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Abstract

In this paper, we introduce an adaptive L,—norm metric for robust coherent, differential, and non-
coherent diversity combining in non—Gaussian noise and interference. We consider the general case
where all diversity branches may use different combining weights and different L,—norms. We derive
a general closed—form expression for the asymptotic bit error rate (BER) for L,—norm combining
in independent non—identically distributed Ricean fading and non—Gaussian noise and interference
with finite moments. The asymptotic BER expression reveals that the diversity gain of L,—norm
combining is independent of the type of noise and the metric parameters. In contrast, the combining
gain depends on both the type of noise and the metric parameters. Thus, the asymptotic BER can
be minimized by optimizing the L,—norm metric parameters for the underlying type of noise. For
this purpose finite difference stochastic approximation (FDSA) and localized random search (LRS)
algorithms are developed. Both adaptive algorithms do not require any a priori knowledge about
the underlying noise and are able to track changes in the noise statistics. Simulation results confirm
the validity of the derived asymptotic BER expressions, the effectiveness of the proposed adaptive
algorithms, and the excellent performance of the proposed adaptive L,—norm metric compared to

other popular metrics.

IThis paper has been submitted in part to the IEEE International Communications Conference (ICC),

September 2008.
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1 Introduction

Diversity combining is an efficient means for combating the detrimental effects of fading in wire-
less channels. For impairment by additive white Gaussian noise (AWGN) many different combining
schemes have been proposed for coherent, differential, and noncoherent detection and their perfor-
mances have been extensively studied [1]. Generally, these combining schemes are equivalent to the
evaluation of a metric that involves an Lo—norm. Examples for such combining schemes include co-
herent maximal-ratio combining (MRC), differential equal gain combining (EGC), and noncoherent
combining (NC).

In practice, wireless communication systems are not only impaired by AWGN but also by various
forms of non—Gaussian noise and interference? such as man-made and natural impulsive noise [2],
co—channel interference (CCl) [3, 4], partial-band interference [5], and ultra—wideband (UWB)
interference [6, 7]. Unfortunately, diversity combining schemes optimized for AWGN do not perform
well in non—Gaussian noise [7]-[9]. Of course, if the noise distribution is known in parametric
form, the distribution parameters can be estimated first, and optimal maximum-likelihood (ML)
combining can be applied subsequently, cf. [10] and references therein. However, in many cases,
such knowledge is not available at the receiver and noise distribution may even change with time.
This motivates the use of robust combining schemes and metrics, which perform well for a large
class of noise distributions and possibly have a tunable parameter which can be adjusted to the
underlying noise distribution. Prominent examples for such robust metrics include Huber's M-
metric [11], Myriad and Meridian metrics [12], metrics involving hard and soft limiters [5], and the
L,—norm metric [7, 13]. Thereby, the L,—norm metric is particularly interesting since it performs
well in both noise with heavy—tailed distributions (e.g. impulsive noise) and noise with short—tailed
distributions (e.g. CCl) if p is adjusted accordingly [13]. However, finding the optimum p for a
particular type of noise is a formidable task, as appropriate optimization criteria are not known.

In this paper, we consider general L,—norm metrics for coherent, differential, and noncoherent
combining, where different diversity branches may use different L,—norms and different combining
weights. We derive analytical expressions for the asymptotic bit error rate (BER) of the considered

combining schemes with L,—norm metric, which are valid for any type of noise with finite moments.

2To simplify our notation, in the following, ”noise” refers to any additive impairment of the received signal,

i.e., our definition of noise also includes what is commonly referred to as ”interference”.
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This analysis is similar in spirit to the asymptotic analysis of Ly—norm metrics for AWGN and non-—
Gaussian noise in [14, 15] and [16], respectively. The derived asymptotic BER expressions show
that the diversity gain is independent of the L,—norm used and the type of noise. In contrast, the
combining gain depends on a generalized moment of the noise samples at the diversity branches,
which enables the development of simple metric optimization criteria that directly minimize the
asymptotic BER. We consider both off-line and on—line optimization of the metric parameters, and
develop for the latter case adaptive multivariate finite difference stochastic approximation (FDSA)
[17, 18] and localized random search (LRS) [18] algorithms. We note that the proposed adaptive
diversity combining scheme is conceptually different from the asymptotically optimum space—diversity
detector in [19]. Whereas the receiver in [19] was optimized for detecting the presence or absence of
a weak signal in the low SNR regime, the receiver proposed in this paper is optimized for detecting
a digitally modulated signal in the high SNR regime.

The remainder of this paper is organized as follows. In Section 2, we introduce the system
model and the L,-norm metric. Asymptotic BER expressions are derived in Section 3, and the
calculation of generalized noise moments is discussed in Section 4. In Section 5, off-line and on—line
optimization of the metric parameters is considered, and in Section 6, analytical and simulation

results are presented. Conclusions are drawn in Section 7.

2 System Model and L,~Norm Metric

In this paper, we consider coherent combining, differential combining, and noncoherent combining for
coherent linear modulation formats (e.g. M—ary quadrature amplitude modulation (M-QAM), M-
ary phase—shift keying (AM—PSK)), differential M/—PSK, and binary frequency—shift keying (BFSK),

respectively.

2.1 Signal Model

Assuming L diversity branches, for coherent linear modulation and differential M—PSK the received
signal in the [th branch and in the kth symbol interval can be modeled in equivalent complex

baseband representation as
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where 7;, h;, and n[k| denote the average signal-to—noise ratio (SNR), the fading gain, and the
noise in the Ith diversity branch, respectively. The transmitted symbols b[k] € A are normalized
to E{|b[k]|*} = 1 and taken from an M-ary alphabet A. In case of differential M—PSK, b[k] is
obtained from a[k] € A via differential encoding b[k] = a[k]b[k — 1].2

The noise is assumed to be independent of the fading gains but the noise samples* n;, 1 <1 < L,
may be statistically dependent and non—Gaussian. The noise variance is given by o7 = &{|n;|?},
1 <1 < L. The only restriction that we impose on the noise is that all joint moments of the n;,
1 <1< L, exist, i.e., E{ny*(n})"'ny*(ny)"*---nf"(n;)"*} <ooforall k> 0,1, >0, 1<I<L.
Most practically relevant types of noise fulfill this condition (see next section). An exception is
a—stable noise for which moments of order greater than o do not exist and which is sometimes used
to model impulsive noise [20].

The fading gains h; are modeled as independent, non—identically distributed (i.n.d.) Gaussian
random variables with mean h; £ £{l;} and variance o7 = E{|h;—h,|*}, i.e., i.n.d. Ricean fading is
assumed. Note that for 7; in (1) to be the SNR, the power of the fading gains has to be normalized
to E{|l|*} = 07, 1 <1 < L. The Ricean factor is defined as K; = |Iy|*/o7, and Rayleigh fading
results as a special case for K; =0, 1 <[ < L.

For BFSK the signal model in (1) has to be augmented since, in this case, in each diversity
branch the outputs of two matched filters (MFs) are processed. The first MF output is still given

by (1) and the second MF output is modeled as
7=\ b + 7, 1<Ii<L, (2)

where b, b € {0, 1}, b # b, and 7; denotes the noise in the second MF output. While for AWGN n
and n; are statistically independent, this is not necessarily true for non—Gaussian noise. However,

this does not affect the proposed asymptotic performance analysis and metric adaptation.

3In this paper, £{-}, [T, []*, O(:), and Io(-) denote statistical expectation, transposition, complex con-
jugation, the big O notation, and the zeroth order modified Bessel function of the first kind, respectively.
Furthermore, A = B means that A is asymptotically (i.e., for high SNR) equal to B and a function f(z) is o(x)

if lim, o f(z)/x = 0.
4To simplify our notation, we drop the time index & in variables such as n;[k] whenever possible.
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2.2 Noise Models

In the following, we briefly discuss some important types of noise for which the analysis and metric
optimization in this paper is applicable.

1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the probability density function (pdf)
of the noise in the [th diversity branch is given by

I
- Gl Il <<
fu(ny) = Z >~ eXP |~ 5 , 1<I<L, (3)

i=1 n,i,l n,i,l

I I -
where ¢;; >0, >, cii=1,and o), > i, ¢iy0n;, = 0f, are constants. Special cases of GMN

include e-mixture noise (I =2, ciy=1—¢, coy =€, 001, =07 /(1 — e+ Kie), 045, = Koo 1,
0 < ¢ <1, and k > 1) and Middleton’s Class A noise (I — oc). GMN is a popular model for
impulsive noise in systems with receive antenna diversity [9] and for partial band interference in
frequency hopping (FH) systems with frequency diversity [5].

2) Co—Channel Interference | (CCI-I): The interference caused by I co—channel interferers

in a system with receive antenna diversity can be modeled as [4]

I ko
mlk] =Y g > pilslbilk— k], 1<I1<L, (4)
=1 r=k1

where g;;, p;[k], and b;[k] denote the fading gain at the [th receive antenna, the effective pulse
shape, and the transmit symbols of the ith interferer, respectively. p;[k] depends on the transmit
pulse shape of the interferer, the receiver input filter of the user, and the delay 7; between the ith
interferer and the user. The ith co—channel interferer is synchronous and asynchronous for 7; = 0
and 7; # 0, respectively. The limits k; and ko are chosen such that p;[k] =~ 0 if k < ky or k > k.
Here, we model the interference channel gains g;; as (possibly correlated) Ricean fading gains with
variances o, and Ricean factors /;;;. We note that CCl-l is spatially dependent even if the
channel gains g;; are independent because the term Zﬁikl pilk|bi[k — K| is common to all diversity
branches.

3) CCI-lI: The CCl model for FH systems with frequency diversity is slightly different from
CCI-I. Assuming the synchronous case and that at hopping frequency [, 1 < [ < L, co—channel
interferer 7, 1 <+¢ < I, is present with probability €;;, 0 <¢;; < 1, the resulting interference can be

modeled as

I
n = ZXi,lgi,lbi,la 1<I<L, (5)
=1
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where the X ; are mutually independent, and X;; = 1 and X;; = 0 with probabilities €;; and 1 —¢;,
respectively. b;; denotes the transmit symbols of the ith interferer at the /th hopping frequency
and the interference gains g;; are modeled as i.n.d. Ricean fading with variances o7, ; and Ricean
factors K, ;;. CCI-ll can be used to model the interference in systems that use FH for multiple
access (e.g. Bluetooth).

4) Generalized Gaussian Noise (GGN): I.n.d. GGN is a popular model for non—Gaussian
noise [7, 21]. The corresponding pdf for the Ith diversity branch is given by

B (4/6) ox ml?
2m(T(2/))? p( o

where ¢; = (I'(2/8,) /T'(4/5,))?/?, and 3, 0 < 3, < oo, denotes the shape parameter. GGN contains

fn(m) =

), 1<i<I, (6)

Laplacian (3 = 1) and Gaussian (3, = 2) noise as special cases. We note that the L,—norm metric
with appropriately chosen parameters is the ML metric for i.n.d. GGN [13].

5) UWB Interference: The interference from both multi-band orthogonal frequency division
multiplexing (MB-OFDM) UWB and impulse-radio (IR) UWB is in general strongly non-Gaussian
[6, 7]. We will test the theory and algorithms developed in this paper for interference caused by
the MB-OFDM UWB and IR-UWB signal formats standardized by ECMA [22] and IEEE 802.15.4a
[23], respectively.

We note that the proposed analysis is also applicable to any linear combination of the noises

specified in 1)-5).

2.3 L,~Norm Metric

In this subsection, we present the adopted L,—norm metrics for the considered combining schemes.

Coherent Combining (CC): The L,—norm metric for CC is given by
~ L ~
me(b) = ailri — Vb, (7)
[

where b € A is a trial symbol, and ¢ > 0 and p; > 0, 1 < [ < L, are metric parameters that
can be optimized for performance maximization for the underlying type of noise.” The decision b

is that b which minimizes m,(b). For ¢ = 1 and p; = 2, 1 <1 < L, the L,~norm metric m,(b)

5We note that, strictly speaking, me(b) is only a norm for p; > 1, 1 <[ < L. However, whether or not m.(b)

is a norm is not important in our context.
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is equivalent to MRC which is optimal in AWGN. For convenience we define the parameter vectors

a=[q ...q) andp = [p1 ... pr]”.

Differential Combining (DC): DC is applied for differential A/-PSK modulation and the

corresponding L,—norm metric is

ma(@) =Y qlr[k] — ar [k — 1], (8)

where a € A is an M-PSK trial symbol. For the special case ¢ = 1 and p; =2, 1 <[ < L, the
differential L,—norm metric m,(a) is equivalent to well-known differential EGC. The decision a is
that @ which minimizes mg(a).

Noncoherent Combining (NC): The considered NC metric for BFSK is

L
my =Y (I —[n"), (9)
=1

where we decide for b = 1 if m,, > 0 and for b = 0 otherwise. For ¢y =1 and p, =2, 1 <[ <L,

the L,—norm metric in (9) is equivalent to conventional square-law combining for BFSK [1].

3 Asymptotic Analysis of L,~Norm Combining

In this section, we develop asymptotic expressions for the pairwise error probability (PEP) of the
combining schemes described in Section 2.3 and relate these PEPs to the respective asymptotic bit

error rates (BERs).

3.1 Asymptotic PEP of CC

We show in Appendix A that for any type of noise with finite moments, the asymptotic PEP of CC
for 4, — 00, 1 <1 < L, is given by

2L T, <F <%> li—lf(l exp (—Kl)>
P (™ ) T (S8 2 41

P.(d) ) Mn(q,p), (10)

Sl 2/m }

where M,(q,p) £ & { <Zf:1 ql\nl\m) can be interpreted as a generalized moment of

the elements of noise vector n = [n; ..., n.]7, and d denotes the Euclidean distance between the



Nasri et al.: Adaptive L,~Norm Diversity Combining 7

alternative signal points considered for the PEP. The generalized noise moment M, (q,p) in (10)
can be calculated in closed form for special cases, cf. Section 4. Nevertheless, even if the generalized
noise moment is not available in closed form, (10) can be used for fast evaluation of the asymptotic
PEP since M,(q,p) is independent of the SNR and has to be evaluated only once, which can be
done e.g. by Monte—Carlo simulation. More importantly, (10) reveals how parameters ¢ and p;
influence the asymptotic PEP, which will be exploited for metric optimization in Section 5.

For complexity reasons it may be desirable for some applications to limit the number of metric
parameters to be optimized. For this purpose we may set ¢; = ¢ and p; = p, 1 <[ < L, and simplify
(10) to

2 L L 14K
2 (0 (3)) T (K5 e (1)
P,(d) = T Mo(p), (1)
d*F T[,Z, () p*T (7 + 1)
A L 2L/p -
where M, (p) = & <Zl:1 |nl|p> . Note that (11) depends on p but is independent of ¢. For
the special case p = 2, (11) is equivalent to [16, Eq. (10)] for independent, identically distributed

(i.i.d.) fading.

3.2 Asymptotic PEPs of DC and NC

The asymptotic PEPs of DC and NC can be derived in the same way as those for CC.

1) DC: The asymptotic PEP of M—-PSK with DC is also given by (10) and (11) if the respective
generalized noise moments of n are replaced with the generalized noise moments of the effective
noise vector

z = nlk] — a[k]nlk — 1]. (12)
If the n,[k] are rotational symmetric and n[k] and n[k — 1] are statistically independent, a[k]| has
no influence on the PEP and we may use z = n[k] — n[k — 1] instead of (12).

2) NC: It can be shown that we formally obtain the PEP of BFSK with NC by letting d = 1 in

(10) and (11), respectively.

3.3 Asymptotic BER

The asymptotic (average) BER can be obtained from the asymptotic PEP as [24]

Smin

BER =
10g2(M )

Pe(dmin)a (13)
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where dyin and &, denote the minimum Euclidean distance of signal constellation A and the
average number of minimum-—distance neighbors, respectively. For example, for all binary modulation
schemes & = 1, for binary PSK (BPSK) dpi, = 2, and for M—-QAM &y, = 4(1 — 1/+/M) and
in = 1/6/(M —1).

3.4 Combining and Diversity Gain

It is convenient to express the asymptotic BER as BER = (G.y) % [15, 24], where G, and G4
denote the combining and the diversity gain, respectively, and 7 = (HlL:1 A)VE e, ¥[dB] =
%Zf:fyl [dB]. From (10) we observe that the diversity gain is given by Gy = L independent of
metric parameters q and p, and independent of the type of noise. The combining gain for CC with

L,—norm metric can be expressed as

&2 logy(M)VEY 10 & 1+ K
G.[dB] = 10 logy, ( 2;/(L ) -7 Zloglo (TZ exp (—Kz))
min =1 l

/L
L 2/pu (T L 2,4 !
10 Pudy 2ic1 ;T 10
+f21og10 < <r < )p >> = 7 log1 (Mn(g,p)) . (14)
=1 o

2
p1

Eq. (14) reveals that the combining gain consists of four terms. The first and the second term on
the right hand side (RHS) of (14) depend on the signal constellation and the fading parameters,
respectively, but are independent of the metric parameters g and p and the properties of the noise.
The third term on the RHS of (14) is a function of g, p, and L but is also independent of the noise.
Only the last term on the RHS of (14) depends on the properties of the noise via the generalized
moment M, (q, p) of the noise samples. Eq. (14) reveals that the optimal parameters Qopt and Py,
which maximize G, only depend on L and the type of noise (via M,(q, p)) but are not influenced
by the the modulation scheme and the Ricean factors K;, 1 <[ < L.

For DC and NC similar observations as for CC can be made with respect to diversity gain and

combining gain.

4 Generalized Noise Moments

In this section, we provide analytical results for the generalized noise moments defined in Section

3 for selected types of noise. To make the problem tractable, in this section, we consider not
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necessarily independent but identically distributed (n.i.d.) noise and M, (p), which depends only on
p, instead of M, (q,p). To simplify our notation, in the following, we will drop subscript [ in all
K

4.0, €tc.) if the noise is n.i.d. (which includes i.i.d. as

- - 2
noise parameters (e.g. in ¢;, €, K, Oyl

a special case).

4.1 Exact Noise Moments for L = 2

First, we consider the special case L. = 2. Furthermore, for independent complex Gaussian random
variables (RVs) @1 and z, having variances 02 and o2 we define Mg (p;02,,02)) = E{(|z1|P +
|25|P)24/P}. Using the substitutions |z1| = 7sin®? ¢ and 25| = 7cos?P p with 0 < r < oo and

0 < ¢ < 7/2, we obtain

48Kk
M (p7 ip 3232): 24/pp1 IG(p7I€>7 (15)
where K £ o o2 /o2, and the finite range integral I;(p,x fo sin(2¢))P~1/(sin¥? ¢ +

K cos*’? p)* dp depends only on p and k and can be easily evaluated numerically.

Based on the result for Mq(p;o xl,afw), we provide analytical expressions for the generalized
moments of AWGN, n.i.d. Rayleigh—faded CCI-I (i.e., K,; =0, 1 <4 < I)% and i.i.d. Rayleigh—
faded CCI-II (single interferer at each hopping frequency, i.e., I = 1) in Table 1. Furthermore, we
also provide an expression for i.i.d. GGN in Table 1, which can be obtained in a similar fashion as the

generalized moment in the Gaussian case and which contains the finite range integral Igq(p, 5) =

i (sim(20)) 71 (sin®1? p 4 cos? P )" i,

4.2 Noise Moments for General L

For general L a closed—form expression for the generalized moment can be calculated for several
special cases. In particular, we will provide accurate approximations for M, (p) for n.i.d. noise
distributions that are based on the Gaussian distribution (i.e., i.i.d. GMN, n.i.d. Rayleigh—faded
CCI-l, i.i.d. Rayleigh—faded CCI-Il), and exact results for unfaded n.i.d. CCl-I and i.i.d. CCI-Il with
I'=1and K;; — o0, 1 <1< L.

1) Gaussian—based Noise Distributions: We first consider i.n.d. Gaussian RVs x; with vari-

ances 02, 1 <1< L, and our goal is to calculate Mq(p;o2 ,..., 02, ) 2 E{(XL, [a[?)?/P}. It

6We note that the fading gains 914, 1 <1 < L, of nid. CCI-T are i.i.d. RVs. However, the resulting CCI-I

is n.i.d. since each interferer affects all receive antennas simultaneously, cf. (4).



Nasri et al.: Adaptive L,~Norm Diversity Combining 10

can be shown that the pdf of y; = |x;|? is given by

2 a/p v
fuy) = —y" exp 2 | (16)

po—xl T

which is a Weibull pdf. We are interested in the pdf of z = Zle y;- Unfortunately, a closed—form
expression for a sum of Weibull RVs is not known. However, an accurate approximation for the pdf

of z is given by the a—u pdf [25]

ap—1 a

f(2) = % exp (—%) : (17)
where parameters «, p, and €2 have to be optimized for the best possible agreement with the true
pdf of z. For this purpose, the efficient moment—based method in [25, Eq. (5)—(9)] may be used. We
note that in [25] only i.i.d. Weibull variables are considered, whereas we allow different variances aﬁl.
This small extension can be accommodated by replacing [25, Eq. (9)] by E{y;'} = oZ'T'(1+pn/2),
n €40, 1,2, ...} (y is referred to as R; in [25]), and we found the corresponding approximation

to be still very accurate. Using (17) we obtain

P(p+2L/(pa)) (2
MGp;Uzl,...,ai): — . 18
| L T \n )
Based on the approximation for Mg (p; agl, ce agL) in (18), we can find the generalized moments

of AWGN, i.i.d. GMN, n.i.d. Rayleigh—faded CCl-I, and i.i.d. Rayleigh—faded CCI-II (I = 1) given
in Table 2 for general L.

2) Unfaded CCI: We first consider n.i.d. CCI-l. Assuming a single, unfaded interferer (K, —
o0), (4) simplifies to

k] = /1 22 mlelbi[k — k], 1<I<L, (19)

rk=k1

with uniformly distributed, mutually independent phases ©,; € (—m, 7], 1 <1 < L. Based on (19),
the exact result for the generalized moment of unfaded CCl-I given in Table 2 can be obtained.
Similarly, specializing (5) to / =1 and K,; — oo, the exact expression for i.i.d. CCI-II in Table 2
can be derived.

The asymptotic PEP for CC and NC can be (approximately or exactly) obtained by combining
the generalized moments in Tables 1 and 2 with the PEP formula in (11). Since the effective noise
for DC is more complicated than the noise for CC and NC, cf. (12), a closed—form evaluation of the

generalized moments does not seem possible for DC in most cases.
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5 Metric Optimization

In this section, we optimize the metric parameters p and g for minimization of the asymptotic BER.

In the following, we consider both off-line and on—line optimization.

5.1 Off-line Optimization

If the generalized noise moments are known, the metric parameters can be optimized off-line based
on (10) or (11). If the underlying type of noise is a priori known, the generalized noise moments may
obtained in closed—form, cf. Tables 1 and 2, or, if this is not possible, from Monte—Carlo simulation
using locally generated noise samples.” Monte—Carlo simulation can also be applied to estimate the
generalized noise moments from observed noise samples. To gain some insight and to make the
problem tractable, we assume n.i.d. noise in this subsection. For n.i.d. noise we may set ¢ = ¢
and p; = p, 1 <1 < L, in metrics (7)—(9) without loss of optimality, i.e., we can base our off-line
optimization on (11) and have to optimize only parameter p. Unfortunately, for most types of noise
a closed—form optimization of p is not possible. An exception is n.i.d. unfaded CCl-I, where we can
show based on (11) and Table 2 that the optimal p is given by p,,t = oo corresponding to metric
me(b) = maxgeqi,...,03{ |7 — VAihib|}. Furthermore, exploiting (14) we obtain for the asymptotic

SNR gain G, of a metric using p > 2 over the Ly—norm metric

1-1/L r1-2/p
p L pP—00 L

For example, for L = 2 we obtain G5y = 1.3 dB and G, = 1.5 dB. Furthermore, using the Stirling
formula [26] for L — oo we can show that G, = 10log,,(e) = 4.3 dB. We note that it can be
shown that popy = 0o and (20) are also valid for DC and NC in n.i.d. unfaded CCI-I.

If the optimal p cannot be obtained in closed form, numerical optimization is necessary. To
illustrate this, we show in Figs. 1 and 2 the BER of BPSK as a function of p for i.i.d. Rayleigh fading
with L = 2 and L = 3, respectively. Details about the considered types of noise can be found in the

captions of the figures. The solid lines represent analytical results generated based on (11), (13),

"Note that if the underlying noise model is known a priori, ML combining can be applied, of course. However,
even in this case the proposed L,—norm metric may be preferable if the ML metric is computationally complex
or causes numerical problems. For example, the GMN pdf consists of a sum of exponential functions which may

cause numerical problems for high SNRs.
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and, respectively, Table 1 (Fig. 1) and Table 2 (Fig. 2). The markers indicate simulation results and
the bold " +" markers denote the minima of the analytical BER. The agreement between analytical
results and simulation results is excellent in both Figs. 1 and 2.

As expected, Figs. 1 and 2 show that p = 2 is optimal for AWGN and also for Rayleigh—faded
CCI-l. In constrast, for heavy—tailed types of noise such as e—mixture noise and Rayleigh—faded
CCI=I1 popt < 2 holds. For short-tailed noise such as unfaded CCI-l pop, > 2 is valid. For i.i.d. GGN
with 3 = 1 we obtain po,, = 1 from Fig. 1 as expected. While all other BER curves have a single
minimum in the considered p range, the BER for unfaded CCI-II in Fig. 2 has two local minima.

Figs. 1 and 2 clearly illustrate the benefits of optimizing p and confirm our analysis.

5.2 On-line Optimization

In practice, the statistical properties of the noise impairing a wireless communication system are
often not known a priori and may change with time. Since multiplication of the L,—norm metrics
(7)-(9) with a positive constant does not change the decision, we can set ¢g; = 1 without loss of
optimality and optimize only the 2 — 1 elements of vector & = [g, ... q;, p]”.

Since the metric coefficients may not be updated in every symbol interval, we introduce a new
time t = N,,,k, where k is the symbol time and N,, > 1 can be used to specify how frequently the
metric coefficients are updated. Furthermore, the proposed adaptive algorithms require an estimate

of the cost function to be minimized. For CC we obtain based on (10) the cost function estimate

7.1 (2) A
. — : M (, t) (21)
=1 <plqz ) r <Zzz1 T 1)

1 Ne—1 / L S 2/m
V(. 1) 2 FZ( qlmz[t—unpl) , (22
€ =0 1

Li(x) =

[>

I=
where we have neglected all irrelevant terms and N, denotes the number of time steps used for
estimation of the generalized moment M, (x, t) at time t. Furthermore, y[t] £ r, — /Fihblt],
where b[t] may be a training symbol or a previous decision. A similar estimate for the cost function
may be generated for DC and NC. In the following, two different algorithms for optimization of x
are provided.

1) Multivariate Stochastic Approximation: The first algorithm is based on the finite differ-

ence stochastic approximation (FDSA) framework with gradient estimation [18]. This framework is
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particularly well suited for the problem at hand since it employs a Kiefer-Wolfowitz type of gradient
estimate g,(x;) avoiding cumbersome differentiation of L;(x) [17]. In the tth iteration the FDSA

algorithm generates the estimate x; for the optimal x as [18]

Tyl = wt_atgt(wt)> (23)

Li(x; + crey) — Li(xy — creq) Li(x; + crear—1) — Li(xy — crear—1) 4

g = e 24
gt(a:t) 2Ct QCt 7( )

where e, is a column vector of length 2L — 1 with a 1 in position n and 0's in all other positions.
If n[k] is stationary and a; and ¢ fulfill ¢, > 0, ¢, > 0, a; — 0, ¢, — 0, > .2, a; = oo, and
Sosai/ci < oo, the above algorithm will find the global minimum if the BER has only one
minimum and at least a local minimum otherwise [18] (as long as the BER and L;(x) meet the
mild conditions required for convergence outlined in [18]). However, since, in practice, n[k] will be
non—stationary, we may set a; = a and ¢; = ¢, Vt, where a and ¢ are small positive constants to
give the algorithm some tracking capability. Furthermore, since the p; may have a large dynamic
range (e.g. popt = oo for unfaded CCl-l), the tracking ability of the algorithm can be improved by
limiting the elements of x; to some finite value .., at the expense of some loss in performance
if the optimal element of x exceeds ... Note that for the problem at hand the FDSA algorithm
may not find the global optimum as the cost function may have multiple local minimia, cf. Fig. 2.
However, we did not find this to be a problem in practice as the BERs of most types of noise seem
to have only a single minimum, and in case of multiple minima, all minima seem to result in similar
performances. For initialization of the FDSA algorithm ¢ = 1 and p, =2, 1 <[ < L, is a good
choice since this guarantees that the solution found by the algorithm in combination with CC, DC,
and NC will not perform worse than conventional MRC, EGC, and NC, respectively

2) Random Search Method: The second method that we consider is a localized random
search (LRS) method. In contrast to FDSA algorithms, LRS algorithms do not get stuck in local
minima and find the global minimum under mild conditions on the cost function [18]. Based on x;,

the proposed LRS algorithm generates a new estimate [18]
JAIH_l = x; + dt, (25)

where d, is a random vector whose elements are i.i.d. Gaussian random variables with variance o73.
If at least one of the elements of @, lies outside the predefined search space [0, Zyax], (25) is

repeated until all elements of &, are inside the search space. Subsequently, if L(&;1) < L(x;), we
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let ;1 = &4y, otherwise ;1 = ;. In a non—stationary noise environment, the above algorithm
is run continuously. The speed of convergence of the LRS algorithm depends crucially on the size
of the search space (i.e., Tyax) and on o7 [18]. For initialization, the same initial vector as for
the FDSA is appropriate. Since LRS algorithms suffer from performance degradation if the cost
function estimate is noisy [18], comparatively large N, may be advisable. Note, however, that the
tracking capabilities of the algorithm decrease as NV, increases. We found N, = 100 to give a good
compromise between estimation noise suppression and tracking capabilities for the application at
hand.

3) Complexity: From a practical point of view it is of interest to compare the complexity of the
proposed adaptive algorithms assuming a fixed—point implementation with s digits. Denoting the
complexity of one multiplication by j(s), the complexity of evaluating the Gamma and the power
functions is O((log(s))?u(s)) [27], whereas that of a division is O(y(s)). Taking this into account,
neglecting the complexity of additions, and assuming that 2/p;, 1 < [ < L is obtained form a
look—up table, the complexities of one iteration of the FDSA and LRS algorithms are given by

Crsa = O (2L — D)(N.(L + 1) + 2L + 1)(log(s))?u(s)) (26)

and
Crrs = O ((Ne(L 4 1) + 2L + 1)(log(s))*u(s)) , (27)

respectively. A comparison of (26) and (27) shows that, since typically N, has to be chosen much
larger for the LRS algorithm (e.g. N. = 100) than for the FDSA algorithm (e.g. N. = 1), the
complexity per iteration of the LRS algorithm is larger than that of the FDSA algorithm for typical
values of L (e.g. L < 10).

4) Performance: In Figs. 3 and 4, we show metric coefficients ¢;, 2 <1 <4, and p;, 1 <1 < 4,
vs. iteration t of, respectively, the FDSA and the LRS algorithms for i.i.d. Rayleigh fading with L = 4
and SNR = 16 dB. The corresponding BERs of BPSK with CC are shown in Fig. 5. Five different
types of noise are considered which are specified in the caption of Fig. 3 and at ¢ = (v — 1) - 10° we
switch abruptly to a new noise N, 1 < v < 5. For the FDSA algorithm we used a; = a = 4-107%,
¢t =c =107 xypax = 10, N, = 1, and N, = 1. For the LRS algorithm we adopted o2 = 0.1,
Tmax = 10, N,, = 1, and N, = 100. For both algorithms x; was initialized with ¢, =1, 2 <[ < 4,
and p; =2, 1 <[ <4, and previous decisions l;[t] were used in the adaptation process. Figs. 3 and

4 show the results for one typical adaptation process and the corresponding BERs in Fig. 5 were



Nasri et al.: Adaptive L,~Norm Diversity Combining 15

calculated with (10) and (13), where the generalized noise moments were obtained by Monte—Carlo
simulation. Figs. 3-5 show that both algorithms work well and that after each switching to a new
type of noise, steady state operation is achieved quickly. Thereby, with the chosen settings, the
steady state error of the LRS algorithm is larger than that of the FDSA algorithm, but the LRS
algorithm converges faster to the new steady state after the type of noise has changed. Note,
however, that the trade—off between tracking capabilities and residual error strongly depends on how
the parameters of the algorithms (e.g. a, ¢, N,, and 02) are chosen [18]. Furthermore, as expected,
Figs. 3 and 4 confirm that in steady state for the n.i.d. noises N1 and N5 all ¢; and p; are equal,
respectively, whereas for the i.n.d. noises N2, N3, and N4 either the ¢; or/and the p; are not equal.
For N5 p; = o0, 1 <[ < 4, is optimal and both algorithms yield p; = 10, 1 <[ < 4, because we
set Tmax = 10. Fig. 5 shows that the L,—norm metric with FDSA and LRS adaptation substantially

outperforms the Ly—norm metric (i.e., MRC).

6 Numerical Results and Discussions

In this section, we verify the analytical results derived in Sections 3 and 4 through simulations
and compare the performance of the adaptive L,—norm metric with that of other popular metrics.
For convenience we consider n.i.d. noise throughout this section and drop subscript [ in the noise
parameters. The respective noise parameters are specified in the captions of the figures. The optimal
metric parameter p,,, was obtained with the FDSA algorithm.

In Figs. 6 and 7, we show the BER of 16-QAM with CC in i.i.d. Rayleigh fading with L = 2 for the
adaptive L,—norm metric and several other popular robust metrics for, respectively, i.i.d. e-mixture
noise and n.i.d. unfaded QPSK CCI-I. To facilitate the definition of the various metrics, we introduce
the notation u; £ |r; — \/31hb|. We consider the Huber metric m(b) = S°1, my(b), my(b) = u?/2
if u; < 8, and my(b) = du; — 62/2 if w;, > & [11], the Meridian metric m(b) = 3. log(u; + 0)
[12], and the Myriad metric m(b) = S log(u? + 6%) [12]. Note that for all these robust metrics
parameter ¢ has to be optimized by exhaustive search, which is quite tedious, since, unlike for the
L,—norm metric, a systematic optimization framework is not available. For Figs. 6 and 7 the robust
metrics were optimized by simulation for SNR = 30 dB. Fig. 6 shows that for the heavy-tailed
e—mixture noise the L,—norm metric with p.,; = 0.4 outperforms the other robust metrics and the

gap to the optimal ML metric is less than 1 dB. Fig. 7 shows that for short—tailed unfaded CCl-I the
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Huber and Myriad metrics are essentially equivalent to the Lo,—norm metric and are outperformed by
1.3 dB by the L,—norm metric with p = 20 (popt — o0 holds in this case), as predicted in Section
5.1. We note that the ML metric does not seem tractable for unfaded CCI-I. Interestingly, while the
L,—norm metric was optimized based on the presented asymptotic analysis, Figs. 6 and 7 suggest
that it also performs well for low SNRs.

In Fig. 8, we show the BER of BFSK with NC in i.i.d. Ricean fading with . = 3 and i.i.d. Rayleigh—
faded QPSK CCI-II. Fig. 8 shows that the proposed L,—norm combining also achieves considerable
performance gains over Lo—norm combining for BFSK with NC and in Ricean fading. As expected
from Section 3.4, the optimal value p., = 0.5 is independent of the Ricean factor K. Although for
K = 6 dB the simulated BER approaches the asymptotic BER only for BER < 107!, the L,—norm
metric optimized for the asymptotic BER also results in large gains for higher BERs. For example,
for BER = 1074, the L,—norm metric achieves a gain of 3.5 dB over the Ly—norm metric.

Finally, in Fig. 9, we show the BER of 4-PSK in i.i.d. Rayleigh fading with L = 3 and impairment
by MB-OFDM UWB and IR-UWB interference following the ECMA [22] and IEEE 802.15.4a [23]
standards, respectively. The bandwidth of the receiver input filter of the 4—PSK system is assumed
to be B = 4 MHz. Results for both CC and DC are shown in Fig. 9. For both combining schemes
and both types of UWB, p = 30 was close to optimal for the L,—norm metric. Fig. 9 shows that
L,—norm combining also achieves substantial gains over Ly—norm combining in UWB interference.
Thereby, the performance gains are larger for CC than for DC. This can be explained by the fact
that the effective noise for DC is the sum of two independent noise samples, cf. (12), and thus,
according to the Central Limit Theorem [28], is closer to a Gaussian distribution than the noise

relevant for CC (and NC).

7 Conclusions

In this paper, we have considered general L,—norm coherent, differential, and noncoherent diversity
combining in non—Gaussian noise and interference. For the asymptotic regime of high SNR we
have derived closed—form expressions for the BER valid for i.n.d. Ricean fading and non—Gaussian
noise and interference with finite moments. The asymptotic BER expressions reveal that while the
diversity gain of L,—norm combining is independent of the type of noise and the metric parameters,

the combining gain depends on generalized noise moments and on the metric parameters. For on—
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line metric optimization, we have developed two efficient adaptive algorithms which do not require
any a priori knowledge about the noise statistics and can also cope with non-stationary noise.
Simulation results have confirmed the analytical results presented in this paper and have shown that
the proposed adaptive L,—norm metric outperforms other robust metrics such as Huber's metric,

the Myriad metric, and the Meridian metric in both heavy—tailed and short—tailed noise.

A Asymptotic PEP for CC

Assuming that b was transmitted and b = b was detected, the corresponding PEP can be expressed

as

P.(d) = Pr{m.(b) > m.(b)}, (28)

where d = |e| and e £ b — b. In a first step, we calculate the PEP conditioned on the noise vector
n = [n; ... ng]”. With (7) and (28) this conditional PEP can be obtained as
me(b)

P.(d[n) = / fu(2) dz. (29)

0
where we have used the fact that due to the conditioning on 1, m.(b) = 3.1, qi|m|" is a constant,
and f.(2) is the pdf of m.(b) = Y2 ql/Fihie + ny|P', which we calculate step-by—step in the
following.

The conditional pdf of z; = |\/3;he + ny| is a Ricean pdf given by

2 2 Yih 2 Yih
)= -2 (_xl + |V + ) i (2:@1\@ 16+nl|>. (30)

T2~ 42 2~ +2 27, +2
d Y10}, d Y10}, d V10,

The pdf of the transformed variable y; = 21" is given by f,,(y) = pilyll/pl*lfxl <yll/pl> and the

scaling with ¢; leads to 2z, = qy; with pdf f,, (%) = ifyl(zl/ql). Taking into account these identities
the pdf of z; = q|\/7ilue + ny|F* is given by
2 2/pi—1 2/pi 2/p1y /= h 2 p| /= i
z —exp gt a T VAe + I 27 [VAtue +ml | (31)

fZl(Zl) = : 2 1
d*yi07 p1g; m d*yi07,q, m

_ 2
d*yi07,q;
Considering the asymptotic case 7; — oo and exploiting the Taylor series expansions of exp(-) and
In(-), f.(z) can be written as

C _
falz) = ;jzf/pl "o, (32)
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where C; 2 2exp (—|hu[?/02,) /(d®0} pig;’™). Thus, the moment generating function (MGF) of
2 can be expanded as @, (s) = E{e~*} = C\T(2/p)7; s~2/7 + o(3;"). Since conditioned on n
the 2 are statistically independent, the MGF of m.(b) is given by ®.(s) = [], ®.,(s), and the

asymptotic expansion of the corresponding pdf is given by
I (r (7)) L
fulz) = —— Pl EmE o (T - (33)
L 2 L - !
r (Zl:l 171) || el =1
Using this result in (29) leads to
(@ () ()
Pu(dln) = ————" (Z qz\nzwpl> +o (H m—l) S By
r (Zlel ;% + 1> H1L:1 Vi \i=1

If all joint moments of the elements of n are finite, averaging P.(d|n) in (34) with respect to n

yields (10). The assumption of finite joint noise moments is necessary, since the terms absorbed
into o([], 3, %) in (34) involve sums of products of the elements of 1 which have to remain finite

after expectation.
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Figures and Tables:

Table 1: Generalized noise moments M, (p) for L = 2 for various types of n.i.d. noise. In
particular, we consider AWGN, i.i.d. GMN, n.i.d. Rayleigh-faded CCI-I (s = [s; ...
5; = Ziikl pilk)bi[k], S contains all possible values of s), i.i.d. Rayleigh—faded CCI-II (I = 1,

A . . A A _
br = [big ... bl,L]T, M contains all possible values of by, ¢; = €1, co = 1 — €, 0371

52, %0), and i.i.d. GGN.
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Table 2: Approximations for the generalized noise moments M,,(p) for general L for the same

types of n.i.d. noise considered in Table 1. Additionally, exact results for unfaded n.i.d. CCI-I
(I =1) and ii.d. CCI-II (I =1, & £ 1, & £ 0) are provided.
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Figure 1: BER vs. p for BPSK, i.i.d. Rayleigh fading, L. = 2, SNR = 24 dB, and
different types of n.i.d. noise. Noise parameters: [.i.d. e-mixture noise (¢ = 0.1, k = 10),
n.i.d. Rayleigh-faded QPSK CCI-I (I =1, 7y = 0.257 with symbol duration 7', raised
cosine pulse shape with roll-off factor 0.22), i.i.d. Rayleigh—faded QPSK CCI-II (I =1,
€1 = 0.25), and i.i.d. GGN (B =1).
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Figure 2: BER vs. p for BPSK, i.i.d. Rayleigh fading, L. = 3, SNR = 20 dB, and
different types of n.i.d. noise. Noise parameters: l.i.d. e-mixture noise I (¢ = 0.1,
k = 10), i.i.d. e-mixture noise II (¢ = 0.1, x = 5), n.i.d. Rayleigh-faded and unfaded
QPSK CCI-I (I = 1, 14 = 0.25T, raised cosine pulse shape with roll-off factor 0.22),
and i.i.d. Rayleigh—faded and unfaded QPSK CCI-II (I =1, ¢; = 0.41).
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Figure 3: Metric coefficients ¢;, 2 < 1 < 4, and p;, 1 <[ < 4, vs. iteration ¢t of FDSA
algorithm. N1: L.i.d. Rayleigh-faded QPSK CCI-II (I = 1, ¢ = 0.1) and AWGN, where
the CCI-II power is ten times larger than the AWGN variance; N2: I.n.d. Gaussian
noise with variances o? = 1, 03 = 0.5, 053 = 0.5, 07 = 2; N3: Ln.d. e mixture noise
with ¢ = 0.1, 1 <[ <4, and k1 = 20, ko = 40, k3 = 50, k4 = 100; N4: I.n.d. GGN
with 81 = B = 3 and 3 = 4, = 1; N5: N.i.d. unfaded QPSK CCI-I (I =1, 74 = 0.3T,
raised cosine pulse shape with roll-off factor 0.22).
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Figure 4: Metric coefficients ¢;, 2 < | < 4, and p;, 1 <[ < 4, vs. iteration ¢ of LRS
algorithm. Noise types N1-Nb5 are specified in the caption of Fig. 3.
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Figure 5: BER of BPSK with CC vs. iteration ¢t for FDSA and LRS algorithms,
respectively. For comparison BER of Ls—norm combining is also shown. Noise types
N1-N5 are specified in the caption of Fig. 3.
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= Lp—norm (pOpt = 0.4, simulation)
r L2—norm (simulation)

|| —<— Myriad (& = 0.6, simulation)
—<&— Meridian (8 = 1.1, simulation)
| | —©— Huber (3 = 0.01, simulation)
—<— ML (simulation)

= Lp—norm (pOpt = 0.4, theoretical asymptotic BER)
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L_—norm (theoretical asymptotic BER)
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Figure 6: BER vs. SNR per bit per branch of 16-QAM with CC in i.i.d. Rayleigh
fading (L = 2) and i.i.d. e mixture noise (e = 0.1, x = 100). Solid lines with markers:
Simulation results. Bold solid and dashed lines: Asymptotic BER based on (11), (13),
and Table 1.
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Figure 7: BER vs. SNR per bit per branch of 16-QAM in i.i.d. Rayleigh fading (L = 2)
and n.i.d. unfaded QPSK CCI-I (I =1, 7y = 0.37', raised cosine pulse shape with roll-
off factor 0.22). Solid lines with markers: Simulation results. Bold solid and dashed
lines: Asymptotic BER based on (11), (13), and Table 2.
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Figure 8: BER vs. SNR per branch of BESK with NC in i.i.d. Ricean fading (L = 3)
and i.i.d. Rayleigh-faded QPSK CCI-II (I = 1, ¢; = 0.25). Solid lines with markers:
Simulation results. Bold solid and dashed lines: Asymptotic BER based on (11), (13),
and Table 2.
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Figure 9: BER vs. SNR per bit per branch of 4-PSK system with bandwidth B = 4
MHz and CC or DC in i.i.d. Rayleigh fading (L = 3) and MB-OFDM UWB [22] and
IR-UWB (N, = 32 bursts per symbol and L. = 128 chips per burst) [23] interference.
Solid lines with markers: Simulation results. Bold solid and dashed lines: Asymptotic
BER based on (11), (13), and Monte-Carlo simulation of generalized noise moments.



