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Abstract— In this paper, we study network–coded cooperative
diversity (NCCD) systems comprising multiple sources, onerelay,
and one destination. The relay detects the packets receivedfrom
all sources and performs Galois field network coding. We propose
a simple cooperative maximum–ratio combining scheme for the
destination which is shown to achieve the maximum diversity
gain of the system. Furthermore, we provide a mathematical
framework for the asymptotic analysis of NCCD systems with
M–ary modulation for high signal–to–noise ratios. Based on this
framework, we derive simple and elegant closed–form expressions
for the asymptotic symbol and bit error rates which provide
significant insight into the impact of various system and channel
parameters on performance and can be exploited for performance
optimization. Simulation results confirm the accuracy of the
presented analysis and show that large performance gains are
possible by optimizing the power allocation in NCCD systems
based on the developed analytical results.

I. I NTRODUCTION

Cooperative diversity (CD) is an effective technique to
exploit the spatial diversity offered by wireless relay nodes.
The main drawback of CD schemes is a reduction in through-
put since the different cooperating terminals use orthogonal
channels for transmission [1]. This throughput reduction is
most noticeable in CD systems with multiple source terminals,
since the relays forward the signals received by each source
in a separate time slot or frequency band.

One effective approach to increase the throughput in multi–
source CD systems is network coding [2]–[5]. The idea of
network coding was originally developed for wired networks
as an efficient routing technique capable of enhancing the
network throughput [6]. However, network coding also allows
a relay to first encode the packets received by several sources
before forwarding a single encoded packet to the destination.
Thus, the relay can simultaneously serve multiple sources and
the network throughput is substantially increased.

The performance of the combination of CD and network
coding, which is referred to as network–coded CD (NCCD),
has be studied recently in the literature. In particular, the
outage capacity and the diversity–multiplexing tradeoff of such
a system was analyzed in [3] and [4], respectively, and its
outage probability was calculated in [2]. Common to all these
works is the assumption of error–free source–relay channels.
Although this assumption greatly simplifies the analysis of
NCCD systems, it may not be valid in practical wireless
networks where detection errors at the relay may be caused by
fading and noise. We also note that previous work on NCCD
has focused on network coding over the Galois field (GF) of
order two limiting the adopted modulation schemes to binary.
Furthermore, a general and accurate error rate analysis giving
insight into the performance of NCCD systems is not available
in the literature.

In this paper, we consider an NCCD system with multi-
ple sources using generalM–ary modulation schemes, one

relay, and one destination. We propose a novel cooperative
maximum–ratio combining (C–MRC) scheme at the destina-
tion, which guarantees full diversity for all sources even if the
non–ideal detection at the relay is taken into account. The pro-
posed C–MRC scheme may be viewed as a generalization of
a similar scheme that was proposed for CD for a single source
in [7]. Furthermore, we derive simple and elegant closed–form
expressions for the asymptotic symbol and bit error rates of
NCCD with C–MRC in Rayleigh fading. These closed–form
expressions give valuable insight into the impact of various
system and channel parameters such as the number of sources
and the signal–to–noise ratios (SNRs) of the involved wireless
channels. For example, our analytical results reveal that the
diversity gain for all source terminals is two irrespectiveof the
number of sources but the coding gain decreases as the number
of sources increases. The derived error rate expressions can
also be exploited for various NCCD system optimization
problems such as optimal power allocation, relay selection,
and relay placement.

The remainder of this paper is organized as follows. In
Section II, the system model for the considered NCCD system
as well as some notations and definitions are introduced.
Asymptotic expressions for the symbol error rate (SER) and
the bit error rate (BER) are derived in Section III. Numer-
ical and simulation results are presented in Section IV, and
conclusions are drawn in Section V.

II. PRELIMINARIES

In this section, we describe the model for the considered
NCCD system and introduce some notations and definitions.

A. Notations and Definitions

In this paper,[·]T , (·)∗, ℜ{·}, Ex{·}, andΓ(·), denote trans-
position, complex conjugation, the real part of a complex num-
ber, statistical expectation with respect tox, and the Gamma
function, respectively.Q(x) , 1√

2π

∫ ∞
x e−t2/2dt denotes the

GaussianQ–function. Furthermore, we use the notationu ⊜ v
to indicate thatu and v are asymptotically equivalent, and a
function f(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.

B. Signal Model

The considered NCCD system is depicted in Fig. 1 and
comprisesNs source terminalsSi, 1 ≤ i ≤ Ns, one relay
R, and one destination terminalD. Transmission from the
source terminals to the destination terminal is organized in
two hops. The first hop comprisesNs time slots and each
source terminalSi, 1 ≤ i ≤ Ns, transmits a data packet to
the relay and the destination using one time slot. In particular,
the data symbolsi ∈ A is generated at the sourceSi, where
A , GF(2m) is the GF of orderM = 2m. Data symbolsi is
mapped to a transmit symbolxi ∈ X with E{|xi|2} = 1 using
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Fig. 1. Block diagram of the considered NCCD system. Solid and dashed
lines denote links belonging to first and second hop, respectively.

the mappingxi = µX (si), whereX denotes anM–ary signal
constellation such asM–ary phase–shift keying (M–PSK) and
µX : A → X is a one–to–one mapping function fromA to
X . The transmit symbolsxi are transmitted to the relay and
the destination. The signals received by the destination and
the relay in the first hop are given by

rSiD =
√

Pi fi xi + nD,i, 1 ≤ i ≤ Ns, (1)

and
rSiR =

√

Pi gi xi + nR,i, 1 ≤ i ≤ Ns, (2)

respectively, wherePi is the average transmit power of theith
source, andfi andgi denote the fading gains of theSi → D
and theSi → R channels, respectively. Furthermore,nD,i

and nR,i denote the additive white Gaussian noise (AWGN)
samples at the destination and the relay, respectively. The
variances of these noise samples are denoted byσ2

nD,i
,

E{|nD,i|2} andσ2
nR,i

, E{|nR,i|2}, respectively.
Having received the signalsrSiR the relay performs coher-

ent maximum–likelihood (ML) detection to obtain the detected
symbols

x̂R,i = arg min
x̃∈X

{|rSiR −
√

Pi gi x̃|2}, 1 ≤ i ≤ Ns. (3)

The corresponding detected data symbol is given byŝR,i =
µ−1
X (x̂R,i).
The second hop comprises a single time slot. In particular,

the relay performs network coding and computes the data
symbol ŝR , ŝR,1 ⊕ · · · ⊕ ŝR,Ns

∈ A, where⊕ denotes
addition in GF(2m). The relay forwards transmit symbol
x̂R , µX (ŝR) ∈ X to the destination. The signal received
at the destination in the second hop,rRD, can be modeled as

rRD =
√

PR hR x̂R + nD,R, (4)

wherePR is the average transmit power of the relay,hR is the
fading gain of theR → D channel, andnD,R is the AWGN
at the destination in the second hop having varianceσ2

nD,R
,

E{|nD,R|2}.
Throughout this paper we assume independent Rayleigh

fading for all links of the network. Thus, the fading gains
fi , afi

e−jθfi , hi , agi
e−jθgi , 1 ≤ i ≤ Ns, and

hR , ahR
e−jθhR , are independent Gaussian random variables

(RVs) with zero mean and variancesΩfi
, E{|fi|2}, Ωgi

,

E{|gi|2}, 1 ≤ i ≤ Ns, and ΩR , E{|hR|2}, respectively.
Here, the channel amplitudesafi

, agi
, and ahR

are positive
real RVs and follow a Rayleigh distribution. Furthermore, the
channel phasesθfi

, θgi
, andθhR

are uniformly distributed in
[−π, π) and are independent from the channel amplitudes.

For future reference, we define the instantaneous SNRs
of the Si → D, Si → R, and R → D links as γfi

,

Pi a2
fi

/σ2
nD,i

, γgi
, Pi a2

gi
/σ2

nR,i
, and γhR

, Pr a2
hR

/σ2
nR

,
respectively. The corresponding average SNRs are given by
γ̄fi

= Pi Ωfi
/σ2

nD,i
, γ̄gi

= Pi Ωgi
/σ2

nR,i
, and γ̄D,R =

PR ΩR/σ2
nD,R

, respectively.
Remark 1: Based on the presented signal model, a total of

Ns + 1 time slots are required for the transmission of signals
from all sources to the destination. In contrast, a conventional
CD system [1], [7] requires2Ns time slots since the relay
assists only a single source at a time.

C. Equivalent Source–Relay Channel

Similar to conventional CD [7], it is also convenient for
NCCD to introduce an equivalent channel between the source
terminals and the relay. This will be particularly useful for
the diversity combining scheme in Section II-D and the per-
formance analysis in Section III. The input of this equivalent
channel,xR, is the relay transmit symbol in the absence of
noise, i.e.,xR , µX (sR) ∈ X with sR , s1⊕· · ·⊕sNs

∈ A,
and the output is the actual relay transmit symbol,x̂R ∈ X .
Defining the source–relay SNR vectorγg , [γg1

, · · · , γgNs
]T ,

this channel is characterized by the equivalent error probability
Pe,eq(γg) , Pr{x̂R 6= xR}. For an M–ary signal constel-
lation X , the equivalent error probabilityPe,eq(γg) is given

by Pe,eq(γg) = βQ
(

√

2αγeq(γg)
)

, whereα and β are two
modulation dependent constants (e.g.α = β = 1 for BPSK)
and γeq(γg) is the instantaneous SNR associated with the
equivalent source–relay channel. This equivalent SNR can be
expressed as

γeq(γg) =
1

2α

(

Q−1(Pe,eq(γg)/β)
)2

. (5)

It can be shown that for sufficiently high SNR (please refer
to Lemma 5 in the Appendix for a proof)γeq(γg) can be
accurately approximated as

γeq(γg) = min{γg1
, · · · , γgNs

}. (6)

We note that sinceγgi
, 1 ≤ i ≤ Ns, is an exponentially dis-

tributed RV with mean̄γgi
, γeq(γg) in (6) is also exponentially

distributed with mean̄γeq = (1/γ̄g1
+ · · · + 1/γ̄gNs

)−1.

D. Diversity Combining at the Destination

Due to the possibly erroneous decisions at the relay, the ML
decision metric at the destination is highly complex and not
amenable to analysis. In order to avoid the problems associated
with the ML metric, we extend the C–MRC scheme proposed
in [7] for conventional CD to NCCD. As will be shown in
Section III, this simple C–MRC scheme achieves the full
diversity of NCCD systems with any number of sources. The
corresponding decision rule is given by

x̂D = arg min
x̃∈XNs

{mc(x̃)}, (7)

Here, vectorx̂D , [x̂D,1 . . . x̂D,Ns
]T ∈ XNs contains the

detected symbols at the destination for all sources, vectorx̃ ,

[x̃1 . . . x̃Ns
]T ∈ XNs contains trial transmit symbols̃xi =

µX (s̃i) ∈ X , 1 ≤ i ≤ Ns, where s̃i ∈ A, 1 ≤ i ≤ Ns,
are trial data symbols, andmc(x̃) is the C–MRC metric. The
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decoded data symbols are obtained asŝD,i , µ−1
X (x̂D,i) ∈ A,

1 ≤ i ≤ Ns, and the C–MRC metric is given by

mc(x̃) =

Ns
∑

i=1

|rSiD −√
Pi fi x̃i|2

σ2
nD,i

+λR
|rRD −√

PR hR x̃R|2
σ2

nD,R

(8)
where x̃R , µX (s̃R) ∈ X with s̃R , s̃1 ⊕ · · · ⊕ s̃Ns

∈ A,
andλR is a weighting factor which is defined as

λR ,
min{γeq(γg), γR}

γR
. (9)

In order to computeλR, the receiver has to know the SNR of
the weakest source–relay channel. This SNR can be measured
at the relay and then forwarded to the destination over a low–
rate feedback link. As mentioned before, the proposed C–MRC
scheme is a generalization of the scheme in [7], which is
obtained as a special case forNs = 1, where NCCD reduces
to conventional CD.

III. A SYMPTOTIC PERFORMANCEANALYSIS

In this section, we analyze the asymptotic error rate perfor-
mance of the considered NCCD system for high SNRs, i.e.,
γ̄fi

, γ̄gi
→ ∞, 1 ≤ i ≤ Ns, and γ̄R → ∞. In particular, we

develop asymptotic closed–form expressions for the (average)
pairwise error probability (PEP), SER, and BER.

For convenience, we introduce the source–destination SNR
vector γf , [γf1

, · · · , γfNs
]T , the normalized noise samples

n̄D,i , nD,i/σnD,i
, 1 ≤ i ≤ Ns, and n̄D,R , nD,R/σnD,R

,
and noise vectorn , [n̄D,1, · · · , n̄D,Ns

, n̄D,R]T .

A. Asymptotic Pairwise Error Probability

Assuming thatx , [x1 · · ·xNs
]T ∈ XNs was transmitted

by the sources and̃x , [x̃1 · · · x̃Ns
]T ∈ XNs , x̃ 6= x, was

detected at the destination, the PEP for the considered NCCD
system can be expressed as

P (x → x̃) = Pr{mc(x) > mc(x̃)}. (10)

It is convenient to first obtain the PEP conditioned on the
instantaneous SNRsγf , γg, γR, and the noise vectorn. This
conditional PEP can be expressed as

P
(

x → x̃|γf , γg, γR, n
)

=

[1 − Pe,eq(γg)] P
(

x → x̃|xR, γf , γeq, γR, n
)

(11)

+
1

|N (xR)|
∑

x̂R∈N (xR)

Pe,eq(γg)P
(

x → x̃|x̂R, γf , γeq, γR, n
)

wherexR andPe,eq(γg) have been defined in Subsection II-
C. In deriving (11), we have assumed that the erroneous
x̂R ∈ X is a nearest neighbor ofxR, i.e., x̂R ∈ N (xR), where
set N (xR) contains all nearest neighbors ofxR in X . This
approximation is well justified for̄γgi

→ ∞, 1 ≤ i ≤ Ns, and
its accuracy will be confirmed by simulations in Section IV.
The conditional PEPP

(

x → x̃

∣

∣x̄R, γf , γeq, γR, n
)

, x̄R ∈
{xR, x̂R}, can be expressed as

P
(

x → x̃

∣

∣x̄R, γf , γeq, γR, n
)

= Pr
{

mc(x) > mc(x̃)
∣

∣x̄R, γf , γeq, γR, n
}

(12)

= Pr

{

Ns
∑

i=1

∆fi
(xi, x̃i)+λR∆R(xR, x̃R, x̄R)<0

∣

∣

∣
γf ,γeq,γR, n

}

where
∆fi

(xi, x̃i) , |√γfi
(xi − x̃i) + n̄D,i|2, (13)

and

∆R(xR, x̃R, x̄R) , |√γR(xR − x̄R) + n̄D,R|2
− |√γR(x̃R − x̄R) + n̄D,R|2. (14)

For derivation of the unconditional PEP, we exploit that for
any RV ∆ we havePr {∆ < 0} = 1

2πj

∫ c+j∞
c−j∞ Φ∆(s)ds

s with

moment generating function (MGF)Φ∆(s) , E∆{e−∆s} and
Pe,eq(γg) = βQ

(√

2α γeq

)

, cf. Subsection II-C. Using these
relations, we obtain the unconditional PEP from (11) and (12)
as

P (x → x̃) = Eγf ,γg,γR,n

{

P
(

x → x̃|γf , γg, γR, n
)}

=
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

ΦR(s)
ds

s
, (15)

wherec is a small positive constant that lies in the region of
convergence of the integrand and

Φfi
(s) , Eγfi

,n̄D,i
{e−s∆fi

(xi,x̃i)}, (16)

ΦR(s) , Φc
R(s) +

1

|N (xR)|
∑

x̂R∈N (xR)

Φe
R(x̂R; s). (17)

Here,Φe
R(x̂R; s) andΦc

R(s) are defined in Lemmas 2 and 4 in
the appendix, respectively.

Asymptotic expressions for the MGFsΦfi
(s), Φe

R(x̂R; s),
and Φc

R(s) valid for high SNR are provided in the appendix
in Lemmas 1, 2, and 4, respectively. With these asymptotic
expressions for the MGFs at hand, an asymptotic result for
the PEPP (x → x̃) can be calculated based on (15). How-
ever, we postpone the derivation of the asymptotic PEP until
Subsection III-B, since the computation of the asymptotic PEP
depends on the actual values ofx andx̃, which in turn depend
on the considered signal constellationX .

For derivation of the SER and BER, the following proposi-
tion is useful (please refer to the Appendix for a proof).

Proposition 1: Assume without loss of generality thatγ̄fi
=

ζfi
γ̄, γ̄gi

= ζgi
γ̄, 1 ≤ i ≤ Ns, and γ̄R = ζRγ̄, whereζfi

, ζgi

and ζR are finite (positive) constants, which are independent
of γ̄, and define the diversity gain associated with the PEP as
Gd,PEP , − limγ̄→∞ log (P (x → x̃)) / log(γ̄). The diversity
gain is then given byGd,PEP = dH(x, x̃), wheredH(x, x̃)
denotes the Hamming distance between data vectorse ,

[s1, · · · , sNs
, sR]T ands̃e , [s̃1, · · · , s̃Ns

, s̃R]T . Furthermore,
for all possible pairs(x, x̃) we havedH(x, x̃) ≥ 2.

B. Asymptotic SER and BER

We use a truncated union–bound, where we include only
nearest neighbor error events, to obtain an asymptotic expres-
sion for the SER based on the asymptotic PEPP (x → x̃). In
particular, a highly accurate approximation for the asymptotic
SER of theith source,P i

s , is given by

P i
s ⊜

1

MNs

∑

x∈XNs

∑

x̃∈Ci(x)

P (x → x̃), (18)

where

Ci(x) ,
{

x̃|x̃j ∈ N (xj) ∪ {xj}, j 6= i, x̃j ∈ N (xj), j = i,

dH(x, x̃) = 2
}

. (19)
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TABLE I

COEFFICIENTSC1
X AND C2

X FOR DIFFERENT SIGNAL CONSTELLATIONS.

FOR M–PSKAND M–QAM WE HAVE d = 2 sin( π

M
),

ν , 4(sin( 2π

M
)2 − sin( π

M
)2) AND d =

q

6

M−1
, RESPECTIVELY.

X C1
X C2

X

BPSK 45+
√

5

160

3

16

M–PSK
8+ 2√

5

d4 +
1−

r

d2

d2+4ν

d2ν

6

d4

M–QAM
18.27− 17.44√

M
− 0.83√

M3

d4
12

d4

“

1 − 1√
M

”

In (19), we have only included error events withdH(x, x̃) = 2
since error events withdH(x, x̃) > 2 yield a higher diversity
gain (cf. Proposition 1) and thus, their contribution to the
asymptotic SER is negligible.

We are now ready to state our main result. In particular, in
the following proposition we use (18) to obtain the asymptotic
SER for BPSK,M–PSK, andM–QAM signal constellations.

Proposition 2: For an NCCD system withNs sources the
asymptotic SER for theith source is given by

P i
s,X ⊜

1

γ̄fi

(

C1
X

Ns
∑

i=1

1

γ̄gi

+ C2
X

[ Ns
∑

j=1
j 6=i

1

γ̄fj

+
1

γ̄R

])

, (20)

whereX ∈ {BPSK, M–PSK, M–QAM}, and C1
X and C2

X
are tabulated in Table I.

Proof: The asymptotic SERP i
s,X can be calculated by

using (18) and (19) along with (15). Because of space limita-
tions, we limit the proof to the BPSK case, i.e.,X = {±1}.
However, a similar approach can be used to obtain the SER for
M–PSK,M–QAM, and any other signal constellation. In the
BPSK case, for a given transmit signal vectorx, the setCi(x)
in (19) containsNs elements, i.e.,Ci(x) = {x̃1, . . . , x̃Ns},
x̃

l
, [x̃l

1, . . . , x̃l
Ns

]T , where

x̃l
j =

{

−xj , j = i, j = l
xj , otherwise

, 1 ≤ l ≤ Ns, 1 ≤ j ≤ Ns. (21)

In the following, we first obtain the asymptotic PEPP (x →
x̃

l) for the casel = i before we consider the casel 6= i.
Case 1 (l = i): Defining dj , |xj − x̃l

j |, we havedj = 2,
j = i, and dj = 0, j 6= i. As a result, from Lemma 1 we
obtain Φfj

(s) ⊜ 1
4s(1−s)γ̄fj

, j = i and Φfj
(s) ⊜ 1, j 6= i.

Furthermore, taking into account that forl = i we havex̃R =
−xR, based on Lemmas 2 and 4, (15), and (17) we obtain

P (x → x̃
i) =

1

16π2jγ̄fi

π/2
∫

0

c+j∞
∫

c−j∞

1

s(1 − s)

×
(

1

γ̄eqs(1 − 16 sin4 θs2)
+

1

γ̄Rs(1 − s)

)

ds

s
dθ, (22)

where we have used that for BPSKN (xR) = {−xR}, α =
β = 1, d̄R(x̂R) = −4, anddR = 2 are valid.

The inner complex integral in (22) can be calculated using
the standard inverse Laplace transform techniques such as
partial fraction expansion. This yields

P (x → x̃
i) ⊜

1

γ̄fi

(

C1
BPSK

Ns
∑

i=1

1

γ̄gi

+ C2
BPSK

1

γ̄R

)

, (23)

whereC1
BPSK andC2

BPSK are given in Table I.
Case 2 (l 6= i): For l 6= i, from Lemma 1 we have

Φfj
(s) ⊜ 1

4s(1−s)γ̄fj

, j = i, j = l, andΦfj
(s) ⊜ 1, otherwise.

Furthermore, in this casẽxR = xR is valid and therefore based
on Lemmas 2 and 4 and (17) we haveΦR(s) ⊜ 1. Therefore,
using (15) we arrive at

P (x → x̃
l) =

1

32πjγ̄fi
γ̄fl

c+j∞
∫

c−j∞

1

s3(1 − s)2
ds =

C2
BPSK

γ̄fi
γ̄fl

(24)
for l 6= i, 1 ≤ l ≤ Ns.

Finally, combining (18), (23), and (24) yields (20) for
BPSK.

Remark 2: For Ns = 1 the considered NCCD system
reduces to a CD system with a single decode–and–forward
relay and C–MRC at the destination [7]. LettingNs = 1
in (20), the asymptotic SER for this system can therefore be
obtained as

Ps,X ⊜
1

γ̄fi

(

C1
X

γ̄gi

+
C2

X
γ̄R

)

, (25)

which is a new result since the analysis presented in [7]
reveals only the diversity gain but does not provide a tight
approximation for the asymptotic SER.

We note that having obtained the asymptotic SER, for Gray
labeling, the asymptotic BER of theith source,P i

b,X , can be
tightly approximated as

P i
b,X ⊜

1

log2(M)
P i

s,X . (26)

C. Diversity Gain and Coding Gain

Letting γ̄fi
= ζfi

γ̄, γ̄gi
= ζgi

γ̄, 1 ≤ i ≤ Ns, and
γ̄R = ζRγ̄, where ζfi

, ζgi
and ζR are finite (positive)

constants, we can express the asymptotic SER of theith source
as P i

s,X ⊜ (Gi
c,SERγ̄)−Gi

d,SER , where Gi
d,SER and Gi

c,SER
are the diversity gain and the coding gain corresponding to
the asymptotic SER, respectively. Thus,Gi

d,SER and Gi
c,SER

correspond to the negative asymptotic slope and a relative
horizontal shift of the SER curve when plotted as a function of
γ̄ on a double–logarithmic scale, respectively. Based on (20)
we obtainGi

d,SER = 2 and

Gi
c,SER[dB] = 5 log10(ζfi

)

− 5 log10

(

C1
X

Ns
∑

i=1

ζ−1
gi

+ C2
X

[ Ns
∑

j=1
j 6=i

ζ−1
fj

+ ζ−1
R

])

. (27)

Remark 3: A diversity gain ofGi
d,SER = 2 is achieved by

all sources irrespective of the number of sourcesNs. However,
from (27) it is evident that the coding gain is dependent on the
number of sources, the signal constellationX , and the relative
link qualitiesζfi

, ζgi
, andζR.

IV. RESULTS AND SYSTEM OPTIMIZATION

In this section, we verify the analytical results derived in
Section III with computer simulations and exploit these results
to optimize the performance of NCCD systems.
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BPSK. Solid lines with markers: Simulated BER. Dashed lines: Asymptotic
BER [(20), (26)].
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A. Impact of Number of Sources

In Fig. 2, we show the average BER (average of the BERs
of all sources) of an NCCD system for different numbers of
sources as a function of̄γ for BPSK. ζfi

= ζgi
= 1, 1 ≤

i ≤ Ns, ζR = 1 are assumed, i.e., all links in the network
have the same average quality. The analytical results (dashed
lines) shown in Fig. 2 were obtained with (20) and (26) and
are in excellent agreement with the simulation results (solid
lines with markers) for sufficiently high SNR confirming the
accuracy of the approximations made in Section II and III.
As expected from the analysis in Section III, a diversity gain
of two is achieved irrespective ofNs. However, increasing
Ns causes a horizontal shift of the asymptotic BER and a
performance degradation.

B. Performance Optimization

Similar to the case of conventional CD in [8], the asymptotic
SER expression in (20) may be used for optimization of
the NCCD system including optimal power allocation, relay
selection, and relay placement. Because of space constraints,
we only briefly discuss the power optimization problem here.
Considering (20) and the definition of the SNRsγ̄gi

, γ̄fi
,

1 ≤ i ≤ Ns, and γ̄R, it is obvious that the average SER

of all sources is a posynomial in the transmit powersPi,
1 ≤ i ≤ Ns, and PR [9]. Thus, the problem of optimizing
the transmit powers for minimization of the average SER
under a joint transmit power constraint

∑Ns

i=1 Pi + PR ≤ PT

(PT : maximum transmit power) can be cast into a geometric
program (GP) [9] as was done for conventional CD systems
in [8]. Thus, the optimal power allocation (OPA) problem can
be efficiently solved using standard tools [9].

Results for OPA as a function ofPT /σ2 are shown in Fig. 3
for an NCCD system with 8–PSK,Ns = 2, Ωf1

= Ωg1
= 1,

Ωf2
= Ωg2

= 100, ΩR = 100, and σ2
nD,i

= σ2
nR,i

=

σ2
nD,R

, σ2. Specifically, we show in Fig. 3 the SERs of
both sourcesSi, i ∈ {1, 2} and the average SER of both
sources, and compare OPA with equal power allocation (EPA),
where P1 = P2 = PR = PT /3. Fig. 3 shows that OPA
improves the average asymptotic SER (i.e., the cost function
for optimization) by 3.4 dB compared to EPA. The individual
SERs ofS1 and S2 reveal that OPA improves the SER of
S1, which has the weaker channel, at the expense of a small
degradation of the SER of sourceS2 by allocating more power
to S1 than toS2 (and the relay).

V. CONCLUSIONS

In this paper, we studied NCCD with generalM–ary mod-
ulation and proposed a simple C–MRC diversity combining
scheme which achieves the maximum diversity of the consid-
ered system even if erroneous decisions at the relay are taken
into account. Assuming independent Rayleigh fading for all
links in the network, we derived closed–form expressions for
the asymptotic SER and BER of the considered NCCD system.
These simple and elegant expressions provide insight into the
impact of various system and channel parameters on perfor-
mance and can be exploited for performance optimization and
system design. Simulation results confirmed the accuracy of
the presented asymptotic SER and BER results and revealed
that optimal power allocation can improve performance by
several decibels.

APPENDIX

In this appendix, we prove Proposition 1 and provide
lemmas 1–5.

Proof: [Proposition 1] Based on Lemma 1Φfi
(s) can

be written asΦfi
(s) ⊜ k̃1γ̄ for xi 6= x̃i and Φfi

(s) ⊜ 1 for
xi = x̃i, where k̃1 is a finite constant. Furthermore, using
Lemmas 2 and 4 in (17) yieldsΦR(s) ⊜ k̃2γ̄ for xR 6= x̃R

and ΦR(s) ⊜ k̃3 for xR = x̃R, where k̃2 and k̃3 are finite
constants. Therefore, based on (15) we conclude thatGd,PEP

is given by the number of non–zero elements in the vector
[x1 − x̃1, · · · , xNs

− x̃Ns
, xR − x̃R]T . SinceµX : A → X is

a one–to–one mapping function,Gd,PEP is alternatively given
by the Hamming distance between the transmit symbol vectors
se ands̃e denoted asdH(x, x̃). To seedH(x, x̃) ≥ 2, we first
note that by definition we havex 6= x̃, and thereforesi 6= s̃i

is valid for i ∈ I, whereI is a non–empty index set. For
|I| ≥ 2, dH(x, x̃) ≥ 2 immediately follows. For|I| = 1 it is
easy to see thatsR 6= s̃R, resulting indH(x, x̃) = 2.

Lemma 1: The asymptotic behavior ofΦfi
(s), 1 ≤ i ≤ Ns,

for γ̄fi
→ ∞ is given by

Φfi
(s) ⊜

1

d2
i s(1 − s)γ̄fi

, (28)
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for di , |xi − x̃i| 6= 0 andΦfi
(s) ⊜ 1 for di = 0.

Proof: For di 6= 0, following the same steps as in [10,
Section IV.A] for If (s) , Eγfi

{e−s∆fi
(xi,x̃i)} we obtain

If (s) =
1

d2
i sγ̄fi

∞
∑

i=0

1

i!
si |n̄D,i|2i =

e|n̄D,i|2s

d2
i sγ̄fi

. (29)

In particular, (29) can be obtained from [10, Eq. (14)] by
adjusting the notation of [10] to the problem at hand.Φfi

(s) =
En̄D,i

{If (s)} can then be calculated by averagingIf (s) with
respect to the Rayleigh distributed RV|n̄D,i| leading to the
result in (28). Fordi = 0, Φfi

(s) ⊜ 1 follows from the
definition of Φfi

(s).
Lemma 2: The asymptotic behavior ofΦe

R(x̂R; s)=
Eγeq,γR,n̄D,R

{

βQ
(√

2α γeq

)

e−sλR∆R(xR,x̃R,x̂R)
}

for γ̄gi
→

∞, 1 ≤ i ≤ Ns, and γ̄R → ∞ is given by

Φe
R(x̂R; s) ⊜

1

π

∫ π/2

0

β

γ̄eq(d̄R(x̂R)s + α
sin2 θ

)
dθ. (30)

whered̄R(x̂R) , |x̃R − x̂R|2 − |xR − x̂R|2.
Proof: We start the proof by using the alternative repre-

sentation of theQ–function,Q(x) = 1
π

∫ π/2

0 e−x2/ sin2 θdθ, to
expressΦe

R(x̂R; s) as

Φe
R(x̂R; s) =

β

π

∫ π/2

0

En̄D,R
{Φ(s, θ)} dθ, (31)

where

Φ(s, θ) , Eγeq,γR

{

e−
α γeq

sin2 θ e−sλR∆R(xR,x̃R,x̂R)
}

. (32)

Using the Taylor series expansionex =
∑∞

i=0 xi/i! along with
(9) and (14) in (32) leads to

Φ(s, θ) =
∞
∑

i=0

2iξi

(2i)!
|n̄D,R|2is2i Ψi(s, θ), (33)

whereξi ,
Γ(i+1/2)√

πΓ(i+1)
andΨi(s, θ) = Ψ1

i (s, θ)+Ψ2
i (s, θ) with

Ψ1
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqe
−( α γeq

sin2 θ
+γeq/γ̄eq)

×
∫ γeq

0

dγR γi
R e−(γR d̄R(x̂R)s+γR/γ̄R), (34)

Ψ2
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqγ
2i
eqe

−γeq(d̄R(x̂R)+ α

sin2 θ
+1/γ̄eq)

×
∫ ∞

γeq

dγR γ−i
R e−(γR/γ̄R). (35)

In the following, we find the asymptotic behavior ofΨ1
i (s, θ)

and Ψ2
i (s, θ) for γ̄eq, γ̄R → ∞, respectively. We first write

(34) as

Ψ1
i (s, θ)=

d2i
R

γ̄eqγ̄R

∫ ∞

0

e−( α γeq

sin2 θ
+γeq/γ̄eq)

[

i!
(

d̄R(x̂R)s + 1/γ̄R

)i+1

−
i

∑

k=0

i!γk
eqe

(d̄R(x̂R)s+1/γ̄R)γeq

k!
(

d̄R(x̂R)s + 1/γ̄R

)i−k+1

]

dγeq

⊜ o
(

γ̄−1
eq γ̄−1

R

)

. (36)

Next, we rewrite (35) as

Ψ2
i (s, θ) =

d2i
R

γ̄eqγ̄i
R

∫ ∞

0

γ2i
eq e−γeqA(s,θ) Γ(1 − i, γeq/γ̄R)dγeq,

(37)

whereA(s, θ) , d̄R(x̂R)s + α
sin2 θ + 1/γ̄eq and Γ(·, ·) is the

incomplete Gamma function. Based on (37) and the asymptotic
properties ofΓ(·, z) for z → 0, we obtain

Ψ2
i (s, θ) ⊜











o
(

γ̄−1
eq γ̄−1

R

)

i > 1
2 log(γ̄R)

(A(s,θ))3γ̄eqγ̄R
i = 1

1

γ̄eq(d̄R(x̂R)s+ α

sin2 θ
)

i = 0
(38)

From (37) and (38), we therefore obtainΨi(s, θ) = Ψ1
i (s, θ)+

Ψ2
i (s, θ) ⊜ Ψ2

i (s, θ). Substituting this result into (33) leads to
(30) upon using (31).

Lemma 3: The asymptotic behavior ofI(s) ,

Eγeq,γR,n̄D,R

{

e−sλR∆R(xR,x̃R,xR)
}

for γ̄gi
→ ∞, 1 ≤ i ≤

Ns, γ̄R → ∞ is given by

I(s) ⊜
1

γ̄eqd2
Rs

− 1

γ̄Rd2
Rs(s − 1)

, (39)

for dR , |x̃R − xR| 6= 0, while I(s) = 1 is valid for dR = 0.
Proof: Since λR∆R(xR, x̃R, xR) = γm d2

R

+ 2γm√
γR

dR ℜ{n̄∗
D,R} with γm , min{γeq, γR}, we conclude

that I(s) = 1 is valid for dR = 0. For dR 6= 0 using a similar
approach as in the proof of Lemma 2, we obtain

I(s|n̄D,R) = En̄D,R

{ ∞
∑

i=0

2iξi

(2i)!
|n̄D,R|2is2i Υi(s, θ)

}

, (40)

whereΥi(s, θ) = Υ1
i (s, θ) + Υ2

i (s, θ) with

Υ1
i (s, θ) ⊜

i!

γ̄R d2
Rsi+1

, Υ2
i (s, θ) ⊜











o
(

γ̄−1
eq γ̄−1

R

)

i > 1
2 log(γ̄R)

d6
Rs3γ̄eqγ̄R

i = 1
1

γ̄eqd2
Rs

i = 0

(41)

We therefore arrive at

Υi(s, θ) ⊜

{ i!
γ̄R d2

R
si+1 i ≥ 1

1
d2

R
s

(

1
γ̄eq

+ 1
γ̄R

)

i = 0
(42)

Substituting (42) into (40) results in (39) upon averaging (40)
over the Rayleigh distributed RV|n̄D,R|.

Lemma 4: The asymptotic behavior ofΦc
R(s) ,

Eγeq,γR,n̄D,R

{

[1 − βQ(
√

2αγeq)]e
−sλR∆R(xR,x̃R,xR)

}

for γ̄gi
→ ∞, 1 ≤ i ≤ Ns, γ̄R → ∞ is given by

Φc
R(s) ⊜

1

π

∫ π/2

0

(

2

γ̄eqd2
Rs

− 2

γ̄Rd2
Rs(s − 1)

− β

γ̄eqd2
R(s + α

sin2 θ d2
R

)

)

dθ, (43)

for dR 6= 0, while Φc
R(s) ⊜ 1 is valid for dR = 0.

Proof: We first note thatΦc
R(s) = I(s) − Φe

R(xR; s).
For dR 6= 0 combining (30) and (39) readily results in (43).
For dR = 0 from (30) and (39) we obtainΦc

R(s) = 1 −
1

πγ̄eq

∫ π/2

0
β sin2 θ

α dθ ⊜ 1.
Lemma 5: For sufficiently high SNRγeq(γg) given in (6)

can be approximated as

γeq(γg) ≈ min{γg1
, · · · , γgNs

}. (44)

Proof: Since µX : A → X is a one–to–one map-
ping function the equivalent error probabilityPe,eq(γg) =
Pr{x̂R 6= xR} is alternatively given byPe,eq(γg) = Pr{Ee},
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where the error eventEe is defined asEe , {ŝR 6= sR} with
ŝR = ŝR,1 ⊕ · · · ⊕ ŝR,Ns

and sR = s1 ⊕ · · · ⊕ sNs
. For

sufficiently high SNR the probability ofEe is dominated by the
probability of the event̃Ee =

⋃Ns

i=1 Ẽ i
e, whereẼ i

e, 1 ≤ i ≤ Ns,
are mutually exclusive events defined asẼ i

e , {ŝR,j 6= sj , j =
i, ŝR,j = sj , j 6= i}. We therefore can write

Pe,eq(γg) = Pr
{

Ee

}

≈ Pr
{

Ẽe

}

=

Ns
∑

i=1

Pr
{

Ẽ i
e

}

. (45)

In the above equationPr
{

Ẽ i
e

}

is given by

Pr
{

Ê i
e

}

= βQ
(√

2αγgi

)

Ns
∏

j=1
j 6=i

(

1 − βQ
(√

2αγgj

))

≈ βQ
(√

2αγgi

)

, (46)

where we have again used the sufficiently high SNR as-
sumption to conclude

(

1 − βQ
(
√

2αγgj

))

≈ 1. Based on
(45), (46), and the alternative representation of theQ–function
Q(x) = 1

π

∫ π/2

0 e−x2/ sin2 θdθ we have

Pe,eq(γg) ≈
β

π

∫ π/2

0

Ns
∑

i=1

e−
2αγgi

sin2 θ dθ

≈ β

π

∫ π/2

0

e−
2α min{γg1

,··· ,γgNs
}

sin2 θ dθ (47)

= βQ

(

√

2α min
{

γg1
, · · · , γgNs

}

)

, (48)

where have used the standard log–sum approximation in
obtaining (47). Finally, using (48) in (6) leads to (44).
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