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Abstract— In this paper, we study network—coded cooperative relay, and one destination. We propose a novel cooperative
diversity (NCCD) systems comprising multiple sources, oneelay, maximum-ratio combining (C—-MRC) scheme at the destina-
and one destination. The relay detects the packets receivdtbm  tjgn, which guarantees full diversity for all sources evethe
all sources and performs Galois field network coding. We propse  5n_ideal detection at the relay is taken into account. The p
a simple cooperative maximum-—ratio combining scheme for ta posed C-MRC scheme may be viewed as a generalization of

destination which is shown to achieve the maximum diversity . .
gain of the system. Furthermore, we provide a mathematical a similar scheme that was proposed for CD for a single source

framework for the asymptotic analysis of NCCD systems with N [7]. Furthermore, we derive simple and elegant closedrfo

M-ary modulation for high signal-to—noise ratios. Based ontis ~ expressions for the asymptotic symbol and bit error rates of

framework, we derive simple and elegant closed—form expretons NCCD with C-MRC in Rayleigh fading. These closed—form

for the asymptotic symbol and bit error rates which provide expressions give valuable insight into the impact of vasiou

Signiﬁcant InSIght into the impaCt of various S_ystem and chanel System and Channel parameters Such as the number Of sources

paﬁqr?g(teicrnsnonsri)rirlz?;?c?nnCrisagl?sc?:gr?f?rrixrilr?gegcfgl:rr;?:rfogpi(;g and the signal-to—noise ratios (SNRs) of the involved wis!

opti ) .

p?esented analysis and show that large performanceygains ar c_hann.els. For example, our an.alytlclal reSl.Jlts reveal that t

possible by optimizing the power allocation in NCCD systems diversity gain for all source termlnals_|s two irrespectdfghe

based on the developed analytical results. number of sources but the coding gain decreases as the number
of sources increases. The derived error rate expressions ca
also be exploited for various NCCD system optimization

|. INTRODUCTION problems such as optimal power allocation, relay selection
Cooperative diversity (CD) is an effective technique t@nd relay placement.

exploit the spatial diversity offered by wireless relay eed  The remainder of this paper is organized as follows. In

The main drawback of CD schemes is a reduction in throughection Il, the system model for the considered NCCD system

put since the different cooperating terminals use orthafor®s well as some notations and definitions are introduced.

channels for transmission [1]. This throughput reductisn Asymptotic expressions for the symbol error rate (SER) and

most noticeable in CD systems with multiple source ternsinathe bit error rate (BER) are derived in Section Ill. Numer-

since the relays forward the signals received by each souie@ and simulation results are presented in Section IV, and

in a separate time slot or frequency band. conclusions are drawn in Section V.
One effective approach to increase the throughput in multi—
source CD systems is network coding [2]-[5]. The idea of Il. PRELIMINARIES

network coding was originally developed for wired networks In this section, we describe the model for the considered

as an efficient routing technique capable Of. enhancing tRﬁICD system and introduce some notations and definitions.
network throughput [6]. However, network coding also akow

a relay to first encode the packets received by several spurce

before forwarding a single encoded packet to the destimati\- Notations and Definitions

Thus, the relay can simultaneously serve multiple sournds a In this paper[]7, (-\)*, ®{-}, £&.{-}, andI'(-), denote trans-

the network throughput is substantially increased. position, complex conjugation, the real part of a complemnu
The performance of the combination of CD and networker, statistical expectation with respectatpand the Gamma

coding, which is referred to as network—coded CD (NCCDjynction, respectivelyQ(z) £ % f;@ e—t*/2d¢ denotes the

has be studied recently in the literature. In particulag thsayssiang—function. Furthermore, we use the notatiod v
outage capacity and the diversity—multiplexing tradeb#uech 5 jndicate that: andv are asymptotically equivalent, and a
a system was analyzed in [3] and [4], respectively, and ifgnction f(z)is o(g(x)) if lim, o f(z)/g(x) = 0.
outage probability was calculated in [2]. Common to all thes
works is the assumption of error—free source—relay channel
Although this assumption greatly simplifies the analysis & Signal Model
NCCD systems, it may not be valid in practical wireless The considered NCCD system is depicted in Fig. 1 and
networks where detection errors at the relay may be causeddoynprisesN; source terminalss;, 1 < ¢ < N, one relay
fading and noise. We also note that previous work on NCCB, and one destination termind). Transmission from the
has focused on network coding over the Galois field (GF) sburce terminals to the destination terminal is organized i
order two limiting the adopted modulation schemes to binayo hops. The first hop comprises; time slots and each
Furthermore, a general and accurate error rate analysigggivsource terminalS;, 1 < i < Ny, transmits a data packet to
insight into the performance of NCCD systems is not avadlablhe relay and the destination using one time slot. In pdgicu
in the literature. the data symbok; € A is generated at the sourég, where

In this paper, we consider an NCCD system with multiA £ GF(2™) is the GF of ordefM = 2. Data symbok; is
ple sources using generall—ary modulation schemes, onemapped to a transmit symbe} € X with £{|z;|?} = 1 using



2/ 2 N 2/ 2 A 2 2
Piafi/anDi, Vgi = Piagi/anR’i, andy,, = PTahR/anR,

respectively. The corresponding average SNRs are given by
77011 = P in/o'?zpwi’ 7‘]1‘ = P Qgi/arngﬂ;! and ’S/D,R =
PrQg/o2 ., respectively.

Remark 1: Based on the presented signal model, a total of
N, + 1 time slots are required for the transmission of signals
from all sources to the destination. In contrast, a conoeai
CD system [1], [7] require2N, time slots since the relay
assists only a single source at a time.

Fig. 1. Block diagram of the considered NCCD system. Solid dashed
lines denote links belonging to first and second hop, resgbet

C. Equivalent Source—Relay Channel
the mappinge; = px(s;), whereX’ denotes an/—ary signal
constellation such a&/—ary phase—shift keyingf —PSK) and
nx A — X is a one—to—one mapping function frowh to
X. The transmit symbols; are transmitted to the relay and!
the destination. The signals received by the destinatiah
the relay in the first hop are given by

Similar to conventional CD [7], it is also convenient for
NCCD to introduce an equivalent channel between the source
erminals and the relay. This will be particularly usefuf fo

e diversity combining scheme in Section 1I-D and the per-
ormance analysis in Section Ill. The input of this equivele
channel,x g, is the relay transmit symbol in the absence of
rs,p =/ Pi fizi +np, 1 <i < Ng, (1) noise, i.e.xr £ px (sp) € X With sp £ 51 @@ sy, € A,

and the output is the actual relay transmit symlig}, € X.
. Defining the source-relay SNR vectgy 2 g Yo )L
rs;,rR =V Pi gixi + nr, L<i< N, (2)  this channel is characterized by the equivalent error fitiba
. . . A A~ .
respectively, wheré; is the average transmit power of tite  Fe.cq(7,) = Pr{Zr # zr}. For anM-ary signal constel-
source, andf; and g; denote the fading gains of th& — D lation X', the equivalent error probability. .q(v,) is given
and theS; — R channels, respectively. Furthermorep; by P.oq(v,) = BQ(1/207eq(7,)), Wherea and 3 are two

andnp; denote the additive white Gaussian noise (AWGN},,qulation dependent constants (exg= 3 = 1 for BPSK)
samples at the destination and the relay, respectively. T. ~ea(7,) is the instantaneous SNR associated with the

. - A ) . ;
variances of these noise samples are denotedlly, = gqyivalent source—relay channel. This equivalent SNR ean b

and

E{lnp,il*} ando? = E{|nr.|*}, respectively. expressed as
Having received the signals;, r the relay performs coher-
ent maximum-likelihood (ML) detection to obtain the desstt 1 2
SymbO|S VCQ(’Yg) - 20 (Q (Pe-,cq(’)’g)/ﬁ)) . (5)

&Ry = arg{nigzl{h’siz% — /P g; ©|*}, 1<i<N,. (3) Itcan be shown that for sufficiently high SNR (please refer
’ Te

to Lemma 5 in the Appendix for a proof)e(v,) can be
The corresponding detected data symbol is givenshy = accurately approximated as
;L;c.l (jR.,i)- . ) ) ) .
The second hop comprises a single time slot. In particular, Yea(Vg) = min{yg,, -+, Ygu, } (6)

the relay performs network coding and computes the data ) _ . . .
symbolép 2 ép1 @ - @ spn. € A, whered denotes We note that sincey,,, 1 < i < Ny, is an exponentially dis-
addition in GF(2™). The relay forwards transmit symboltfiouted RV with mear,,, 7eq(7,) in (6) is also expglnenually
ir 2 pv(r) € X to the destination. The signal receivedlistributed with mearyeq = (1/7g, + -+~ +1/9gx,)

at the destination in the second hepp, can be modeled as

rrp =/ PrhrZr+np R, (4) D. Diversity Combining at the Destination

where Py, is the average transmit power of the relay, is the Due to the possibly erroneous decisions at the relay, the ML
fading gain of theR — D channel, andvp  is the AWGN decision metric at the destination is highly complex and not
at the destination in the second hop having variante , £ amenable to analysis. In order to avoid the problems adsakcia
E{|np.r|?}. ’ with the ML metric, we extend the C-MRC scheme proposed
Throughout this paper we assume independent Rayleiffhl?] for conventional CD to NCCD. As will be shown in

fading for all links of the network. Thus, the fading gains€ction Ill, this simple C-MRC scheme achieves the full
fi & ap e, hy & a4 9%, 1 < i < N, and diversity of NCCD systems with any number of sources. The

hr £ ap, e 7%=, are independent Gaussian random variapl&grresponding decision rule is given by
(RVs) with zero mean and varianc€s, = £{|fi|*}, Q,, =
E{lgil*}, 1 < i < N, and Qg = &{|hr|?}, respectively.
Here, the channel amplitudes,, a,4,, anday, are positive
real RVs and follow a Rayleigh distribution. Furthermotee t Here, vectorzp = [ip;...3pn.]7 € AN contains the
channel phasesy,, 6,,, andd,,, are uniformly distributed in detected symbols at the destination for all sources, vector
[, ) and are independent from the channel amplitudes. [7; ...7Zy.]7 € A contains trial transmit symbol§; =
For future reference, we define the instantaneous SNRs(s;) € X, 1 < i < N, wheres; € A, 1 < i < N,
of the S; — D, S; — R, and R — D links as~y, £ are trial data symbols, and.(z) is the C-MRC metric. The

rp = i (Z) ), 7
Tp argiren)lz%s{m (Z)} (7)



decoded data symbols are obtained gs = u;(l (Zps) € A, where
1 < < Nj, and the C-MRC metric is given by Ay (i, %) 2 VA7 (v — %) + 72p il (13)

N. ~ .
ma(@) = S sp = VILEE |\ Irep = VPrhadsf 27
‘ i=1 0-721D,i 072113,1?, AR(vai'RajR) £ |V7R($R _jR)+ﬁD,R|2
(8) —|\WVAR(@ER — TR) + np,g|*.  (14)

whereir £ pxy (5r) € X With 5 2 5, @ --- @ 3n, € A, o N _

and A is a weighting factor which is defined as For derivation of the unconditional PECIi we exploit that for
. any RV A we havePr {A < 0} = 5= [T/ ®A(5)> with

mln{veq('yg),wR}. (9) moment generating function (MGR)a (s) £ Ea{e~4*} and

TR Pecq(7,) = BQ (/2 7eq), cf. Subsection II-C. Using these

In order to computé\, the receiver has to know the SNR ofrelations, we obtain the unconditional PEP from (11) ang (12

the weakest source—relay channel. This SNR can be meas@#&d

at the relay and then forwarded to the destination over a low— p 7) =& P =~

rate feedback link. As mentioned before, the proposed C-MRC (@—2) REARC RS P (@ = by, 7y vmm) )

scheme is a generalization of the scheme in [7], which is 1 c7°°< N,

[I>

AR

[To0))on) S, as)

obtained as a special case vt = 1, where NCCD reduces

to conventional CD. 27y

c—joo

wherec is a small positive constant that lies in the region of
I1l. ASYMPTOTIC PERFORMANCEANALYSIS convergence of the integrand and

In this section, we analyze the asymptotic error rate perfor

Ay B —sA I(Ilil)
mance of the considered NCCD system for high SNRs, i.e., y.(s) = 5Vfw"Dvi{e ) ! b (16)
Aty Vg — 00, 1 < i < Ng, andyr — oo. In particular, we & L H(s) + (5 5). (17
develop asymptotic closed—form expressions for the (aayra R(s) () IN(zg)| jRe%‘sz) fe(Fnis). (1)

pairwise error probability (PEP), SER, and BER. o . 4oe defined in L 2 and 4i
For convenience, we introduce the source—destination S§ er(;p6%(a(r:fé%%8)r:§peclt%i\€i)lyare elinéd In Lemmas 2 and 4 In
vectorvy , = S T the normalized noise sample o L
o A’Y-f ./hfl 1 Z@SL N. andn a / P Asymptotic expressions for the MGFBy, (s), @5, (Zr;$),
"D = D/ Onpir b == N SHEND.R = MD.R/Tno.r gnd §f (s) valid for high SNR are provided in the appendix
and noise vecton = [iip,1,- -+, ip,N., D,R]" - in Lemmas 1, 2, and 4, respectively. With these asymptotic
. I . expressions for the MGFs at hand, an asymptotic result for
A. Asymptotlc Pawvrse Error Probability _ the PEPP(x — &) can be calculated based on (15). How-
Assuming thatz = L:m —-xy,]T € XN: was transmitted ever, we postpone the derivation of the asymptotic PEP until
by the sources and = [7,---Zn,]7 € XN+, T # x, was Subsection IlI-B, since the computation of the asymptoE&P
detected at the destination, the PEP for the considered NC@&pends on the actual valuessofindz, which in turn depend
system can be expressed as on the considered signal constellatiah
-\ - For derivation of the SER and BER, the following proposi-
P(z — &) = Pr{mc(x) > mc(&)}- (10) " tion is useful (please refer to the Appendix for a proof).

It is convenient to first obtain the PEP conditioned on the Proposition 1: Assume without loss of generality thaf, =
instantaneous SNRg;, v, 7z, and the noise vectat. This 17 Vg = (g7 1 <@ < Ny, andyr = (ry, where(y,, (g,

conditional PEP can be expressed as and (g are finite (positive) constants, which are independent
of 4, and define the diversity gain associated with the PEP as
P(x — &|v;,74R:m) = Gaprp = —lims_o log (P(z — %)) /log(). The diversity
(1= Pecq(,)] P (w N j|xR,7f7%Q77R7n) (11) 9ain is then given byGy prp = du(x, &), Wheredy (z, )

1 L denotes the Hamming distance between data vegio’s

+ NG D Peca(vy)P (T = &&R, ¥ Year YRT)  [51,--- ,sn.,sr]" ands, £ [31,--- ,3n,,3g|". Furthermore,
EREN (zR) for all possible pair§x, &) we havedy (x, &) > 2.

wherexr and Peﬂcq(yg) have been defined in Subsection II-

C. In deriving (11), we have assumed that the erroneogs asymptotic SER and BER

Zr € X is a nearest neighbor afg, i.e.,ir € N (zg), where

set N (zr) contains all nearest neighbors of; in X. This

approximation is well justified fofj,, — oo, 1 < i < N, and

its accuracy will be confirmed by simulations in Section |

The conditional PEPP (x — &|Zr, v, Yeq: YR, M), TR €

{zgr,%r}, can be expressed as

- 1 N
P(m_):i’ijva'ycqa’yRan) PSZ:W Z Z P(:I:—>:13), (18)
= Pr{me(z) > m(Z)|Zr, ¥ ¢, Yea» TR, 1} (12) 2eX N FECi (@)

We use a truncated union—-bound, where we include only
nearest neighbor error events, to obtain an asymptoticesxpr
Vsion for the SER based on the asymptotic PE@ — &). In
particular, a highly accurate approximation for the asyotipt
SER of theith source,P?, is given by

N, where
=Pr {ZAﬂ (.I'i, ji)+ARAR($R7:Z.R7 jR)<O‘7f7’7eqa'7Ra ’I’L} CZ(.’B) = {.’;}|57J S N(ZZ?J) U {xj},j # ’L',jj S N(xj),j =1,
i=1 dy(x, &) = 2}. (19)



TABLE | . .
COEFFICIENTSCY, AND C2, FOR DIFFERENT SIGNAL CONSTELLATIONS WhereCBPSK and CBPSK are given in Table I.
FOR M- PSKAND M—QAM WE HAVE d = 2sin( ), Case 2 ( ;é 1); Forl # 4, from Lemma 1 we have
Py, (s) = W’] =1,j =1, and®y, (s) = 1, otherwise.

v £ 4(sin(25)2 — sin(&)2) AND d = /S, RESPECTIVELY
M M M=t Furthermore, in this caser = xR is valid and therefore based

‘ X ‘ cL ‘ c2, ‘ on Lemmas 2 and 4 and (17) we ha®g(s) = 1. Therefore,
— , using (15) we arrive at
BPSK 451+60 : % ) ct+joo 1 o2
2 /-4 , Plx — &) = . / ds = —BESK
Mpsk | TyE g Ve 5 ( ) Ry A ) P11 —s)? Vi
c—joo
18.27_ 17.4/47 0.8/3‘ (24)
M-QAM | ———Gr A | 2 (1 k) for 1 i, 1<1<N,.
Finally, combining (18), (23), and (24) yields (20) for

In (19), we have only included error events with (x, %) = 2 BPSK. u

since error events with; (x, ) > 2 yield a higher diversity =~ Remark 2: For Ny = 1 the considered NCCD system
gain (cf. Proposition 1) and thus, their contribution to théeduces to a CD system with a single decode—and—forward
asymptotic SER is negligible. relay and C-MRC at the destination [7]. Letting, = 1
We are now ready to state our main result. In particular, In (20), the asymptotic SER for this system can therefore be
the following proposition we use (18) to obtain the asymiptotobtained as
SER for BPSK,M-PSK, andM/-QAM signal constellations. p o L (Ck Ci
Proposition 2: For an NCCD system withV, sources the S ¥4 \ Vi AR )’
asymptotic SER for théth source is given by

(25)

N N which is a new result since the analysis presented in [7]

i . 1 11 9 =N | 1 reveals only the diversity gain but does not provide a tight
=¥ 35 (OX Z F Cx {Z % T V_R] >’ (20) approximation for the asymptotic SER.

J;é ' We note that having obtained the asymptotic SER, for Gray

labeling, the asymptotic BER of thg¢h source , can be
where X ¢ {BPSK, M-PSK, M-QAM}, and C and % griavtar ot g RO Fix
are tabulated in Table I.

Proof: The asymptotic SERP ;. can be calculated by P 1 i
using (18) and (19) along with (15). Because of space limita- P = WP&X' (26)
tions, we limit the proof to the BPSK case, i.&,= {£1}.
However, a similar approach can be used to obtain the SER for
M-PSK, M-QAM, and any other signal constellation. In theC. Diversity Gain and Coding Gain
BPSK case, for a given transmit signal vecigrthe setC;(x)
in (19) containsN, elements, i.e.C;(z) = {z',..., "},
g 2z, 2 ]7, where

= 1’7(]7

Letting Vo = Cfi’_}/! Yoi = ngﬁ/v 1 <i < N, and
Ar = C(r7, Where (s, (5 and (g are finite (positive)
constants, we can express the asymptotic SER afithsource
as P, v = (G sErY)” Gaser, where Gy, sgr and Gl ser
are the diversity gain and the coding gain correspondlng to
_ ) ) ) the asymptotic SER, respectively. Thus), qpr and G¢ ¢pr
|”l the following, we first obtain the asymptotic PER« —  correspond to the negative asymptotic slope and a relative
') for the casd = i before we consider the case’ i. horizontal shift of the SER curve when plotted as a functibn o

Case 1 (= i): Definingd; = |a; — Z}|, we haved; = 2, 5 on a double-logarithmic scale, respectively. Based on (20)
j =4, andd; =0, j #1i. As a result from Lemma 1 we we obtamGd spr = 2 and

obtalnéf()éw,j_zandd)j()_l];Az

)y, g=1,=1 ;
xj—{xj, otherwise ’ LI Ny, 1< <N, (21)

Furthermore, taking into account that for= i we haveir = G;SER[dB] = 5log0(Cy,)
—xpR, based on Lemmas 2 and 4, (15), and (17) we obtain N, N,
/2 ctjoo —5logy (c;Zc;l +c§{{2gﬂ_1 +<R1D. (27)
Pa—a - [ [ L =
- 1672579, s(1—s) i
0 c—joo
1 ! 1 ds Remark 3: A diversity gain of G, g = 2 is achieved by
X < — vt = ) do, (22) all sources irrespective of the number of sourdesHowever,
Yeqs(1 — 16sin® 0s2) ~ Frs(l —s) from (27) it is evident that the coding gain is dependent @n th
where we have used that for BPSK(zz) = {—zr}, a = number of sources, the signal constellatidpand the relative
B =1, dr(2r) = —4, anddy = 2 are valid. link qualities (y,, (4,, and (k.

The inner complex integral in (22) can be calculated using
the standard inverse Laplace transform techniques such as

. : . o IV. RESULTS AND SYSTEM OPTIMIZATION
partial fraction expansion. This yields

1 Ns oy 1 In this section, we verify the analytical results derived in
Plz — &)~ — <C1§PSK Z -+ O}%PSK_>7 (23) Sectlo_n !II with computer simulations and exploit thesaufess
Vi ; TR to optimize the performance of NCCD systems.



0

10 of all sources is a posynomial in the transmit powéis

1 < i < Ny, and Pgr [9]. Thus, the problem of optimizing
the transmit powers for minimization of the average SER
under a joint transmit power constraiﬁtf\i“1 P, + Pr < Pr
(Pr: maximum transmit power) can be cast into a geometric
E program (GP) [9] as was done for conventional CD systems
in [8]. Thus, the optimal power allocation (OPA) problem can
E be efficiently solved using standard tools [9].
Results for OPA as a function d#- /02 are shown in Fig. 3
] for an NCCD system with 8—-PSKY, = 2, Qy, = Qg =1,
Qp, = Qp = 100, Qg = 100, ando? = of, =
: SR o . £ 52, Specifically, we show in Fig. 3 the SERs of
107 : ey both sourcesS;, i € {1, 2} and the average SER of both
o : 10 15 20 25 30 35 sources, and compare OPA with equal power allocation (EPA),
7 (dB) where P, = P, = Pr = Pr/3. Fig. 3 shows that OPA

Fig. 2. Average BER vs. SNR of an NCCD system withV, sources and improves the average asymptotic SER (i.e., the cost fumctio
Eggﬁtz%())"(gzleigfs with markers: Simulated BER. Dashed lisesymptotic o1 optimization) by 3.4 dB compared to EPA. The individual

' ' SERs ofS; and S; reveal that OPA improves the SER of
S1, which has the weaker channel, at the expense of a small
degradation of the SER of sour§eg by allocating more power
to S, than toS; (and the relay).

1071!
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107
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107

107°

107

V. CONCLUSIONS

In this paper, we studied NCCD with generdl-ary mod-
ulation and proposed a simple C-MRC diversity combining
scheme which achieves the maximum diversity of the consid-
ered system even if erroneous decisions at the relay ara take
into account. Assuming independent Rayleigh fading for all
links in the network, we derived closed—form expressions fo
the asymptotic SER and BER of the considered NCCD system.
These simple and elegant expressions provide insight lirgo t
impact of various system and channel parameters on perfor-

1 il

5 10 15 20 25 30 35 40 mance and can be exploited for performance optimization and

Prfo* (4B) system design. Simulation results confirmed the accuracy of

EilgA3éoli§ﬁ§623£gh/cﬁa?£eﬁg_ fgicrﬁul?af&’jstggRWig‘agﬁg’f'ﬁ for n?PtAotiiﬂd the presented asymptotic SER and BER results and revealed
SER [(20)]. ’ ' =ymp that optimal power allocation can improve performance by
several decibels.

A. Impact of Number of Sources

In Fig. 2, we show the average BER (average of the BERs APPENDIX
of all sources) of an NCCD system for different numbers of |n this appendix, we prove Proposition 1 and provide
sources as a function of for BPSK. (y, = (5, = 1, 1 < |emmas 1-5.
7 < NS, CR =1 are aSSUmed, l.e., all links in the network Proof: [Proposition 1] Based on Lemmani (S) can

have the same average quality. The analytical results édasRe \ritten asby, (s) = k15 for ; # #; and Oy (s) = 1 for

Iineg) shown in Fig. 2 were opthair;]ed With|(2p) and (|262( anlgi = I;, wherek; is a finite constant. Furthermore, using
are in excellent agreement with the simulation resultsidsol o ymas 2 and 4 in (17) vields = i~ for -
lines with markers) for sufficiently high SNR confirming the, - | Br(s) 2 b folr :C(R )ZY;ER v?h(gze L zajmd o xa}?e;éﬁr:]ci?e

accuracy of the approximations made in Section Il and II_ onstants. Therefore, based on (15) we concludeGhatsp

ﬁfs tsvxopeigtzgr:irg\gdthifrsgaelﬁil\?em dsecﬂ(:)r\]/vg:/’e? (?r':’frresétsyi'nga'is given by the number of non-zero elements in the vector
P st ! 9 € —571,-~-,$NS—1~7NS,ZCR—Q~7R]T. SinceuX:A—w’\?is

N, causes a horizontal shift of the asymptotic BER and £one—to—one mapping functioly pxp is alternatively given

performance degradation. by the Hamming distance between the transmit symbol vectors
se ands, denoted agly (x, x). To seedy (x, &) > 2, we first

B. Performance Optimization note that by definition we have # &, and therefores; # 3;

is valid for i € Z, whereZ is a non-empty index set. For

| > 2, dy(x, &) > 2 immediately follows. FoilZ| =1 it is

asy to see thaty # sg, resulting indgy (x, &) = 2. [ |

Lemma 1: The asymptotic behavior @by, (s), 1 < i < N,

r ¥4, — oo is given by

Similar to the case of conventional CD in [8], the asymptoti
SER expression in (20) may be used for optimization
the NCCD system including optimal power allocation, relay
selection, and relay placement. Because of space corisfrai
we only briefly discuss the power optimization problem here.
Considering (20) and the definition of the SNRs,, 7y,, 1

1 < i < N,, and#g, it is obvious that the average SER ®ri(s) = d

7s(1—5)7y, (8)



for d; £ |z; — ;| # 0 and @, (s) = 1 for d; = 0. where A(s, 0) £ dr(2r)s + =%5 + 1/9eq andI'(-,-) is the
Proof: For d; # 0, following the same steps as in [10,ncomplete Gamma function. Based on (37) and the asymptotic

Section IV.A] for I(s) £ £, {e™*47 ()} we obtain properties ofl'(-, z) for z — 0, we obtain
1 X1 . elnpal®s o (77" i>1
I;(s) = s npl* = R (29) 2log(in) .
& 575, Z d? s7s, V2 (s,0) = { Tat)) Wim‘ L= (38)
In particular, (29) can be obtained from [10, Eq. (14)] by veq(dR(mR)er —5) =0

adjustlng the notation of [10] to the problem at haddg, (s) =
Enp.{1r(s)} can then be calculated by averagihgs) wit

h From (37) and (38), we therefore obtain(s, §) = ¥l(s,0)+
respect to the Rayleigh distributed R¥p ;| leading to the U3(s,0) =

\112(5 6). Substituting this result into (33) leads to

result in (28). Ford; = 0, ®;,(s) = 1 follows from the (30) upon using (31). , _ n
definition of @, (s). - Lemma 3 'Ehi asymptotic be_hawor of I(s) =
Lemma 2: The asymptotic behavior ofdg(ig;s )_ Eyeqrminp p 1€ PARERIRIRI Y for 5 — 00, 1 < i <
g’ygq,’YRﬂlD B {ﬁQ (\/W) —SArRAR(TR,ZR, zR)} for Vg NS, Yr — o0 IS glven by
o0, 1 <1 < Ny, andyr — oo is given by . 1 1
I(s) = —— — —5 , (39)
1 /2 3 YeqdRs  ArdRs(s — 1)
Of (2ps 5) = —/ — 0. (30)
T Jo  Yeq(dr(Zr)s + Fi7g) for dg 2 |Zr — zg| # 0, while I(s) = 1 is valid for dz = 0.
Proof: Since ArAg(zr,Tr,TrR) = Ymd%k

WheredR(:cR) |$CR—$CR|2 |$CR—$CR|2 A
Proof: We start the proof by usmg the alternative repre+\ﬁ dr R{np g} With v, = min{veq, vr}, We conclude
T/2 —a?/sin?0 g to thatl(s)=1Is valid fordg = 0. Fordg # 0 using a similar

sentation of thel—function, = ; :
express@f%(jR;eg) as Q@) =5 Jo approach as in the proof of Lemma 2, we obtain

/ 26 i.2i
@ﬁ(iR;s)zg/o 25,3D,R{c1>(s,9)} do, (31) I(slﬁD,R)—EnD,R{Z@f) D, r|*'s” Ti(s,ﬂ)}, (40)

1=0
where whereY;(s,0) = T1(s,0) + T2(s,0) with
‘I)(S, 9) 2 E’chv’YR {e_m e*sARAR(mR,mR,mR)} . (32) ) ( ) i>1
Using the Taylor series expansioh= Y7 z*/i! along with T} (s,6) = %, T2(s,0) = { linl lsgvzqm i=1
(9) and (14) in (32) leads to TR AR5 1 i=0
'ych%s
>, 21, L 41
(I)(Sa 0) - Z —6 |77’/D,R|21521 \I/i(sa 9)3 (33) . ( )
— (2i)! We therefore arrive at
. il .
where¢; £ Ff“;r(ifl andW;(s,0) = Ul(s,0)+W2(s,0) with Ti(5.0) = TRt i>1 w2
2 ?l_s (Wiq + '*%R) 1=0

oo o ve. _
YeqTR

<[ e Gnnteneonsin) - (3a)
0

Substituting (42) into (40) results in (39) upon averagmg)(
over the Rayleigh distributed RVfip r|.
Lemma 4: The asymptotic behavior of®f;(s) é

X _ _ / —SARAR(TR,ER,TR)
d% o0 &y, "YR\UD, R {[1 5@( 2a /YGQ)]e o }
\1,12(579) 4 _°R / d%q%Q e —Yoa(dr(ER)+ %75 +1/eq) forqﬁgi — 00, 1 <i < Ny, g — oo IS given by

Yea VR /
o] ) B 1 /2 2 2
x [ dyrvg'e (R/TR), 35 De(s) = —/ ( -
[, i R N G i e
In the following, we find the asymptotic behavior &f (s, 6) B )d97 (43)
and ¥?(s,0) for J.q, yr — oo, respectively. We first write ’chd (s+ W)
34) as
(34) 0i oo ) for dr # 0, while ®5(s) =1 is valid for dg = 0.
Ul(s,0)= d /ef(jjeq qu/%q)[ i ‘ Proof: We first note thatdf(s) = I(s) — ®;(xr;s).
Yea VR (CZR(@R)S + 1/%%)”1 For dr # 0 combining (30) and (39) readily results in (43).
. R . For dr = 0 from (30) and (39) we obtair®s(s) = 1 —
i Z'/y e(dR(wR)SJrl/'YR)'qu :| fﬂ./g ﬁsinz(-) a0 = 1. -
- i d'ye Teq Y0 -
=0 k! (dr(2r)s + 1/7R) . ! L'emma 5: For sufficiently high SNRyeq(7,) given in (6)
= 0 (7o ) (36) can be approximated as
eq :
Next, we rewrite (35) as Yea(Vg) & min{vg,, -+, Ygn, }- (44)

H Proof: Since uxy : A — X is a one—to—one map-

2 o R >~ 26 ,—YeqA(s,0) s =
Vi(s,0) = %q:y}%/o Yeq © P =4, vea/Tr)DYeaq; ping function the equivalent error probabilit. cq(v,) =
(37) Pr{ig # xr} is alternatively given byP. .q(v,) = Pri&},




where the error everf. is defined ast, £ {5 # sz} with
SR = 3r1 @ --- @ SR,N. andsg = s1 @ --- @ sn,. For
sufficiently high SNR the probability &f. is dominated by the
probability of the evenf, = (J*, £, wheref’, 1 <i < N,
are mutually exclusive events defined&is® {5r ; # 55,7 =
i,8r,; = sj,7 # i}. We therefore can write

Peeq(v,y) =Pr{&.} ~ Pr{.} = ZPr{EZ (45)

In the above equatioRr{E!} is given by

Pe{és) = 5 (VI [ (- 50 (vaw)
2

~ 6Q (V207,,) | (46)
where we have again used the sufficiently high SNR as-

sumption to concludgl — 3Q (,/2av,,)) ~ 1. Based on
(45), (46), and the alternative representation of@kdunction

Qz) =1 0”/2 e=2"/sin* 049 we have

6 /2 N 2079,
Pecq ")’g / 7sln29d9
2a n‘un{’yg 20 min{vgy - Yo, }
~ B / wra o df (47)

=6Q <\/2amin {vau: ,vgNs}) o (48)

where have used the standard log—sum approximation in
obtaining (47). Finally, using (48) in (6) leads to (44). m
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