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Abstract

In this paper, we introduce an adaptive Lp–norm metric for robust coherent, differential, and non-

coherent diversity combining in non–Gaussian noise and interference. We consider the general case

where all diversity branches may use different combining weights and different Lp–norms. We derive

a general closed–form expression for the asymptotic bit error rate (BER) for Lp–norm combining

in independent non–identically distributed Ricean fading and non–Gaussian noise and interference

with finite moments. The asymptotic BER expression reveals that the diversity gain of Lp–norm

combining is independent of the type of noise and the metric parameters. In contrast, the combining

gain depends on both the type of noise and the metric parameters. Thus, the asymptotic BER can

be minimized by optimizing the Lp–norm metric parameters for the underlying type of noise. For

this purpose finite difference stochastic approximation (FDSA) and localized random search (LRS)

algorithms are developed. Both adaptive algorithms do not require any a priori knowledge about

the underlying noise and are able to track changes in the noise statistics. Simulation results confirm

the validity of the derived asymptotic BER expressions, the effectiveness of the proposed adaptive

algorithms, and the excellent performance of the proposed adaptive Lp–norm metric compared to

other popular metrics.

1This paper has been submitted in part to the IEEE International Communications Conference (ICC),

September 2008.
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1 Introduction

Diversity combining is an efficient means for combating the detrimental effects of fading in wire-

less channels. For impairment by additive white Gaussian noise (AWGN) many different combining

schemes have been proposed for coherent, differential, and noncoherent detection and their perfor-

mances have been extensively studied [1]. Generally, these combining schemes are equivalent to the

evaluation of a metric that involves an L2–norm. Examples for such combining schemes include co-

herent maximal–ratio combining (MRC), differential equal gain combining (EGC), and noncoherent

combining (NC).

In practice, wireless communication systems are not only impaired by AWGN but also by various

forms of non–Gaussian noise and interference2 such as man–made and natural impulsive noise [2],

co–channel interference (CCI) [3, 4], partial–band interference [5], and ultra–wideband (UWB)

interference [6, 7]. Unfortunately, diversity combining schemes optimized for AWGN do not perform

well in non–Gaussian noise [7]–[9]. Of course, if the noise distribution is known in parametric

form, the distribution parameters can be estimated first, and optimal maximum–likelihood (ML)

combining can be applied subsequently, cf. [10] and references therein. However, in many cases,

such knowledge is not available at the receiver and noise distribution may even change with time.

This motivates the use of robust combining schemes and metrics, which perform well for a large

class of noise distributions and possibly have a tunable parameter which can be adjusted to the

underlying noise distribution. Prominent examples for such robust metrics include Huber’s M–

metric [11], Myriad and Meridian metrics [12], metrics involving hard and soft limiters [5], and the

Lp–norm metric [7, 13]. Thereby, the Lp–norm metric is particularly interesting since it performs

well in both noise with heavy–tailed distributions (e.g. impulsive noise) and noise with short–tailed

distributions (e.g. CCI) if p is adjusted accordingly [13]. However, finding the optimum p for a

particular type of noise is a formidable task, as appropriate optimization criteria are not known.

In this paper, we consider general Lp–norm metrics for coherent, differential, and noncoherent

combining, where different diversity branches may use different Lp–norms and different combining

weights. We derive analytical expressions for the asymptotic bit error rate (BER) of the considered

combining schemes with Lp–norm metric, which are valid for any type of noise with finite moments.

2To simplify our notation, in the following, ”noise” refers to any additive impairment of the received signal,

i.e., our definition of noise also includes what is commonly referred to as ”interference”.
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This analysis is similar in spirit to the asymptotic analysis of L2–norm metrics for AWGN and non–

Gaussian noise in [14, 15] and [16], respectively. The derived asymptotic BER expressions show

that the diversity gain is independent of the Lp–norm used and the type of noise. In contrast, the

combining gain depends on a generalized moment of the noise samples at the diversity branches,

which enables the development of simple metric optimization criteria that directly minimize the

asymptotic BER. We consider both off–line and on–line optimization of the metric parameters, and

develop for the latter case adaptive multivariate finite difference stochastic approximation (FDSA)

[17, 18] and localized random search (LRS) [18] algorithms. We note that the proposed adaptive

diversity combining scheme is conceptually different from the asymptotically optimum space–diversity

detector in [19]. Whereas the receiver in [19] was optimized for detecting the presence or absence of

a weak signal in the low SNR regime, the receiver proposed in this paper is optimized for detecting

a digitally modulated signal in the high SNR regime.

The remainder of this paper is organized as follows. In Section 2, we introduce the system

model and the Lp–norm metric. Asymptotic BER expressions are derived in Section 3, and the

calculation of generalized noise moments is discussed in Section 4. In Section 5, off–line and on–line

optimization of the metric parameters is considered, and in Section 6, analytical and simulation

results are presented. Conclusions are drawn in Section 7.

2 System Model and Lp–Norm Metric

In this paper, we consider coherent combining, differential combining, and noncoherent combining for

coherent linear modulation formats (e.g. M–ary quadrature amplitude modulation (M–QAM), M–

ary phase–shift keying (M–PSK)), differential M–PSK, and binary frequency–shift keying (BFSK),

respectively.

2.1 Signal Model

Assuming L diversity branches, for coherent linear modulation and differential M–PSK the received

signal in the lth branch and in the kth symbol interval can be modeled in equivalent complex

baseband representation as

rl[k] =
√

γ̄lhlb[k] + nl[k], 1 ≤ l ≤ L, (1)
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where γ̄l, hl, and nl[k] denote the average signal–to–noise ratio (SNR), the fading gain, and the

noise in the lth diversity branch, respectively. The transmitted symbols b[k] ∈ A are normalized

to E{|b[k]|2} = 1 and taken from an M–ary alphabet A. In case of differential M–PSK, b[k] is

obtained from a[k] ∈ A via differential encoding b[k] = a[k]b[k − 1].3

The noise is assumed to be independent of the fading gains but the noise samples4 nl, 1 ≤ l ≤ L,

may be statistically dependent and non–Gaussian. The noise variance is given by σ2
l , E{|nl|2},

1 ≤ l ≤ L. The only restriction that we impose on the noise is that all joint moments of the nl,

1 ≤ l ≤ L, exist, i.e., E{nκ1

1 (n∗
1)

ν1nκ2

2 (n∗
2)

ν2 · · ·nκL
L (n∗

L)νL} < ∞ for all κl ≥ 0, νl ≥ 0, 1 ≤ l ≤ L.

Most practically relevant types of noise fulfill this condition (see next section). An exception is

α–stable noise for which moments of order greater than α do not exist and which is sometimes used

to model impulsive noise [20].

The fading gains hl are modeled as independent, non–identically distributed (i.n.d.) Gaussian

random variables with mean h̄l , E{hl} and variance σ2
hl

, E{|hl−h̄l|2}, i.e., i.n.d. Ricean fading is

assumed. Note that for γ̄l in (1) to be the SNR, the power of the fading gains has to be normalized

to E{|hl|2} = σ2
l , 1 ≤ l ≤ L. The Ricean factor is defined as Kl , |h̄l|2/σ2

hl
and Rayleigh fading

results as a special case for Kl = 0, 1 ≤ l ≤ L.

For BFSK the signal model in (1) has to be augmented since, in this case, in each diversity

branch the outputs of two matched filters (MFs) are processed. The first MF output is still given

by (1) and the second MF output is modeled as

r̄l =
√

γ̄lhlb̄ + n̄l, 1 ≤ l ≤ L, (2)

where b, b̄ ∈ {0, 1}, b 6= b̄, and n̄l denotes the noise in the second MF output. While for AWGN nl

and n̄l are statistically independent, this is not necessarily true for non–Gaussian noise. However,

this does not affect the proposed asymptotic performance analysis and metric adaptation.

3In this paper, E{·}, [·]T , [·]∗, O(·), and I0(·) denote statistical expectation, transposition, complex con-

jugation, the big O notation, and the zeroth order modified Bessel function of the first kind, respectively.

Furthermore, A
.
= B means that A is asymptotically (i.e., for high SNR) equal to B and a function f(x) is o(x)

if limx→0 f(x)/x = 0.
4To simplify our notation, we drop the time index k in variables such as nl[k] whenever possible.
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2.2 Noise Models

In the following, we briefly discuss some important types of noise for which the analysis and metric

optimization in this paper is applicable.

1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the probability density function (pdf)

of the noise in the lth diversity branch is given by

fn(nl) =

I
∑

i=1

ci,l

πσ2
n,i,l

exp

(

−|nl|2
σ2

n,i,l

)

, 1 ≤ l ≤ L, (3)

where ci,l > 0,
∑I

i=1 ci,l = 1, and σ2
n,i,l,

∑I
i=1 ci,lσ

2
n,i,l = σ2

l , are constants. Special cases of GMN

include ǫ–mixture noise (I = 2, c1,l = 1 − ǫl, c2,l = ǫl, σ2
n,1,l = σ2

l /(1 − ǫl + κlǫl), σ2
n,2,l = κlσ

2
n,1,l,

0 ≤ ǫl < 1, and κl > 1) and Middleton’s Class A noise (I → ∞). GMN is a popular model for

impulsive noise in systems with receive antenna diversity [9] and for partial band interference in

frequency hopping (FH) systems with frequency diversity [5].

2) Co–Channel Interference I (CCI-I): The interference caused by I co–channel interferers

in a system with receive antenna diversity can be modeled as [4]

nl[k] =

I
∑

i=1

gi,l

k2
∑

κ=k1

pi[κ]bi[k − κ], 1 ≤ l ≤ L, (4)

where gi,l, pi[k], and bi[k] denote the fading gain at the lth receive antenna, the effective pulse

shape, and the transmit symbols of the ith interferer, respectively. pi[k] depends on the transmit

pulse shape of the interferer, the receiver input filter of the user, and the delay τi between the ith

interferer and the user. The ith co–channel interferer is synchronous and asynchronous for τi = 0

and τi 6= 0, respectively. The limits k1 and k2 are chosen such that pi[k] ≈ 0 if k < k1 or k > k2.

Here, we model the interference channel gains gi,l as (possibly correlated) Ricean fading gains with

variances σ2
g,i,l and Ricean factors Kg,i,l. We note that CCI–I is spatially dependent even if the

channel gains gi,l are independent because the term
∑k2

κ=k1
pi[κ]bi[k − κ] is common to all diversity

branches.

3) CCI-II: The CCI model for FH systems with frequency diversity is slightly different from

CCI-I. Assuming the synchronous case and that at hopping frequency l, 1 ≤ l ≤ L, co–channel

interferer i, 1 ≤ i ≤ I, is present with probability ǫi,l, 0 ≤ ǫi,l < 1, the resulting interference can be

modeled as

nl =

I
∑

i=1

Xi,lgi,lbi,l, 1 ≤ l ≤ L, (5)
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where the Xi,l are mutually independent, and Xi,l = 1 and Xi,l = 0 with probabilities ǫi,l and 1−ǫi,l,

respectively. bi,l denotes the transmit symbols of the ith interferer at the lth hopping frequency

and the interference gains gi,l are modeled as i.n.d. Ricean fading with variances σ2
g,i,l and Ricean

factors Kg,i,l. CCI–II can be used to model the interference in systems that use FH for multiple

access (e.g. Bluetooth).

4) Generalized Gaussian Noise (GGN): I.n.d. GGN is a popular model for non–Gaussian

noise [7, 21]. The corresponding pdf for the lth diversity branch is given by

fn(nl) =
βlΓ(4/βl)

2π(Γ(2/βl))2
exp

(

−|nl|βl

cl

)

, 1 ≤ l ≤ L, (6)

where cl , (Γ(2/βl)/Γ(4/βl))
βl/2, and βl, 0 < βl < ∞, denotes the shape parameter. GGN contains

Laplacian (βl = 1) and Gaussian (βl = 2) noise as special cases. We note that the Lp–norm metric

with appropriately chosen parameters is the ML metric for i.n.d. GGN [13].

5) UWB Interference: The interference from both multi–band orthogonal frequency division

multiplexing (MB–OFDM) UWB and impulse–radio (IR) UWB is in general strongly non–Gaussian

[6, 7]. We will test the theory and algorithms developed in this paper for interference caused by

the MB–OFDM UWB and IR–UWB signal formats standardized by ECMA [22] and IEEE 802.15.4a

[23], respectively.

We note that the proposed analysis is also applicable to any linear combination of the noises

specified in 1)–5).

2.3 Lp–Norm Metric

In this subsection, we present the adopted Lp–norm metrics for the considered combining schemes.

Coherent Combining (CC): The Lp–norm metric for CC is given by

mc(b̃) =
L
∑

l=1

ql|rl −
√

γ̄lhlb̃|pl, (7)

where b̃ ∈ A is a trial symbol, and ql > 0 and pl > 0, 1 ≤ l ≤ L, are metric parameters that

can be optimized for performance maximization for the underlying type of noise.5 The decision b̂

is that b̃ which minimizes mc(b̃). For ql = 1 and pl = 2, 1 ≤ l ≤ L, the Lp–norm metric mc(b̃)

5We note that, strictly speaking, mc(b̃) is only a norm for pl ≥ 1, 1 ≤ l ≤ L. However, whether or not mc(b̃)

is a norm is not important in our context.
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is equivalent to MRC which is optimal in AWGN. For convenience we define the parameter vectors

q , [q1 . . . qL]T and p , [p1 . . . pL]T .

Differential Combining (DC): DC is applied for differential M–PSK modulation and the

corresponding Lp–norm metric is

md(ã) =
L
∑

l=1

ql|rl[k] − ãrl[k − 1]|pl, (8)

where ã ∈ A is an M–PSK trial symbol. For the special case ql = 1 and pl = 2, 1 ≤ l ≤ L, the

differential Lp–norm metric md(ã) is equivalent to well–known differential EGC. The decision â is

that ã which minimizes md(ã).

Noncoherent Combining (NC): The considered NC metric for BFSK is

mn =

L
∑

l=1

ql (|rl|pl − |r̄l|pl) , (9)

where we decide for b = 1 if mn ≥ 0 and for b = 0 otherwise. For ql = 1 and pl = 2, 1 ≤ l ≤ L,

the Lp–norm metric in (9) is equivalent to conventional square–law combining for BFSK [1].

3 Asymptotic Analysis of Lp–Norm Combining

In this section, we develop asymptotic expressions for the pairwise error probability (PEP) of the

combining schemes described in Section 2.3 and relate these PEPs to the respective asymptotic bit

error rates (BERs).

3.1 Asymptotic PEP of CC

We show in Appendix A that for any type of noise with finite moments, the asymptotic PEP of CC

for γ̄l → ∞, 1 ≤ l ≤ L, is given by

Pe(d)
.
=

2L
∏L

l=1

(

Γ
(

2
pl

)

1+Kl

σ2

l
exp (−Kl)

)

d2L
∏L=1

l=1

(

γ̄lplq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
)Mn(q, p), (10)

where Mn(q, p) , E
{

(

∑L
l=1 ql|nl|pl

)

PL
l=1

2/pl

}

can be interpreted as a generalized moment of

the elements of noise vector n , [n1 . . . , nL]T , and d denotes the Euclidean distance between the
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alternative signal points considered for the PEP. The generalized noise moment Mn(q, p) in (10)

can be calculated in closed form for special cases, cf. Section 4. Nevertheless, even if the generalized

noise moment is not available in closed form, (10) can be used for fast evaluation of the asymptotic

PEP since Mn(q, p) is independent of the SNR and has to be evaluated only once, which can be

done e.g. by Monte–Carlo simulation. More importantly, (10) reveals how parameters ql and pl

influence the asymptotic PEP, which will be exploited for metric optimization in Section 5.

For complexity reasons it may be desirable for some applications to limit the number of metric

parameters to be optimized. For this purpose we may set ql = q and pl = p, 1 ≤ l ≤ L, and simplify

(10) to

Pe(d)
.
=

2L
(

Γ
(

2
p

))L
∏L

l=1

(

1+Kl

σ2

l
exp (−Kl)

)

d2L
∏L

l=1(γ̄l) pLΓ
(

2L
p

+ 1
) Mn(p), (11)

where Mn(p) , E
{

(

∑L
l=1 |nl|p

)2L/p
}

. Note that (11) depends on p but is independent of q. For

the special case p = 2, (11) is equivalent to [16, Eq. (10)] for independent, identically distributed

(i.i.d.) fading.

3.2 Asymptotic PEPs of DC and NC

The asymptotic PEPs of DC and NC can be derived in the same way as those for CC.

1) DC: The asymptotic PEP of M–PSK with DC is also given by (10) and (11) if the respective

generalized noise moments of n are replaced with the generalized noise moments of the effective

noise vector

z = n[k] − a[k]n[k − 1]. (12)

If the nl[k] are rotational symmetric and n[k] and n[k − 1] are statistically independent, a[k] has

no influence on the PEP and we may use z = n[k] − n[k − 1] instead of (12).

2) NC: It can be shown that we formally obtain the PEP of BFSK with NC by letting d = 1 in

(10) and (11), respectively.

3.3 Asymptotic BER

The asymptotic (average) BER can be obtained from the asymptotic PEP as [24]

BER
.
=

ξmin

log2(M)
Pe(dmin), (13)
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where dmin and ξmin denote the minimum Euclidean distance of signal constellation A and the

average number of minimum–distance neighbors, respectively. For example, for all binary modulation

schemes ξmin = 1, for binary PSK (BPSK) dmin = 2, and for M–QAM ξmin = 4(1 − 1/
√

M) and

dmin =
√

6/(M − 1).

3.4 Combining and Diversity Gain

It is convenient to express the asymptotic BER as BER
.
= (Gcγ̄)−Gd [15, 24], where Gc and Gd

denote the combining and the diversity gain, respectively, and γ̄ = (
∏L

l=1 γ̄l)
1/L, i.e., γ̄ [dB] =

1
L

∑L
l=1 γ̄l [dB]. From (10) we observe that the diversity gain is given by Gd = L independent of

metric parameters q and p, and independent of the type of noise. The combining gain for CC with

Lp–norm metric can be expressed as

Gc [dB] = 10 log10

(

d2
min log2(M)1/L

2ξ
1/L
min

)

− 10

L

L
∑

l=1

log10

(

1 + Kl

σ2
l

exp (−Kl)

)

+
10

L

L
∑

l=1

log10







plq
2/pl

l

(

Γ
(

∑L
i=1

2
pi

+ 1
))1/L

Γ
(

2
pl

)






− 10

L
log10 (Mn(q, p)) . (14)

Eq. (14) reveals that the combining gain consists of four terms. The first and the second term on

the right hand side (RHS) of (14) depend on the signal constellation and the fading parameters,

respectively, but are independent of the metric parameters q and p and the properties of the noise.

The third term on the RHS of (14) is a function of q, p, and L but is also independent of the noise.

Only the last term on the RHS of (14) depends on the properties of the noise via the generalized

moment Mn(q, p) of the noise samples. Eq. (14) reveals that the optimal parameters qopt and popt,

which maximize Gc, only depend on L and the type of noise (via Mn(q, p)) but are not influenced

by the the modulation scheme and the Ricean factors Kl, 1 ≤ l ≤ L.

For DC and NC similar observations as for CC can be made with respect to diversity gain and

combining gain.

4 Generalized Noise Moments

In this section, we provide analytical results for the generalized noise moments defined in Section

3 for selected types of noise. To make the problem tractable, in this section, we consider not
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necessarily independent but identically distributed (n.i.d.) noise and Mn(p), which depends only on

p, instead of Mn(q, p). To simplify our notation, in the following, we will drop subscript l in all

noise parameters (e.g. in ci,l, ǫl, κl, σ2
g,i,l, Kg,i,l, etc.) if the noise is n.i.d. (which includes i.i.d. as

a special case).

4.1 Exact Noise Moments for L = 2

First, we consider the special case L = 2. Furthermore, for independent complex Gaussian random

variables (RVs) x1 and x2 having variances σ2
x1

and σ2
x2

we define MG(p; σ2
x1

, σ2
x2

) , E{(|x1|p +

|x2|p)2L/p}. Using the substitutions |x1| = r sin2/p ϕ and |x2| = r cos2/p ϕ with 0 ≤ r < ∞ and

0 ≤ ϕ ≤ π/2, we obtain

MG(p; σ2
x1

, σ2
x2

) =
48κσ4

x1

24/pp
IG(p, κ), (15)

where κ , σ2
x1

/σ2
x2

, and the finite range integral IG(p, κ) ,
∫ π/2

0
(sin(2ϕ))4/p−1/(sin4/p ϕ +

κ cos4/p ϕ)4 dϕ depends only on p and κ and can be easily evaluated numerically.

Based on the result for MG(p; σ2
x1

, σ2
x2

), we provide analytical expressions for the generalized

moments of AWGN, n.i.d. Rayleigh–faded CCI–I (i.e., Kg,i = 0, 1 ≤ i ≤ I)6, and i.i.d. Rayleigh–

faded CCI–II (single interferer at each hopping frequency, i.e., I = 1) in Table 1. Furthermore, we

also provide an expression for i.i.d. GGN in Table 1, which can be obtained in a similar fashion as the

generalized moment in the Gaussian case and which contains the finite range integral IGG(p, β) ,
∫ π/2

0
(sin(2ϕ))4/p−1/(sin2β/p ϕ + cos2β/p ϕ)8/β dϕ.

4.2 Noise Moments for General L

For general L a closed–form expression for the generalized moment can be calculated for several

special cases. In particular, we will provide accurate approximations for Mn(p) for n.i.d. noise

distributions that are based on the Gaussian distribution (i.e., i.i.d. GMN, n.i.d. Rayleigh–faded

CCI–I, i.i.d. Rayleigh–faded CCI–II), and exact results for unfaded n.i.d. CCI–I and i.i.d. CCI–II with

I = 1 and Kg,1 → ∞, 1 ≤ l ≤ L.

1) Gaussian–based Noise Distributions: We first consider i.n.d. Gaussian RVs xl with vari-

ances σ2
xl

, 1 ≤ l ≤ L, and our goal is to calculate MG(p; σ2
x1

, . . . , σ2
xL

) , E{(
∑L

l=1 |xl|p)2L/p}. It

6We note that the fading gains gl,i, 1 ≤ l ≤ L, of n.i.d. CCI–I are i.i.d. RVs. However, the resulting CCI-I

is n.i.d. since each interferer affects all receive antennas simultaneously, cf. (4).
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can be shown that the pdf of yl = |xl|p is given by

fyl
(yl) =

2

pσ2
xl

y
2/p−1
l exp

(

−y
2/p
l

σ2
xl

)

, (16)

which is a Weibull pdf. We are interested in the pdf of z =
∑L

l=1 yl. Unfortunately, a closed–form

expression for a sum of Weibull RVs is not known. However, an accurate approximation for the pdf

of z is given by the α–µ pdf [25]

fz(z) =
αµµzαµ−1

ΩµΓ(µ)
exp

(

−µzα

Ω

)

, (17)

where parameters α, µ, and Ω have to be optimized for the best possible agreement with the true

pdf of z. For this purpose, the efficient moment–based method in [25, Eq. (5)–(9)] may be used. We

note that in [25] only i.i.d. Weibull variables are considered, whereas we allow different variances σ2
xl

.

This small extension can be accommodated by replacing [25, Eq. (9)] by E{yn
l } = σpn

xl
Γ(1 + pn/2),

n ∈ {0, 1, 2, . . .} (yl is referred to as Rl in [25]), and we found the corresponding approximation

to be still very accurate. Using (17) we obtain

MG(p; σ2
x1

, . . . , σ2
xL

) =
Γ(µ + 2L/(pα))

Γ(µ)

(

Ω

µ

)2L/(pα)

. (18)

Based on the approximation for MG(p; σ2
x1

, . . . , σ2
xL

) in (18), we can find the generalized moments

of AWGN, i.i.d. GMN, n.i.d. Rayleigh–faded CCI–I, and i.i.d. Rayleigh–faded CCI–II (I = 1) given

in Table 2 for general L.

2) Unfaded CCI: We first consider n.i.d. CCI–I. Assuming a single, unfaded interferer (Kg,1 →
∞), (4) simplifies to

nl[k] = ejΘ1,l

k2
∑

κ=k1

p1[κ]b1[k − κ], 1 ≤ l ≤ L, (19)

with uniformly distributed, mutually independent phases Θ1,l ∈ (−π, π], 1 ≤ l ≤ L. Based on (19),

the exact result for the generalized moment of unfaded CCI–I given in Table 2 can be obtained.

Similarly, specializing (5) to I = 1 and Kg,1 → ∞, the exact expression for i.i.d. CCI–II in Table 2

can be derived.

The asymptotic PEP for CC and NC can be (approximately or exactly) obtained by combining

the generalized moments in Tables 1 and 2 with the PEP formula in (11). Since the effective noise

for DC is more complicated than the noise for CC and NC, cf. (12), a closed–form evaluation of the

generalized moments does not seem possible for DC in most cases.
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5 Metric Optimization

In this section, we optimize the metric parameters p and q for minimization of the asymptotic BER.

In the following, we consider both off–line and on–line optimization.

5.1 Off–line Optimization

If the generalized noise moments are known, the metric parameters can be optimized off–line based

on (10) or (11). If the underlying type of noise is a priori known, the generalized noise moments may

obtained in closed–form, cf. Tables 1 and 2, or, if this is not possible, from Monte–Carlo simulation

using locally generated noise samples.7 Monte–Carlo simulation can also be applied to estimate the

generalized noise moments from observed noise samples. To gain some insight and to make the

problem tractable, we assume n.i.d. noise in this subsection. For n.i.d. noise we may set ql = q

and pl = p, 1 ≤ l ≤ L, in metrics (7)–(9) without loss of optimality, i.e., we can base our off–line

optimization on (11) and have to optimize only parameter p. Unfortunately, for most types of noise

a closed–form optimization of p is not possible. An exception is n.i.d. unfaded CCI–I, where we can

show based on (11) and Table 2 that the optimal p is given by popt = ∞ corresponding to metric

mc(b̃) = maxl∈{1,...,L}{|rl −
√

γ̄lhlb̃|}. Furthermore, exploiting (14) we obtain for the asymptotic

SNR gain Gp of a metric using p > 2 over the L2–norm metric

Gp [dB] = 10 log10

(

(

p

2Γ(2/p)

)1−1/L
L1−2/p

L!1/L

)

p→∞
= 10 log10

(

L

L!1/L

)

. (20)

For example, for L = 2 we obtain G20 = 1.3 dB and G∞ = 1.5 dB. Furthermore, using the Stirling

formula [26] for L → ∞ we can show that G∞ = 10 log10(e) = 4.3 dB. We note that it can be

shown that popt = ∞ and (20) are also valid for DC and NC in n.i.d. unfaded CCI–I.

If the optimal p cannot be obtained in closed form, numerical optimization is necessary. To

illustrate this, we show in Figs. 1 and 2 the BER of BPSK as a function of p for i.i.d. Rayleigh fading

with L = 2 and L = 3, respectively. Details about the considered types of noise can be found in the

captions of the figures. The solid lines represent analytical results generated based on (11), (13),

7Note that if the underlying noise model is known a priori, ML combining can be applied, of course. However,

even in this case the proposed Lp–norm metric may be preferable if the ML metric is computationally complex

or causes numerical problems. For example, the GMN pdf consists of a sum of exponential functions which may

cause numerical problems for high SNRs.
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and, respectively, Table 1 (Fig. 1) and Table 2 (Fig. 2). The markers indicate simulation results and

the bold ”+” markers denote the minima of the analytical BER. The agreement between analytical

results and simulation results is excellent in both Figs. 1 and 2.

As expected, Figs. 1 and 2 show that p = 2 is optimal for AWGN and also for Rayleigh–faded

CCI–I. In constrast, for heavy–tailed types of noise such as ǫ–mixture noise and Rayleigh–faded

CCI–II popt < 2 holds. For short–tailed noise such as unfaded CCI–I popt > 2 is valid. For i.i.d. GGN

with β = 1 we obtain popt = 1 from Fig. 1 as expected. While all other BER curves have a single

minimum in the considered p range, the BER for unfaded CCI–II in Fig. 2 has two local minima.

Figs. 1 and 2 clearly illustrate the benefits of optimizing p and confirm our analysis.

5.2 On–line Optimization

In practice, the statistical properties of the noise impairing a wireless communication system are

often not known a priori and may change with time. Since multiplication of the Lp–norm metrics

(7)–(9) with a positive constant does not change the decision, we can set q1 = 1 without loss of

optimality and optimize only the 2L − 1 elements of vector x , [q2 . . . qL pT ]T .

Since the metric coefficients may not be updated in every symbol interval, we introduce a new

time t = Nmk, where k is the symbol time and Nm > 1 can be used to specify how frequently the

metric coefficients are updated. Furthermore, the proposed adaptive algorithms require an estimate

of the cost function to be minimized. For CC we obtain based on (10) the cost function estimate

Lt(x) ,

∏L
l=1 Γ

(

2
pl

)

∏L=1
l=1

(

plq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
) M̂n(x, t) (21)

M̂n(x, t) ,
1

Ne

Ne−1
∑

ν=0

(

L
∑

l=1

ql|n̂l[t − ν]|pl

)

PL
l=1

2/pl

, (22)

where we have neglected all irrelevant terms and Ne denotes the number of time steps used for

estimation of the generalized moment M̂n(x, t) at time t. Furthermore, n̂l[t] , rl −
√

γ̄lhlb[t],

where b[t] may be a training symbol or a previous decision. A similar estimate for the cost function

may be generated for DC and NC. In the following, two different algorithms for optimization of x

are provided.

1) Multivariate Stochastic Approximation: The first algorithm is based on the finite differ-

ence stochastic approximation (FDSA) framework with gradient estimation [18]. This framework is
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particularly well suited for the problem at hand since it employs a Kiefer–Wolfowitz type of gradient

estimate ĝt(xt) avoiding cumbersome differentiation of Lt(x) [17]. In the tth iteration the FDSA

algorithm generates the estimate xt for the optimal x as [18]

xt+1 = xt − atĝt(xt), (23)

ĝt(xt) =

[

Lt(xt + cte1) − Lt(xt − cte1)

2ct

. . .
Lt(xt + cte2L−1) − Lt(xt − cte2L−1)

2ct

]T

,(24)

where en is a column vector of length 2L − 1 with a 1 in position n and 0’s in all other positions.

If n[k] is stationary and at and ct fulfill at > 0, ct > 0, at → 0, ct → 0,
∑∞

t=0 at = ∞, and
∑∞

t=0 a2
t /c

2
t < ∞, the above algorithm will find the global minimum if the BER has only one

minimum and at least a local minimum otherwise [18] (as long as the BER and Lt(x) meet the

mild conditions required for convergence outlined in [18]). However, since, in practice, n[k] will be

non–stationary, we may set at = a and ct = c, ∀t, where a and c are small positive constants to

give the algorithm some tracking capability. Furthermore, since the pl may have a large dynamic

range (e.g. popt = ∞ for unfaded CCI–I), the tracking ability of the algorithm can be improved by

limiting the elements of xt to some finite value xmax at the expense of some loss in performance

if the optimal element of x exceeds xmax. Note that for the problem at hand the FDSA algorithm

may not find the global optimum as the cost function may have multiple local minimia, cf. Fig. 2.

However, we did not find this to be a problem in practice as the BERs of most types of noise seem

to have only a single minimum, and in case of multiple minima, all minima seem to result in similar

performances. For initialization of the FDSA algorithm ql = 1 and pl = 2, 1 ≤ l ≤ L, is a good

choice since this guarantees that the solution found by the algorithm in combination with CC, DC,

and NC will not perform worse than conventional MRC, EGC, and NC, respectively

2) Random Search Method: The second method that we consider is a localized random

search (LRS) method. In contrast to FDSA algorithms, LRS algorithms do not get stuck in local

minima and find the global minimum under mild conditions on the cost function [18]. Based on xt,

the proposed LRS algorithm generates a new estimate [18]

x̂t+1 = xt + dt, (25)

where dt is a random vector whose elements are i.i.d. Gaussian random variables with variance σ2
d.

If at least one of the elements of x̂t+1 lies outside the predefined search space [0, xmax], (25) is

repeated until all elements of x̂t+1 are inside the search space. Subsequently, if L(x̂t+1) < L(xt), we
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let xt+1 = x̂t+1, otherwise xt+1 = xt. In a non–stationary noise environment, the above algorithm

is run continuously. The speed of convergence of the LRS algorithm depends crucially on the size

of the search space (i.e., xmax) and on σ2
d [18]. For initialization, the same initial vector as for

the FDSA is appropriate. Since LRS algorithms suffer from performance degradation if the cost

function estimate is noisy [18], comparatively large Ne may be advisable. Note, however, that the

tracking capabilities of the algorithm decrease as Ne increases. We found Ne = 100 to give a good

compromise between estimation noise suppression and tracking capabilities for the application at

hand.

3) Complexity: From a practical point of view it is of interest to compare the complexity of the

proposed adaptive algorithms assuming a fixed–point implementation with s digits. Denoting the

complexity of one multiplication by µ(s), the complexity of evaluating the Gamma and the power

functions is O((log(s))2µ(s)) [27], whereas that of a division is O(µ(s)). Taking this into account,

neglecting the complexity of additions, and assuming that 2/pl, 1 ≤ l ≤ L is obtained form a

look–up table, the complexities of one iteration of the FDSA and LRS algorithms are given by

CFDSA = O
(

(2L − 1)(Ne(L + 1) + 2L + 1)(log(s))2µ(s)
)

(26)

and

CLRS = O
(

(Ne(L + 1) + 2L + 1)(log(s))2µ(s)
)

, (27)

respectively. A comparison of (26) and (27) shows that, since typically Ne has to be chosen much

larger for the LRS algorithm (e.g. Ne = 100) than for the FDSA algorithm (e.g. Ne = 1), the

complexity per iteration of the LRS algorithm is larger than that of the FDSA algorithm for typical

values of L (e.g. L < 10).

4) Performance: In Figs. 3 and 4, we show metric coefficients ql, 2 ≤ l ≤ 4, and pl, 1 ≤ l ≤ 4,

vs. iteration t of, respectively, the FDSA and the LRS algorithms for i.i.d. Rayleigh fading with L = 4

and SNR = 16 dB. The corresponding BERs of BPSK with CC are shown in Fig. 5. Five different

types of noise are considered which are specified in the caption of Fig. 3 and at t = (ν − 1) · 106 we

switch abruptly to a new noise Nν, 1 ≤ ν ≤ 5. For the FDSA algorithm we used at = a = 4 · 10−4,

ct = c = 10−5, xmax = 10, Nm = 1, and Ne = 1. For the LRS algorithm we adopted σ2
d = 0.1,

xmax = 10, Nm = 1, and Ne = 100. For both algorithms xt was initialized with ql = 1, 2 ≤ l ≤ 4,

and pl = 2, 1 ≤ l ≤ 4, and previous decisions b̂[t] were used in the adaptation process. Figs. 3 and

4 show the results for one typical adaptation process and the corresponding BERs in Fig. 5 were
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calculated with (10) and (13), where the generalized noise moments were obtained by Monte–Carlo

simulation. Figs. 3–5 show that both algorithms work well and that after each switching to a new

type of noise, steady state operation is achieved quickly. Thereby, with the chosen settings, the

steady state error of the LRS algorithm is larger than that of the FDSA algorithm, but the LRS

algorithm converges faster to the new steady state after the type of noise has changed. Note,

however, that the trade–off between tracking capabilities and residual error strongly depends on how

the parameters of the algorithms (e.g. a, c, Ne, and σ2
d) are chosen [18]. Furthermore, as expected,

Figs. 3 and 4 confirm that in steady state for the n.i.d. noises N1 and N5 all ql and pl are equal,

respectively, whereas for the i.n.d. noises N2, N3, and N4 either the ql or/and the pl are not equal.

For N5 pl = ∞, 1 ≤ l ≤ 4, is optimal and both algorithms yield pl = 10, 1 ≤ l ≤ 4, because we

set xmax = 10. Fig. 5 shows that the Lp–norm metric with FDSA and LRS adaptation substantially

outperforms the L2–norm metric (i.e., MRC).

6 Numerical Results and Discussions

In this section, we verify the analytical results derived in Sections 3 and 4 through simulations

and compare the performance of the adaptive Lp–norm metric with that of other popular metrics.

For convenience we consider n.i.d. noise throughout this section and drop subscript l in the noise

parameters. The respective noise parameters are specified in the captions of the figures. The optimal

metric parameter popt was obtained with the FDSA algorithm.

In Figs. 6 and 7, we show the BER of 16–QAM with CC in i.i.d. Rayleigh fading with L = 2 for the

adaptive Lp–norm metric and several other popular robust metrics for, respectively, i.i.d. ǫ–mixture

noise and n.i.d. unfaded QPSK CCI–I. To facilitate the definition of the various metrics, we introduce

the notation ul , |rl −
√

γ̄lhlb̃|. We consider the Huber metric m(b̃) =
∑L

l=1 ml(b̃), ml(b̃) = u2
l /2

if ul ≤ δ, and ml(b̃) = δul − δ2/2 if ul > δ [11], the Meridian metric m(b̃) =
∑L

l=1 log(ul + δ)

[12], and the Myriad metric m(b̃) =
∑L

l=1 log(u2
l + δ2) [12]. Note that for all these robust metrics

parameter δ has to be optimized by exhaustive search, which is quite tedious, since, unlike for the

Lp–norm metric, a systematic optimization framework is not available. For Figs. 6 and 7 the robust

metrics were optimized by simulation for SNR = 30 dB. Fig. 6 shows that for the heavy–tailed

ǫ–mixture noise the Lp–norm metric with popt = 0.4 outperforms the other robust metrics and the

gap to the optimal ML metric is less than 1 dB. Fig. 7 shows that for short–tailed unfaded CCI–I the
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Huber and Myriad metrics are essentially equivalent to the L2–norm metric and are outperformed by

1.3 dB by the Lp–norm metric with p = 20 (popt → ∞ holds in this case), as predicted in Section

5.1. We note that the ML metric does not seem tractable for unfaded CCI–I. Interestingly, while the

Lp–norm metric was optimized based on the presented asymptotic analysis, Figs. 6 and 7 suggest

that it also performs well for low SNRs.

In Fig. 8, we show the BER of BFSK with NC in i.i.d. Ricean fading with L = 3 and i.i.d. Rayleigh–

faded QPSK CCI–II. Fig. 8 shows that the proposed Lp–norm combining also achieves considerable

performance gains over L2–norm combining for BFSK with NC and in Ricean fading. As expected

from Section 3.4, the optimal value popt = 0.5 is independent of the Ricean factor K. Although for

K = 6 dB the simulated BER approaches the asymptotic BER only for BER < 10−10, the Lp–norm

metric optimized for the asymptotic BER also results in large gains for higher BERs. For example,

for BER = 10−4, the Lp–norm metric achieves a gain of 3.5 dB over the L2–norm metric.

Finally, in Fig. 9, we show the BER of 4–PSK in i.i.d. Rayleigh fading with L = 3 and impairment

by MB–OFDM UWB and IR–UWB interference following the ECMA [22] and IEEE 802.15.4a [23]

standards, respectively. The bandwidth of the receiver input filter of the 4–PSK system is assumed

to be B = 4 MHz. Results for both CC and DC are shown in Fig. 9. For both combining schemes

and both types of UWB, p = 30 was close to optimal for the Lp–norm metric. Fig. 9 shows that

Lp–norm combining also achieves substantial gains over L2–norm combining in UWB interference.

Thereby, the performance gains are larger for CC than for DC. This can be explained by the fact

that the effective noise for DC is the sum of two independent noise samples, cf. (12), and thus,

according to the Central Limit Theorem [28], is closer to a Gaussian distribution than the noise

relevant for CC (and NC).

7 Conclusions

In this paper, we have considered general Lp–norm coherent, differential, and noncoherent diversity

combining in non–Gaussian noise and interference. For the asymptotic regime of high SNR we

have derived closed–form expressions for the BER valid for i.n.d. Ricean fading and non–Gaussian

noise and interference with finite moments. The asymptotic BER expressions reveal that while the

diversity gain of Lp–norm combining is independent of the type of noise and the metric parameters,

the combining gain depends on generalized noise moments and on the metric parameters. For on–
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line metric optimization, we have developed two efficient adaptive algorithms which do not require

any a priori knowledge about the noise statistics and can also cope with non–stationary noise.

Simulation results have confirmed the analytical results presented in this paper and have shown that

the proposed adaptive Lp–norm metric outperforms other robust metrics such as Huber’s metric,

the Myriad metric, and the Meridian metric in both heavy–tailed and short–tailed noise.

A Asymptotic PEP for CC

Assuming that b was transmitted and b̂ 6= b was detected, the corresponding PEP can be expressed

as

Pe(d) = Pr{mc(b) > mc(b̂)}, (28)

where d , |e| and e , b − b̂. In a first step, we calculate the PEP conditioned on the noise vector

n , [n1 . . . nL]T . With (7) and (28) this conditional PEP can be obtained as

Pe(d|n) =

mc(b)
∫

0

fc(z) dz, (29)

where we have used the fact that due to the conditioning on n, mc(b) =
∑L

l=1 ql|nl|pl is a constant,

and fc(z) is the pdf of mc(b̂) =
∑L

l=1 ql|
√

γ̄lhle + nl|pl, which we calculate step–by–step in the

following.

The conditional pdf of xl = |√γ̄lhle + nl| is a Ricean pdf given by

fxl
(xl) =

2xl

d2γ̄lσ2
hl

exp

(

−x2
l + |√γ̄lh̄le + nl|2

d2γ̄lσ2
hl

)

I0

(

2
xl|

√
γ̄lh̄le + nl|
d2γ̄lσ2

hl

)

. (30)

The pdf of the transformed variable yl = xpl

l is given by fyl
(yl) = 1

pl
y

1/pl−1
l fxl

(

y
1/pl

l

)

and the

scaling with ql leads to zl = qlyl with pdf fzl
(zl) = 1

ql
fyl

(zl/ql). Taking into account these identities

the pdf of zl = ql|
√

γ̄lhle + nl|pl is given by

fzl
(zl) =

2z
2/pl−1
l

d2γ̄lσ2
hl

plq
2/pl

l

exp

(

−z
2/pl

l + q
2/pl

l |√γ̄lh̄le + nl|2

d2γ̄lσ2
hl

q
2/pl

l

)

I0

(

2
z

1/pl

l |√γ̄lh̄le + nl|
d2γ̄lσ2

hl
q
1/pl

l

)

. (31)

Considering the asymptotic case γ̄l → ∞ and exploiting the Taylor series expansions of exp(·) and

I0(·), fzl
(zl) can be written as

fzl
(zl) =

Cl

γ̄l

z
2/pl−1
l + o(γ̄−1

l ), (32)
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where Cl , 2 exp
(

−|h̄l|2/σ2
hl

)

/(d2σ2
hl

plq
2/pl

l ). Thus, the moment generating function (MGF) of

zl can be expanded as Φzl
(s) , E{e−szl} = ClΓ(2/pl)γ̄

−1
l s−2/pl + o(γ̄−1

l ). Since conditioned on n

the zl are statistically independent, the MGF of mc(b̂) is given by Φc(s) =
∏L

l=1 Φzl
(s), and the

asymptotic expansion of the corresponding pdf is given by

fc(z) =

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

)

∏L
l=1 γ̄l

z
PL

l=1

2

pl
−1

+ o

(

L
∏

l=1

γ̄−1
l

)

. (33)

Using this result in (29) leads to

Pe(d|n) =

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

+ 1
)

∏L
l=1 γ̄l

(

L
∑

l=1

ql|nl|pl

)

PL
l=1

2

pl

+ o

(

L
∏

l=1

γ̄−1
l

)

. (34)

If all joint moments of the elements of n are finite, averaging Pe(d|n) in (34) with respect to n

yields (10). The assumption of finite joint noise moments is necessary, since the terms absorbed

into o(
∏L

l=1 γ̄−1
l ) in (34) involve sums of products of the elements of n which have to remain finite

after expectation.
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Figures and Tables:

Table 1: Generalized noise moments Mn(p) for L = 2 for various types of n.i.d. noise. In

particular, we consider AWGN, i.i.d. GMN, n.i.d. Rayleigh–faded CCI–I (s , [s1 . . . sI ]
T ,

si ,
∑k2

κ=k1
pi[κ]bi[κ], S contains all possible values of s), i.i.d. Rayleigh–faded CCI–II (I = 1,

bI , [b1,1 . . . b1,L]T , MI contains all possible values of bI , c1 , ǫ1, c2 , 1 − ǫ1, σ̄2
g,1 , σ2

g,1,

σ̄2
g,2 , 0), and i.i.d. GGN.

Noise Model Moments Mn(p)

AWGN MG(p; 1, 1)

GMN
∑I

i=1

∑I
j=1 cicjMG(p, σ2

n,i, σ
2
n,j)

CCI–I (Rayleigh) 1
|S|

∑

s∈S MG(p,
∑I

i=1 σ2
g,i|si|2,

∑I
i=1 σ2

g,i|si|2)

CCI–II (Rayleigh) 1
|MI |

∑2
i=1

∑2
j=1 cicj

∑

bI∈MI
MG(p, σ̄2

g,i|b1,1|2, σ̄2
g,j|b1,2|2)

GGN Γ(8/β)β

(Γ(4/β))224/p−2p
IGG(p, β)
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Table 2: Approximations for the generalized noise moments Mn(p) for general L for the same

types of n.i.d. noise considered in Table 1. Additionally, exact results for unfaded n.i.d. CCI–I

(I = 1) and i.i.d. CCI–II (I = 1, ξ1 , 1, ξ2 , 0) are provided.

Noise Model Moments Mn(p)

AWGN MG(p; 1, . . . , 1)

GMN
∑I

i1=1 · · ·
∑I

iL=1 ci1 · · · ciL MG(p, σ2
n,i1, . . . , σ

2
n,iL

)

CCI–I (Rayleigh) 1
|S|

∑

s∈S MG(p,
∑I

i=1 σ2
g,i|si|2, . . . ,

∑I
i=1 σ2

g,i|si|2)

CCI–II (Rayleigh) 1
|MI |

∑2
i1=1 · · ·

∑2
iL=1 ci1 · · · ciL

∑

bI∈MI
MG(p, σ̄2

g,i1|b1,1|2, . . . , σ̄2
g,iL

|b1,L|2)

CCI–I (Unfaded) L2L/p 1
|S|

∑

s∈S |s|2L

CCI–II (Unfaded) 1
|MI |

∑2
i1=1 · · ·

∑2
iL=1 ci1 · · · ciL

∑

bI∈MI

(

∑L
l=1 ξil|b1,l|p

)2L/p
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Figure 1: BER vs. p for BPSK, i.i.d. Rayleigh fading, L = 2, SNR = 24 dB, and

different types of n.i.d. noise. Noise parameters: I.i.d. ǫ–mixture noise (ǫ = 0.1, κ = 10),

n.i.d. Rayleigh–faded QPSK CCI–I (I = 1, τ1 = 0.25T with symbol duration T , raised

cosine pulse shape with roll–off factor 0.22), i.i.d. Rayleigh–faded QPSK CCI–II (I = 1,

ǫ1 = 0.25), and i.i.d. GGN (β = 1).
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Figure 2: BER vs. p for BPSK, i.i.d. Rayleigh fading, L = 3, SNR = 20 dB, and

different types of n.i.d. noise. Noise parameters: I.i.d. ǫ–mixture noise I (ǫ = 0.1,

κ = 10), i.i.d. ǫ–mixture noise II (ǫ = 0.1, κ = 5), n.i.d. Rayleigh–faded and unfaded

QPSK CCI–I (I = 1, τ1 = 0.25T , raised cosine pulse shape with roll–off factor 0.22),

and i.i.d. Rayleigh–faded and unfaded QPSK CCI–II (I = 1, ǫ1 = 0.41).
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Figure 3: Metric coefficients ql, 2 ≤ l ≤ 4, and pl, 1 ≤ l ≤ 4, vs. iteration t of FDSA

algorithm. N1: I.i.d. Rayleigh–faded QPSK CCI–II (I = 1, ǫ = 0.1) and AWGN, where

the CCI–II power is ten times larger than the AWGN variance; N2: I.n.d. Gaussian

noise with variances σ2
1 = 1, σ2

2 = 0.5, σ2
3 = 0.5, σ2

4 = 2; N3: I.n.d. ǫ–mixture noise

with ǫl = 0.1, 1 ≤ l ≤ 4, and κ1 = 20, κ2 = 40, κ3 = 50, κ4 = 100; N4: I.n.d. GGN

with β1 = β2 = 3 and β3 = β4 = 1; N5: N.i.d. unfaded QPSK CCI–I (I = 1, τ1 = 0.3T ,

raised cosine pulse shape with roll–off factor 0.22).
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Figure 4: Metric coefficients ql, 2 ≤ l ≤ 4, and pl, 1 ≤ l ≤ 4, vs. iteration t of LRS

algorithm. Noise types N1–N5 are specified in the caption of Fig. 3.
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Figure 5: BER of BPSK with CC vs. iteration t for FDSA and LRS algorithms,

respectively. For comparison BER of L2–norm combining is also shown. Noise types

N1–N5 are specified in the caption of Fig. 3.
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Figure 6: BER vs. SNR per bit per branch of 16–QAM with CC in i.i.d. Rayleigh

fading (L = 2) and i.i.d. ǫ–mixture noise (ǫ = 0.1, κ = 100). Solid lines with markers:

Simulation results. Bold solid and dashed lines: Asymptotic BER based on (11), (13),

and Table 1.
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Figure 7: BER vs. SNR per bit per branch of 16–QAM in i.i.d. Rayleigh fading (L = 2)

and n.i.d. unfaded QPSK CCI–I (I = 1, τ1 = 0.3T , raised cosine pulse shape with roll–

off factor 0.22). Solid lines with markers: Simulation results. Bold solid and dashed

lines: Asymptotic BER based on (11), (13), and Table 2.
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Figure 8: BER vs. SNR per branch of BFSK with NC in i.i.d. Ricean fading (L = 3)

and i.i.d. Rayleigh–faded QPSK CCI–II (I = 1, ǫ1 = 0.25). Solid lines with markers:

Simulation results. Bold solid and dashed lines: Asymptotic BER based on (11), (13),

and Table 2.
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Figure 9: BER vs. SNR per bit per branch of 4–PSK system with bandwidth B = 4

MHz and CC or DC in i.i.d. Rayleigh fading (L = 3) and MB–OFDM UWB [22] and

IR–UWB (Nb = 32 bursts per symbol and Lc = 128 chips per burst) [23] interference.

Solid lines with markers: Simulation results. Bold solid and dashed lines: Asymptotic

BER based on (11), (13), and Monte–Carlo simulation of generalized noise moments.


