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Abstract— In this paper, we introduce an adaptive Lp–norm
metric for robust coherent, differential, and noncoherent di-
versity combining in non–Gaussian noise and interference. We
consider the general case where all diversity branches may
use different combining weights and different Lp–norms. We
derive a general closed–form expression for the asymptotic bit
error rate (BER) for Lp–norm combining in independent non–
identically distributed Ricean fading and non–Gaussian noise
and interference with finite moments. The asymptotic BER
expression reveals that the diversity gain ofLp–norm combining
is independent of the type of noise and the metric parameters.
In contrast, the combining gain depends on both the type of
noise and the metric parameters. Thus, the asymptotic BER can
be minimized by optimizing the Lp–norm metric parameters for
the underlying type of noise. For this purpose finite difference
stochastic approximation (FDSA) and localized random search
(LRS) algorithms are developed. Both adaptive algorithms do not
require any a priori knowledge about the underlying noise and
are able to track changes in the noise statistics. Simulation results
confirm the validity of the derived asymptotic BER expressions,
the effectiveness of the proposed adaptive algorithms, and the
excellent performance of the proposed adaptiveLp–norm metric
compared to other popular metrics.

Index Terms— Diversity Combining, Lp–norm, non–Gaussian
noise and interference, asymptotic performance analysis, metric
optimization, adaptive stochastic optimization.

I. I NTRODUCTION

Diversity combining is an efficient means for combating
the detrimental effects of fading in wireless channels. For
impairment by additive white Gaussian noise (AWGN) many
different combining schemes have been proposed for coherent,
differential, and noncoherent detection and their performances
have been extensively studied [1]. Generally, these combining
schemes are equivalent to the evaluation of a metric that
involves anL2–norm. Examples for such combining schemes
include coherent maximal–ratio combining (MRC), differen-
tial equal gain combining (EGC), and noncoherent combining
(NC).

In practice, wireless communication systems are not only
impaired by AWGN but also by various forms of non–
Gaussian noise and interference1 such as man–made and natu-
ral impulsive noise [2], co–channel interference (CCI) [3], [4],
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1To simplify our notation, in the following, ”noise” refers toany additive
impairment of the received signal, i.e., our definition of noise also includes
what is commonly referred to as ”interference”.

partial–band interference [5], and ultra–wideband (UWB) in-
terference [6], [7]. Unfortunately, diversity combining schemes
optimized for AWGN do not perform well in non–Gaussian
noise [7]–[9]. Of course, if the noise distribution is known
in parametric form, the distribution parameters can be esti-
mated first, and optimal maximum–likelihood (ML) combining
can be applied subsequently, cf. [10] and references therein.
However, in many cases, such knowledge is not available at
the receiver and the noise distribution may even change with
time. This motivates the use ofrobust combining schemes
and metrics, which perform well for a large class of noise
distributions and possibly have a tunable parameter which can
be adjusted to the underlying noise distribution. Prominent
examples for such robust metrics include Huber’sM–metric
[11], Myriad and Meridian metrics [12], metrics involving
hard and soft limiters [5], and theLp–norm metric [7], [13].
Thereby, theLp–norm metric is particularly interesting since
it performs well in both noise with heavy–tailed distributions
(e.g. impulsive noise) and noise with short–tailed distributions
(e.g. CCI) if p is adjusted accordingly [13]. However, finding
the optimump for a particular type of noise is a formidable
task, as appropriate optimization criteria are not known.

In this paper, we consider generalLp–norm metrics for
coherent, differential, and noncoherent combining, wheredif-
ferent diversity branches may use differentLp–norms and
different combining weights. We derive analytical expressions
for the asymptotic bit error rate (BER) of the considered
combining schemes withLp–norm metric, which are valid
for any type of noise with finite moments. This analysis is
similar in spirit to the asymptotic analysis ofL2–norm metrics
for AWGN and non–Gaussian noise in [14], [15] and [16],
[17], respectively. The derived asymptotic BER expressions
show that the diversity gain is independent of theLp–norm
used and the type of noise. In contrast, the combining gain
depends on a generalized moment of the noise samples at
the diversity branches, which enables the development of
simple metric optimization criteria that directly minimize
the asymptotic BER. We consider both off–line and on–line
optimization of the metric parameters, and develop for the
latter case adaptive multivariate finite difference stochastic
approximation (FDSA) [18], [19] and localized random search
(LRS) [19] algorithms. We note that the proposed adaptive
diversity combining scheme is conceptually different from
the asymptotically optimum space–diversity detector in [20].
Whereas the receiver in [20] was optimized for detecting the
presence or absence of a weak signal in thelow signal–to–
noise ratio (SNR) regime, the receiver proposed in this paper
is optimized for detecting a digitally modulated signal in the
high SNR regime.
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The remainder of this paper is organized as follows. In
Section II, we introduce the system model and theLp–norm
metric. Asymptotic BER expressions are derived in Section III,
and the calculation of generalized noise moments is discussed
in Section IV. In Section V, off–line and on–line optimization
of the metric parameters is considered, and in Section VI,
analytical and simulation results are presented. Conclusions
are drawn in Section VII.

II. SYSTEM MODEL AND Lp–NORM METRIC

In this paper, we consider coherent combining, differential
combining, and noncoherent combining for coherent linear
modulation formats (e.g.M–ary quadrature amplitude modu-
lation (M–QAM), M–ary phase–shift keying (M–PSK)), dif-
ferentialM–PSK, and binary frequency–shift keying (BFSK),
respectively.

A. Signal Model

AssumingL diversity branches, for coherent linear mod-
ulation and differentialM–PSK the received signal in the
lth branch and in thekth symbol interval can be modeled
in equivalent complex baseband representation as

rl[k] =
√

γ̄lhlb[k] + nl[k], 1 ≤ l ≤ L, (1)

where γ̄l, hl, and nl[k] denote the average SNR, the fad-
ing gain, and the noise in thelth diversity branch, respec-
tively. The transmitted symbolsb[k] ∈ A are normalized to
E{|b[k]|2} = 1 and taken from anM–ary alphabetA. In case
of differential M–PSK, b[k] is obtained froma[k] ∈ A via
differential encodingb[k] = a[k]b[k − 1].2

The noise is assumed to be independent of the fading gains
but the noise samples3 nl, 1 ≤ l ≤ L, may be statistically
dependent and non–Gaussian. The noise variance is given by
σ2

l , E{|nl|2}, 1 ≤ l ≤ L. The only restriction that we impose
on the noise is that all joint moments of thenl, 1 ≤ l ≤ L,
exist, i.e.,E{nκ1

1 (n∗
1)

ν1nκ2

2 (n∗
2)

ν2 · · ·nκL

L (n∗
L)νL} < ∞ for all

κl ≥ 0, νl ≥ 0, 1 ≤ l ≤ L. Most practically relevant types
of noise fulfill this condition (see next section). An exception
is α–stable noise for which moments of order greater thanα
do not exist and which is sometimes used to model impulsive
noise [21].

The fading gainshl are modeled as independent, non–
identically distributed (i.n.d.) Gaussian random variables with
mean h̄l , E{hl} and varianceσ2

hl
, E{|hl − h̄l|2}, i.e.,

i.n.d. Ricean fading is assumed. Note that forγ̄l in (1) to be
the SNR, the power of the fading gains has to be normalized
to E{|hl|2} = σ2

l , 1 ≤ l ≤ L. The Ricean factor is defined as
Kl , |h̄l|2/σ2

hl
and Rayleigh fading results as a special case

for Kl = 0, 1 ≤ l ≤ L.
For BFSK the signal model in (1) has to be augmented

since, in this case, in each diversity branch the outputs of two

2In this paper,E{·}, [·]T , [·]∗, O(·), andI0(·) denote statistical expecta-
tion, transposition, complex conjugation, the big O notation, and the zeroth
order modified Bessel function of the first kind, respectively. Furthermore,
A

.
= B means thatA is asymptotically (i.e., for high SNR) equal toB and

a functionf(x) is o(x) if limx→0 f(x)/x = 0.
3To simplify our notation, we drop the time indexk in variables such as

nl[k] whenever possible.

matched filters (MFs) are processed. The first MF output is
still given by (1) and the second MF output is modeled as

r̄l =
√

γ̄lhlb̄ + n̄l, 1 ≤ l ≤ L, (2)

whereb, b̄ ∈ {0, 1}, b 6= b̄, and n̄l denotes the noise in the
second MF output. While for AWGNnl andn̄l are statistically
independent, this is not necessarily true for non–Gaussian
noise. However, this does not affect the proposed asymptotic
performance analysis and metric adaptation.

B. Noise Models

In the following, we briefly discuss some important types
of noise for which the analysis and metric optimization in this
paper is applicable.

1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the
probability density function (pdf) of the noise in thelth
diversity branch is given by

fn(nl) =

I
∑

i=1

ci,l

πσ2
n,i,l

exp

(

− |nl|2
σ2

n,i,l

)

, 1 ≤ l ≤ L, (3)

where ci,l > 0,
∑I

i=1 ci,l = 1, and σ2
n,i,l,

∑I
i=1 ci,lσ

2
n,i,l =

σ2
l , are constants. Special cases of GMN includeǫ–mixture

noise (I = 2, c1,l = 1 − ǫl, c2,l = ǫl, σ2
n,1,l = σ2

l /(1 −
ǫl + κlǫl), σ2

n,2,l = κlσ
2
n,1,l, 0 ≤ ǫl < 1, and κl > 1) and

Middleton’s Class A noise (I → ∞). GMN is a popular model
for impulsive noise in systems with receive antenna diversity
[9] and for partial band interference in frequency hopping (FH)
systems with frequency diversity [5].

2) Co–Channel Interference I (CCI-I): The interference
caused byI co–channel interferers in a system with receive
antenna diversity can be modeled as [4]

nl[k] =

I
∑

i=1

gi,l

k2
∑

κ=k1

pi[κ]bi[k − κ], 1 ≤ l ≤ L, (4)

wheregi,l, pi[k], and bi[k] denote the fading gain at thelth
receive antenna, the effective pulse shape, and the transmit
symbols of theith interferer, respectively.pi[k] depends on
the transmit pulse shape of the interferer, the receiver input
filter of the user, and the delayτi between theith interferer
and the user. Theith co–channel interferer is synchronous
and asynchronous forτi = 0 and τi 6= 0, respectively.
The limits k1 and k2 are chosen such thatpi[k] ≈ 0 if
k < k1 or k > k2. Here, we model the interference channel
gains gi,l as (possibly correlated) Ricean fading gains with
variancesσ2

g,i,l and Ricean factorsKg,i,l. We note that CCI–
I is spatially dependent even if the channel gainsgi,l are
independent because the term

∑k2

κ=k1
pi[κ]bi[k−κ] is common

to all diversity branches.
3) CCI-II: The CCI model for FH systems with frequency

diversity is slightly different from CCI-I. Assuming the syn-
chronous case and that at hopping frequencyl, 1 ≤ l ≤ L,
co–channel interfereri, 1 ≤ i ≤ I, is present with probability
ǫi,l, 0 ≤ ǫi,l < 1, the resulting interference can be modeled
as

nl =

I
∑

i=1

Xi,lgi,lbi,l, 1 ≤ l ≤ L, (5)
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where theXi,l are mutually independent, andXi,l = 1 and
Xi,l = 0 with probabilitiesǫi,l and 1 − ǫi,l, respectively.bi,l

denotes the transmit symbols of theith interferer at thelth
hopping frequency and the interference gainsgi,l are modeled
as i.n.d. Ricean fading with variancesσ2

g,i,l and Ricean factors
Kg,i,l. CCI–II can be used to model the interference in systems
that use FH for multiple access (e.g. Bluetooth).

4) Generalized Gaussian Noise (GGN):I.n.d. GGN is a
popular model for non–Gaussian noise [7], [22]. The corre-
sponding pdf for thelth diversity branch is given by

fn(nl) =
βlΓ(4/βl)

2π(Γ(2/βl))2
exp

(

−|nl|βl

cl

)

, 1 ≤ l ≤ L, (6)

where cl , (Γ(2/βl)/Γ(4/βl))
βl/2, and βl, 0 < βl < ∞,

denotes the shape parameter. GGN contains Laplacian (βl = 1)
and Gaussian (βl = 2) noise as special cases. We note that the
Lp–norm metric with appropriately chosen parameters is the
ML metric for i.n.d. GGN [13].

5) UWB Interference: The interference from both multi–
band orthogonal frequency division multiplexing (MB–
OFDM) UWB and impulse–radio (IR) UWB is in general
strongly non–Gaussian [23], [7]. We will test the theory and
algorithms developed in this paper for interference causedby
the MB–OFDM UWB and IR–UWB signal formats standard-
ized by ECMA [24] and IEEE 802.15.4a [25], respectively.

We note that the proposed analysis is also applicable to any
linear combination of the noises specified in 1)–5).

C. Lp–Norm Metric

In this subsection, we present the adoptedLp–norm metrics
for the considered combining schemes.

Coherent Combining (CC): The Lp–norm metric for CC
is given by

mc(b̃) =
L
∑

l=1

ql|rl −
√

γ̄lhlb̃|pl , (7)

where b̃ ∈ A is a trial symbol, andql > 0 and pl > 0,
1 ≤ l ≤ L, are metric parameters that can be optimized
for performance maximization for the underlying type of
noise.4 The decision̂b is that b̃ which minimizesmc(b̃). For
ql = 1 and pl = 2, 1 ≤ l ≤ L, the Lp–norm metric
mc(b̃) is equivalent to MRC which is optimal in AWGN. For
convenience we define the parameter vectorsq , [q1 . . . qL]T

andp , [p1 . . . pL]T .
Differential Combining (DC): DC is applied for differ-

ential M–PSK modulation and the correspondingLp–norm
metric is

md(ã) =

L
∑

l=1

ql|rl[k] − ãrl[k − 1]|pl , (8)

whereã ∈ A is anM–PSK trial symbol. For the special case
ql = 1 and pl = 2, 1 ≤ l ≤ L, the differentialLp–norm

4We note that, strictly speaking,mc(b̃) is only a norm forpl ≥ 1, 1 ≤
l ≤ L. However, whether or notmc(b̃) is a norm is not important in our
context.

metric md(ã) is equivalent to well–known differential EGC.
The decision̂a is that ã which minimizesmd(ã).

Noncoherent Combining (NC):The considered NC metric
for BFSK is

mn =

L
∑

l=1

ql (|rl|pl − |r̄l|pl) , (9)

where we decide forb = 1 if mn ≥ 0 and forb = 0 otherwise.
For ql = 1 andpl = 2, 1 ≤ l ≤ L, theLp–norm metric in (9)
is equivalent to conventional square–law combining for BFSK
[1].

III. A SYMPTOTIC ANALYSIS OF Lp–NORM COMBINING

In this section, we develop asymptotic expressions for the
pairwise error probability (PEP) of the combining schemes de-
scribed in Section II-C and relate these PEPs to the respective
asymptotic BERs.

A. Asymptotic PEP of CC

We show in Appendix I that for any type of noise with finite
moments, the asymptotic PEP of CC forγ̄l → ∞, 1 ≤ l ≤ L,
is given by

Pe(d)
.
=

2L
∏L

l=1

(

Γ
(

2
pl

)

1+Kl

σ2

l
exp (−Kl)

)

d2L
∏L=1

l=1

(

γ̄lplq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
) Mn(q,p),

(10)

where Mn(q,p) , E
{

(

∑L
l=1 ql|nl|pl

)

PL
l=1

2/pl
}

can be

interpreted as ageneralized momentof the elements of noise
vector n , [n1 . . . , nL]T , and d denotes the Euclidean
distance between the alternative signal points consideredfor
the PEP. The generalized noise momentMn(q,p) in (10) can
be calculated in closed form for special cases, cf. Section
IV. Nevertheless, even if the generalized noise moment is not
available in closed form, (10) can be used for fast evaluation of
the asymptotic PEP sinceMn(q,p) is independent of the SNR
and has to be evaluated only once, which can be done e.g. by
Monte–Carlo simulation. More importantly, (10) reveals how
parametersql andpl influence the asymptotic PEP, which will
be exploited for metric optimization in Section V.

For complexity reasons it may be desirable for some ap-
plications to limit the number of metric parameters to be
optimized. For this purpose we may setql = q and pl = p,
1 ≤ l ≤ L, and simplify (10) to

Pe(d)
.
=

2L
(

Γ
(

2
p

))L
∏L

l=1

(

1+Kl

σ2

l
exp (−Kl)

)

d2L
∏L

l=1(γ̄l) pLΓ
(

2L
p + 1

) Mn(p),

(11)

where Mn(p) , E
{

(

∑L
l=1 |nl|p

)2L/p
}

. Note that (11)

depends onp but is independent ofq. For the special case
p = 2, (11) is equivalent to [17, Eq. (10)] for independent,
identically distributed (i.i.d.) fading.
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B. Asymptotic PEPs of DC and NC

The asymptotic PEPs of DC and NC can be derived in the
same way as those for CC.

1) DC: The asymptotic PEP ofM–PSK with DC is also
given by (10) and (11) if the respective generalized noise mo-
ments ofn are replaced with the generalized noise moments
of the effective noise vector

z = n[k] − a[k]n[k − 1]. (12)

If the nl[k] are rotational symmetric andn[k] and n[k − 1]
are statistically independent,a[k] has no influence on the PEP
and we may usez = n[k] − n[k − 1] instead of (12).

2) NC: It can be shown that we formally obtain the PEP of
BFSK with NC by lettingd = 1 in (10) and (11), respectively.

C. Asymptotic BER

The asymptotic (average) BER can be obtained from the
asymptotic PEP as [26]

BER
.
=

ξmin

log2(M)
Pe(dmin), (13)

where dmin and ξmin denote the minimum Euclidean dis-
tance of signal constellationA and the average number of
minimum–distance neighbors, respectively. For example, for
all binary modulation schemesξmin = 1, for binary PSK
(BPSK) dmin = 2, and forM–QAM ξmin = 4(1 − 1/

√
M)

anddmin =
√

6/(M − 1).

D. Combining and Diversity Gain

It is convenient to express the asymptotic BER as
BER

.
= (Gcγ̄)−Gd [15], [26], where Gc and Gd denote

the combining and the diversity gain, respectively, andγ̄ =
(
∏L

l=1 γ̄l)
1/L, i.e., γ̄ [dB] = 1

L

∑L
l=1 γ̄l [dB]. From (10) we

observe that the diversity gain is given byGd = L independent
of metric parametersq andp, and independent of the type of
noise. The combining gain for CC withLp–norm metric can
be expressed as

Gc [dB] = 10 log10

(

d2
min log2(M)1/L

2ξ
1/L
min

)

− 10

L

L
∑

l=1

log10

(

1 + Kl

σ2
l

exp (−Kl)

)

+
10

L

L
∑

l=1

log10







plq
2/pl

l

(

Γ
(

∑L
i=1

2
pi

+ 1
))1/L

Γ
(

2
pl

)







− 10

L
log10 (Mn(q,p)) . (14)

Eq. (14) reveals that the combining gain consists of four terms.
The first and the second term on the right hand side (RHS)
of (14) depend on the signal constellation and the fading
parameters, respectively, but are independent of the metric
parametersq andp and the properties of the noise. The third
term on the RHS of (14) is a function ofq, p, andL but is also
independent of the noise. Only the last term on the RHS of
(14) depends on the properties of the noise via the generalized

momentMn(q,p) of the noise samples. Eq. (14) reveals that
the optimal parametersqopt and popt, which maximizeGc,
only depend onL and the type of noise (viaMn(q,p)) but are
not influenced by the the modulation scheme and the Ricean
factorsKl, 1 ≤ l ≤ L.

For DC and NC similar observations as for CC can be made
with respect to diversity gain and combining gain.

IV. GENERALIZED NOISE MOMENTS

In this section, we provide analytical results for the gener-
alized noise moments defined in Section III for selected types
of noise. To make the problem tractable, in this section, we
consider not necessarily independent but identically distributed
(n.i.d.) noise andMn(p), which depends only onp, instead
of Mn(q,p). To simplify our notation, in the following, we
will drop subscriptl in all noise parameters (e.g. inci,l, ǫl, κl,
σ2

g,i,l, Kg,i,l, etc.) if the noise is n.i.d. (which includes i.i.d. as
a special case).

A. Exact Noise Moments forL = 2

First, we consider the special caseL = 2. Further-
more, for independent complex Gaussian random variables
(RVs) x1 and x2 having variancesσ2

x1
and σ2

x2
we define

MG(p;σ2
x1

, σ2
x2

) , E{(|x1|p+|x2|p)2L/p}. Using the substitu-
tions |x1| = r sin2/p ϕ and|x2| = r cos2/p ϕ with 0 ≤ r < ∞
and0 ≤ ϕ ≤ π/2, we obtain

MG(p;σ2
x1

, σ2
x2

) =
48κσ4

x1

24/pp
IG(p, κ), (15)

whereκ , σ2
x1

/σ2
x2

, and the finite range integralIG(p, κ) ,
∫ π/2

0
(sin(2ϕ))4/p−1/(sin4/p ϕ+κ cos4/p ϕ)4 dϕ depends only

on p andκ and can be easily evaluated numerically.
Based on the result forMG(p;σ2

x1
, σ2

x2
), we provide an-

alytical expressions for the generalized moments of AWGN,
n.i.d. Rayleigh–faded CCI–I (i.e.,Kg,i = 0, 1 ≤ i ≤ I)5, and
i.i.d. Rayleigh–faded CCI–II (single interferer at each hopping
frequency, i.e.,I = 1) in Table I. Furthermore, we also provide
an expression for i.i.d. GGN in Table I, which can be obtained
in a similar fashion as the generalized moment in the Gaussian
case and which contains the finite range integralIGG(p, β) ,
∫ π/2

0
(sin(2ϕ))4/p−1/(sin2β/p ϕ + cos2β/p ϕ)8/β dϕ.

B. Noise Moments for GeneralL

For generalL a closed–form expression for the generalized
moment can be calculated for several special cases. In par-
ticular, we will provide accurate approximations forMn(p)
for n.i.d. noise distributions that are based on the Gaussian
distribution (i.e., i.i.d. GMN, n.i.d. Rayleigh–faded CCI–I,
i.i.d. Rayleigh–faded CCI–II), and exact results for unfaded
n.i.d. CCI–I and i.i.d. CCI–II withI = 1 and Kg,1 → ∞,
1 ≤ l ≤ L.

1) Gaussian–based Noise Distributions:We first con-
sider i.n.d. Gaussian RVsxl with variancesσ2

xl
, 1 ≤ l ≤

5We note that the fading gainsgl,i, 1 ≤ l ≤ L, of n.i.d. CCI–I are
i.i.d. RVs. However, the resulting CCI-I is n.i.d. since each interferer affects
all receive antennas simultaneously, cf. (4).
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TABLE I

GENERALIZED NOISE MOMENTSMn(p) FOR L = 2 FOR VARIOUS TYPES OF N.I .D. NOISE. IN PARTICULAR, WE CONSIDERAWGN, I .I .D. GMN,

N.I .D. RAYLEIGH –FADED CCI–I (s , [s1 . . . sI ]T , si ,
Pk2

κ=k1
pi[κ]bi[κ], S CONTAINS ALL POSSIBLE VALUES OFs), I .I .D. RAYLEIGH –FADED

CCI–II (I = 1, bI , [b1,1 . . . b1,L]T , MI CONTAINS ALL POSSIBLE VALUES OFbI , c1 , ǫ1 , c2 , 1 − ǫ1 , σ̄2
g,1 , σ2

g,1 , σ̄2
g,2 , 0), AND I .I .D. GGN.

Noise Model MomentsMn(p)

AWGN MG(p; 1, 1)

GMN
PI

i=1

PI
j=1 cicjMG(p, σ2

n,i, σ
2
n,j)

CCI–I (Rayleigh) 1
|S|

P

s∈S MG(p,
PI

i=1 σ2
g,i|si|

2,
PI

i=1 σ2
g,i|si|

2)

CCI–II (Rayleigh) 1
|MI |

P2
i=1

P2
j=1 cicj

P

bI∈MI
MG(p, σ̄2

g,i|b1,1|2, σ̄2
g,j |b1,2|2)

GGN Γ(8/β)β

(Γ(4/β))224/p−2p
IGG(p, β)

TABLE II

APPROXIMATIONS FOR THE GENERALIZED NOISE MOMENTSMn(p) FOR GENERALL FOR THE SAME TYPES OF N.I .D. NOISE CONSIDERED INTABLE I.

ADDITIONALLY , EXACT RESULTS FOR UNFADED N.I .D. CCI–I (I = 1) AND I .I .D. CCI–II (I = 1, ξ1 , 1, ξ2 , 0) ARE PROVIDED.

Noise Model MomentsMn(p)

AWGN MG(p; 1, . . . , 1)

GMN
PI

i1=1 · · ·
PI

iL=1 ci1 · · · ciL
MG(p, σ2

n,i1
, . . . , σ2

n,iL
)

CCI–I (Rayleigh) 1
|S|

P

s∈S MG(p,
PI

i=1 σ2
g,i|si|

2, . . . ,
PI

i=1 σ2
g,i|si|

2)

CCI–II (Rayleigh) 1
|MI |

P2
i1=1 · · ·

P2
iL=1 ci1 · · · ciL

P

bI∈MI
MG(p, σ̄2

g,i1
|b1,1|2, . . . , σ̄2

g,iL
|b1,L|2)

CCI–I (Unfaded) L2L/p 1
|S|

P

s∈S |s|2L

CCI–II (Unfaded) 1
|MI |

P2
i1=1 · · ·

P2
iL=1 ci1 · · · ciL

P

bI∈MI

“

PL
l=1 ξil

|b1,l|
p

”2L/p

L, and our goal is to calculateMG(p;σ2
x1

, . . . , σ2
xL

) ,

E{(
∑L

l=1 |xl|p)2L/p}. It can be shown that the pdf ofyl =
|xl|p is given by

fyl
(yl) =

2

pσ2
xl

y
2/p−1
l exp

(

−y
2/p
l

σ2
xl

)

, (16)

which is a Weibull pdf. We are interested in the pdf of
z =

∑L
l=1 yl. Unfortunately, a closed–form expression for

a sum of Weibull RVs is not known. However, an accurate
approximation for the pdf ofz is given by theα–µ pdf [27]

fz(z) =
αµµzαµ−1

ΩµΓ(µ)
exp

(

−µzα

Ω

)

, (17)

where parametersα, µ, andΩ have to be optimized for the best
possible agreement with the true pdf ofz. For this purpose,
the efficient moment–based method in [27, Eq. (5)–(9)] may
be used. We note that in [27] only i.i.d. Weibull variables
are considered, whereas we allow different variancesσ2

xl
.

This small extension can be accommodated by replacing [27,
Eq. (9)] byE{yn

l } = σpn
xl

Γ(1+pn/2), n ∈ {0, 1, 2, . . .} (yl is
referred to asRl in [27]), and we found the corresponding
approximation to be still very accurate. Using (17) we obtain

MG(p;σ2
x1

, . . . , σ2
xL

) =
Γ(µ + 2L/(pα))

Γ(µ)

(

Ω

µ

)2L/(pα)

.

(18)

Based on the approximation forMG(p;σ2
x1

, . . . , σ2
xL

) in (18),
we can find the generalized moments of AWGN, i.i.d. GMN,
n.i.d. Rayleigh–faded CCI–I, and i.i.d. Rayleigh–faded CCI–II
(I = 1) given in Table II for generalL.

2) Unfaded CCI: We first consider n.i.d. CCI–I. Assuming
a single, unfaded interferer (Kg,1 → ∞), (4) simplifies to

nl[k] = ejΘ1,l

k2
∑

κ=k1

p1[κ]b1[k − κ], 1 ≤ l ≤ L, (19)

with uniformly distributed, mutually independent phases
Θ1,l ∈ (−π, π], 1 ≤ l ≤ L. Based on (19), the exact result
for the generalized moment of unfaded CCI–I given in Table
II can be obtained. Similarly, specializing (5) toI = 1 and
Kg,1 → ∞, the exact expression for i.i.d. CCI–II in Table II
can be derived.

The asymptotic PEP for CC and NC can be (approximately
or exactly) obtained by combining the generalized moments
in Tables I and II with the PEP formula in (11). We note that
since the effective noise for DC is more complicated than the
noise for CC and NC, cf. (12), a closed–form evaluation of
the generalized moments does not seem possible for DC in
most cases.
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V. M ETRIC OPTIMIZATION

In this section, we optimize the metric parametersp andq

for minimization of the asymptotic BER. In the following, we
consider both off–line and on–line optimization.

A. Off–line Optimization

If the generalized noise moments are known, the metric
parameters can be optimized off–line based on (10) or (11). If
the underlying type of noise isa priori known, the generalized
noise moments may be obtained in closed–form, cf. Tables I
and II, or, if this is not possible, from Monte–Carlo simulation
using locally generated noise samples.6 Monte–Carlo simu-
lation can also be applied to estimate the generalized noise
moments from observed noise samples. To gain some insight
and to make the problem tractable, we assume n.i.d. noise
in this subsection. For n.i.d. noise we may setql = q and
pl = p, 1 ≤ l ≤ L, in metrics (7)–(9) without loss of
optimality, i.e., we can base our off–line optimization on
(11) and have to optimize only parameterp. Unfortunately,
for most types of noise a closed–form optimization ofp is
not possible. An exception is n.i.d. unfaded CCI–I, where
we can show based on (11) and Table II that the optimal
p is given by popt = ∞ corresponding to metricmc(b̃) =
maxl∈{1,...,L}{|rl−

√
γ̄lhlb̃|}. Furthermore, exploiting (14) we

obtain for the asymptotic SNR gainGp of a metric usingp > 2
over theL2–norm metric

Gp [dB] = 10 log10

(

(

p

2Γ(2/p)

)1−1/L
L1−2/p

L!1/L

)

p→∞
= 10 log10

(

L

L!1/L

)

. (20)

For example, forL = 2 we obtainG20 = 1.3 dB andG∞ =
1.5 dB. Furthermore, using the Stirling formula [28] forL →
∞ we can show thatG∞ = 10 log10(e) = 4.3 dB. We note
that it can be shown thatpopt = ∞ and (20) are also valid for
DC and NC in n.i.d. unfaded CCI–I.

If the optimal p cannot be obtained in closed form, nu-
merical optimization is necessary. To illustrate this, we show
in Figs. 1 and 2 the BER of BPSK as a function ofp for
i.i.d. Rayleigh fading withL = 2 and L = 3, respectively.
Details about the considered types of noise can be found in
the captions of the figures. The solid lines represent analytical
results generated based on (11), (13), and, respectively, Table I
(Fig. 1) and Table II (Fig. 2). The markers indicate simulation
results and the bold ”+” markers denote the minima of the
analytical BER. The agreement between analytical results and
simulation results is excellent in both Figs. 1 and 2.

As expected, Figs. 1 and 2 show thatp = 2 is optimal
for AWGN and also for Rayleigh–faded CCI–I. In constrast,
for heavy–tailed types of noise such asǫ–mixture noise and
Rayleigh–faded CCI–IIpopt < 2 holds. For short–tailed noise
such as unfaded CCI–Ipopt > 2 is valid. For i.i.d. GGN

6Note that if the underlying noise model is knowna priori, ML combining
can be applied, of course. However, even in this case the proposedLp–norm
metric may be preferable if the ML metric is computationally complex or
causes numerical problems. For example, the GMN pdf consists ofa sum of
exponential functions which may cause numerical problems for high SNRs.

0 0.5 1 1.5 2 2.5 3 3.5 4

10
−5

AWGN

Rayleigh−faded CCI−II

Rayleigh−faded CCI−I

GGN

B
E

R

p

ǫ-mixture noise

Fig. 1. BER vs.p for BPSK, i.i.d. Rayleigh fading,L = 2, SNR = 24
dB, and different types of n.i.d. noise. Noise parameters: I.i.d. ǫ–mixture
noise (ǫ = 0.1, κ = 10), n.i.d. Rayleigh–faded QPSK CCI–I (I = 1,
τ1 = 0.25T with symbol durationT , raised cosine pulse shape with roll–
off factor 0.22), i.i.d. Rayleigh–faded QPSK CCI–II (I = 1, ǫ1 = 0.25),
and i.i.d. GGN (β = 1).

with β = 1 we obtainpopt = 1 from Fig. 1 as expected.
While all other BER curves have a single minimum in the
consideredp range, the BER for unfaded CCI–II in Fig. 2 has
two local minima. Figs. 1 and 2 clearly illustrate the benefits
of optimizing p and confirm our analysis.

B. On–line Optimization

In practice, the statistical properties of the noise impairing
a wireless communication system are often not knowna
priori and may change with time. Since multiplication of
the Lp–norm metrics (7)–(9) with a positive constant does
not change the decision, we can setq1 = 1 without loss of
optimality and optimize only the2L − 1 elements of vector
x , [q2 . . . qL pT ]T .

Since the metric coefficients may not be updated in every
symbol interval, we introduce a new timet = Nmk, wherek
is the symbol time andNm > 1 can be used to specify how
frequently the metric coefficients are updated. Furthermore,
the proposed adaptive algorithms require an estimate of the
cost function to be minimized. For CC we obtain based on
(10) the cost function estimate

Lt(x) ,

∏L
l=1 Γ

(

2
pl

)

∏L=1
l=1

(

plq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
) M̂n(x, t)

(21)

M̂n(x, t) ,
1

Ne

Ne−1
∑

ν=0

(

L
∑

l=1

ql|n̂l[t − ν]|pl

)

PL
l=1

2/pl

, (22)

where we have neglected all irrelevant terms andNe denotes
the number of time steps used for estimation of the generalized
moment M̂n(x, t) at time t. Furthermore,n̂l[t] , rl −√

γ̄lhlb[t], whereb[t] may be a training symbol or a previous
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Fig. 2. BER vs.p for BPSK, i.i.d. Rayleigh fading,L = 3, SNR = 20
dB, and different types of n.i.d. noise. Noise parameters: I.i.d. ǫ–mixture
noise I (ǫ = 0.1, κ = 10), i.i.d. ǫ–mixture noise II (ǫ = 0.1, κ = 5),
n.i.d. Rayleigh–faded and unfaded QPSK CCI–I (I = 1, τ1 = 0.25T ,
raised cosine pulse shape with roll–off factor0.22), and i.i.d. Rayleigh–
faded and unfaded QPSK CCI–II (I = 1, ǫ1 = 0.41).

decision. A similar estimate for the cost function may be
generated for DC and NC. In the following, two different
algorithms for optimization ofx are provided and compared.

1) Multivariate Stochastic Approximation: The first algo-
rithm is based on the finite difference stochastic approximation
(FDSA) framework with gradient estimation [19]. This frame-
work is particularly well suited for the problem at hand since it
employs a Kiefer–Wolfowitz type of gradient estimateĝt(xt)
avoiding cumbersome differentiation ofLt(x) [18]. In the tth
iteration the FDSA algorithm generates the estimatext for the
optimal x as [19]

xt+1 = xt − atĝt(xt), (23)

ĝt(xt) =
[Lt(xt + cte1) − Lt(xt − cte1)

2ct
. . .

Lt(xt + cte2L−1) − Lt(xt − cte2L−1)

2ct

]T

,

(24)

where en is a column vector of length2L − 1 with a 1 in
positionn and 0’s in all other positions. Ifn[k] is stationary
and at and ct fulfill at > 0, ct > 0, at → 0, ct → 0,
∑∞

t=0 at = ∞, and
∑∞

t=0 a2
t /c2

t < ∞, the above algorithm
will find the global minimum if the BER has only one
minimum and at least a local minimum otherwise [19] (as
long as the BER andLt(x) meet the mild conditions required
for convergence outlined in [19]). However, since, in practice,
n[k] will be non–stationary, we may setat = a and ct = c,
∀t, where a and c are small positive constants to give the
algorithm some tracking capability. Furthermore, since the pl

may have a large dynamic range (e.g.popt = ∞ for unfaded
CCI–I), the tracking ability of the algorithm can be improved
by limiting the elements ofxt to some finite valuexmax at the
expense of some loss in performance if the optimal element of
x exceedsxmax. Note that for the problem at hand the FDSA

algorithm may not find the global optimum as the cost function
may have multiple local minimia, cf. Fig. 2. However, we did
not find this to be a problem in practice as the BERs of most
types of noise seem to have only a single minimum, and in
case of multiple minima, all minima seem to result in similar
performances. For initialization of the FDSA algorithmql = 1
andpl = 2, 1 ≤ l ≤ L, is a good choice since this guarantees
that the solution found by the algorithm in combination with
CC, DC, and NC will not perform worse than conventional
MRC, EGC, and NC, respectively

2) Random Search Method: The second method that
we consider is a localized random search (LRS) method. In
contrast to FDSA algorithms, LRS algorithms do not get stuck
in local minima and find the global minimum under mild
conditions on the cost function [19]. Based onxt, the proposed
LRS algorithm generates a new estimate [19]

x̂t+1 = xt + dt, (25)

wheredt is a random vector whose elements are i.i.d. Gaussian
random variables with varianceσ2

d. If at least one of the
elements ofx̂t+1 lies outside the predefined search space
[0, xmax], (25) is repeated until all elements ofx̂t+1 are inside
the search space. Subsequently, ifLt(x̂t+1) < Lt(xt), we
let xt+1 = x̂t+1, otherwisext+1 = xt. In a non–stationary
noise environment, the above algorithm is run continuously.
The speed of convergence of the LRS algorithm depends
crucially on the size of the search space (i.e.,xmax) and
on σ2

d [19]. For initialization, the same initial vector as for
the FDSA is appropriate. Since LRS algorithms suffer from
performance degradation if the cost function estimate is noisy
[19], comparatively largeNe may be advisable. Note, however,
that the tracking capabilities of the algorithm decrease asNe

increases. We foundNe = 100 to give a good compromise
between estimation noise suppression and tracking capabilities
for the application at hand.

3) Complexity: From a practical point of view, it is of
interest to compare the complexity of the proposed adap-
tive algorithms assuming a fixed–point implementation with
s digits. Denoting the complexity of one multiplication by
µ(s), the complexity of evaluating the Gamma and the power
functions isO((log(s))2µ(s)) [29], whereas that of a division
is O(µ(s)). Taking this into account, neglecting the complexity
of additions, and assuming that2/pl, 1 ≤ l ≤ L, is obtained
from a look–up table, the complexities of one iteration of the
FDSA and LRS algorithms are given by

CFDSA = O
(

2(2L − 1)(Ne(L + 1) + 2L + 1)(log(s))2µ(s)
)

(26)
and

CLRS = O
(

2(Ne(L + 1) + 2L + 1)(log(s))2µ(s)
)

, (27)

respectively. A comparison of (26) and (27) shows that, since
typically Ne has to be chosen much larger for the LRS
algorithm (e.g.Ne = 100) than for the FDSA algorithm
(e.g. Ne = 1), the complexity per iteration of the LRS
algorithm is larger than that of the FDSA algorithm for typical
values ofL (e.g.L < 10).

4) Performance: In Figs. 3 and 4, we show metric
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Fig. 3. Metric coefficientsql, 2 ≤ l ≤ 4, andpl, 1 ≤ l ≤ 4, vs. iteration
t of FDSA algorithm. N1: I.i.d. Rayleigh–faded QPSK CCI–II (I = 1,
ǫ = 0.1) and AWGN, where the CCI–II power is ten times larger than
the AWGN variance; N2: I.n.d. Gaussian noise with variancesσ2

1 = 1,
σ2
2 = 0.5, σ2

3 = 0.5, σ2
4 = 2; N3: I.n.d. ǫ–mixture noise withǫl = 0.1,

1 ≤ l ≤ 4, andκ1 = 20, κ2 = 40, κ3 = 50, κ4 = 100; N4: I.n.d. GGN
with β1 = β2 = 3 and β3 = β4 = 1; N5: N.i.d. unfaded QPSK CCI–I
(I = 1, τ1 = 0.3T , raised cosine pulse shape with roll–off factor0.22).
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Fig. 4. Metric coefficientsql, 2 ≤ l ≤ 4, andpl, 1 ≤ l ≤ 4, vs. iteration
t of LRS algorithm. Noise types N1–N5 are specified in the caption of
Fig. 3.

coefficientsql, 2 ≤ l ≤ 4, and pl, 1 ≤ l ≤ 4, vs. iteration
t of, respectively, the FDSA and the LRS algorithms for
i.i.d. Rayleigh fading withL = 4 and SNR = 16 dB. The
corresponding BERs of BPSK with CC are shown in Fig. 5.
Five different types of noise are considered which are specified
in the caption of Fig. 3 and att = (ν − 1) · 106 we switch
abruptly to a new noise Nν, 1 ≤ ν ≤ 5. For the FDSA
algorithm we usedat = a = 4 · 10−4, ct = c = 10−5,
xmax = 10, Nm = 1, andNe = 1. For the LRS algorithm we
adoptedσ2

d = 0.1, xmax = 10, Nm = 1, andNe = 100. For
both algorithmsxt was initialized withql = 1, 2 ≤ l ≤ 4,
andpl = 2, 1 ≤ l ≤ 4, and previous decisionŝb[t] were used
in the adaptation process. Figs. 3 and 4 show the results for
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Fig. 5. BER of BPSK with CC vs. iterationt for FDSA and LRS
algorithms, respectively. For comparison BER ofL2–norm combining is
also shown. Noise types N1–N5 are specified in the caption of Fig. 3.

one typical adaptation process and the corresponding BERs
in Fig. 5 were calculated with (10) and (13), where the
generalized noise moments were obtained by Monte–Carlo
simulation. Figs. 3–5 show that both algorithms work well
and that after each switching to a new type of noise, steady
state operation is achieved quickly. Thereby, with the chosen
settings, the steady state error of the LRS algorithm is larger
than that of the FDSA algorithm, but the LRS algorithm
converges faster to the new steady state after the type of
noise has changed. Note, however, that the trade–off between
tracking capabilities and residual error strongly dependson
how the parameters of the algorithms (e.g.a, c, Ne, andσ2

d) are
chosen [19]. Furthermore, as expected, Figs. 3 and 4 confirm
that in steady state for the n.i.d. noises N1 and N5 allql and
pl are equal, respectively, whereas for the i.n.d. noises N2,
N3, and N4 either theql or/and thepl are not equal. For
N5 pl = ∞, 1 ≤ l ≤ 4, is optimal and both algorithms
yield pl = 10, 1 ≤ l ≤ 4, because we setxmax = 10.
Fig. 5 shows that theLp–norm metric with FDSA and LRS
adaptation substantially outperforms theL2–norm metric (i.e.,
MRC).

VI. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we verify the analytical results derived in
Sections III and IV through simulations and compare the
performance of the adaptiveLp–norm metric with that of
other popular metrics. For convenience we consider n.i.d. noise
throughout this section and drop subscriptl in the noise
parameters. The respective noise parameters are specified in
the captions of the figures. The optimal metric parameterpopt

was obtained with the FDSA algorithm. In Figs. 6 and 7,
we show the BER of 16–QAM with CC in i.i.d. Rayleigh
fading with L = 2 for the adaptiveLp–norm metric and
several other popular robust metrics for, respectively, i.i.d. ǫ–
mixture noise and n.i.d. unfaded QPSK CCI–I. To facilitate the
definition of the various metrics, we introduce the notation
ul , |rl −

√
γ̄lhlb̃|. We consider the Huber metricm(b̃) =
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Fig. 6. BER vs. SNR per bit per branch of 16–QAM with CC in
i.i.d. Rayleigh fading (L = 2) and i.i.d. ǫ–mixture noise (ǫ = 0.1,
κ = 100). Solid lines with markers: Simulation results. Bold solid and
dashed lines: Asymptotic BER based on (11), (13), and Table I.
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Fig. 7. BER vs. SNR per bit per branch of 16–QAM in i.i.d. Rayleigh
fading (L = 2) and n.i.d. unfaded QPSK CCI–I (I = 1, τ1 = 0.3T , raised
cosine pulse shape with roll–off factor0.22). Solid lines with markers:
Simulation results. Bold solid and dashed lines: Asymptotic BER based
on (11), (13), and Table II.

∑L
l=1 ml(b̃), ml(b̃) = u2

l /2 if ul ≤ δ, andml(b̃) = δul−δ2/2

if ul > δ [11], the Meridian metricm(b̃) =
∑L

l=1 log(ul + δ)

[12], and the Myriad metricm(b̃) =
∑L

l=1 log(u2
l + δ2) [12].

Note that for all these robust metrics parameterδ has to be
optimized by exhaustive search, which is quite tedious, since,
unlike for the Lp–norm metric, a systematic optimization
framework is not available. For Figs. 6 and 7 the robust metrics
were optimized by simulation for SNR = 30 dB. Fig. 6 shows
that for the heavy–tailedǫ–mixture noise theLp–norm metric
with popt = 0.4 outperforms the other robust metrics and the
gap to the optimal ML metric is less than 1 dB. Fig. 7 shows
that for short–tailed unfaded CCI–I the Huber and Myriad
metrics are essentially equivalent to theL2–norm metric and
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Fig. 8. BER vs. SNR per branch of BFSK with NC in i.i.d. Ricean fading
(L = 3) and i.i.d. Rayleigh–faded QPSK CCI–II (I = 1, ǫ1 = 0.25).
Solid lines with markers: Simulation results. Bold solid and dashed lines:
Asymptotic BER based on (11), (13), and Table II.

are outperformed by 1.3 dB by theLp–norm metric with
p = 20 (popt → ∞ holds in this case), as predicted in Section
V-A. We note that the ML metric does not seem tractable for
unfaded CCI–I. Interestingly, while theLp–norm metric was
optimized based on the presented asymptotic analysis, Figs. 6
and 7 suggest that it also performs well for low SNRs.

In Fig. 8, we show the BER of BFSK with NC in
i.i.d. Ricean fading withL = 3 and i.i.d. Rayleigh–faded
QPSK CCI–II. Fig. 8 shows that the proposedLp–norm
combining also achieves considerable performance gains over
L2–norm combining for BFSK with NC and in Ricean fading.
As expected from Section III-D, the optimal valuepopt = 0.5
is independent of the Ricean factorK. Although for K = 6
dB the simulated BER approaches the asymptotic BER only
for BER < 10−10, the Lp–norm metric optimized for the
asymptotic BER also results in large gains for higher BERs.
For example, for BER =10−4, the Lp–norm metric achieves
a gain of 3.5 dB over theL2–norm metric.

Finally, in Fig. 9, we show the BER of 4–PSK in
i.i.d. Rayleigh fading withL = 3 and impairment by MB–
OFDM UWB and IR–UWB interference following the ECMA
[24] and IEEE 802.15.4a [25] standards, respectively. The
bandwidth of the receiver input filter of the 4–PSK system
is assumed to beB = 4 MHz. Results for both CC and
DC are shown in Fig. 9. For both combining schemes and
both types of UWB,p = 30 was close to optimal for the
Lp–norm metric. Fig. 9 shows thatLp–norm combining also
achieves substantial gains overL2–norm combining in UWB
interference. Thereby, the performance gains are larger for CC
than for DC. This can be explained by the fact that the effective
noise for DC is the sum of two independent noise samples,
cf. (12), and thus, according to the Central Limit Theorem
[30], is closer to a Gaussian distribution than the noise relevant
for CC (and NC).
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Fig. 9. BER vs. SNR per bit per branch of 4–PSK system with bandwidth
B = 4 MHz and CC or DC in i.i.d. Rayleigh fading (L = 3) and MB–
OFDM UWB [24] and IR–UWB (Nb = 32 bursts per symbol andLc =
128 chips per burst) [25] interference. Solid lines with markers: Simulation
results. Bold solid and dashed lines: Asymptotic BER based on(11), (13),
and Monte–Carlo simulation of generalized noise moments.

VII. C ONCLUSIONS

In this paper, we have considered generalLp–norm coher-
ent, differential, and noncoherent diversity combining innon–
Gaussian noise and interference. For the asymptotic regime
of high SNR we have derived closed–form expressions for
the BER valid for i.n.d. Ricean fading and non–Gaussian
noise and interference with finite moments. The asymptotic
BER expressions reveal that while the diversity gain ofLp–
norm combining is independent of the type of noise and the
metric parameters, the combining gain depends on generalized
noise moments and on the metric parameters. For on–line
metric optimization, we have developed two efficient adaptive
algorithms which do not require anya priori knowledge about
the noise statistics and can also cope with non–stationary
noise. Simulation results have confirmed the analytical results
presented in this paper and have shown that the proposed
adaptiveLp–norm metric outperforms other robust metrics
such as Huber’s metric, the Myriad metric, and the Meridian
metric in both heavy–tailed and short–tailed noise.

APPENDIX I
ASYMPTOTIC PEPFOR CC

Assuming thatb was transmitted and̂b 6= b was detected,
the corresponding PEP can be expressed as

Pe(d) = Pr{mc(b) > mc(b̂)}, (28)

whered , |e| ande , b − b̂. In a first step, we calculate the
PEP conditioned on the noise vectorn , [n1 . . . nL]T . With
(7) and (28) this conditional PEP can be obtained as

Pe(d|n) =

mc(b)
∫

0

fc(z) dz, (29)

where we have used the fact that due to the conditioning on
n, mc(b) =

∑L
l=1 ql|nl|pl is a constant, andfc(z) is the pdf

of mc(b̂) =
∑L

l=1 ql|
√

γ̄lhle+nl|pl , which we calculate step–
by–step in the following.

The conditional pdf ofxl = |√γ̄lhle + nl| is a Ricean pdf
given by

fxl
(xl) =

2xl

d2γ̄lσ2
hl

exp

(

−x2
l + |√γ̄lh̄le + nl|2

d2γ̄lσ2
hl

)

× I0

(

2
xl|

√
γ̄lh̄le + nl|
d2γ̄lσ2

hl

)

. (30)

The pdf of the transformed variableyl = xpl

l is given by

fyl
(yl) = 1

pl
y
1/pl−1
l fxl

(

y
1/pl

l

)

and the scaling withql leads

to zl = qlyl with pdf fzl
(zl) = 1

ql
fyl

(zl/ql). Taking into
account these identities the pdf ofzl = ql|

√
γ̄lhle + nl|pl is

given by

fzl
(zl)=

2z
2/pl−1
l

d2γ̄lσ2
hl

plq
2/pl

l

exp

(

−z
2/pl

l + q
2/pl

l |√γ̄lh̄le + nl|2

d2γ̄lσ2
hl

q
2/pl

l

)

× I0

(

2
z
1/pl

l |√γ̄lh̄le + nl|
d2γ̄lσ2

hl
q
1/pl

l

)

. (31)

Considering the asymptotic casēγl → ∞ and exploiting the
Taylor series expansions ofexp(·) and I0(·), fzl

(zl) can be
written as

fzl
(zl) =

Cl

γ̄l
z
2/pl−1
l + o(γ̄−1

l ), (32)

where Cl , 2 exp
(

−|h̄l|2/σ2
hl

)

/(d2σ2
hl

plq
2/pl

l ). Thus, the
moment generating function (MGF) ofzl can be expanded as
Φzl

(s) , E{e−szl} = ClΓ(2/pl)γ̄
−1
l s−2/pl + o(γ̄−1

l ). Since
conditioned onn thezl are statistically independent, the MGF
of mc(b̂) is given byΦc(s) =

∏L
l=1 Φzl

(s), and the asymptotic
expansion of the corresponding pdf is given by

fc(z) =

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

)

∏L
l=1 γ̄l

z
PL

l=1

2

pl
−1

+ o

(

L
∏

l=1

γ̄−1
l

)

.

(33)
Using this result in (29) leads to

Pe(d|n) =

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

+ 1
)

∏L
l=1 γ̄l

(

L
∑

l=1

ql|nl|pl

)

PL
l=1

2

pl

+ o

(

L
∏

l=1

γ̄−1
l

)

. (34)

If all joint moments of the elements ofn are finite, averaging
Pe(d|n) in (34) with respect ton yields (10). The assumption
of finite joint noise moments is necessary, since the terms
absorbed intoo(

∏L
l=1 γ̄−1

l ) in (34) involve sums of products
of the elements ofn which have to remain finite after
expectation.
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