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Abstract—In this paper, we introduce an adaptive L,—norm partial-band interference [5], and ultra—wideband (UWB) in
metric for robust coherent, differential, and noncoherent di- terference [6], [7]. Unfortunately, diversity combiningr@mes
versity combining in non—-Gaussian noise and interference. We optimized for AWGN do not perform well in non-Gaussian
consider the general case where all diversity branches may . . . S )
use different combining weights and different L,—norms. We _nO|se [7]_[9_]' Of course, _'f t_he n0|se distribution is known_
derive a general closed—form expression for the asymptotic bit in parametric form, the distribution parameters can be- esti
error rate (BER) for L,—norm combining in independent non— mated first, and optimal maximum-likelihood (ML) combining
identically distributed Ricean fading and non-Gaussian noise can be applied subsequently, cf. [10] and references therei
and interference with finite moments. The asymptotic BER However, in many cases, such knowledge is not available at
expression reveals that the diversity gain of.,—norm combining N A .
is independent of the type of noise and the metric parameters. the recelyer an_d the noise distribution may _E\_/en change with
In contrast, the Combining gain depends on both the type of time. This motivates the use abbust Comb|n|ng schemes
noise and the metric parameters. Thus, the asymptotic BER can and metrics, which perform well for a large class of noise
be minimized by optimizing the L,—norm metric parameters for  djstributions and possibly have a tunable parameter whach ¢
the underlying type of noise. For this purpose finite difference e 4qiysted to the underlying noise distribution. Prominen

stochastic approximation (FDSA) and localized random search les f h robust trics include Hubetk tri
(LRS) algorithms are developed. Both adaptive algorithms do not examples for such robust metrics include Hu S-metric

require any a priori knowledge about the underlying noise and [11], Myriad and Meridian metrics [12], metrics involving
are able to track changes in the noise statistics. Simulation results hard and soft limiters [5], and th&,—norm metric [7], [13].

confirm the validity of the derived asymptotic BER expressions, Thereby, thel,—norm metric is particularly interesting since
the effectiveness of the proposed adaptive algorithms, and h j herforms well in both noise with heavy-tailed distritrts
excellent performance of the proposed adaptive.,,—norm metric . . . . . . -
compared to other popular metrics. (e.q. |mpul_5|ve_ n0|s_e) and noise Wlth short—tailed dlslm_dms_
(e.g. CCl) if p is adjusted accordingly [13]. However, finding
the optimump for a particular type of noise is a formidable
task, as appropriate optimization criteria are not known.
In this paper, we consider general,—norm metrics for
coherent, differential, and noncoherent combining, witfe
. INTRODUCTION ferent diversity branches may use differebj—norms and
ifferent combining weights. We derive analytical express
gqr the asymptotic bit error rate (BER) of the considered

Index Terms— Diversity Combining, L,—norm, non—Gaussian
noise and interference, asymptotic performance analysis, metric
optimization, adaptive stochastic optimization.

Diversity combining is an efficient means for combatin
the detrimental effects of fading in wireless channels. F o ) . X .
impairment by additive white Gaussian noise (AWGN) man mbining schemgs wn@,,—pqrm metric, wh|c_h are Va!'d.
different combining schemes have been proposed for coter fgr any typg _Of noise with f|n!te momgnts. This analy§|s IS
differential, and noncoherent detection and their pertoroes similar in spirit to the asymp?otlc a’?a'y?"s fib—norm metrics
have been extensively studied [1]. Generally, these caimiin 7 AWGN and non-Gaussian noise in [14], [15] and [16],
schemes are equivalent to the evaluation of a metric thaf)® reéSPectively. The derived asymptotic BER expression
involves anL,—norm. Examples for such combining scheme%hOW that the diversity gan 1S independent of tb@—.ngrm .
include coherent maximal—ratio combining (MRC), diﬁerenuse"d and the type of noise. In contrast, the combining gain

tial equal gain combining (EGC), and noncoherent combinirfjﬁe“pends on a generalized _moment of the noise samples at
(NC) the diversity branches, which enables the development of

In practice, wireless communication systems are not or ple metric optimization criteria that directly minineiz

impaired by AWGN but also by various forms of non—t e asymptotic BER. We consider both off-line and on-line

Gaussian noise and interfereh@eich as man-made and natu(_)ptimization of the metric parameters, and develop for the

: : : : latter case adaptive multivariate finite difference statica
ral impulsive noise [2], co—channel interference (CCI) [4], A .
P [2] (ccnia approximation (FDSA) [18], [19] and localized random séarc
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(STPGP 350451). diversity combining scheme is conceptually different from
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To simplify our notation, in the following, "noise” refers tany additive . imized for d . digitall dulated si | fre

impairment of the received signal, i.e., our definition of eo#&so includes 'S. optimize PV etecting a digitally modulated signa t

what is commonly referred to as "interference”. high SNR regime.
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The remainder of this paper is organized as follows. Imatched filters (MFs) are processed. The first MF output is
Section Il, we introduce the system model and fhe-norm still given by (1) and the second MF output is modeled as
metric. Asymptotic BER expressions are derived in Sectibn | _ -
and the calcu?ation of gen(fralized noise moments is discuss 1= VRihib + 1, l=isl, 2)
in Section IV. In Section V, off-line and on-line optimizati whereb, b € {0, 1}, b # b, andn, denotes the noise in the
of the metric parameters is considered, and in Section \éecond MF output. While for AWGM, andn; are statistically
analytical and simulation results are presented. Corumhssi independent, this is not necessarily true for non-Gaussian
are drawn in Section VII. noise. However, this does not affect the proposed asyrgptoti

performance analysis and metric adaptation.
Il. SYSTEM MODEL AND L,—NORM METRIC

In this paper, we consider coherent combining, differénti&. Noise Models

combinipg, and noncoherent combining for cqherent linear |n the following, we briefly discuss some important types
modulation formats (e.gM/—ary quadrature amplitude modu-of noise for which the analysis and metric optimization iisth
lation (M—QAM), M—ary phase—shift keyingW{ —PSK)), dif- paper is applicable.

ferential A/-PSK, and binary frequency-shift keying (BFSK), 1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the

respectively. probability density function (pdf) of the noise in thigh
diversity branch is given by
A. Signal Model I il
Assuming L diversity branches, for coherent linear mod-  f (1) = Z C;’l (— Zl > , 1<I<L, (3)
ulation and differentialM/—PSK the received signal in the im1 "n.il i,

Ilth branch and in théth symbol interval can be modeled
in equivalent complex baseband representation as

1 2 I 2
wherec;; > 0, >, ¢;; = 1, and T iy D oict CilOn i) =

o}, are constants. Special cases of GMN includenixture
nlk] = VAhOK +mlk],  1<i<L, (1) noise =2 ey =1 e e =€y, = o7/ -

- e+ K€y, 03721 = 510371,l, 0<¢ <1, andk; > 1) and
where %, fu, and n;[k] denote the average SNR, the fadyiggieton’s Class A noisel(— oc). GMN is a popular model
ing gain, and the noise in theh diversity branch, respec-for impuisive noise in systems with receive antenna diegrsi
tively. T2he transmitted symbolg[k] € A are normalized to [9] and for partial band interference in frequency hoppiRgl)
5{|b_[k]\ } = 1 and taken from aerary alphabetA. In case gystems with frequency diversity [5].
of differential A/-PSK, b[k] is obtamec; froma[k] € A via "5y co_channel Interference | (CCI-I): The interference
differential encoding[k] = a[k]b[k — 1]. caused byl co—channel interferers in a system with receive

The noise is assumed to be independent of the fading gaitenna diversity can be modeled as [4]
but the noise samplgsy;, 1 < [ < L, may be statistically

dependent and non—-Gaussian. The noise variance is given b ! k2
" VDY k) =Y g S pillbilk—nl, 1<I<L, (&)
1=1

r=kq

o? £ &{|m|*}, 1 <1< L. The only restriction that we impose
on the noise is that all joint moments of the, 1 <[ < L,
exist, i.e.E{n}" (n})"1n5?(ny)2 - nf=(n} )"t} < coforall  whereg;;, p;[k], andb;[k] denote the fading gain at thieh
Kk > 0,1 >0,1<1< L. Most practically relevant types receive antenna, the effective pulse shape, and the transmi
of noise fulfill this condition (see next section). An exdept Symbols of theith interferer, respectivelyp; (k] depends on
is a—stable noise for which moments of order greater thanthe transmit pulse shape of the interferer, the receiveatinp
do not exist and which is sometimes used to model impulsifier of the user, and the delay between theith interferer
noise [21]. and the user. Theth co—channel interferer is synchronous
The fading gainsh; are modeled as independent, nonand asynchronous for; = 0 and 7; # 0, respectively.
identically distributed (i.n.d.) Gaussian random vamsbiith The limits k; and k, are chosen such that;[k] ~ 0 if
meanh; £ £{h;} and Variancaj'%” 2 &{|h — m|?}, i.e., k <k ork> k. Here, we model the interference channel
i.n.d. Ricean fading is assumed. Note that fprin (1) to be gainsg;; as (possibly correlated) Ricean fading gains with
the SNR, the power of the fading gains has to be normalizedriancess? ; ; and Ricean factor, ; ;. We note that CCI—
to £{|m|*} = 07, 1 <1< L. The Ricean factor is defined asg is spatially dependent even if the channel gaips are
K £ ||*/o}, and Rayleigh fading results as a special casedependent because the te¥af2 ., pik]bi[k—x] is common
for K;=0,1<I1<L. to all diversity branches.
For BFSK the signal model in (1) has to be augmented 3) CCI-Il: The CCI model for FH systems with frequency
since, in this case, in each diversity branch the outputsvof t diversity is slightly different from CCI-I. Assuming the 18y
A o chronous case and that at hopping frequehcy < | < L,
In this paper£{-}, []", []*, O(), andIo() denote statistical expecta- oo_channel interferet, 1 < i < I, is present with probability

tion, transposition, complex conjugation, the big O notatiand the zeroth . .
order modified Bessel function of the first kind, respectivéiyrthermore, €i.1» 0 < €;; < 1, the resulting interference can be modeled

A = B means thatA is asymptotically (i.e., for high SNR) equal 8 and as
a function f(z) is o(z) if im0 f(z)/z = 0. 1

3To simplify our notation, we drop the time indéxin variables such as n; = ZXi,lgz‘,lbz',l, 1<I1<L, (5)
ny[k] whenever possible. i—1
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where theX;, are mutually independent, anll;; = 1 and metric my(a) is equivalent to well-known differential EGC.
X, = 0 with probabilitiese; ; and1 — ¢; ;, respectivelyb,; The decision: is thata which minimizesm,(a).
denotes the transmit symbols of th#h interferer at theth Noncoherent Combining (NC): The considered NC metric
hopping frequency and the interference gajnsare modeled for BFSK is
as i.n.d. Ricean fading with variance$ , ; and Ricean factors .
K. CCl-ll can be used to model the interference in systems _ Z g (Jril”
that use FH for multiple access (e.g. Bluetooth).

4) Generalized Gaussian Noise (GGN)t.n.d. GGN is a
popular model for non—-Gaussian noise [7], [22]. The corrghere we decide fob = 1 if m,, > 0 and forb = 0 otherwise.
sponding pdf for theth diversity branch is given by Forg =1andp, = 2,1 <1< L, the L,—norm metric in (9)
is equivalent to conventional square—law combining for RFS

- "Fl‘pl)’ (9)

I b
Fulm) = m exp <— '"Q ) , 1<i<rL, ) [l
where c; £ ([(2/6)/T(4/5))"/2, and 4, 0 < B < ©0, |||, A'SYMPTOTIC ANALYSIS OF L,~NORM COMBINING

denotes the shape parameter. GGN contains Laplagjaa ()
and Gaussiand, = 2) noise as special cases. We note that the In this section, we develop asymptotic expressions for the
L,—norm metric with appropriately chosen parameters is tip@irwise error probability (PEP) of the combining schemes d
ML metric for i.n.d. GGN [13]. scribed in Section 1I-C and relate these PEPs to the respecti
5) UWB Interference: The interference from both multi— asymptotic BERs.
band orthogonal frequency division multiplexing (MB-
OFDM) UWB and impulse—radio (IR) UWB is in general
strongly non—Gaussian [23], [7]. We will test the theory anf)- Asymptotic PEP of CC
algorithms developed in this paper for interference cal®ed  \we show in Appendix | that for any type of noise with finite
the MB-OFDM UWB and IR-UWB signal formats standardmoments, the asymptotic PEP of CC for— oo, 1 <1 < L,
ized by ECMA [24] and IEEE 802.15.4a [25], respectively. s given by
We note that the proposed analysis is also applicable to any

linear combination of the noises specified in 1)-5). 2L L, (p (;:21) L o (—Kz))
Pe(d) = ——— o S Mn(q.p),
C. L,~Norm Metric i (m%ql ) r (Zl:l wt 1)
' (10)
In this subsection, we present the adopige-norm metrics A L o Sisi2/m
for the considered combining schemes. where My(g,p) = € (lel il ) can be

Coherent Combining (CC): The L,—norm metric for CC interpreted as generalized momertf the elements of noise
is given by vector n = [n; ...,n.]T, and d denotes the Euclidean
I distance between the alternative signal points considémed
Ty = Im the PEP. The generalized noise momafi (g, p) in (10) can
me(8) qum Vb, ™ be calculated in closed form for special cases, cf. Section
_ IV. Nevertheless, even if the generalized noise momenttis no
whereb € A is a trial symbol, andy; > 0 andp; > 0, available in closed form, (10) can be used for fast evalnatfo
1 <1 < L, are metric parameters that can be optimizeghe asymptotic PEP sind¥,, (q, p) is independent of the SNR
for performance maximization for the underlying type ofnd has to be evaluated only once, which can be done e.g. by
noise? The decisiorb is thatb which minimizesm,.(b). For Monte—Carlo simulation. More importantly, (10) revealssho
q = landp = 2,1 <[ < L, the L,—norm metric parameterg; andp; influence the asymptotic PEP, which will
( ) is equalent to MRC which is optlmal in AWGN. Forbe exploited for metric optimization in Section V.
convenience we define the parameter veciofS[q; - .. qr]” For complexity reasons it may be desirable for some ap-
andp = [p ... pr]”. plications to limit the number of metric parameters to be

Differential Combining (DC): DC is applied for differ- optimized. For this purpose we may sgt= ¢ andp;, = p,
ential M-PSK modulation and the correspondifig—norm 1 < < [, and simplify (10) to

metric is
L
2 (1 (3)) T (S5 e ()
ZQI|7"I —ar[k — 1], (8) P.(d) = - —
d*F T2 () pPT (7 + 1)
whered € A is an M—PSK trial symbol. For the special case oL/ (11)
=landp = 2,1 <1 < L, the differential L,—norm where M, (p) = & (Zle \m|P) . Note that (11)

M (p),

4We note that, strictly speaklngnc(b) is only a norm forp; > 1,1 < depends orp but is independent of. For the special case

I < L. However, whether or notn.(b) is a norm is not important in our P = 2, (11) is equivalent to [17, Eq. (10)] for independent,
context. identically distributed (i.i.d.) fading.
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B. Asymptotic PEPs of DC and NC momentM,, (q, p) of the noise samples. Eq. (14) reveals that
The asymptotic PEPs of DC and NC can be derived in t{g€ optimal parameterg,,,; and p,,;, which maximizeG..,
same way as those for CC. only depend orl and the type of noise (via/,, (g, p)) but are

1) DC: The asymptotic PEP oM—PSK with DC is also hot influenced by the the modulation scheme and the Ricean

given by (10) and (11) if the respective generalized noise m@Ctors Ky, 1 <1 < L.

ments ofn are replaced with the generalized noise momentsFor DC and NC similar observations as for CC can be made
of the effective noise vector with respect to diversity gain and combining gain.

z = n[k] — alk|n[k — 1]. (12) IV. GENERALIZED NOISE MOMENTS

If the n,[k] are rotational symmetric and[k] and n[k — 1] In this section, we provide analytical results for the gener
are statistically independent[k] has no influence on the PEPalized noise moments defined in Section Il for selecteddype
and we may use = n[k] — n[k — 1] instead of (12). of noise. To make the problem tractable, in this section, we
2) NC: It can be shown that we formally obtain the PEP ofonsider not necessarily independent but identicallyitisted
BFSK with NC by lettingd = 1 in (10) and (11), respectively. (n.i.d.) noise and\/,,(p), which depends only op, instead
of M, (q,p). To simplify our notation, in the following, we
C. Asymptotic BER will drop subscript in all noise parameters (e.g. i, €, ~;,

The asymptotic (average) BER can be obtained from Rl K, 1, etc.) if the noise is n.i.d. (which includes i.i.d. as

asymptotic PEP as [26] a'special case).

BER = _ Smin_ P.(duin), (13) A. Exact Noise Moments fdr = 2

log,(M) First, we consider the special cade = 2. Further-

where dp,i, and iy denote the minimum Euclidean dis-more, for independent complex Gaussian random variables
tance of signal constellationl and the average number of(Rvs) z, and z, having variancess2 and o2, we define
1 2

minimum—distance neighbors, respectively. For examme, fy7.(p: 62 52 ) 2 £{(|1|P+|a2|P)2L/P}. Using the substitu-
all binary modulation scheme$,in = 1, for binary PSK P
(BPSK) Amin = 2, and fOFM—QAM gmin = 4(1 — 1/\/ M) and0 < © < ,”/2, we obtain

2 2\ 48ko

anddy,in = /6/(M —1).
Ma(p;os,,04,) = “L I (p, k), (15)

D. Combining and Diversity Gain 24/pp

It is convenient to express the asymptotic BER asherex = o2 /o2 , and the finite range integrdl:(p, ) =
BER = (G.y)~% [15], [26], where G. and G, denote f0”/2(Sin(2¢))4/p—l/(sin4/p ©+k cos*/P p)* dp depends only
the combining and the diversity gain, respectively, aneé= onp andx and can be easily evaluated numerically.
(IL~, 3)/E, ie., ¥[dB] = £ 3/, % [dB]. From (10) we  Based on the result fohq (p; o2, ,02,), we provide an-
observe that the diversity gain is given &y, = L independent alytical expressions for the generalized moments of AWGN,
of metric parameterg andp, and independent of the type ofn.i.d. Rayleigh—faded CCI-I (lel,;=0,1<i< )%, and
noise. The combining gain for CC with,—norm metric can i.i.d. Rayleigh—faded CCI-II (single interferer at eaclpping

tions || = rsin®/? ¢ and |zs| = rcos?/? p with 0 < r < oo

be expressed as frequency, i.e.] = 1) in Table I. Furthermore, we also provide
& log, (ML an expression for i.i.d. GGN in Table I, which can be obtained
G.[dB] = 10 log;, <M> in a similar fashion as the generalized moment in the Gamissia
28 rmin case and which contains the finite range intedeat (p, 3) =

foW/z(Sin(2g0))4/p’1/(sin25/p © + cos28/P )8/8 dop.

L
10 1+ K,
-7 E logyg (2 exp(—Kﬂ)
=1 i

B. Noise Moments for Generdl

L 2/py L 2 /L . .
10 piq; I(>, 5 1 For generall a closed—form expression for the generalized
+ L Zloglo r(2 moment can be calculated for several special cases. In par-
=1 (E) ticular, we will provide accurate approximations fof,,(p)
101 M 14 for n.i.d. noise distributions that are based on the Ganssia
— 7 10810 (Mn(q.p)). (14 gistribution (i.e., iid. GMN, n.id. Rayleigh-faded G@)

Eq. (14) reveals that the combining gain consists of founger 1--d- Rayleigh—faded CCI-II), and exact results for urefdd
The first and the second term on the right hand side (RH®y-d- CCI-I and i.i.d. CCI-II with/ = 1 and K, — oo,
of (14) depend on the signal constellation and the fadidgS { < L. . S _
parameters, respectively, but are independent of the enetri 1) Gaussian-based Noise Distributions\We first con-
parametergy andp and the properties of the noise. The thirgider i.n.d. Gaussian RVs; with varianceso?,, 1 < I <
term on the RHS of (14) is a function qf p, andL but is also Swe note that the fading gaing, . 1 < | < L. of nid. CCIl are
independent of the noise. Only the last term on the RHS gf; L i i tor

. ) ) 1:d. RVs. However, the resulting CCl-l is n.i.d. since kdoterferer affects
(14) depends on the properties of the noise via the genedalizll receive antennas simultaneously, cf. (4).
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TABLE |

GENERALIZED NOISE MOMENTSMy, (p) FOR L = 2 FOR VARIOUS TY
A T . AN k2
N.I.D. RAYLEIGH—FADED CCI-I (s = [s1 ... s7]" ss =302,
CCI-Il (I =1,br £ [b1;

PES OF NI.D. NOISE. IN PARTICULAR, WE CONSIDERAWGN, 1.1.D. GMN,

pi[K]bi[k], S CONTAINS ALL POSSIBLE VALUES OFs), I.I1.D. RAYLEIGH—FADED
- b1,.]T, M CONTAINS ALL POSSIBLE VALUES OFby, c1 S e1,c0 £1—€1,62, £0

2,,62,%0),ANDI.1.D. GGN.

9,1’
Noise Model Moments My, (p)
AWGN Mg (p;1,1)
GMN Zfﬂ ZJI':1 ciciMa(p, U%,i’ o’ )

n,j

CCI-I (Rayleigh)

I I
ﬁzses MG(p7Zi:1 U§7i|5i|2: i=1 U§,¢‘3i|2)

1

CCI-II (Rayleigh) e

2 2 - -
>oim1 2051 ¢i¢5 2 opemy; Ma(ps U§,¢|b171‘27 ”3,j‘b1,2|2)

GGN

(T(4/8))224/P=2

T(8/B)B

pIGG(p, B)

TA
APPROXIMATIONS FOR THE GENERALIZED NOISE MOMENTSV/,, (p) FOR

BLE Il
GENERALL FOR THE SAME TYPES OF N.D. NOISE CONSIDERED INTABLE |.

ADDITIONALLY , EXACT RESULTS FOR UNFADED NI.D. CCl—| (I = 1) AND I.1.D. CCI-ll (/ = 1, &1 £ 1, &5 £ 0) ARE PROVIDED.

Noise Model Moments M, (p)
AWGN Mg (p;1,...,1)
GMN 51:1 T Zngl iy cip, Ma(p, ‘7721,1'17 R %,iL)
CCI-I (Rayleigh) 1T Lses Ma(p, Ximy 02 ilsil? -, Ying 02 ilsil?)
CCI-I (Rayleigh) | iy 307, 1 Xi, =1 Cin =i, 2obyemy Ma (0,50, lbral?, ... 52 5, b1,L]?)

CCI-I (Unfaded) LQL/Pﬁ Sses Isl?E
2L/p
CCI-I (Unfaded) e Ay X i ey, Topeny (S €ulbral?)
L, and our goal is to calculaté/c(p;o2 ,..., 02 ) Based on the approximation fad(p; o2 ,..., o2 )in (18),

2/p

we can find the generalized moments of AWGN, i.i.d. GMN,
n.i.d. Rayleigh—faded CCI-I, and i.i.d. Rayleigh—fadedl-@C
(I = 1) given in Table Il for general.

2/p—1
o2 U
Zy

E{(F, |1[P)2E/P}. It can be shown that the pdf af
Y 2) Unfaded CCI: We first consider n.i.d. CCIl-I. Assuming

|z;|P is given by
G a single, unfaded interfere¥(;, ; — oc), (4) simplifies to
which is a Weibull pdf. We are interested in the pdf of
z = Zleyl. Unfortunately, a closed—form expression for
a sum of Weibull RVs is not known. However, an accurate
approximation for the pdf ot is given by thea—u pdf [27]
a,u”za”’l

aplzmr _K#
a0 () b ooy |

7 with uniformly distributed, mutually independent phases
where parametess, 1, andS) have to be optimized for the best@” € (=7, 1 <1 < L. Based on (19), the exact result
possible agreement with the true pdf af For this purpose, for the generalized moment of unfaded CCI-I given in Table
the efficient moment-based method in [27, Eq. (5)~(9)] may can be obtained. Similarly, specializing (5) fo= 1 and

be used. We note that in [27] only i.i.d. Weibull variableg¢ | —, oo, the exact expression for i.i.d. CCI-Il in Table Ii
are considered, whereas we allow different varianegs can be derived.

This small extension can be accommodated by replacing [27The asymptotic PEP for CC and NC can be (approximately

Eq. (9)] by&{y} = o2 T (1+pn/2),n € {0, 1, 2, ... is : e .

re?‘efre?zj t){) ;Zj?z} in [217])( anz::i \{ve) founé the corre}éézlnding.or exactly) obtameq by combining the _generahzed moments

approximation to be still very accurate. Using (17) we abtai n Tables | and .” W'th. the PEP fprmula n (ll)'. We note that
since the effective noise for DC is more complicated than the

[(;+ 2L/ (par)) Q)W (ve)

noise for CC and NC, cf. (12), a closed—form evaluation of
T(n) ﬁ the generalized moments does not seem possible for DC in
most cases.

2
Ty

k2
mlk] =/ N " pilbi[k— k], 1<I<L,  (19)

H:kl

f:(2) = 17)

2
O'IL

Mg(p; 0%, ...

)

Y

(18)
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V. METRIC OPTIMIZATION

In this section, we optimize the metric parametgrand g
for minimization of the asymptotic BER. In the following, we
consider both off-line and on-line optimization.

10°F

A. Off-line Optimization

If the generalized noise moments are known, the metr}
parameters can be optimized off-line based on (10) or (11).g
the underlying type of noise & priori known, the generalized £
noise moments may be obtained in closed—form, cf. Tables
and Il, or, if this is not possible, from Monte—Carlo sim et
using locally generated noise sampleMonte—Carlo simu-
lation can also be applied to estimate the generalized nois
moments from observed noise samples. To gain some insig ‘ ‘ ‘ ‘ ‘ ‘ ‘
and to make the problem tractable, we assume n.i.d. noise’ 0s ! e z 2s s 8s ¢
in this subsection. For n.i.d. noise we may get= ¢ and
p=p 1 <1 < L, in metrics (7)-(9) without loss of Fig. 1. BER vs.p for BPSK, i.i.d. Rayleigh fadingL = 2, SNR = 24
optimality, i.e., we can base our off-line optimization onlB, and different types of n.i.d. noise. Noise parameterst. k-mixture
(11) and have to optimize only parameter Unfortunately, ”°i590€25:T0-1_tvh’f :blol)a ”-i-tf_’-r;ay"?igh(;fad‘?d QPISK <r:1<:|—v (‘:thL |
for most types of noise a closed-form optimizationjofs [t - O_QVZV;’ i'%'."RZyle“igi'_?a dééagssﬁoé'gilplf(ief jpi ‘(')Vf25)r,°
not possible. An exception is n.i.d. unfaded CCl-I, whergqiid. coN g = 1).
we can show based on (11) and Table Il that the optimal
p is given byp.,. = oo corresponding to metricnc(?)) =
maxeq,... 2y {|r —+/ bl }. Furthermore, exploiting (14) we with 3 = 1 we obtainp,,, = 1 from Fig. 1 as expected.
obtain for the asymptotic SNR gad#, of a metric using > 2 While all other BER curves have a single minimum in the

over the L,—norm metric considered range, the BER for unfaded CCI-Il in Fig. 2 has
» 1=1/L p1-2/p two local minima. Figs. 1 and 2 clearly illustrate the beisefit
= — - f optimizi d fi lysis.
G) [dB] 10log,, <<2F(2/p)> TI/T ) of optimizing p and confirm our analysis
p—00 L i . . .
=" 10logy, (LH/L . (20) B. On-line Optimization
_ In practice, the statistical properties of the noise inipgir
For example, forl, = 2 we obtainGa = 1.3 dB andGo = 3 wireless communication system are often not knoavn

1.5 dB. Furthermore, using the Stirling formula [28] fér—  hriori and may change with time. Since multiplication of
oo we can show thalio, = 10logg(e) = 4.3 dB. We note the 1, _norm metrics (7)—(9) with a positive constant does
that it can be shown that,,; = oo and (20) are also valid for ¢ change the decision, we can set= 1 without loss of

DC and NC in n.id. unfaded CCI-I. optimality and optimize only th&€ — 1 elements of vector
If the optimal p cannot be obtained in closed form, nu-,, & g2 ... q PT]T.

meri_cal optimization is necessary. To illustrate this, wevs Since the metric coefficients may not be updated in every
in Figs. 1 and 2 the BER of BPSK as a function @ffor  gympnol interval, we introduce a new tinte= N, k, wherek
ii.d. .Rayle|gh fading WlthL =2andL :'3, respectively. is the symbol time andV,, > 1 can be used to specify how
Details about the considered types of noise can be foundgaqyently the metric coefficients are updated. Furtheemor

the captions of the figures. The solid lines represent analyt {ha proposed adaptive algorithms require an estimate of the
results generated based on (11), (13), and, respecth@e T - cost function to be minimized. For CC we obtain based on
(Fig. 1) and Table Il (Fig. 2). The markers indicate simuati (10) the cost function estimate

results and the bold+” markers denote the minima of the

analytical BER. The agreement between analytical resalis a LT (p%) .

simulation results is excellent in both Figs. 1 and 2. Li(z) £ T 27 T My (z, t)
As expected, Figs. 1 and 2 show that= 2 is optimal =1 <pqu pl) r (Zz:1 2+ 1)

for AWGN and also for Rayleigh—faded CCI-I. In constrast, (22)

for heavy—tailed types of noise such asmixture noise and

Rayleigh-faded CCl—lp,y < 2 holds. For short-tailed noi | Nl (L i 2/
ayleigh—ftade —lbopt < 2 holds. For short-tailed noise s 1 o -
such as unfaded CClb., > 2 is valid. For ii.d. GGN n(@ 1) =5 ;) ;qzlm[t V| , (22)

5Note that if the underlying noise model is knowrpriori, ML combining where we have neglected all irrelevant terms anddenotes

can be applied, of course. However, even in this case theopeatl,—norm  the number of time steps used for estimation of the genexhliz
metric may be preferable if the ML metric is computationally coexpbr M . Furth N N
causes numerical problems. For example, the GMN pdf consistssaim of Moment My (x, ¢) at time ¢. Furthermore,ny[t] = r —

exponential functions which may cause numerical problemsifsit BNRs.  +/%;h;b[t], whereb[t] may be a training symbol or a previous
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algorithm may not find the global optimum as the cost function
may have multiple local minimia, cf. Fig. 2. However, we did
not find this to be a problem in practice as the BERs of most
types of noise seem to have only a single minimum, and in
case of multiple minima, all minima seem to result in similar
performances. For initialization of the FDSA algorithyn= 1
andp; = 2,1 <[ <L, is a good choice since this guarantees
that the solution found by the algorithm in combination with

[0}
105k Rayleigh—faded CCI-II

e-mixture noise |
e-mixture noise 11

Rayleigh—faded CCI-I

5 CC, DC, and NC will not perform worse than conventional
- MRC, EGC, and NC, respectively
2) Random Search Method: The second method that
ok Unfaded CCI—I1 we consider is a localized random search (LRS) method. In
‘ ‘ contrast to FDSA algorithms, LRS algorithms do not get stuck
Unfaded CCI1 in local minima and find the global minimum under mild
i i i ‘ i ‘ i conditions on the cost function [19]. Based®p the proposed
1 2 3 4 5 6 7 8 9 10 . .
p —> LRS algorithm generates a new estimate [19]
Fig. 2. BER vs.p for BPSK, iid. Rayleigh fadingL = 3, SNR = 20 Ty =z + dy, (25)
dB, and different types of n.i.d. noise. Noise parameterst. lk—mixture i . .
noise | € = 0.1, & = 10), i.i.d. e—mixture noise Il { = 0.1, x = 5), whered, is a random vector whose elements are i.i.d. Gaussian
n.i.d. Rayleigh—faded and unfaded QPSK CCI£I#£ 1, 71 = 0.25T, random variables with variance?. If at least one of the
raised cosine pulse shape with roll-off factbR2), and i.i.d. Rayleigh— elements ofz;,; lies outside the predefined search space

faded and unfaded QPSK CCIHI & 1, €1 = 0.41). [0, Zmax], (25) is repeated until all elements®f,, are inside

the search space. SubsequentlyLif@;1) < L.(x;), we
decision. A similar estimate for the cost function may bt T+t = Lig1, Otherwisex, .y = ;. In a non-stationary
oise environment, the above algorithm is run continuously

generated for DC and NC. In the following, two differen .
. L . he speed of convergence of the LRS algorithm depends
algorithms for optimization ofc are provided and compared. : . .
crucially on the size of the search space (i&,.x) and

1) Multivariate Stochastic Approximation: The first algo- on o2 [19]. For initialization, the same initial vector as for

rithm is based on the.fmlte dlfferencce_ StO.ChaSt'C approt«ma the FDSA is appropriate. Since LRS algorithms suffer from
(FDSA) framework with gradient estimation [19]. This frame S : ) .
performance degradation if the cost function estimate isyno

work is particularly well suited for the problem at hand ritc . .
: . . L [19], comparatively largeV, may be advisable. Note, however,
employs a Kiefer—Wolfowitz type of gradient estimajgx:) . o X
- . . that the tracking capabilities of the algorithm decreasévas
avoiding cumbersome differentiation &f («) [18]. In thetth . . X
. . . , increases. We foundv., = 100 to give a good compromise
iteration the FDSA algorithm generates the estimatéor the L : . ) o
between estimation noise suppression and tracking cépeil

optimalz as [19] for the application at hand.

Tir1 = T — ay G, (T4), (23) 3) Complexity: From a practical point of view, it is of
interest to compare the complexity of the proposed adap-
tive algorithms assuming a fixed—point implementation with
s digits. Denoting the complexity of one multiplication by
u(s), the complexity of evaluating the Gamma and the power
(24) functions isO((log(s))?u(s)) [29], whereas that of a division

is O(u(s)). Taking this into account, neglecting the complexity
where €n is a column vector of |engtBL — 1 withalin of additionsl and assuming thaxpl: 1 S l S L’ is obtained
positionn and O's in all other positions. th[k] is stationary from a look—up table, the complexities of one iteration af th
and a; and ¢; fulfil a; > 0, ¢, > 0, az — 0, ¢ — 0, FDSA and LRS algorithms are given by
Yopar = oo, and Y0 a?/c? < o, the above algorithm
will find the global minimum if the BER has only oneCrpsa = O (2(2L — 1)(Ne(L + 1) + 2L + 1) (log(s))* u(s))
minimum and at least a local minimum otherwise [19] (as (26)
long as the BER and.;(z) meet the mild conditions requiredand
for convergence outlined in [19]). However, since, in piast _ 2
n[k] will be non—stationary, we may set = a« and¢; = ¢, Crrs = O (Q(Ne(L +1) + 2L + 1)(log(s)) u(s)) - @0
Vt, wherea and ¢ are small positive constants to give theespectively. A comparison of (26) and (27) shows that,esinc
algorithm some tracking capability. Furthermore, sinaeh typically N, has to be chosen much larger for the LRS
may have a large dynamic range (epgys = oo for unfaded algorithm (e.g. N. = 100) than for the FDSA algorithm
CCI-l), the tracking ability of the algorithm can be imprave (e.g. N. = 1), the complexity per iteration of the LRS
by limiting the elements ok, to some finite value:,,, at the algorithm is larger than that of the FDSA algorithm for tygdic
expense of some loss in performance if the optimal elementwaflues ofL (e.g. L < 10).
x exceedsr,,... Note that for the problem at hand the FDSA 4) Performance: In Figs. 3 and 4, we show metric

[Lt(mt +crer) — Li(xy — creq)
5, .
Li(xy + crear—1) — Li(x — Ct62L71)]T
26,5 ’

gi(xi) =
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10 T

T T T T
10 = = =92 93 dy PR S ____ Adaptive Lp—norm metric (FDSA)
Py Py Py Py _ _ _Adaptive Lp—norm metric (LRS)
ol i : . —— L,~norm metric
8 4
T 7" b 10°F E
[
<+ i o [
s ! | il | 1
V| 8F ] O A o I
VI sl N1 N2 N3 N4 N5 4 T
- s & N1 N2 N3 N4 N5
S i =
- 4 /’ \\ m
< ] 107F E
VI 3l || B ) .
~ kﬂqmm Lol
VI \
~ ol - o " i i
< | bemmme~= { I L N SO RPN S PN pveyo !
S fussza> 3 i
JEmm—~e -~ [orammmmtom] e ]
P
————————
0 L L L L L 10 L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 4.5 5 0o 0.5 1 15 2 25 3 3.5 4 4.5 5
t —» x 10° t —» x 10

Fig. 3. Metric coefficientsy;, 2 <1 < 4, andp;, 1 < < 4, vs. iteration Fig. 5. BER of BPSK with CC vs. iteratiom for FDSA and LRS
t of FDSA algorithm. N1: li.d. Rayleigh—faded QPSK CCI-l & 1, algorithms, respectively. For comparison BER Iof—norm combining is
e = 0.1) and AWGN, where the CCI-Il power is ten times larger than also shown. Noise types N1-N5 are specified in the captiongf3F
the AWGN variance; N2: l.n.d. Gaussian noise with varianeés= 1,
02 = 0.5, 0% = 0.5, 07 = 2; N3: l.n.d. e-mixture noise withe; = 0.1,
1 <1<4,andk) = 20, kg = 40, k3 = 50, kg4 = 100; N4: I.n.d. GGN
with 81 = B2 = 3 and 83 = B4 = 1; N5: N.i.d. unfaded QPSK CCI-I
(I =1, 71 = 0.37, raised cosine pulse shape with roll-off factb22).

one typical adaptation process and the corresponding BERs
in Fig. 5 were calculated with (10) and (13), where the
generalized noise moments were obtained by Monte—Carlo
‘ ‘ ‘ ‘ ‘ ‘ ‘ simulation. Figs. 3-5 show that both algorithms work well
10T";j‘;2:‘;; ., and that aft(_ar e_ach S\{vitching f[o a new type of_ noise, steady
ol i state operation is achieved quickly. Thereby, with the ehos
settings, the steady state error of the LRS algorithm iselarg
than that of the FDSA algorithm, but the LRS algorithm
Us : ' ] converges faster to the new steady state after the type of
noise has changed. Note, however, that the trade—off batwee
tracking capabilities and residual error strongly depeods

Vigl N1 N2 N3 N4 N5 X
- ° how the parameters of the algorithms (egz, N., ando3) are
S , N 1 chosen [19]. Furthermore, as expected, Figs. 3 and 4 confirm
N U DI " . . .
Vil "1'\":“'\«“1“'&%% i that in steady state for the n.i.d. noises N1 and N5;adnd
vl m'{.‘: "«",\"\j‘?{ | mp are equal, respectively, whereas for the i.n.d. noises N2,
5 :’»g,‘:os-gv'.,'éﬂ ! DA N3, and N4 either the;; or/and thep; are not equal. For
PP (O b A AnvirAY : NS p; = oo, 1 < I < 4, is optimal and both algorithms
o ‘ ‘ ‘ ‘ yield p; = 10, 1 < | < 4, because we Set,.. = 10.
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5 . . .
t — < 10° Fig. 5 shows that thd.,—norm metric with FDSA and LRS

adaptation substantially outperforms the-norm metric (i.e.,
Fig. 4. Metric F:oefficier)ts;;, 2<l1<4,andp;, 1< _l_g 4_, VS. iteratign MRC).
t of LRS algorithm. Noise types N1-N5 are specified in the captd
Fo- 3 VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we verify the analytical results derived in

coefficientsq;, 2 < 1 < 4, andp;, 1 <[ < 4, vs. iteration Sections Ill and IV through simulations and compare the
t of, respectively, the FDSA and the LRS algorithms foperformance of the adaptivé,—norm metric with that of
i.i.d. Rayleigh fading withL = 4 and SNR = 16 dB. The other popular metrics. For convenience we consider n.aiden
corresponding BERs of BPSK with CC are shown in Fig. 8hroughout this section and drop subscriptin the noise
Five different types of noise are considered which are §ipelci parameters. The respective noise parameters are specified i
in the caption of Fig. 3 and at= (v — 1) - 10° we switch the captions of the figures. The optimal metric paramgigr
abruptly to a new noise N 1 < v < 5. For the FDSA was obtained with the FDSA algorithm. In Figs. 6 and 7,
algorithm we usedn; = a = 4-107%, ¢, = ¢ = 107°, we show the BER of 16-QAM with CC in i.i.d. Rayleigh
ZTmax = 10, N, = 1, and N, = 1. For the LRS algorithm we fading with L = 2 for the adaptiveL,—norm metric and
adoptedo? = 0.1, Tmax = 10, N, = 1, and N, = 100. For several other popular robust metrics for, respectively. ie—
both algorithmsz; was initialized withg; = 1, 2 < [ < 4, mixture noise and n.i.d. unfaded QPSK CCI-I. To facilitdte t
andp;, = 2,1 <[ <4, and previous decisior&{t] were used definition of the various metrics, we introduce the notation
in the adaptation process. Figs. 3 and 4 show the results for2 |r; — \/5;h;b|. We consider the Huber metrie(b) =
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BER—

= Lp—norm (pop‘ = 0.4, simulation)
L,-norm (simulation)
—— Myriad (3 = 0.6, simulation)
—<— Meridian (5 = 1.1, simulation)
—©— Huber (3 = 0.01, simulation)

—%— ML (simulation)
10°H — Lp—norm (popl = 0.4, theoretical asymptotic BER)

- Lz—norm (theoretical asymptotic BER)

T T T T T T T I I I I
6 8 10 12 14 16 18 20 22 24 26

SNR per bit [dB]—*

Fig. 6. BER vs. SNR per bit per branch of 16-QAM with CC in
i.i.d. Rayleigh fading { = 2) and i.i.d. e-mixture noise { = 0.1,

x = 100). Solid lines with markers: Simulation results. Bold soliddan
dashed lines: Asymptotic BER based on (11), (13), and Table I.

e Lp—norm (p = 20, simulation)
1074H —— Lz—norm (simulation)

—— Myriad (& = 100, simulation)
—<&— Meridian (& = 100, simulation)

—©— Huber (5 = 100, simulation)
— Lpfnorm (p = 20, theoretical asymptotic BER)

- Lz—norm (theoretical asymptotic BER)

10° T T L L

0 5 10 15 20 25
SNR per bit [dB] =7

Fig. 7. BER vs. SNR per bit per branch of 16-QAM in i.i.d. Ragte
fading (L = 2) and n.i.d. unfaded QPSK CCI-I & 1, 71 = 0.3T’, raised
cosine pulse shape with roll-off fact@r22). Solid lines with markers:
Simulation results. Bold solid and dashed lines: AsymptotitRBbased
on (11), (13), and Table II.

Sy mu(b), mu(b) = u?/2if wy < 8, andmy (b) = duy—52/2
if w, > 0 [11], the Meridian metrian(b) = Y, log(u; +0)
[12], and the Myriad metrien(b) = S_r_, log(u? + 62) [12].

= Lp—norm (pom = 0.5, simulation)

< Lz—norm (simulation)
—L,mnorm (p,,
- Lz—norm (theoretical asymptotic BER)
10’ T T I
0 5 10 15 20 25

SNR per bit [dB]——

= 0.5, theoretical asymptotic BER)

Fig. 8. BER vs. SNR per branch of BFSK with NC in i.i.d. Riceadihg
(L = 3) and i.i.d. Rayleigh—faded QPSK CCI-If (= 1, e1 = 0.25).

Solid lines with markers: Simulation results. Bold solid arasioed lines:
Asymptotic BER based on (11), (13), and Table II.

are outperformed by 1.3 dB by th&,—norm metric with

p =20 (popt — oo holds in this case), as predicted in Section
V-A. We note that the ML metric does not seem tractable for
unfaded CCI-I. Interestingly, while th&,—norm metric was
optimized based on the presented asymptotic analysis, &igs
and 7 suggest that it also performs well for low SNRs.

In Fig. 8, we show the BER of BFSK with NC in
i.i.d. Ricean fading with. = 3 and i.i.d. Rayleigh—faded
QPSK CCI-ll. Fig. 8 shows that the proposdg,—norm
combining also achieves considerable performance gaieis ov
Lo—norm combining for BFSK with NC and in Ricean fading.
As expected from Section 1lI-D, the optimal valpg,, = 0.5
is independent of the Ricean factéf. Although for K = 6
dB the simulated BER approaches the asymptotic BER only
for BER < 1079, the L,—norm metric optimized for the
asymptotic BER also results in large gains for higher BERs.
For example, for BER 20~*, the L,—norm metric achieves
a gain of 3.5 dB over thé.o,—norm metric.

Finally, in Fig. 9, we show the BER of 4-PSK in
i.i.d. Rayleigh fading with. = 3 and impairment by MB—
OFDM UWB and IR-UWB interference following the ECMA
[24] and IEEE 802.15.4a [25] standards, respectively. The
bandwidth of the receiver input filter of the 4-PSK system
is assumed to be3 = 4 MHz. Results for both CC and

Note that for all these robust metrics parametdnas to be DC are shown in Fig. 9. For both combining schemes and
optimized by exhaustive search, which is quite tedious;esin both types of UWB,p = 30 was close to optimal for the
unlike for the L,—norm metric, a Systematic optimizationL,—norm metric. Fig. 9 shows thdt,—norm combining also
framework is not available. For Figs. 6 and 7 the robust roetriachieves substantial gains oves—norm combining in UWB
were optimized by simulation for SNR = 30 dB. Fig. 6 showsterference. Thereby, the performance gains are largeC@®
that for the heavy—tailed-mixture noise thd.,—norm metric than for DC. This can be explained by the fact that the effecti
with popt = 0.4 outperforms the other robust metrics and theoise for DC is the sum of two independent noise samples,
gap to the optimal ML metric is less than 1 dB. Fig. 7 showsf. (12), and thus, according to the Central Limit Theorem
that for short—tailed unfaded CCI-I the Huber and MyriafB0], is closer to a Gaussian distribution than the noisevasit
metrics are essentially equivalent to the—norm metric and for CC (and NC).
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where we have used the fact that due to the conditioning on
n, me(b) = ZL:1 qiln|P* is a constant, and.(z) is the pdf

of mc(f)) = > 1 atlv/yhie+mnP', which we calculate step—
by—step in the following.

The conditional pdf of; = |\/3;hie + n;| is a Ricean pdf

given by
10° B
T 21, z? + |Ahie + n|?
10 4 L) = —5——5 X — —
féw fIL( ) d2’y 0_}2” p ( dQFYIO—}?Ll

107 g CCwith Lpfnorm metric (p = 30, simulation) - xl | /f?l Bl e + nl ‘
o— CCwith sznorm metric (simulation) X IO 2 T . (30)
—a— DCwith L —norm metric (p = 30, simulation) d Vi O'hl

107 H —— DC with Lz—norm metric (simulation)
— Lp—norm metric (p = 30, theoretical asymptotic BER)

The pdf of the transformed variablg = ] is given by
s f,(p) = iyll/plilfl'l <yll/Pl) and the scaling withy, leads

to 2 = qy with pdf f.,(21) = . fy,(21/@). Taking into
Fig. 9. BER vs. SNR per bit per branch of 4-PSK system with tnéaith account these identities the pdf of = C]l| /[Aihie + n [Pt is
B = 4 MHz and CC or DC in i.i.d. Rayleigh fadingl(= 3) and MB— given by
OFDM UWB [24] and IR-UWB (V, = 32 bursts per symbol and.. =
128 chips per burst) [25] interference. Solid lines with mark&isnulation 2/ —1 9 9 _
results. Bold solid and dashed lines: Asymptotic BER base(lLaj (13), f (z )_ 22; /m exp | — 2 /o +q / |\/ Yihie +ny |2
and Monte—Carlo simulation of generalized noise moments. i\~ 7d2’ 2 2/p1 p /D1

Yoy, Py,

1/pi h
x I <2Zl Ve ZH”Z'). (31)

_ 1
d2%0]2”ql /P

- L2—norm metric (theoretical asymptotic BER)

5 16 15 20
SNR per bit [dB]—*

_ 2
dQ'YZU}ZLl q;

VII. CONCLUSIONS

In this paper, we have considered gendrgtnorm coher-
ent, differential, and noncoherent diversity combininqion— Considering the asymptotic case — oo and exploiting the
Gaussian noise and interference. For the asymptotic regiftylor series expansions ekp(-) and Io(-), f-,(z) can be
of high SNR we have derived closed—form expressions féftten as
the BER valid for i.n.d. Ricean fading and non-Gaussian Furlz1) = ng/pl—l +o(3 ), (32)
noise and interference with finite moments. The asymptotic Y
BER expressions reveal that while the diversity gainlgf
norm combining is independent of the type of noise and tehere C; £ 2exp (—|l[?/07)) /(d%,z”pqu/’”). Thus, the
metric parameters, the combining gain depends on genedalimoment generating function (MGF) ef can be expanded as
noise moments and on the metric parameters. For on-libg (s) £ E{e %} = CiT'(2/p)7, "s~2/P + o(3; ). Since
metric optimization, we have developed two efficient adegpti conditioned om the z; are statistically independent, the MGF
algorithms which do not require arypriori knowledge about of m.(b) is given by®.(s) = Hle ®.,(s), and the asymptotic
the noise statistics and can also cope with non—station&xypansion of the corresponding pdf is given by
noise. Simulation results have confirmed the analyticalltes

presented in this paper and have shown that the proposed Hsz (C’ll“ (2)) L

. . . B =1 pL SE 21 _ 1
adaptive L,—norm metric outperforms other robust metrics f.(z) = 7 - z 4o HVZ .
such as Huber’s metric, the Myriad metric, and the Meridian r (25:1 ,,%) | el =1
metric in both heavy—tailed and short—tailed noise. (33)

Using this result in (29) leads to

APPENDIXI L2

ASYMPTOTICPEPFORCC P.(dn) I, (ClF (%)) ( L , )Z” g
eldin) =

L L _

r (2121 p% + 1) || el

Assuming thath was transmitted anél # b was detected,
the corresponding PEP can be expressed as

L
P.(d) = Pr{m.(b) > m.(b)}, (28) +o <H %‘1> : (34)
=1

whered £ |e| ande £ b — b. In a first step, we calculate the o o .
PEP conditioned on the noise vector2 [n; ... nz]7. With If all joint moments of the elements af are finite, averaging

(7) and (28) this conditional PEP can be obtained as FPe(d|n) in (34) with respect tar yields (10). The assumption
of finite joint noise moments is necessary, since the terms
absorbed inth(HlL:l"yl_l) in (34) involve sums of products
P.(dn) = / fe(2)dz, (29) of the elements ofn which have to remain finite after

4 expectation.

me(b)



NASRI et al: ADAPTIVE L p—NORM DIVERSITY COMBINING

REFERENCES [25]

(1]
(2]

M.K. Simon and M.-S. Alouini. Digital Communication over Fading
Channels Wiley, Hoboken, New Jersey, 2005.

D. Middleton. Statistical-physical Models of Man—-madead® Noise —
Parts | and Il. U.S. Dept. Commerce Office Telecommupril 1974
and 1976.

C. Tellambura. Cochannel Interference Computation fobithary
Nakagami FadinglEEE Trans. Veh. Technpi8:487—-489, March 1999. [29]
A. Giorgetti and M. Chiani. Influence of Fading on the Gsias
Approximation for BPSK and QPSK with Asynchronous Cochannel
Interference. IEEE Trans. on Wireless Communr#:384—-389, March [30]
2005.

(26]
(27]

[3] [28]

(4]

11

IEEE P802.15.4a. Wireless Medium Access Control (MA&)d
Physical Layer (PHY) Specifications for Low-Rate Wirelessd®nal
Area Networks (LR-WPANSs). January 2007.

J.G. ProakisDigital Communications McGraw—Hill, New York, forth
edition, 2001.

J. Filho and M. Yacoub. Simple Precise Approximations teitwll
Sums.|[EEE Commun. Lettersl0:614—616, August 2006.

M. Abramowitz and |. StegunHandbook of Mathematical Functions
Dover Publications, Inc., New York, 1970.

J. Borwein and P. Borwein.Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexitjohn Wiley & Sons,
Inc., New York, 1987.

Athanasios Papoulis. Probability, Random Variables and Stochastic

[5] C. Keller and M. Pursley. Clipped Diversity Combining f@hannels
with Partial-Band Interference - Part I: Clipped-Lineam@ining. IEEE
Trans. Commun.35:1320-1328, December 1987.

A. Nasri, R. Schober, and L. Lampe. Performance of a BPSK N
Receiver in MB—OFDM UWSB Interference. IIRroceedings of the IEEE
International Conference on Communications (IC@ages 4700-4705,
June 2006.

H. Shao and N. Beaulieu. Analysis of a Novel P-Order MetiWWB
Receiver Structure with Improved Performance in Multiple égx
Interference. InProc. IEEE Global Telecommun. Conf. (Globecpm)
pages 4112-4117, November 2007.

A. Shah and A. Haimovich. Performance Analysis of Maximati®a

(6]

(7]

(8]

Combining and Comparison with Optimum Combining for Mobile

Radio Communications with Cochannel InterfereniéeEE Trans. Veh.
Technol, COM-49:1454-1463, July 2000.

C. Tepedelenlioglu and P. Gao. On Diversity ReceptiorelOvading
Channels with Impulsive NoiselEEE Trans. Veh. Techngl54:2037—
2047, November 2005.

R. Blum, R. Kozick, and B. Sadler. An Adaptive Spatial Bisity
Receiver for Non—-Gaussian Interference and NoiEEE Trans. Signal
Processing47:2100-2111, August 1999.

P. Huber.Robust StatisticsWiley, New York, 1981.

T. Aysal and K. Barner. Meridian Filtering for Robusg8&al Processing.
IEEE Trans. Signal Processing5:3949-3962, August 2007.

G. Shevlyakov and K. Kim. Robust Minimax Detection of a \W&ignal
in Noise With a Bounded Variance and Density Value at the €eot
Symmetry.|IEEE Trans. Inform. Theory52:1206-1211, March 2006.
H. Abdel-Ghaffar and S. Pasupathy. Asymptotic Perforoeaof M -ary
and Binary Signals Over Multipath/Multichannel RayleighdaRicean
Fading. IEEE Trans. Commun43:2721-2731, November 1995.

Z. Wang and G.B. Giannakis. A Simple and General Paramat&an
Quantifying Performance in Fading ChannelEEE Trans. Commun.
51:1389-1398, August 2003.

A. Nasri, R. Schober, and Y. Ma. Unified Asymptotic Anays
of Linearly Modulated Signals in Fading, Non—Gaussian Bpiand
Interference.lEEE Trans. Commun56:980-990, June 2008.

A. Nezampour, A. Nasri, R. Schober, and Y. Ma. AsymptotiEMBand
SEP of Quadratic Diversity Combining Receivers in Correldcean
Fading, Non—-Gaussian Noise, and InterferelB&E Trans. Commun.
57:1039-1049, April 2009.

J. Kiefer and J. Wolfowitz. Stochastic Estimation of thaximum of
a Regression Functiorthe Annals of Mathematical Statistic23:462—
466, September 1952.

J. Spall. Introduction to Stochastic Search and Optimizatidfiiley &
Sons, Inc., New Jersey, 2003.

L. 1zzo and L. Paura. Asymptotically Optimum Space-Dsigr De-
tection in Non—Gaussian NoiselEEE Trans. Commun.34:97-103,
February 1986.

G.A. Tsihrintzis and C.L. Nikias. Performance of Optimuamd
Suboptimum Receivers in the Presence of Impulsive Noise Mddel
as an Alpha-Stable Process.IEEE Trans. Commun.43:904-914,
Feb./Mar./Apr. 1995.

T. Pham and J. De Figueiredo. Maximum Likelihood Estimatof a
Class of Non-Gaussian Densities with Applicatior/ foDeconvolution.
IEEE Trans. Signal Processing7:73-82, January 1989.

[23] A. Nasri, R. Schober, and L. Lampe. Analysis of Narrowtha®om-
munication Systems Impaired by MB—OFDM UWB InterferentteEE
Trans. on Wireless Commur6:4090-4100, November 2007.

ECMA. Standard ECMA-368: High Rate Ultra Wideband
PHY and MAC Standard. [Online]  http://www.ecma-
international.org/publications/standards/Ecma-3&éh December
2005.

(9]

(20]

(11]

[12]

(23]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[24]

ProcessesMcGraw—Hill, New York, 1984.

Amir Nasri (S'06, M’'08) received the B.S. de-
| gree from Sharif University of Technology, Tehran,
Iran, in 2001, the M.Sc. degree from University of
- Tehran, Tehran, Iran, in 2004, and the Ph.D. degree
h from the University of British Columbia, Vancouver,
Canada, in 2008, all in electrical engineering. His
" current research interests include optimization of
By /.\ A wireless communication systems in non-Gaussian
F ),p.g y— noise and interference, cognitive radio (CR) systems,
;’ AR 4 ultra-wideband (UWB) radio communications, digi-
tal communications over fading channels, and space-
time processing and coding.
He received the Best Paper Award at the IEEE Internationaifé@ence
on Ultra—Wideband (ICUWB) 2006, and was finalist for the besgigr award
at 2006 IEEE Global Telecommunications Conference (Globe20@®). He
was also the recipient of the 2007 Li Tze Fong UGF Award fromversity
of British Columbia.

Ali Nezampour (S'07) was born in Shiraz, Iran in
1981. He received the B.S. degree from Amirkabir
University of Technology, Tehran, Iran in 2003, and
the M.Sc. degree from Sharif University of Tech-
nology, Tehran, Iran in 2005, both in electrical en-
gineering and is currently pursuing the Ph.D. degree
in the Department of Electrical and Computer Engi-
neering, University of British Columbia, Vancouver,
BC, Canada. His current research interests include
analysis and design of coexisting wireless communi-
cation systems, digital communications over fading
channels, and space-time coding.

Robert Schober(M’01, SM’07) was born in Neuen-
dettelsau, Germany, in 1971. He received the Diplom
(Univ.) and the Ph.D. degrees in electrical engi-
neering from the University of Erlangen—Nuermberg
in 1997 and 2000, respectively. From May 2001
to April 2002 he was a Postdoctoral Fellow at
the University of Toronto, Canada, sponsored by
the German Academic Exchange Service (DAAD).
Since May 2002 he has been with the University of
British Columbia (UBC), Vancouver, Canada, where
he is now a Full Professor and Canada Research
Chair (Tier Il) in Wireless Communications. His research ries¢s fall into
the broad areas of Communication Theory, Wireless Communitatiand
Statistical Signal Processing.

Dr. Schober received the 2002 Heinz Maier-Leibnitz Awardhef German
Science Foundation (DFG), the 2004 Innovations Award of theafone
Foundation for Research in Mobile Communications, the 200€ W&llam
Research Prize, the 2007 Wilhelm Friedrich Bessel Reseanard of the
Alexander von Humboldt Foundation, and the 2008 Charles MeflicAward
for Excellence in Research from UBC. In addition, he readibest paper
awards from the German Information Technology Society (ITk®,European
Association for Signal, Speech and Image Processing (EURASEEE
ICUWB 2006, the International Zurich Seminar on Broadband Commu
cations, and European Wireless 2000. Dr. Schober is alsArge Editor for
Modulation and Signal Design for tHEEE Transactions on Communications



