

is too cumbersome for adaptive optimization. In particular, based on (26) and (27) the objective

function for the FDSA algorithm is given by

Lk,BER(θ) =

df Nrᾱd
∑

K=0

∑

i1+···+iNr =K

Mnk
(i1, . . . , iNr

; θ) (42)

with

Mnk
(i1, . . . , iNr

; θ) ,

1
Ne

∑k+Ne−1
i=k

Nr
∏

ν=1

∑

j1+···+jd=iν

df
∏

k=1

ξjk,ν |nk,ν|2jk

(

df
∑

k=1

Nr
∑

ν=1

qν |nk,ν|pν

)2
Nr
P

ν=1

(df αd−iν)/pν

Γ

(

2
Nr
∑

ν=1

(dαd − iν)/pν + 1

)

Nr
∏

ν=1

p
df
ν q

2(df αd−iν)/pν

ν

(43)

where we have omitted all terms that do not affect the optimization and the vector θ , [q1 . . .

qNr
p1 . . . pNr

]T contains all metric parameters to be optimized. Furthermore, Mnk
(i1, . . . , iNr

; θ) is

the instantaneous estimate for the generalized noise moment, and Ne denotes the length of the sliding

window used to calculate this estimate. We note that multiplying the elements of q with a constant

does not affect the value of the objective function in (43), and therefore we can assume q1 = 1

without loss of generality. We further note that Mnk
(i1, . . . , iNr

; θ) can be significantly simplified if

the fading or the metric parameters are constraint (e.g., αd = 1 or qν = 1, pν = p, 1 ≤ ν ≤ Nr),

cf. Sections 3.2.1.

For adaptive ML parameter estimation, the objective function for the FDSA algorithm can be
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formulated based on (40) as

Lk,MLE(θ) =
Nr
∑

ν=1

log

(

pν q
2/pν
ν

2π Γ(2/pν)

)

− 1

Ne

k+Ne−1
∑

i=k

Nr
∑

ν=1

qν |ni,ν |pν . (44)

Here, q1 = 1 can not be assumed as it affects the value of the objective function.

With the objective functions at hand, the FDSA algorithm can be formulated as follows. The

FDSA algorithm improves the parameter vector estimate at time k, θk, in the direction of the negative

gradient vector estimate ĝ(θk) to obtain a new estimate θk+1 [36]:

θk+1 = θk − δk ĝ(θk) (45)

ĝ(θk) =

[

Lk,X(θk + ζke1) − Lk,X(θk − ζke1)

2ζk
. . .

Lk,X(θk + ζke2Nr−1) − Lk,X(θk − ζke2Nr−1)

2ζk

]T

(46)

where X ∈ {BER, MLE}, and δk > 0 and ζk > 0 are the gain sequences of the FDSA algorithm,

and ei denotes a vector with a 1 in position i and 0s in all other positions. The convergence theory

for the FDSA algorithm [36] states that if the gain sequence fulfills δk → 0, ζk → 0,
∑∞

k=0 δk = ∞,

and
∑∞

k=0 δ2
k/ζ

2
k < ∞, under some mild conditions on the cost function, the algorithm is guaranteed

to converge to a local minimum. However, in practice, it may be better to adopt δk = δ and ζk = ζ ,

where δ and ζ are small constants, to give the algorithm some tracking capability.

In Section 6 we study and compare the performance of the proposed adaptive algorithms using a

practical example (cf. Figs. 3, 4, and 5).

6 Numerical and Simulation Results

For numerical and simulation results presented in this section, the standard convolutional code with

rate Rc = 1/2 and generator polynomials [133, 171] (octal representation) is adopted and higher

code rates are obtained via puncturing. The considered type of fading, the assumed values for the

SNR and number of antennas, and the employed code rate and modulation scheme are specified in

the captions of the figures. The parameters for the considered types of noise are specified in the

figure captions as well. Furthermore, the BER bound and asymptotic BER are calculated using (10)

and (27), respectively.
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6.1 Offline Metric Optimization

In Figs. 1 and 2 we consider a scenario where the noise statistics are known a priori, and therefore

the task of metric optimization can be performed offline. For this scenario we illustrate how the

BER analysis and ML parameter estimation techniques developed in Sections 3 and 4 can be used for

offline BER minimization and offline ML parameter estimation, respectively. Although the assumption

of known noise statistics is not realistic, it helps us study and compare the performance of the

aforementioned approaches for metric optimization. To simplify the exposition, we assumed that

Nr = 1 is valid and therefore the only metric parameters that have to be optimized are q and p,

where we have dropped the indices for convenience. The more general case of Nr ≥ 1 is considered

in the next subsection.

We illustrate in Fig. 1 how the BER performance measures obtained in Section 3 for the secondary

system can be used for offline metric optimization. Since for offline optimization computational

complexity is not a major concern, we use the analytical BER bound for offline BER minimization.

Thereby, assuming q = 1 without loss of generality, in Fig. 1 we have shown the BER bound for

ACCI, NBI, and UF–ACCI noise vs. p for SNR = 15 dB. The value of p for which the BER bound

is minimized is denoted by p̂BER and the corresponding point of the BER bound curve is marked by

“ ∗ ” markers. For comparison, we have also shown the BER obtained via Monte–Carlo simulation

and the asymptotic BER. As seen, the BER bound, simulation and asymptotic results are in general

in good agreement The observed small differences between the curves are due to assuming a finite

value for SNR in this figure. Nevertheless, Fig. 1 shows that for each type of noise the minimum BER

happens at approximately the same value of p for all the three curves. Fig. 1 further shows that the

BER of the secondary system strongly depends on the metric parameter p and therefore significant

performance gains can be achieved by metric optimization.

The offline ML parameter estimation is illustrated in Fig. 2 for the same noise types as in Fig. 1.

Here, q = 1 can not be assumed without loss of generality (cf. (40)). To avoid optimizing two

parameters, we assume that q is determined based on p such that variance associated with the pdf

pGG(z, q, p) is unity. Therefore, in this figure we have shown the LLF obtained using (40) for the

considered noise types as function p. For each type of noise the value of p that maximized the

LLF is denoted by p̂MLE and the corresponding point of the LLF curve is marked by “ ∗ ” markers.

We first note that the LFFs do not depend on the channel type, the value of SNR, or on the code
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rate and modulation scheme. Furthermore, comparing Fig. 2 with Fig. 1 reveals that although the

ML parameter estimation is a suboptimal approach for metric optimizatoin, the parameter estimate

p̂MLE is generally in good agreement with p̂BER and the incurred performance loss due to using p̂MLE

instead of p̂BER is minimal.

6.2 Adaptive Metric Optimization

In Figs. 3, 4, and 5 we study and compare the performance of the adaptive BER minimization and

adaptive ML parameter estimation algorithms proposed in Section 5 for a scenario where the noise

statistics vary with time. In particular, we consider a BICM–OFDM secondary system impaired by

NBI noise for which the number of interferers and their power change at time indexes k = 5 × 104

and k = 10 × 104, and are constant otherwise. The resulting impairments are denoted by N1, N2

and N3, and details about corresponding noise parameters are provided in the caption of the figures.

Furthermore, we have initialized both algorithms with qν = 1, 1 ≤ ν ≤ 2, and pν = 2, 1 ≤ ν ≤ 2

and shown the results for one typical adaptation process. In order to have fair comparison, for both

algorithms we have adopted δk = δ = 10−3, ζk = ζ = 10−5 and Ne = 1, and have not used the

normalization q1 = 1 that is possible only for adaptive BER minimization.

In Figs. 3 and 4 we show the metric parameters estimates q and p resulting from adaptive BER

minimization and adaptive parameter estimation, respectively. The corresponding asymptotic BERs

as well as the asymptotic BER obtained for the L2–norm metric are shown and compared in Fig. 5.

As seen, although similar gain sequences were chosen for both algorithms, the steady state values

are reached relatively faster in Fig. 3 compared to Fig. 4. The reason can be explained by noting

that the BER curves are relatively steeper than the LLF curves for similar values of q and p (cf.

Section 6.1). Nevertheless, both algorithms can effectively adapt to variations in noise statistics and

reach the steady state values fairly quickly. Fig. 5 reveals that both algorithms reach close to optimal

BERs and achieve significant performance gains compared to L2–norm. Furthermore, this figure

confirms the robustness of the proposed Lp–norm as the variations observed in the performance of

the optimized Lp–norm are considerably smaller compared to the L2–norm.
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6.3 Comparison with Other Metrics

We compare the performance of the optimized Lp–norm metric with that of L2–norm metric, op-

timized Huber’s M–metric and ML metric in Fig. 6 for a BICM-SC secondary system impaired by

TD–GMN noise. The Lp–norm metric was optimized using the offline approach described in Section 6

and the results are shown for both p = p̂BER and p = p̂MLE. Huber’s M–metric was optimized using

simulation for SNR = 18 dB. For the L2–norm and optimized Lp–norm with p = p̂BER the BER

bound, asymptotic BER as well as simulation results as a function of the SNR. For the optimized

Lp–norm with p = p̂MLE only the asymptotic BER is included to avoid crowding the figure. For

the Huber’s M–metric only the simulation results are shown. Fig. 6 indicates that the performance

loss due to using p = p̂MLE instead of p = p̂BER is negligible. Furthermore, it is observed that at

BER = 10−6 the optimized Lp–norm metric outperforms the L2–norm metric and Huber’s by 5 dB

and 2 dB, respectively, and the gap to the optimal ML metric is less than 1 dB.

6.4 Effect of Different Channel Types

We consider the effect of different channel types on the performance of the proposed Lp–norm metric

in Fig. 7. In particular, in Fig. 7, we show BER of a BICM–OFDM secondary system impaired by

GMN–OFDM vs. SNR for Rayleigh, Rician, Nakagami–m and Weibul fading channels. For each

fading type we show the BER bound, asymptotic BER, and simulation results for the optimized

Lp–norm and L2–norm metrics. The Lp–norm was optimized using the adaptive BER minimization

algorithm using a similar approach as explained in Section 6.2. Fig. 7 indicates that the optimized

L2–norm metric achieves similar gains over the L2–norm metric for the different types of fading

channels considered in this figure. This figure also confirms the validity of the asymptotic BER

analysis presented in Section 3 as it shows that the simulations, the BER bound, and the asymptotic

results are in great agreement for different types of fading, and in particular for Weibul fading for

which αd = 3/2 is a non–integer. As expected, it is observed that the diversity gain is the same for

L2–norm and Lp–norm metrics but differs for fading channels with different αd.

6.5 Effect of UWB Interference

In Fig. 8 we study the performance of the proposed Lp–norm metric for a BICM–SC secondary system

impaired by impulse radio (IR) UWB interference. We have shown the BER bound, asymptotic BER,
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and simulated BER of the considered secondary system as a function of SNR for the L2–norm

and optimized Lp–norm metrics. The results are shown for two values of Bs, where Bs denotes

the total bandwidth of the BICM–SC system. The parameters for the IR UWB interference were

adopted from the IEEE 802.15.4a standard [30]. Fig. 8 shows that the value of Bs which governs the

impulsiveness of the noise [6], has a strong effect on the performance. This figure further suggests

that the performance gain obtained using the optimized Lp–norm metric is larger when the underlying

impairment is for more impulsive.

6.6 Comparison with Erasure Decoding

We compare the performance of erasure decoding with that of the optimized Lp–norm metric in Fig. 9

for a BICM–OFDM secondary system impaired by NBI noise. For the NBI noise we have assumed

B = 10, Ns = 64 and a total of NI = 60 interferers which are aligned with the center frequencies of

the BICM–OFDM subcarriers. Erasure decoding is achieved by erasing the bit metrics associated with

Ke affected subcarriers with largest interference powers. In this figure we have shown the simulation

results for erasure decoding for different values of Ke as well as the BER bound and simulation results

for L2–norm and the optimized Lp–norm metrics as a function of SNR. As seen, the performance of

erasure decoding strongly depends on the number of erased subcarriers Ke and choosing the optimal

Ke involves a tradeoff. In particular, increasing Ke improves the performance for low SNR’s as

the effect of interference from a larger number of subcarriers is suppressed. However, since erasure

adversely affect the free distance of the underlying convolutional code, increasing Ke also results in

the reduction of diversity gain and/or an error floor and therefore performance degredation at high

SNR’s. For the considered scenario the best tradeoff is achieved with Ke = 30. We note that for

erasure decoding we have assumed ideal interference detection, i.e., we have assumed that the location

of the affected BICM–OFDM subcarriers are perfectly known. In practice, the interference detection

would be non–ideal and therefore the performance of erasure decoding would be worse than what

shown in this figure. Nevertheless, Fig. 9 indicates that the optimized Lp–norm metric outperforms

the best performance achieved by erasure decoding by more than 2.5 dB at BER = 10−6.
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7 Conclusions

In this paper, we have proposed an adaptive Lp–norm metric for secondary BICM systems operating

in the presence of non–Gaussian noise and interference with time–varying statistics. For optimization

of the proposed Lp–norm metric we have developed two different approaches based on minimizing

the BER of the secondary system and ML parameter estimation. Based on both approaches we

have derived FDSA algorithms that enable adaptive metric optimization. Our numerical and sim-

ulation results show that optimized Lp–norm decoding can substantially improve the performance

of secondary systems in non–Gaussian noise environments and yields significant performance gains

compared to other popular metrics. Furthermore we have shown that the proposed adaptive algo-

rithms can effectively optimize the Lp–norm parameters in secondary environments with changing

noise statistics.

A Pdf fy(yk,ν) of yk,ν for γ → ∞

For convenience and without loss of generality, we drop all subscripts k and ν in this appendix.

Furthermore, we first consider the pdf fX(X) of X , |√γhe + n|2 and then calculate the pdf fy(y)

of y = Xp/2 using

fy(y) = 2/p fX(y2/p) y2/p−1. (47)

X can be expressed as

X = γa2d2
xz + 2

√
γdxzaℜ{n̂} + |n|2, (48)

where we introduced the definitions n̂ , ne−jΘ and dxz , |e|, and used the fact that h = aejΘ (cf.

Section 2.2). The MGF of X can now be obtained as

ΦX(s) , Ea,Θ{e−sX} = e−s|n|2Ea,Θ{e−sγad2
xz e−s2

√
γdxzaℜ{n̂}} (49)

Using the Taylor series expansion ex =
∑∞

i=0 xi/i!, we arrive at

ΦX(s) = e−s|n|2Ea,Θ

{

e−s γ a2 d2
xz

∞
∑

i=0

(

−2
√

γ d aℜ{n̂}s
)i

i!

}

. (50)
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For γ → ∞, (5) can be used along with the integral
∫∞
0

xµ−1e−px2

dx = pµ/2Γ(µ/2) [37, 3.462] to

rewrite (50) as

ΦX(s) =
αc e−s|n|2

(γd2
xzs)

αd

∞
∑

i=0

2iΓ(αd + i/2)EΘ{ℜ{n̂}i}si/2 + o
(

γ−αd
)

=
αc e−s|n|2

(γd2
xzs)

αd

∞
∑

i=0

βi|n|2isi + o
(

γ−αd
)

. (51)

where βi , Γ(αd + i)/(i!)2. In deriving (51), we have used

EΘ{ℜ{n̂}i} =







i/2+1/2√
πΓ(i/2+1)

|n|i, i even

0, i odd
. (52)

Using the Taylor series expansion e−s|n|2 =
∑∞

i=0(−1)i|n|2isi/i! in (51) yields

ΦX(s) =
αc

(γd2
xzs)

αd

∞
∑

i=0

Pi |n|2i si + o
(

γ−αd
)

. (53)

where

Pi ,

i
∑

λ=0

(−1)(i−λ) Γ(ν + λ)

(λ!)2 (i − λ)!
. (54)

If αd is an integer it can be shown that

Pi =







(

ν−1
i

)2
(αd − i − 1)!, 0 ≤ i ≤ αd − 1

0, αd − 1 < i
. (55)

Thus, for integer αd, ΦX(s) is a finite power series in s, whereas it is an infinite power series for non–

integer αd, cf. (53). However, truncating the power series for non-integeger αd after ᾱd = ⌈αd⌉ − 1

terms results in a good approximation for ΦXk,l
(s). Applying this truncation, for γ → ∞, based on

(53), we obtain via the inverse Laplace transform

fX(X) =
αc

(γd2
xz)

αd

ᾱd
∑

i=0

Pi

Γ(αd − i)
|n|2i Xαd−i−1 + o

(

γ−αd
)

. (56)

Finally, fy(y) for γ → ∞ can be found based on (56) and (47) as

fy(y) =
2αc

p(γd2
xz)

αd

ᾱd
∑

i=0

Pi

Γ(αd − i)
|n|2i y2(αd−i)/p−1 + o

(

γ−αd
)

. (57)

Note that (57) is exact for integer αd and an approximation for non–integer αd.
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Tables and Figures:

Table 1: Pdf pa(a) of fading amplitude a and fading parameters αc and αd for various fading
models.

Channel type pa(a) of the fading amplitude a αc αd

Rayleigh 2 a e−a2

det(Chh)
−1/NR 1

Ricean 2(K + 1) a e−K−(1+K)a2

I0

(

2a
√

K(K + 1)
)

(

exp
(

−µH
h C−1

hhµh

)

det(Chh)

)1/NR

1

Nakagami–m 2
Γ(m)

mm a2m−1 e−ma2 mm

Γ(m)
det(Caa)

−m/NR m

Nakagami–q (1+q2)a
q

exp
(

− (1+q2)2a2

4q2

)

I0

(

(1−q4)a2

4q2

)

1+q2

2q
1

Weibull c
(

Γ(1 + 2
c
)
) c

2 ac−1 exp
(

−
(

a2Γ(1 + 2
c
)
) c

2

)

c
2
(Γ(1 + 2

c
))

c
2

c
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Figure 1: BER of BICM–SC and BICM–OFDM impaired by various types of noise

vs. p. Rayleigh fading, SNR = 16 dB, Rc = 3/4, 4–PSK, and Nr = 1. GMN–TD:

ǫ–mixture noise, ǫ = 0.1, κ = 3. ACCI: One Rayleigh faded 4–PSK CCI signals, B =

10, I1 = 1, Iµ = 0, 2 ≤ µ ≤ 10, raised cosine pulses g1,1(t), with roll–off factor 0.3,

τ1,1 = 0.3T , κ = 10. NBI: Five equal power sub–carrier–centered Rayleigh faded NBI

signals, N = 64, B = 1, I1 = 5, κ = 4. UF–ACCI: One 4–PSK CCI signals, B = 1,

I1 = 1, raised cosine pulses g1,1(t), with roll–off factor 0.3, τ1,1 = 0.3T , κ = 10. Solid

lines with markers: Simulated BER. Solid lines without markers: BER bound (??).

Dashed lines: Asymptotic BER (??).
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Figure 2: LLFs vs. p for the same types of noise as in Fig. 1
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Figure 3: Metric coefficients qν , and pν , vs. iteration t of FDSA algorithm. Rayleigh

fading, SNR = 11 dB, Rc = 7/8, 4–PSK, and NR = 2. N1, N2 and N3, NBI with

N = 64 and B = 1 with equal power sub–carrier–centered Rayleigh faded NBI signals.

N1: I1 = 10 , κ1 = κ2 = 40. N2: I1 = 20 , κ1 = κ2 = 4. N3: I1 = 10 , κ1 = 40,

κ2 = 10.
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Figure 4: Parameters for N1–N3 are specified in the caption of Fig. 3
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Figure 5: Parameters for N1–N3 are specified in the caption of Fig. 3
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Figure 6: BER vs. SNR. Rayleigh fading, Rc = 3/4, 16–QAM, and Nr = 1. TD–GMN:

ǫ–mixture noise with ǫ = 0.05 and κ = 50.
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Figure 7: BER of BICM–SC impaired by TD–GMN vs. SNR for different types of

fading channels. Rc = 7/8, 4–PSK, and Nr = 1. TD–GMN: ǫ–mixture noise with

ǫ = 0.1 and κ = 100.
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Figure 8: BER of BICM–OFDM system (N = 64) with sub–carrier spacing ∆fs im-

paired by IR–UWB [30] vs. SNR. IR–UWB: Nb = 32 bursts per symbol and Lc = 128

chips per burst. Rayleigh fading, Rc = 2/3, 4–PSK, and Nr = 1. Solid lines with

markers: Simulated BER. Solid lines without markers: BER bound (??). Dashed

lines: Asymptotic BER (??).
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Figure 9: BER of BICM–OFDM system (N = 64) with Ke erasures vs. SNR. Rayleigh

fading, Rc = 3/4, NBI: B = 10, Iµ = 6 for 1 ≤ µ ≤ 10, κ = 100.


