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Abstract

In this paper, we present a unified asymptotic symbol error rate (SER) analysis of linearly modulated

signals impaired by fading and (possibly) non–Gaussian noise, which in our definition also includes

interference. The derived asymptotic closed–form results are valid for a large class of fading and

noise processes. Our analysis also encompasses diversity reception with equal gain and selection

combining and is extended to binary orthogonal modulation. We show that for high signal–to–

noise ratios (SNRs) the SER of linearly modulated signals depends on the Mellin transform of the

probability density function (pdf) of the noise. Since the Mellin transform can be readily obtained

for all commonly encountered noise pdfs, the provided SER expressions are easy and fast to evaluate.

Furthermore, we show that the diversity gain only depends on the fading statistic and the number

of diversity branches, whereas the combining gain depends on the modulation format, the type of

fading, the number of diversity branches, and the type of noise. An exception are systems with a

diversity gain of one, since their combining gain and asymptotic SER are independent of the type

of noise. However, in general, in a log–log scale for high SNR the SER curves for different types of

noise are parallel but not identical and their relative shift depends on the Mellin transforms of the

noise pdfs.
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1 Introduction

The performance of digital communication systems impaired by fading and noise has been extensively

studied in the literature, cf. e.g. [1] and references therein. Since analytical expressions for the symbol

error rate (SER) are often quite involved, simple yet accurate approximations are desirable for system

design [2]. For the asymptotic case of high signal–to–noise ratio (SNR) simple approximations for the

SER giving insight into the influence of channel and modulation parameters are available for various

modulation schemes, types of fading, and diversity combining techniques, cf. e.g. [3, 4, 5, 6, 7].

All existing asymptotic SER results were obtained for impairment by additive white Gaussian

noise (AWGN). However, while AWGN may often be the dominant noise source, there are many

practical applications where non–Gaussian noise1 impairs the received signal. Examples include co–

channel and adjacent channel interference in mobile cellular systems [2, 8], impulsive noise in wireless

and powerline communications [9], and ultra–wideband (UWB) interference in wireless systems [10].

Although analytical expressions for the SER are available for some types of non–Gaussian noise and

interference, a general asymptotic result giving insight into how system performance is affected by

the type of noise (in addition to the type of fading) is missing in the literature.

In this paper, we derive simple and elegant asymptotically tight expressions for the SER of linear

modulation schemes impaired by fading and (possibly) non–Gaussian noise. Thereby, we assume

that the receiver does not know which type of noise is present and applies the detection rule which

is optimum for Gaussian noise. The main restriction that we impose on the noise is that the Mellin

transform Mz(s) [11] of its probability density function (pdf) exists for s ≥ 1. Most practically

relevant types of noise meet this condition.

We also extend our asymptotic SER results to binary orthogonal modulation (BOM), equal gain

combining (EGC), and selection combining (SC). Furthermore, we show that for high SNR the SER

depends on the Mellin transform Mz(s) of the pdf of the noise process, where the type of fading and

the diversity gain of the channel determine the value of the relevant s. Interestingly, we find that

the diversity gain of the communication system only depends on the type of fading and the number

1To simplify our notation, in this paper, “noise” refers to any additive impairment of the received signal,

i.e., our definition of noise also includes what is commonly referred to as “interference”.
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of diversity branches, whereas the combining gain2 is also affected by the type of noise. Therefore,

in a log–log scale for high SNR the SER curves for different types of noise are parallel. For the

special case of a system with a diversity gain of one for high SNR the SER becomes independent of

the type of noise.

The remainder of this paper is organized as follows. In Section 2, the considered signal and noise

models are introduced. In Section 3, the asymptotic SERs of linear modulation formats and BOM

are derived. These results are extended to systems with EGC and SC in Section 4. The derived

analytical results are verified by simulations for some representative and relevant special cases in

Section 5, and conclusions are drawn in Section 6.

2 Preliminaries

In this section, we present the considered signal, channel, and noise models. However, first we

introduce some definitions and notations.

2.1 Some Definitions and Notations

Notation: In this paper, <{·}, E{·}, and Pr{A}, denote the real part of a complex number, statistical

expectation, and the probability of event A, respectively. Furthermore, I0(x) , 1
2π

∫ π

−π
exp(x sin θ) dθ

and Γ(x) ,
∫∞
0

e−ttx−1 dt are the zeroth order modified Bessel function of the first kind and the

Gamma function, respectively. Finally, Φ(s) = L{p(x)} ,
∫∞
−∞ p(x)e−sx dx denotes the Laplace

transform of p(x) and a function f(x) is o(x) if limx→∞ f(x)/x = 0.

Mellin transform: The Mellin transform M(s) = M{p(x)} ,
∫∞
0

p(x)xs−1 dx of a function p(x)

will play an important role in this paper. A detailed discussion of the Mellin transform and its

properties can be found in Appendix A.

Diversity and combining gain: It is well–known that for transmission over flat fading channels im-

paired by Gaussian noise the SER at high SNR can be approximated by [2, 4]

PE ≈ (Gc γ̄)−Gd (1)

2The combining gain is also sometimes referred to as “coding gain” in the literature, e.g. [4].
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where γ̄ denotes the average SNR, and Gc and Gd are referred to as the combining gain and

the diversity gain, respectively. In this paper, we will show that Eq. (1) is also valid for general

non–Gaussian noise.

2.2 Signal Model

For clarity of presentation, we restrict our attention for the moment to the single–receive–branch

case. The extension to diversity reception is provided in Section 4. Assuming a frequency–

nonselective channel and perfect phase and timing synchronization for the desired signal, the received

signal in complex baseband representation can be modeled as

rc = a xc + zc (2)

where a, xc, and zc denote the real–valued fading gain, the complex transmitted symbol, and

the complex noise, respectively. We assume that a, xc, and zc are mutually independent random

variables (RVs). The results derived in this paper are applicable to all fading processes whose

amplitude pdf pa(a) can be expanded into a power series around a = 0 for high SNR, cf. Section 3.

In particular, we will consider Rayleigh, Ricean, Nakagami–m, Nakagami–q, and Weibull fading and

the corresponding pdfs pa(a) are given in Table 1. We emphasize that in general the noise zc may

include both channel noise and interference. Unless stated otherwise3, in our analysis, we assume

that the SER can be obtained by only considering

r , <{rc} = a x + z (3)

where x , <{xc} and z , <{zc}. The validity of this assumption is obvious for one–dimensional

modulation schemes such as binary phase–shift keying (BPSK) and M–ary pulse amplitude modu-

lation (M–PAM). The same is true for M–ary quadrature amplitude modulation (M–QAM) if the

real and imaginary parts of zc are independent, identically distributed (i.i.d.) RVs [2]. For general

M–PSK the above assumption always involves an approximation.

For convenience, we adopt the normalization σ2
z , E{z2} = 1, γ̄ , E{a2}, and σ2

x , E{x2} = 2,

i.e., γ̄ is the average SNR per symbol.

3In Section 2.4, for BOM it is necessary to also consider the imaginary part of rc.
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2.3 Admissible Types of Noise and Examples

For the presented asymptotic performance analysis method to be applicable, the RVs zc and z have

to fulfill the following assumptions.

AS1) The pdf pz(z) of z is an even function, i.e., pz(z) = pz(−z).

AS2) The fundamental strip of the Mellin transform Mz(s) , M{pz(z)} of pz(z) includes the

interval [1, ∞), i.e., Mz(s) exists for 1 ≤ <{s} < ∞.

AS3) For two–dimensional linear modulation schemes and for BOM we assume that zc has a rota-

tionally symmetric pdf pzc(·), i.e., zc and ejφzzc have the same pdf for all real φz.

We note that AS1) is mainly made for convenience as it simplifies our exposition and holds for most

types of noise of practical interest. Similar results as in Sections 3 and 4 could also be derived

for non–even pz(z). AS2) is necessary and holds for most practically relevant types of noise. We

note, however, that AS2) does not hold for alpha–stable processes with α < 2 which have been

occasionally used in the past to model impulsive noise, cf. e.g. [12]. For alpha–stable processes,

Mz(s) does not exist for s > α + 1. AS3) is not necessary for one–dimensional linear modulation

schemes but considerably simplifies the asymptotic analyses of two–dimensional modulation formats

and BOM, respectively.

Gaussian noise obviously fulfills AS1)–AS3). In the following, we will briefly discuss three relevant

non–Gaussian types of noise which also fulfill at least AS1) and AS2). The pdfs pz(z), Laplace

transforms Φz(s) , L{pz(z)}, and Mellin transforms Mz(s) for these noises as well as those for

Gaussian noise and generalized Gaussian noise are summarized in Table 2.

E1) Gaussian mixture noise: Gaussian mixture noise is often used to model the combined effect of

Gaussian background noise and man–made or impulsive noise, cf. e.g. [9, 13, 14]. In this case, the

pdf of zc is given by

pzc(zc) =

I
∑

k=1

ck

2πσ2
zk

exp

(

−|zc|2
2σ2

zk

)

(4)

where ck > 0 and σ2
zk

> 0 are parameters. Two popular special cases of Gaussian mixture noise

are Middleton’s Class–A noise [13] and ε–mixture noise. For ε–mixture noise I = 2, c1 = 1 − ε,

c2 = ε, σ2
z1

= σ2
g , and σ2

z2
= κσ2

g , where ε is the fraction of time when the impulsive noise is
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present, κ is the ratio of the variances of the Gaussian background noise and the impulsive noise,

and σ2
g = 1/(1 − ε + κε). It is easy to verify that AS1)–AS3) are valid for Gaussian mixture noise.

E2) BPSK interference with fixed channel phase: The complex and real interference (noise) from I

independent, symbol synchronous4 BPSK signals ik ∈ {±1}, 1 ≤ k ≤ I, can be modeled as

zc =

I
∑

k=1

dc,k ik and z =

I
∑

k=1

dk ik (5)

respectively, where dc,k , |dc,k| ejϕdc,k and dk , |dc,k| cos(ϕdc,k
) denote the complex and the real gain

of the kth interference channel, respectively. The interference channel phases ϕdc,k
are assumed to

be constant. We note that BPSK interference with fixed channel phase only fulfills A1) and A2), i.e.,

the validity of the presented asymptotic analysis is restricted to one–dimensional linear modulation

schemes in this case.

E3) M–PSK interference with random channel phase: In this case, zc and z are also given by Eq. (5)

but the phases ϕdc,k
, 1 ≤ k ≤ I, are mutually independent RVs uniformly distributed in the interval

(−π, π] and ik ∈ {ej2πm/M |m ∈ {0, 1, . . . , M − 1}}. The randomness of the phases ϕdc,k
may be

due to e.g. the lack of phase synchronization between the interferers and the desired signal. Because

of the uniformly distributed phases, AS3) holds in addition to AS1) and AS2).

2.4 Mellin Transform of Composite Noise

In general, the noise z may be the sum or the product of different RVs zk, 1 ≤ k ≤ I. In this case,

the framework developed in this paper is applicable as long as AS1)–AS3) hold and we explain in

Appendix A how the Mellin transform Mz(s) of pz(z) can be obtained from the Mellin transforms

of the pdfs of zk, 1 ≤ k ≤ I. To illustrate the application of the results in Appendix A, we briefly

discuss two practically relevant examples.

E4) Ricean faded M–PSK interferer: A Ricean faded M–PSK interferer can be modeled as z =

z1 + z2, where z1 and z2 represent the direct and the specular (Rayleigh) component, respectively.

4We note that even if the BPSK interference signals are not symbol synchronous with the desired signal, for

zc and z a similar model as in Eq. (5) results, cf. e.g. [8], and the mathematical tools developed in this paper

are still applicable. However, because of space limitations, we only consider the symbol synchronous case here.
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z1 can be modeled by Example E3) and z2 is a real Gaussian RV. The Mellin transform Mz(s) can

be obtained by applying Eq. (50)5, where Mz1
(s) and Mz2

(s) are given in Table 2.

E5) Rayleigh faded multiple BPSK interferers: If multiple synchronous BPSK interference signals

ik, 1 ≤ k ≤ I, originate from the same transmitter (e.g. base station), they arrive over the same

channel at the receiver (e.g. moblile station or base station of another cell) for the desired signal.

Therefore, if the interference channel is Rayleigh faded, this type of interference can be modeled as

z = z1z2, where z1 and z2 represent the fading gain (real Gaussian RV) and the interference signal

(modeled as in Example E2)), respectively.6 In this case, Mz(s) can be obtained from Eq. (46),

where Mz1
(s) and Mz2

(s) are again given in Table 2. This interference model applies for example to

synchronous code–division multiple access (CDMA) systems after despreading where the coefficients

dc,k in Eq. (5) denote the correlation of the desired user’s signature sequence with the signature

sequences of the users in an neighboring cell [2].

For more complicated types of noise Eqs. (46) and (50) may have to be applied repeatedly.

Alternatively, in cases where a closed–form expression for Mz(s) cannot be found or if only mea-

surements of z are available, the Mellin transform Mz(s) may also be estimated using Monte Carlo

integration of Eq. (42). Exploiting that pz(z) is an even function, an estimate of Mz(s) is given by

M̂z(s) =
1

Nz

Nz
∑

k=1

|z[k]|s−1 (6)

where z[k], 1 ≤ k ≤ Nz, are realizations of the RV z. For a sufficiently large number Nz of

samples the estimate M̂z(s) will approach Mz(s). Of course, the validity of AS2) has to be verified.

However, this can often be accomplished without knowing pz(z) or Mz(s) explicitly.

3 Single–Branch Reception

In this section, we develop exact and asymptotic expressions for the SER of linear modulation

schemes such as M–PAM, M–PSK, and M–QAM with a single diversity branch. In addition, we

5We note that z1 and z2 are statistically independent although they involve the same M–PSK interference

signal.
6It is interesting to note that a similar interference model as in E5) also holds for an asynchronous Rayleigh

faded BPSK interferer, cf. [8].
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also consider the asymptotic SER of BOM.

3.1 Basic Error Probability Result

The calculation of the SER of linear modulation schemes involves the evaluation of the probability

Pe(d) that the received signal r = ax+z is smaller than a certain threshold ay, where d , x−y > 0.

Conditioned on a we obtain

Pe(d|a) = Pr{ax + z < ay|a} =

−ad
∫

−∞

pz(z) dz =
1

2πj

c+j∞
∫

c−j∞

Φz(s) e−ads ds

s
(7)

where Φz(s) , L{pz(z)} and constant c lies in the region of convergence of the integral. Averaging

Pe(d|a) with respect to a yields

Pe(d) = E{Pe(d|a)} =
1

2πj

c+j∞
∫

c−j∞

Φz(s) E{e−ads} ds

s
=

1

2πj

c+j∞
∫

c−j∞

Φz(s) Φa(ds)
ds

s
(8)

where Φa(s) , L{pa(a)}. Since for most practically relevant cases, both Φa(s) (cf. [15, Table

I]) and Φz(s) (cf. Table 2) are readily available, Eq. (8) can be efficiently evaluated numerically

applying e.g. a Gauss–Chebyshev quadrature rule, cf. e.g. [16]. However, unfortunately this numerical

approach does not provide any intuitive insight into the problem. Therefore, using Parseval’s theorem

we rewrite Eq. (8) as

Pe(d) =

∞
∫

0

pz(u)Fa

(u

d

)

du (9)

where Fa(a) , L−1{Φa(s)/s} =
∫ a

0
pa(u) du is the cumulative distribution function (cdf) of a. To

further simplify Eq. (9), we assume that for high SNR γ̄ the pdf pa(a) can be expanded into a series

pa(a) =
1

a

(

N
∑

k=1

pk

(

a2

γ̄

)ξk+δ

+ o
(

(a2/γ̄)ξN+δ
)

)

, a ≥ 0 (10)

where ξ and δ are real–valued constants and pk are real–valued coefficients. In Eq. (10), N is

the number of terms considered and o
(

(a2/γ̄)ξN+δ
)

is a remainder term. For Rayleigh, Ricean,

Nakagami–q, Nakagami–m, and Weibull fading ξ, δ, and pk, k ≥ 1, are given in Table 1. With

Eq. (10) the cdf Fa(a) can be expressed as

Fa(a) =
1

2

N
∑

k=1

pk

ξk + δ

(

a2

γ̄

)ξk+δ

+ o
(

(a2/γ̄)ξN+δ
)

. (11)
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Applying Eq. (11) in Eq. (9) and assuming that AS2) in Section 2.3 holds, we can express the error

probability as

Pe(d) =
1

2

N
∑

k=1

pk Mz(2(ξk + δ) + 1)

ξk + δ
(d2γ̄)−(ξk+δ) + o

(

γ̄−(ξN+δ)
)

. (12)

For high SNR the remainder term o
(

γ̄−(ξN+δ)
)

becomes negligible and the first term in Eq. (12)

gives a tight approximation of Pe(d). Furthermore, for high enough SNR the series in Eq. (12)

converges for N → ∞. In this case, Eq. (12) is equivalent to Eq. (8). The exact value of γ̄ where

the series starts to converge depends on both the type of fading (via pk) and the type of noise [via

Mz(2(ξk + δ) + 1)].

3.2 Exact SER Expression for M–PAM

Although the main emphasis of this paper is on SER approximations offering insight into the system

behavior at high SNR, it is worth noting that for one–dimensional modulation schemes such as

BPSK and M–PAM, Pe(d) in Eq. (12) can be used to derive an expression for the exact SER. In

particular, using similar steps as for the Gaussian case in [2, Ch. 5] and assuming that the SNR is

high enough for Eq. (12) to converge for N → ∞, we obtain

PPAM
M = 2 βPAM

M Pe

(

dPAM
M

)

= βPAM
M

∞
∑

k=1

pk Mz(2(ξk + δ) + 1)

ξk + δ
((dPAM

M )2γ̄)−(ξk+δ) (13)

where βPAM
M and dPAM

M are given in Table 3. The SER of BPSK PPSK
2 can be obtained from

PPSK
2 = PPAM

2 . To verify the result in Eq. (13), we can consider the special case of M = 2,

Nakagami–m fading, and Gaussian noise. Using ξ, δ, and pk from Table 1 and Mz(s) from Table 2,

it is straightforward to show that under these conditions Eq. (13) can be simplified to [4, Eq. (9)].

We emphasize that the technique in [4] is limited to Gaussian noise, whereas Eq. (13) is valid for

any type of noise fulfilling AS1) and AS2) in Section 2.3.

We note that PPAM
M can be evaluated numerically also by combining Eqs. (8) and (13). This

numerical approach also succeeds at low SNRs, where Eq. (12) does not converge, but does not

reveal the connection between the Mellin transform of pz(z) and the SER.
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3.3 Asymptotic SER of Linear Modulations

For high SNR, we can approximate Pe(d) by the first term of the sum in Eq. (12), i.e.,

Pe(d) ≈ 1

2

p1 Mz(2(ξ + δ) + 1)

ξ + δ
(d2γ̄)−(ξ+δ). (14)

Based on this result the asymptotic SER of linear modulation schemes can be approximated as

PX
M ≈ βX

M

p1 Mz(2(ξ + δ) + 1)

ξ + δ
((dX

M)2γ̄)−(ξ+δ) (15)

where X stands for PAM, PSK, and QAM, respectively. The respective values of βX
M and dX

M are

summarized in Table 3, cf. also [2]. We note that for M–PSK with M ≥ 4 and M–QAM AS3) in

Section 2.3 is necessary to ensure that for high enough SNR βX
M and dX

M are independent from the

pdf of z.

Eq. (15) shows that Eq. (1) not only holds for Gaussian noise but also for the more general class

of noises considered in this paper. In particular, comparing Eq. (1) and Eq. (15), the diversity gain

is Gd = ξ + δ and the combining gain is given by

Gc = (dX
M)2

(

Gd

βX
M p1 Mz(2Gd + 1)

)1/Gd

. (16)

Therefore, for high SNR in a log–log scale the slope of the SER curves (−Gd) only depends on the

fading statistic but is independent of the noise statistic. On the other hand, the relative shift of the

SER curves (Gc) depends on both the fading and the noise statistics. The pdf pz(z) of the noise z

influences the combining gain via its Mellin transform Mz(s) for s = 2Gd + 1. Since Gd = ξ + δ

depends on the fading process, the fading statistic also determines in part what effect the type of

noise has on Gc and on the asymptotic SER. To further highlight this point, we specialize Eq. (15)

in the following.

1) Rayleigh, Ricean, and Nakagami–q fading: In this case, ξ = 1 and δ = 0, cf. Table 1. Since

Mz(3) = σ2
z/2 = 1/2 holds always, we obtain

PX
M ≈ βX

M p1

2(dX
M)2 γ̄

(17)

i.e., surprisingly the asymptotic SER for Rayleigh, Ricean, and Nakagami–q fading is independent

of the noise statistic. If we further specialize Eq. (17) to BPSK and Rayleigh fading, we obtain
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PPSK
2 = 1/(4γ̄), which is a famous result for Gaussian noise [2]. However, our analysis here shows

that this result is also valid for a much larger class of noises.

2) Nakagami–m fading: Using ξ = 1, δ = m − 1, and p1 = 2mm/Γ(m) in Eq. (15) yields

PX
M ≈ 2 βX

M mm−1 Mz(2m + 1)

Γ(m) (dX
M)2m γ̄m

(18)

i.e., the SER depends on Mz(2m + 1). Therefore, in a log–log scale non–Gaussian noise will result

in a horizontal shift of the SER curve by

GN(m) ,
10

m
log10

( √
πMz(2m + 1)

Γ(m − 1/2)2m−1

)

dB (19)

compared to Gaussian noise. If GN(m) is negative, the SER caused by the non–Gaussian noise is

lower than that caused by Gaussian noise. The opposite is true if GN(m) is positive. For the special

case of ε–mixture noise, Eq. (19) simplifies to

GN(m) = 10 log10

(

m
√

1 − ε + εκm

1 − ε + εκ

)

dB. (20)

For example, for ε = 0.01 and κ = 100, we obtain GN(0.5) = −2.24 dB, GN(1) = 0 dB,

GN(2) = 7.03 dB, and GN (3) = 10.34 dB, which clearly shows that given the same noise statistic,

different fading statistics may cause significantly different combining gains.

3) Weibull fading: Adopting ξ = c/2, δ = 0, and p1 = (Γ(1 + 2/c))c/2, we obtain

PX
M ≈ 2 βX

M (Γ(1 + 2/c))c/2 Mz(c + 1)

c (dX
M)c γ̄c/2

(21)

i.e., the asymptotic SER depends on Mz(c + 1). Similar to the Nakagami–m fading case, non–

Gaussian noise causes a horizontal shift of the SER curve. A comparison of Eqs. (18) and (21)

shows that for Weibull fading with parameter c this shift is simply given by GN(c/2), i.e., the SER

curves of Nakagami–m fading with parameter m and those of Weibull fading with parameter c = 2m

are shifted by the same amount if the noise is non–Gaussian instead of Gaussian.

3.4 Asymptotic SER of BOM

Using the definitions r , <{rc} and r̄ , ={rc}, in BOM, the output of the two correlators is

{r =
√

2a + z, r̄ = z̄} and {r = z, r̄ =
√

2a + z̄} if bit “1” and “0” are transmitted, respectively,
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where z , <{zc} and z̄ , ={zc} [2]. Assuming coherent detection, the decision variable can be

defined as

r̃ , r − r̄ = a x + z̃ (22)

where x ∈ {±
√

2} and z̃ , z− z̄. Comparing Eq. (22) with Eq. (3) it is obvious that the framework

developed in Sections 3.2 and 3.3 is also applicable to BOM. For calculation of the Mellin transform

Mz̃(s) of z̃ we note that z̃ can be expressed as

z̃ = |zc|[cos(Θc) − sin(Θc)] =
√

2 |zc| cos(Θc + π/4) (23)

where Θc denotes the phase of zc. Since according to AS3) in Section 2.3 Θc is uniformly distributed

z = |zc| cos(Θc) and |zc| cos(Θc + π/4) have the same pdf. Therefore, from Eq. (45) we obtain

Mz̃(s) = (
√

2)s−1 Mz(s). Using this result in Eq. (15), we obtain

POM
2 ≈ βOM

2

p1 Mz(2(ξ + δ) + 1)

ξ + δ
(2 (dOM

2 )2γ̄)−(ξ+δ) (24)

where βOM
2 and dOM

2 are given in Table 3. Since βOM
2 = βPSK

2 and dOM
2 = dPSK

2 , a comparison

of Eq. (15) specialized to BPSK and Eq. (24) shows that BOM suffers from an SNR loss of 3 dB

compared to BPSK. While this 3 dB loss is a well–known fact for Gaussian noise [2], our analysis

here shows that it also holds for a much larger class of noises independent of the fading statistic. For

completeness we note that the exact SER of BOM can be obtained by replacing Mz(s) by Mz̃(s)

in Eq. (13).

4 Diversity Combining

In this section, we extend the framework introduced in Section 3 to equal gain combining (EGC)

and selection combining (SC). We assume that the signal model in Eq. (3) is valid for L diversity

branches, i.e.,

rl = al x + zl, 1 ≤ l ≤ L (25)

where rl, al, and zl denote the received signal, the fading amplitude, and the noise in the lth branch.

Furthermore, we assume σ2
z , E{z2

l } = 1, 1 ≤ l ≤ L, and the SNR of the lth branch is γ̄l , E{a2
l },

i.e., different branches may have different SNRs. For convenience, we assume that the fading gains
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in different branches are statistically independent and follow the same distribution (e.g. all branches

are Nakagami–m distributed with the same m). The latter restriction is only made to arrive at

simple and insightful results and the extension to the case where different branches follow different

distributions is straightforward. We also assume that the noise RVs zl, 1 ≤ l ≤ L, have the same

pdf pz(z) and fulfill AS1)–AS3) in Section 2.3.

4.1 Equal Gain Combining (EGC)

In coherent EGC the complex received signals of all branches are co–phased and combined. The

resulting decision variable is given by

r̃ =
L
∑

l=1

rl = ãx + z̃ (26)

where ã ,
∑L

l=1 al and z̃ ,
∑L

l=1 zl.

For the framework developed in Section 3 to be applicable to EGC, we require the series expansion

of the pdf pã(a) of ã and the Mellin transform Mz̃(s) of the pdf of z̃. For general s and mutually

dependent zl, 1 ≤ l ≤ L, the calculation of Mz̃(s) may be quite involved. However, for the most

important special case where the zl, 1 ≤ l ≤ L, are mutually statistically independent and s is an

integer, Mz̃(s) can be easily obtained by applying Eq. (50).

For the series expansion of pã(a) we first note that the Laplace transform of pã(a) can be

expressed as [15]

Φã(s) , L{pã(a)} =
L
∏

l=1

Φal
(s) (27)

where Φal
(s) , L{pal

(a)} and pal
(a) denotes the pdf of al. Considering Eq. (10) Φal

(s) can be

expressed as

Φal
(s) =

N
∑

k=1

pk Γ(2(ξk + δ)) (s2γ̄l)
−(ξk+δ) + o

(

(s2γ̄l)
−(ξN+δ)

)

. (28)

By combining Eqs. (27) and (28) we can obtain a series expansion for Φã(s) which then can be used

to obtain the desired series expansion for pã(a). Since the general expression for this expansion is

quite involved and we are mainly interested in asymptotic results, we restrict our attention to the
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first term of the expansion

pã(a) =
1

a

[

pL
1

[Γ(2(ξ + δ))]L

Γ(2L(ξ + δ))

L
∏

l=1

(

a2

γ̄l

)ξ+δ

+ o

(

L
∏

l=1

(

a2/γ̄l

)ξ+δ

)]

. (29)

Using Eq. (29) for EGC the basic error probability Pe(d) defined in Section 3.1 can be expressed as

Pe(d) =
pL

1 [Γ(2(ξ + δ))]L Mz̃(2L(ξ + δ) + 1)

2L (ξ + δ) Γ(2L(ξ + δ))

L
∏

l=1

(d2γ̄l)
−(ξ+δ) + o

(

L
∏

l=1

(γ̄l)
−(ξ+δ)

)

(30)

where d = x− y > 0 as before. Thus, the asymptotic SER of linear modulation schemes with EGC

can be approximated as

PX
M ≈ βX

M

pL
1 [Γ(2(ξ + δ))]L Mz̃(2L(ξ + δ) + 1)

L (ξ + δ) Γ(2L(ξ + δ))

L
∏

l=1

(

(dX
M)2γ̄l

)−(ξ+δ)
. (31)

Specializing this result for BPSK to Ricean fading and Gaussian noise leads to P PSK
2 ≈ (1 +

K)Le−KLLL/[2L−1L!
∏L

l=1 γ̄l], which is in perfect agreement with [3, Eq. (5)], [1, Eq. (9.38)].

Assuming for simplicity equal branch SNRs γ̄l = γ̄, 1 ≤ l ≤ L, the diversity gain follows as

Gd = L(ξ + δ), whereas the combining gain is given by

Gc = (dX
M)2

(

Gd Γ(2Gd)

βX
M pL

1 [Γ(2Gd/L)]L Mz̃(2Gd + 1)

)1/Gd

. (32)

From Eqs. (31) and (32) we observe that while the slope of the SER curves is not influenced by the

type of noise, the SER curve for non–Gaussian noise experiences a horizontal shift compared to the

SER curve for Gaussian noise. This horizontal shift corresponds to a difference in the combining

gain and depends on Mz̃(2Gd + 1). For Rayleigh, Ricean, and Nakagami–q fading Gd = L and the

Mellin transform Mz̃(2L + 1) (and therefore also the SER and Gc) depends on the type of noise if

L > 1.

4.2 Selection Combining (SC)

In SC, only the path with the largest fading amplitude is considered for detection. Therefore, the

decision variable can be modeled as

ř , ǎ x + z (33)
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where ǎ , max{a1, a2, . . . , aL} and z has the same pdf pz(z) as zl, 1 ≤ l ≤ L. Since the cdf of

ǎ is given by Fǎ(a) =
∏L

l=1 Fal
(a) [1], where Fal

(a) is the cdf of al, we can obtain the expansion

Fǎ(a) =
pL

1

2L(ξ + δ)L

L
∏

l=1

(

a2

γ̄l

)ξ+δ

+ o

(

L
∏

l=1

(

a2/γ̄l

)ξ+δ

)

(34)

cf. Eq. (11). Therefore, the basic error probability Pe(d) defined in Section 3.1 is now given by

Pe(d) =
pL

1 Mz(2L(ξ + δ) + 1)

2L(ξ + δ)L

L
∏

l=1

(

d2 γ̄l

)−(ξ+δ)
+ o

(

L
∏

l=1

(γ̄l)
−(ξ+δ)

)

. (35)

Exploiting Eq. (35), we can express the asymptotic SER of linear modulations as

PX
M ≈ βX

M

pL
1 Mz(2L(ξ + δ) + 1)

2L−1(ξ + δ)L

L
∏

l=1

(

(dX
M)2 γ̄l

)−(ξ+δ)
. (36)

For BPSK transmission over a Rayleigh faded channel with Gaussian noise Eq. (36) simplifies to

PPSK
2 = (2L)!/ [22L−1L!

∏L
l=1 γ̄l], which can be shown to be identical to [1, Eq. (9.268)] for L = 2

and high SNR.7

If we assume again equal branch SNRs γ̄l = γ̄, 1 ≤ l ≤ L, from Eq. (36) we obtain a diversity

gain of Gd = L(ξ + δ) and a combining gain of

Gc = (dX
M)2

(

2L−1GL
d

βX
M pL

1 LL Mz(2Gd + 1)

)1/Gd

. (37)

Similar to the EGC case for L > 1 the SER and the combining gain depend on the type of noise

also for Rayleigh, Ricean, and Nakagami–q fading.

4.3 Comparison of EGC and SC

It is interesting to compare the combining gains achievable with EGC and SC. For this purpose, we

define the relative gain G
E/S
c (L) as the ratio of Eqs. (32) and (37)

GE/S
c (L) =

(

LL Γ(2Gd)

(2Gd)L−1[Γ(2Gd/L)]L
Mz(2Gd + 1)

Mz̃(2Gd + 1)

)1/Gd

(38)

i.e., for high enough SNRs EGC achieves a gain of 10 log10(G
E/S
c ) dB over SC. The first term on

the right hand side of Eq. (38) is only influenced by the type of fading, whereas the second term
7More precisely, the variables ρ and g, which are defined in [1], have to be set to ρ = 0 and g = 1 in [1,

Eq. (9.268)] to obtain PPSK
2 ≈ 3/[8γ̄1γ̄2] for high SNR.
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is affected by both the type of noise and the type of fading. If we assume Rayleigh, Ricean, or

Nakagami–q fading, Gd = L and Eq. (38) simplifies to

GE/S
c (L) =

(

(2L)! Mz(2L + 1)

2L Mz̃(2L + 1)

)1/L

. (39)

If we furthermore assume Gaussian noise, we obtain G
E/S
c (L) = [(2L)!/(2LL2)]1/L > 1, i.e., EGC

always outperforms SC. For dual diversity and i.i.d. noise RVs z1 and z2 Eq. (39) can be simplified

to

GE/S
c (2) =

√

6Mz(5)

2Mz(5) + 3
(40)

where Eq. (50) and Mz(3) = 1/2 have been exploited. As an example, we may consider the case of

an interference limited system where z1 and z2 are due to a Ricean faded M–PSK interferer with

Ricean factor KI and uniformly distributed channel phase8. The Mellin transform Mz(5) for this

case can be calculated as explained in Example E4) in Section 2.4. The resulting G
E/S
c (2) is

GE/S
c (2) =

√

6 + 12KI + 3K2
I

4 + 8KI + 3K2
I

(41)

which is a monotonic decreasing function in KI . For example, from Eq. (41) we obtain that the

performance gain of EGC compared to SC is 0.88 dB, 0.23 dB, and 0 dB for KI = 0, KI = 10, and

KI → ∞, respectively.

5 Numerical Results and Discussions

In this section, we verify the derived analytical expressions for the asymptotic SER for different

practically relevant cases. First, the case of a single diversity branch is considered, then results for

diversity combining are presented.

5.1 Single–Branch Reception

Fig. 1 shows the SER of 8–PSK modulation in Nakagami–m fading and ε–mixture noise (ε = 0.25,

κ = 10). As expected, for high enough SNR the simulation curves (markers) closely approach the
8We note that since the two interference processes are i.i.d. and the pdf of Ricean fading with uniformly

distributed channel phase is rotationally symmetric, z1 and z2 are statistically independent although they involve

the same M–PSK interference signal.
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asymptotic results obtained from our analysis (solid lines).

In Fig. 2, we show the SER (which is identical to the bit error rate in this case) for BPSK

modulation in Nakagami–m fading (m = 2) for some types of noise discussed in Sections 2.3 and

2.4. Fig. 2 clearly illustrates that for a given SNR the SER caused by non–Gaussian noise and

interference may be considerably lower or higher than that caused by Gaussian noise.

Fig. 3 shows the SER of a narrowband (NB) signal having bandwidth Bs and employing 16–

QAM in Nakagami–m fading (m = 2) with a multi–band orthogonal frequency division multiplexing

(MB–OFDM) and a direct–sequence ultra–wideband (DS–UWB) interferer, respectively. The NB

pulse shape is a square–root raised cosine filter with roll–off factor 0.35 and the receiver employs the

corresponding matched filter. The MB–OFDM and DS–UWB interferers were generated according

to the corresponding IEEE 802.15.3a standard proposals [17, 18]. Since a closed–form calculation

of the related Mellin transforms is too involved, we estimated Mz(s = 5) using Eq. (6) and then

calculated the asymptotic SER using Eq. (18). This semi–analytical approach is much faster than

directly simulating the SER. Interestingly, Fig. 3 shows that while for Bs = 1 MHz the MB–OFDM

interferer yields a lower SER than the DS–UWB interferer, the opposite is true for Bs = 20 MHz.

5.2 Diversity Combining

Fig. 4 shows the SER of BPSK with EGC and SC, respectively, in Ricean fading (K = 2). We

assume L = 2 and identical SNRs for both diversity branches. The BPSK signal is impaired by a

Ricean faded M–PSK interferer with Ricean factor KI and uniformly distributed phase, cf. Sections

2.4, 4.3. The relative performance loss of SC compared to EGC is smaller for KI = 10 than for

KI = 0 as predicted by Eq. (41). It is also interesting to note that both EGC and SC achieve a

better performance for the larger KI .

In Fig. 5, we consider the SER of 8–PSK in Rayleigh fading with EGC. We assume that the

composite noise impairing the received signal is the sum of two Rayleigh faded BPSK interferers

[cf. Example E5) in Section 2.4] and Gaussian noise, where the interference power is 10 dB higher

than the Gaussian noise power. For comparison we also consider the case of purely Gaussian noise.

As expected from Eq. (17) for L = 1 both types of noise yield the same asymptotic SER. In

contrast, assuming identical SNRs for L = 2 and L = 3 purely Gaussian noise is less favorable than



Nasri et al.: Unified Asymptotic Performance Analysis of Linearly Modulated Signals 17

the composite noise.

6 Conclusions

In this paper, we have presented a powerful new approach to the asymptotic SER analysis of linearly

modulated signals impaired by fading and (possibly) non–Gaussian noise. Thereby, the only major

assumption on the considered noise is that the Mellin transform Mz(s) of its pdf exists for s ≥ 1,

which is true for most practically relevant types of noise. Based on this assumption we have provided

general and simple–to–evaluate SER approximations for linear modulation formats with single–branch

reception, EGC, and SC and for BOM, which become tight for high SNR. Our analysis has shown

that the diversity gain is independent of the noise statistic and only depends on the fading statistic

and the number of diversity branches. In contrast, the combining gain depends on both the type of

fading and the type of noise. Therefore, in a log–log scale for high SNR the SER curves for different

types of noise are all parallel and their relative shift depends on the Mellin transform of the noise

pdfs.

A The Mellin Transform

The Mellin transform of the pdf pz(z) of the noise z plays a central role in this paper. Therefore, we

discuss the Mellin transform and its properties in some detail in this appendix. For further reading

we recommend [19, 20].

A.1 Definition and Existence

The Mellin transform Mz(s) , M{pz(z)} of pz(z) is defined as

Mz(s) ,

∞
∫

0

zs−1pz(z) dz (42)

where both pz(z) and s may be complex in general. The Mellin transform exists if
∫∞
0

z<{s}−1|pz(z)| dz

is finite. The interval αl ≤ <{s} ≤ αu for which Mz(s) exists is referred to as the fundamental

strip. Tables of Mellin transforms can be found in [19].
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In the remainder of this appendix, pz(z), pz1
(z), and pz2

(z) denote the pdfs of z, z1, and z2,

respectively. Furthermore, we use the notations Mz(s) , M{pz(z)}, Mz1
(s) , M{pz1

(z)}, and

Mz2
(s) , M{pz2

(z)}.

A.2 Basic Properties

The Mellin transform has many useful properties. A detailed discussion of these properties in the

context of RVs and pdfs can be found in [20]. Here, we only state the properties most relevant to

this paper without proof.

1) Scaling:

M{pz(αz)} = α−s Mz(s), α > 0. (43)

2) Linearity:

M{α1 pz1
(z) + α2 pz2

(z)} = α1 Mz1
(s) + α2 Mz2

(s). (44)

3) Scaling of the RV: Let z1 = αz, α > 0, then

Mz1
(z) = αs−1 Mz(s). (45)

A.3 Product of Two Independent RVs

The Mellin transform in Eq. (42) is only defined for positive z, whereas pz(z) is an even function of

z, cf. AS1) in Section 2.3. Usually this discrepancy is not a problem and we can just ignore pz(z)

for z < 0 when calculating the Mellin transform. However, care must be taken when calculating the

Mellin transform of the product of two RVs.

Let z = z1z2, where z1 and z2 are two independent RVs with even pdfs, respectively. The pdf of

z can be expressed as pz(z) =
∫∞
−∞ pz1

(z1)pz2
(z/z1) dz1/|z1|. Using the definition in Eq. (42) and

exploiting pz1
(z) = pz1

(−z) and pz2
(z) = pz2

(−z), it is easy to show that the Mellin transform of

pz(z) can be expressed as

Mz(s) = 2 Mz1
(s) Mz2

(s) (46)

which differs from [20, Eq. (15)] by a factor of two since in [20] non–negative RVs z1, z2 were

assumed.
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A.4 Sum of Two Independent RVs

Let z = z1 + z2, where z1 and z2 are independent RVs. For general s it is difficult to find a simple

relation between Mz(s) and Mz1
(s), Mz2

(s). In the following, we show however that such a relation

exists if s is an integer.

First, we establish a relation between Mz(s) and the moments mz(s) of z. If s is an even integer,

we obtain

2Mz(s + 1) = mz(s) ,

∞
∫

−∞

zs pz(z) dz. (47)

Similarly, if s is odd, we can express 2Mz(s + 1) as

2Mz(s + 1) = m̃z(s) ,

∞
∫

−∞

zs p̃z(z) dz (48)

where p̃z(z) = p(z), z ≥ 0, and p̃z(z) = −p(z), z < 0. Note that mz(s) = 0 and m̃z(s) = 0 for

odd and even s, respectively.

Recall that the Laplace transform of the pdf of z is given by Φz(p) = Φz1
(p) Φz2

(p), where

Φz1
(p) , L{pz1

(z)} and Φz2
(p) , L{pz2

(z)}.9 For even s, the moments mz(s) of z can be

calculated from

mz(s) = (−1)s ds

dps
Φz(p)

∣

∣

∣

p=0
= (−1)s

s
∑

k=0

( s

k

) ds−k

dps−k
Φz1

(p)
dk

dpk
Φz2

(p)
∣

∣

∣

p=0

= (−1)s
s
∑

k=0

( s

k

)

mz1
(s − k)mz2

(k) (49)

where mz1
(s) and mz2

(s) denote the sth moment of z1 and z2, respectively. It is easy to show that

Eq. (49) also holds for odd s if m̃(·) is replaced by m(·). Therefore, taking Eqs. (47) and (48) into

account, the Mellin transforms of pz(z) for integer s can be calculated from

Mz(s) =







2
∑(s−1)/2

k=0

(

s−1
2k

)

Mz1
(s − 2k)Mz2

(2k + 1), s odd

2
∑s/2−1

k=0

(

s−1
2k+1

)

Mz1
(s − 2k)Mz2

(2k + 2), s even
, s ≥ 1. (50)

9Following the literature, in general we use “s” as transformation variable for both Mellin and Laplace trans-

form. In this appendix, however, we deviate from this practice to avoid confusion and use “p” as transformation

variable for the Laplace transform.
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Figures:

Table 1: Pdf pa(a) of fading amplitude a ≥ 0 and corresponding series parameters pk, ξ, and δ

for the series expansion pa(a) = 1
a

∑∞
k=1 pk (a2/γ̄)ξk+δ. γ̄ = E{a2}.

Fading Model Pdf of Fading Amplitude a and Series Parameters

Rayleigh pa(a) = 2a
γ̄

exp
(

−a2

γ̄

)

pk = 2(−1)k−1

(k−1)!

ξ = 1, δ = 0

Ricean pa(a) = 2(K+1)a
γ̄

exp
(

−K − (1+K)a2

γ̄

)

I0

(

2a
√

K(K+1)
γ̄

)

K ≥ 0 pk = 2(K + 1)ke−K
∑k−1

κ=0
(−1)k−1−κKκ

(k−1−κ)! (κ!)2

ξ = 1, δ = 0

Nakagami–q pa(a) = 2a
γ̄
√

1−b2
exp

(

− a2

(1−b2)γ̄

)

I0

(

ba2

(1−b2)γ̄

)

b = 1−q2

1+q2 pk = 2
(1−b2)k+1/2

∑bk/2c
κ=0

(−1)k−2κ(b/2)2κ

(κ!)2 (k−2κ)!

0 ≤ q < 1 ξ = 1, δ = 0

Nakagami–m pa(a) = 2
Γ(m)

(

m
γ̄

)m

a2m−1 exp
(

−ma2

γ̄

)

m ≥ 1/2 pk = 2(−1)k−1mk+m−1

Γ(m)(k−1)!

ξ = 1, δ = m − 1

Weibull pa(a) = c
(

Γ(1+2/c)
γ̄

)c/2

ac−1 exp

[

−
(

a2

γ̄
Γ(1 + 2/c)

)c/2
]

c > 0 pk = (−1)k−1(Γ(1+2/c))ck/2

(k−1)!

ξ = c/2, δ = 0
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Table 2: Pdf pz(z), Laplace transform Φz(s) = L{pz(z)}, and Mellin transform Mz(s) =

M{pz(z)} for different types of noise. Noise variance σ2
z = 1 in all cases. Generalized Gaussian

noise: η(C) = [Γ(1/C)/Γ(3/C)]C/2. BPSK interference with fixed channel phase (CP): S is the

set of all 2I possible sums of the ±dk, 1 ≤ k ≤ I. S+ contains all positive elements of S. We

note that for generalized Gaussian noise a closed–form expression for Φz(s) does not seem to

exist for general C > 0.

Noise Model pz(z), Φz(s), and Mz(s)

Gaussian Noise pz(z) = 1√
2π

exp
(

−z2

2

)

Φz(s) = es2/2

Mz(s) = 1
2
√

2π
Γ
(

s
2

)

2
s
2

Generalized Gaussian pz(z) = C
2Γ(1/C)(η(C))1/C exp

(

− |z|C
η(C)

)

Noise, C > 0 Mz(s) = 1
2Γ(1/C)

Γ
(

s
C

)

(η(C))
s−1

C

Gaussian Mixture pz(z) =
∑I

k=1
ck√
2πσ2

zk

exp
(

− z2

2σ2
zk

)

∑I
k=1 ck = 1 Φz(s) =

∑I
k=1 cke

s2σ2
zk

/2

∑I
k=1 ckσ

2
zk

= 1 Mz(s) =
Γ( s

2) 2
s
2

2
√

2π

∑I
k=1 ck σs−1

zk

BPSK Interference pz(z) = 1
2I

∑

d̄∈S δ(z − d̄)

with Fixed CP Φz(s) = 1
2I

∑

d̄∈S e−sd̄

∑I
k=1 |dk|2 = 1 Mz(s) = 1

2I

∑

d̄∈S+ d̄s−1

M–PSK Interference pz(z) = 1

π
√

|d1|2−z2
, |z| < |d1|, I = 1

with Random CP Φz(s) =
∏I

k=1 I0(|dk|s)
∑I

k=1 |dk|2 = 2 Mz(s) =
|d1|s−1Γ( s

2)
2
√

πΓ( s+1

2 )
, I = 1
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Table 3: Parameters βX
M and dX

M for M–ary modulation schemes X ∈ {PAM, PSK, QAM,

BOM}.

Modulation Scheme βX
M dX

M

M–PAM 1 − 1
M

√

6
M2−1

BPSK (M = 2) 1
2

√
2

M–PSK (M ≥ 4) 1
√

2 sin
(

π
M

)

M–QAM 2
(

1 − 1√
M

) √

3
M−1

BOM (M = 2) 1
2

√
2
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Figure 1: SER vs. SNR for 8–PSK over a Nakagami–m fading channel with ε–mixture

noise (ε = 0.25, κ = 10). Markers: Simulated SER. Solid lines: Asymptotic SER

[Eq. (18)].
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Figure 2: SER vs. SNR for BPSK over a Nakagami–m fading channel with m = 2

and different types of noise discussed in Sections 2.3, 2.4. ε–mixture noise: Example

E1) in Section 2.3. M–PSK interference with random channel phase (CP): Example

E3) in Section 2.3. Rayleigh faded BPSK interference: Example E5) in Section 2.4.

BPSK interference with fixed CP: Example E2) in Section 2.3. Markers: Simulated

SER. Solid lines: Asymptotic SER [Eq. (18)].
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Figure 3: SER vs. SNR for 16–QAM with bandwidth Bs over a Nakagami–m fading

channel with m = 2 and UWB interference. Markers: Simulated SER. Solid lines:

Asymptotic SER for MB–OFDM interference [Eq. (18)]. Dashed lines: Asymptotic

SER for DS–UWB interference [Eq. (18)].
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Figure 4: SER vs. SNR per branch for BPSK over a Ricean fading channel with Ricean

factor K = 2, L = 2 diversity branches, and Ricean faded M–PSK interference. The in-

terference channel has Ricean factors of KI = 0 and KI = 10, respectively. All diversity

paths have the same average SNR. EGC and SC are considered. Markers: Simulated

SER. Solid lines: Asymptotic SER for EGC [Eq. (31)]. Dashed lines: Asymptotic SER

for SC [Eq. (36)].
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Figure 5: SER vs. SNR per branch for 8–PSK over a Rayleigh fading channel with EGC.

All diversity paths have the same average SNR. Markers: Simulated SER. Solid lines:

Asymptotic SER for Rayleigh faded BPSK interference (two interferers) and Gaussian

noise [Eq. (31)]. Dashed lines: Asymptotic SER for Gaussian noise [Eq. (31)].


