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Abstract—In this paper, we present a general mathematical subject to a multitude of other impairments such as narrow-
framework for performance analysis of single—carrier (SC) and pand interference (NBI) [3], co—channel interference (CCI
orthogonal frequency division multiplexing (OFDM) systems [4], [5], correlated Gaussian noise and interference [&lnm

employing popular bit-interleaved coded modulation (BICM) . . . .
and multiple receive antennas. The proposed analysis is appli- M@de impulsive noise [7], [8], and ultra-wideband (UWB)

cable to BICM systems impaired by genera| types of fadmg interference [9]—[11] Therefore, it is of both theoretiead
(including Rayleigh, Ricean, Nakagami#, Nakagami-, and practical interest to investigate how the performance &N+
Weibull fading) and general types of noise and interference SC and BICM—OFDM systems designed for AWGN envi-
with finite moments such as additive white Gaussian noise r4nments is affected by non-Gaussian ndidéle note that
(AWGN), additive correlated Gaussian noise, Gaussian mixture | t all existi f tudi f BICM limited
noise, co—channel interference, narrowband interference, ah almost all existing per orma,nce studies o ,are imite
ultra—wideband interference. We present an approximate upper {0 AWGN. For example, union bounds for the bit error rate
bound for the bit error rate (BER) and an accurate closed— (BER) of BICM-SC were provided in [1], [12], [13] and
form approximation for the asymptotic BER at high signal-to—  similar expressions for BICM—OFDM can be found in [14].
noise ratios for Viterbi decoding with the standard Euclidean Sattlepoint approximation techniques for BICM-SC systems
distance branch metric. For the standard rate—1/2 convolutional ) . o

code the proposed approximate upper bound and the asymp- Were mtroduced. in .[15],.[16]. The combination of BI_CM—
totic approximation become tight at BERs of 10~ and 10~'2, OFDM and spatial diversity techniques was analyzed in [14],
respectively. However, if the code is punctured to higher rates [17], [18]. In contrast, only few analytical results are italale
(e.g. 2/3 or 3/4), the asymptotic approximation also becomes tight for non—AWGN types of noise. Namely, the performance of
at a BER of 10~ °. Exploiting the asymptotic BER approximation BICM-SC in Middleton’s Class A impulsive noise and of

we show that the diversity gain of BICM systems only depends . . .
on the free distance of the code, the type of fading, and the BICM-OFDM in UWB interference was analyzed in [19] and

number of receive antennas but not on the type of noise. In [11], V?SpeCtiVeW- o
contrast their coding gain strongly depends on the noise moments.  Motivated by the lack of general performance results, ia thi

Our asymptotic analysis shows that as long as the standard paper, we provide a mathematical framework for performance
E:Jé:\'/ldea”td'ﬁa”c? b.ra”;'? miw‘é"\? usedlfor V'i?rb' d?COd'”g’ analysis of BICM-SC and BICM—OFDM systems employing
S1CM sysems opunied or ANGN are 5 DM 21 fcr ecoding it the standard Eucldean ditance
o ] metric [1] and multiple receive antennas in fully interledv
I ndex Terms—Bit-interleaved coded modulation (BICM), non— ¢4 4ing and non—-AWGN environments. This framework is very
Gaussian noise and interference, orthogonal frequency division . . . .
multiplexing (OFDM) and single—carrier (SC) systems, fading general and apphcable. to arbitrary linear modullat|on fatsn
channels, asymptotic analysis, coding gain, diversity gain. all commonly used fading models, and all practically refeva
types of noise with finite moments. We first develop a general
approximate upper bound on the BER of BICM systems,
which is easy to compute but offers little insight since it
Bit-interleaved coded modulation (BICM) is an efficientequires numerical integration. To overcome this probles,
technique to extract time diversity in systems with singlederive accurate closed—form asymptotic BER approximation
carrier (SC) modulation [1] and frequency diversity in sysfor BICM—-SC and BICM—-OFDM systems which provide
tems employing orthogonal frequency division multiplexinsignificant insight into the impact of system parameterssuc
(OFDM), and has been adopted by a number of recesé the modulation format, the free distance of the code, the
standards and is also expected to play a major role in futugge of fading, and the type of noise on performance. At
wireless systems [2]. what BER the asymptotic BER approximation converges to
While wireless systems are usually optimized for additivihe true BER strongly depends on the free distance of the
white Gaussian noise (AWGN), in practice, they are alssbde but is practically independent of the underlying type o
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tight at BERs of10~% and 10~'2, respectively. However, if we will drop the time/frequency indek wherever possible.
the code is punctured to higher rates (e.g. 2/3 or 3/4) thée discuss the assumptions necessary for the validity of the
asymptotic approximation also becomes tight at a BER bdf.d. assumption more in detail below.
10~% because of the decreased free distance of the punctureBICM-SC: For BICM-SC we assume transmission over
code. Furthermore, the asymptotic BER expressions relvatl ta flat fading channel and coding ovér frames of N data
while the diversity gain of BICM systems is not affected bgymbols, i.e.,K. = NB. The channel is time—variant within
the type of noise, the coding gain depends on certain nosee frame and changes independently from frame to frame
moments. We note that the asymptotic performanaenebded (e.g. due to frequency hopping). For sufficiently largé
SC modulation has been studied in AWGN [20], [21] and norand/or B assuming that the time—domain fading vecthrare
AWGN [22], [23] channels before. However, both the analysis.d. is justified [1].
techniques and the results in [20]-[23] are not applicable t BICM-OFDM: We consider a BICM—-OFDM system with
BICM. N sub—carriers where one codeword sp&8n®FDM symbols,
The rest of this paper is organized as follows. In Section lle., K. = BN. We assume that the length of the OFDM cyclic
the considered BICM-SC and BICM-OFDM system modejsrefix exceeds the length of the channel impulse response and
are introduced. The proposed upper bound and asymptdhat the channel changes independently from OFDM symbol
approximation for the BER are presented in Sections Ill and OFDM symbol. Thus, modeling the frequency—domain
IV, respectively. Various practically relevant noise misdere channel gainsh as i.i.d. vectors implies that the channel is
discussed in Section V. The presented analysis is verifiad geverely frequency selective and/Bris sufficiently large.
computer simulations in Section VI, and conclusions arevdra  Practical BICM-SC and BICM-OFDM systems that em-
in Section VII. ploy interleaving and coding oveB > 1 frequency—hopped
frames include the GSM/EDGE mobile communication system
Il. SYSTEM MODEL (N = 116/N = 348, B = 8) and the ECMA multi-band

We consider BICM-SC and BICM—-OFDM systems witf?FDM (MB-OFDM) UWB system &V = 128, B = 3;
Np receive antennas. For convenience, in this paper, Bifure versions of the standard may use upBio= 15) [9],
signals and systems are represented by their complex baseJgSPectively.
equivalents.

B. Fading and Noise Model

A. System Model Fading Model: The fading gains can be expressedhas:
The BICM transmitter consists of a convolutional encodere’®!, whereq;, and ©, are mutually independent random
of rate R., an interleaver, and a memoryless mapper [1fariables (RVs). Specificallyd; is uniformly distributed in
Specifically, the codewor@ = [cy,ca,...,cm.x,] Of length [—m,7) and a; is a positive real RV characterized by its
m.K . is generated by a convolutional encoder and interleavetistributionp, ;(a;) or equivalently by its moment generating
The interleaved bits are broken up into blocks rof bits function (MGF)®,,(s) = £{e~**}. Correlated fading can be
each, which are subsequently mapped to symbglérom a modeled via the joint pdp,(a) or the joint MGF ®4(s) =
constellation of size |X| £ M = 2™« to form the transmit £{e~ =4 s} g 2 s ... sy,|T, of the elements of
sequencex £ [r1,72,...,7x.] Of length K.. Assuming a 2 [a; ... ay,|”, cf. e.g. [24]-[26]. For the asymptotic
perfect synchronization and demodulation, for both BICManalysis in Section IV, we require the fading channel to be
SC and BICM-OFDM the signal observed at tNg; receive asymptoticallyspatially i.i.d., i.e., fora — Oy, the joint pdf

antennas can be modeled as can be expressed as

T = /7 hixp + 1y, 1<k< K, (1) Na

A T . 2 pa(a) = Hpa (al)a (2)
where h, = [hk,l hk,NR] with 5{Hhk|| } = Np and =1
g £ [nk,l L nk,NR]T with 5{||nk\|2} = Ng contain the

fading gainsh;; and the noise variables; ;, 1 <[ < Ng, where

respectively, and denotes the signal—to—noise ratio (SNR) per Pa(a) = 20ca** ™! + o(a™* ) ©)
receive antennd.As customary in the literature, cf. e.g. [1],with fading distribution dependent constantsanda,. Eq. (2)
[13], [17], for our performance analysis we assume perfegt obvious for i.i.d. and independent, non-identically-dis
interleaving, which means thadt, and n, can be modeled tributed (i.n.d.) fading [20]-[22], and we prove its vatigior
as independent, identically distributed (i.i.d.) randoetters the most popular correlated fading models (Rayleigh, Ricea
and only their first order probability density functions {§d and Nakagamir) in Appendix I. For these correlated fading

are relevant. Thus, to simplify our notation, in the follogi models and for independent Nakagamand Weibull fading,

the fading pdfp, ;(a;) and parameters. anday are specified
2In this paper[-]T, (-)#, R{-}, ||, det(-), and€,{ -} denote transposi- Tabl ? Pdipa,i(a) P ¢ d P

tion, Hermitian transposition, the real part of a complex numthe L,—norm In a_ el o

of a vector, the determinant of a matrix, and statistical etqtien with respect ~ Noise Model: The proposed analysis is very general and

to z, I’espectlvely. Moreover] y s and 0,, are theM.X M |dent|ty matrix appllcable to a” types Of n0|se for WhICh a” ]0|nt momenfs 0

and the all-zero column vector of lengff, respectively. Furthermore, we h | ofs exist. This i ild diti hich i

use the notatiom = v to indicate that: andv are asymptotically equivalent, the elements exist. IS 1s a mild condition which Is met

and a functionf () is o(g(x)) if lim,_o f(z)/g(x) = 0. by most practically relevant types of noise and interfeegnc
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TABLE |
PDF pq (a) OF FADING AMPLITUDE a FOR POPULAR FADING MODELS AND CORRESPONDING VALUES FO&: AND ag. WE HAVE OMITTED SUBSCRIPT!
FOR CONVENIENCE THE PARAMETERS FORRAYLEIGH (C,1,), RICEAN (i, Chp), AND NAKAGAMI —m (m, Caq) FADING ARE DEFINED IN APPENDIX
|. THE PARAMETERS FORNAKAGAMI —q (g, b) AND WEIBULL (c) FADING ARE DEFINED AS IN[24].

Channel type pa(a) of the fading amplituder ‘ Qe ‘ oq ‘

2

Rayleigh 2ae @ det(Cpp)~V/Nr 1

exp( ,U'Hcflp, ) 1/NR
: - h
Ricean | 2(K + e~ K0+ Iy (20K +1)) ( o ) i

det(Chh)
Nakagami#n r(2m) mm g2m—1 g—ma® 11?7:) det(Caa)~™/Nr m
H 2a a? ba 1+ 2
Nakagamig | 2 e (—%7) To (%) 1
Weibull | ¢ (D(1+2))% acLexp (- (a>r(1+ 2)) %) S0+ 2))5 ¢

see Section V for several examples. An exception-istable (5) the MGF @4 (s) £ &, n{e *2®2)1 of A(z,z) can be
noise, which is sometimes used to model impulsive noisxpressed as

[27], as the higher order moments af-stable noise do not o R "

exist. Note that our analysis is applicable to other types of ®a(s) =¢&n {6 ozl g, {2 doev/T AR T }}

impulsive noise such as Middleton's Class—A model ard - —&2_~llall®s a
mixture noise. =fa {6 ) Pa(=2 d“‘ﬁa‘s)} o ®
where n £ [e77%ny ... e 9%y, )T and ®a(s) =
[1l. APPROXIMATE UPPERBOUND FORBER En{e" ™"} is the MGF ofn. If the phases of the noise
mponentsn;, 1 < [ < Ng, are mutually independent

In this section, we present an approximate upper boug
for the BER of BICM systems operating in non—AWGN
environments.

d uniformly distributed in[—7, 71), ®4(s) = P, (s) =
En{e* ™)) is valid and®;(s) in (6) can be replaced
by ®,.(s). Further simplifications are possible if both the
phases and the amplitudes of, 1 < [ < Ng, are mutually

A. MGE of Metric Difference independent. In this case, we can expréggs) as
We assume Viterbi decoding with the standard Euclidean
distance (ED) branch metric [1] ©a(s) = [ Pa (siR{n}), )

=1

A : 2
Ai = e {llr = v7ha|I*} @ where only the scalar MGF&;,, (s) 2 &, {e s®1™1}} of the
_ elementsi; £ ¢ 7©n,; of n are required. If the phases of

for bit i, 1 < i < m,, of symbolz. Here, x; denotes the the n;, 1 < I < Ng, are uniformly distributed if—n, 7),
subset of all symbols in constellaticri whose label has value ¢, (s) = ®,,,(s) £ &,,{e*™{"}} is valid, i.e., only the
b € {0,1} in positioni. In AWGN, the ED branch metrid; scalar MGFs of the noise components are required.
performs close to optimum at sufficiently high SNR [1]. In The scalar MGFs®;, (s) of several practically relevant
non-Gaussian noise, significant performance gains could thpes of noise are collected in Table 1, cf. Section V@I (s)
achieved with optimum maximum-likelihood (ML) decodingcannot be calculated in closed form, it can be computed by
which, however, requires knowledge of the noise pdf. Singgimerical integration even #;(s) = ®,(s) is not valid (i.e.,
this knowledge is typically not available at the receiver, iif the phases ofy;, 1 < I < Ng, are not mutually independent
most practical systems, the ED branch metric is also useddnd/or are not uniformly distributed if-7, 7)). However,
the presence of non-Gaussian impairments. For derivafionegen if closed—form expressions for the MGF are available,
the proposed upper bound it is convenient to first calcufee tcalculation of® A (s) in closed form is usually not possible,
MGF of the metric difference and evaluation of (6) entail8’r numerical integrals.

A(z,2) & |lr — 7 hz|? = |lr — A hal?

= d2_~||h|]> - 2dmﬁ§}%{th}, ®) B. Approximate Upper Bound

Assuming a convolutional code of rafe. = k./n. (k. and
wherex denotes the transmitted symbol ands the nearest n. are integers) the union bound for the BER of BICM is
neighbor ofz in Xg' with b being the bit complement df, given by [1]
andz — z £ d,,e’9 with ED d,, > 0. Since we assume | =
the phase®; of h; to be uniformly distributed, in (5), we - Z , ¢), (8)
have absorbed’®+ in h without loss of generality. Based on k d=dy
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wherec andé¢ are two distinct code sequences with Hamming — 0y, once again, we can use (3) along with the
distance d that differ only inl > 1 consecutive trellis Taylor series expansion® = ) ;° z’/i! and the integral
states,w.(d) denotes the total input weight of error eventg‘ ehlePe dgp = = p"/?T(u/2) [29, 3.462] to express
at Hamming distancel, and d; is the free distance of the ®, (s|n;) as

code.P(c, ¢) is the pairwise error probability (PEP), i.e., the

probability that the decoder chooses code sequeénadnen alslm) =

code sequence # ¢ is transmitted. Invoking the expurgated oy 2, |aa? > R i
bound from [1], the PEP can be expressed as Earoy 4 € 1T N2 Al aiR{fu} s)' /il
=0
1 e s ’ d
¢ 5 =—=— ) 2 2)s"/2 + o ().
P - o & - i D +1/2)s% + 0 (77%)
co-r | (e Sy ree) n e
c—joo i= z L 13
© | (13)
where ¢ is a small positive constant that lies in the regiowith r,; = £o,{R{7;}'}. Using n,; = e TEEN P

of convergence of the integrand. The integral in (9) can Rkgen, andy,; = 0, i odd, in (13) leads to‘fr(i/zﬂ)

efficiently evaluated numerically using a Gauss—Chebyshev

quadrature rule, cf. [28]. Egs. (8) and (9) constitute an ap- B (sny) =
proximate upper bound on the BER and are generalizations (vd2
of similar bounds in [1], [17] for AWGN to arbitrary types of
noise (and interference). We cannot prove that (8) with §9) |
a true upper bound since, as has been pointed out in [12], the 3, 2
proof provided in [1] for the expurgated bound is not correct L (20)IT(i+1) ()2
Nevertheless, our results in Section VI do suggest that (i) Wrhe asymptotic Laurent series expansioof|n) is obtained

(9) is an asymptotically tight upper bound if Gray labelisg i
applied. We note that all our results can be extended to t Hom (11). (12), and (14) as

revised expurgated bounds presented in [12].

- Z Bilm[*'s' +o(y7),  (14)
i=0

whereﬂ7 is defined as
a 22T(ag+)0(i+1/2)  Tl(og+1i)

(15)

Nr d
O(s|n) = X(, Ng,d) a)n? (ys)~@eNnd (H Zl(5)>

IV. ASYMPTOTICANALYSIS =1

In this section, we analyze the asymptotic behavior of the to (’YﬂdNRd) (16)
upper bound in (8) for high SNR, i.ey — oo. For this 21(s)

o . ) ™ oo Bilm|*'s' and modulation dependent
purpose, it is convenient to consider the conditional PEP -

constant
c+joo d
Ple.en) = / a(sfm) &2, (10)
’ o 21y S X(ad NR’ 2mr ZZ Z dNR
c—joo i=1 b= 016;\61 dz:)
d 17)
In the next subsection, we will use (16) to calculate a clesed
n (0] n !
(s[n) me2me Z Z Z alsn) ) (A1) form expression for the asymptotic BER.

=1 b= OzeXL

where® (s|n) = Eq,0{e™**("*)} with channel phase vectorg, Approximation for Asymptotic BER
® £ [0, ... Oy,]". The conditional PEP in (10) is given

by the sum of the residues df(s|n)/s at poles lying in the
left hand side (LHS) of the complex—plain (including the
imaginary axis) [28]. In order to investigate the singules

of ®(s|n)/s, we derive the Laurent series representation
®(s|n) arounds = 0 for the asymptotic case of — oo in

the following subsection.

As mentioned before, the conditional PEP (10) is given
by the sum of the residues @ (s|n)/s in the LHS of the
complex s—plain. Using d’Alembert’s convergence test [29,
0.222] it is easy to show that(s) is convergent for alls.

hus,(]‘[f\f1 z(s))4 is also convergent for all. Consequently,
the first term on the right hand side (RHS) of (16), which
dominates for high SNR, is convergent fer= 0, i.e., for
high SNR the only singularity ob(s|n)/s is ats = 0. Thus,
the asymptotic conditional PEP is given by the residue of

For v — oo errors only occur for small channel gains, i.e.¢(s|n)/s ats = 0 or equivalently by the coefficient associated
for a — Oy, see also [21]. Thus, foy — co we can model with s° in the series expansion of the first term on the RHS of
the elements oft and® as i.i.d., cf. Section II-B, and rewrite (16). AssumingayNrd is an integer this leads to (18) given
Pa(s|n) as at the top of the next page. In the next step, we calculate a

. closed—form approximation for the asymptotic uncondiion
n) = H(I)A(S‘m)’ (12)  BER. For this purpose, we need the assumptions that (a) the
- ‘ first term in the summation in (8) is asymptotically dominant
where @A (slny) 2 Eq,.0,{e 7 %=lal® ¢2vAde a®{i} s (b) the union bound is an accurate approximation for the BER
Exploiting the fact that fory — oo errors only occur for at high SNR, (c) the noise vectorsare temporally i.i.d., and

A. Laurent Series Expansion &fs|n)
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d

P(C7 é | n) _ ‘X'(de7 NR7d) CkéVRd’Y_adNRd Z H Z /6]1 ‘n1‘2j1 . ﬂjNR |nNR‘2jNR +o0 (,y—adNRd) (18)
i1+ Fig=agNrd k=1 ]1++,]NR:Zk

d
M(ad’NR7d): Z H Z ﬁjl"'ﬁjNR Mn(jla'“vjNR) (19)

i1+ t+ig=agNrd k=1 ]l++JNR=Zk

(d) all joint moments of the elements af exist. Assumption  Closed—form expressions for the momeni,(;) and

(d) is necessary since the terms absorbed(im*V&) in M, (i) of several important types of noise are provided in
(18), contain sums of products of elementsof cf. (13), Tables Il and Ill, respectively, cf. Section V.

whose expected values are assumed to become negligible ah the remainder of this section, we discuss the implication
high SNRs. With these assumptions and based on (8) and (&Bthe asymptotic BER (20) for system design and consider
we obtain for the asymptotic BER approximatiéh = % the special cases of AWGN and uncoded transmission, respec-

E{P(c, ¢|n)} the closed—form expression ‘ tively.
P iwc(df) NRde N d M N d —agNgrdy . . . . . . . .
b= O (ata, Nr,dy) M(aa, Nr,dy)y » C. Diversity Gain, Coding Gain, and Design Guidelines
(20)

o ) o _ To get more insight, it is convenient to express the asymp-
where M (aq, Ng,d) is given in (19) and the joint noise {gic BER asP, = (G.v)~C4 [21], whereGy and G, denote

momentsMy, (i, . .., jny,) are defined as the diversity gain (i.e., the asymptotic slope of the BERveur
. . A 21 2jn g on a double logarithmic scale) and the coding gain (i.e.,
M (s dng) = En {7 nvg [0} @1 5 tive horizontal shift of the BER curve), respectively
At what finite SNR the approximate upper bound (8) angonsidering the asymptotic BER in (20), we obtain

the true BER approach the asymptotic BER depends OB _ o Npd 24
how fast the terms neglected in (20) become negligible 4 = G RES 10 dNX N d( )
compared to the terms considered as the SNR increases, = — — log;, a. — — log;, (wC( 1) X(aa, N, f)>
Generally, the SNR values at which the asymptotic BER is Qd Ga ke

approached increase with increasingNgd; and increasing - Eloglo M(aa, Ng,dy) (25)

w(ds+1)/w(dy) since higher SNRs are necessary for the term Ga

w(dy)y~*Nrds considered in (20) to dominate the largestrom (24) we observe that the diversity gain of BICM is
term w(dy + 1)y~ *¢Nrds—1 absorbed im(y~*«"r4). Thus, independent of the type of noise. The coding gain in (25)
we expect the asymptotic BER to converge faster to the trggnsists of three terms, where the first, the second, and the
BER for codes with smaller free distaneg and smaller third term depend on the fading channel, the modulation

relative weightw(dy 4 1)/w(dy), cf. Fig. 3. scheme and the code, and the type of noise, respectively.
Furthermore, depending on the properties of the noise; evghe primary goal of BICM design is to maximizé; for

uation of My (j1,...,jn,) May be cumbersome. Howevera given decoding complexity in order to maximizg; (and

for two important special cases significant simplificati@ans to minimize the asymptotic BER). Gray labelings (yielding

possible. smaller X (aq, Ng,ds) than non-Gray labelings) and codes
Case 1 (spatially i.i.d. noise)f the components of are with smallw,.(d;) are advantageous for maximizing the sec-

independent, (19) simplifies to ond, modulation and coding dependent term in (25). Qfice

is fixed, the last term in (25) cannot be further influenced
M(ag, Npod) = Y B Mu(j1) - Bjy s Ma(inga) through system design making the BICM design guidelines
Jittinga=aaNrd effectively indepenent of the type of noise in the systernusTh
. . NN 2 , (22) our results show that BICM systems optimized based on the
W'th scalar noise moment,(j) = £{|m|™}, which are guidelines provided in [1] for systems operating in fadimgl a
independent of. AWGN are also optimum for non—-AWGN environments as

Case 2 u = 1): If ag = 1, which is true for exam- |on4 45 the standard ED branch metric is used for Viterbi
ple for (possibly spatially correlated) Rayleigh, Riceand

) , T decoding.
Nakagami¢ fading, (19) simplifies to
M(1, Np, d) = — 3 < Nrd ) D. Special Case I: AWGN
(Ngd)! i1 big=Npd N Although the main focus of this paper is non—AWGN, the
X Mp(i1) ... Mp(iq) (23) presented results are also valid for AWGN. We note that

although the AWGN case was covered extensively in the
with vector noise moments’,, (i) = £{||n||*'}. literature, e.g. [1], [13], [17], our results are still mageneral
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TABLE I
MGF @, (s) AND SCALAR MOMENTS M, (%) OF TYPES OF NOISE CONSIDERED ISBECTION V. ALL VARIABLES IN THIS TABLE ARE DEFINED IN SECTION
V. (SC)AND (OFDM) MEANS THAT THE TYPE OF NOISE IS RELEVANT FOBBICM—-SCAND BICM—-OFDM, RESPECTIVELY

Noise type Noise MGF®(s) Scalar momeniV/,, (i)
AWGN (SC & OFDM) exp(s?/4) il
SI-GMN (SC) Zi:l CL exp(s2oz/4) 3! Z£:1 Cr O',%i
CClI (SC) Y1 X, Cus, exp(s*od /4) 1301 Y, .o,
SI-GMN (OFDM) Zkﬁwqr;”:]\/ Cky,....,kr exp(s2a}%1 ,,,,, k1/4) il Zk1+"'+k1:N Ckq,..., ky Uzi ’’’’’ ky
I . 1 ;
NBI (OFDM) Zf:1 il Yhen, , €0 exp(s20? ,  /4) 21(25:1 S Cken,, 0T
+c1 exp(5202/4) +cla7%i)

than existing results as our work allows for spatially clated expressed as
fading and more general fading models. For example, for

. Nr
Ricean fading ¢, = 1) we obtain from (22) with the help P, = % M(ag, Ng,1)y~Ne (27
of (15) and Table 1M (1, Ng,d) = (21\1/\?;5;1). Thus, with Medpin ™"
(20) and Table | we get where M(aq, Ng,1) = Y. . o —onn B Biny,
Hoeel dy My (j1,- .., JNg), Which can be furtherRsimpIified far, =1
Py = X(1, Ng, dy) we(dy) exp (=g Chp bin) and spatially i.i.d. noise, cf. Section IV-B. In particyldor
T ke det(Chrp) ag = 1 we obtainM (1, Ng,1) = M, (Ng)/Ng!, cf. (23),

2NRds — 1\ __npa, and it can_be shown that for Ra_yl(_aigh f';md Ricean fading (for

( Np d ) ; (26)  poth of whicha, = 1 holds) (27) is identical to [23, Egs. (12),
(16)]. However, (27) is more general than the results in [23]

which is a new result. ForVy = 1, we may rewrite (26) since it is not limited to Rayleigh and Ricean fading and is
aspb, = (ngfl)%ff)[(l + K)e K19 X(1,1,d5)y~% with  also applicable to e.g. Nakagami-Nakagami«, and Weibull
Ricean factorK 2 |u,|?/o7, whereu;, and o7 denote the fading.
mean and the variance @f,. In contrast, for Ricean fading
with Nz = 1 the Chernoff bound was used in [1] and [17] to V. CALCULATION OF THE NOISE MOMENTS AND MGFs

investigate the asymptotic behavior of BICM-SC and BICM— |, this section, we discuss several practically relevapesy

OFDM, respectively, since “a closed—form expression fe& thy¢ ,qise and compute the corresponding MGFs(s) and
P!EP for arbitrary]_( is missing” [1]. Comparing our result .0 ments My (j1,- .-, jn,) required for evaluation of the
with the asymptotic Chernoff bound [1, Eq. (62)] shows thafyper hound in Section Il and the asymptotic BER in Section
the Chernoff bound is by a factor df'r/(*7, ") > 11arger |y respectively. We note that for spatially i.i.d. noiseothe
than the asymptotic BER, i.e., fafy = 3 andd; = 6 the  gscajar MGFsb,, (s) and the scalar momentd,, (i) have to be
Chernoff bound is horizontally shifted by 2.7 dB and 1.6 dBympuyted for evaluation of the upper bound and the asynaptoti
compared to the asymptotic BER, respectively. Furthermoiger respectively, cf. (7), (22), Table II. Furthermore; fioost
using the Stirling approximation we obtain for the diffecen ; pes of spatially dependent noise, it is difficult to findsgo—
between asymptotic Chernoff bound and asymptotic BEGm expressions for the joint MGR,,(s) and the joint

2d;—1 : :
44/ ( 4 ) — 24/mdy for dy > 1, which agrees with the momentsM,, (j1,- - .,ja), Since the phases of the elements

result obtained in [16] for Rayleigh fading. of n are not independent. Therefore, unless stated otherwise,
we concentrate in case of spatially dependent noise on the
E. Special Case II: Uncoded Transmission important special case; = 1, where only the vector moments

. . . . M, (i) are required.
While BICM is the main focus of this paper, based on

(20) it is also possible to compute the asymptotic BER of _

uncoded transmission with maximum-ratio combining (MRC)- Noise Models for BICM-SC

at the receiver. In this casdy; =1, k. = 1, andw.(1) =1 In this section, we consider several time—domain noise mod-
are valid. Furthermore, assuming a regular signal coasi@fl els typical for BICM-SC systems. In particular, we consider
such asM-ary quadrature amplitude modulatioh/QAM) spatially independent Gaussian—mixture noise (SI-GMN) an
or M-ary phase shift keyingM/—PSK), it is easy to see three different types of spatially dependent noise (slhatia
that X (ay4, Ng,1) = min/(mcdfn"i‘gNR), where N,,;, and dependent (SD) GMN, additive correlated Gaussian noise
dmin are the average number of minimum distance neighbd®CGN), and asynchronous co—channel interference (CCl)).
and the minimum distance oF, respectively. Therefore, the SI-GMN: GMN is often used to model the combined effect
asymptotic BER of uncoded transmission with MRC can b&f Gaussian background noise and man-made or impulsive
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TABLE Il
VECTOR MOMENTSMy, (i) OF TYPES OF NOISE CONSIDERED INBECTION V. ALL VARIABLES IN THIS TABLE ARE DEFINED IN SECTION V. (SC)AND

(OFDM) MEANS THAT THE TYPE OF NOISE IS RELEVA

NT FORBBICM—-SCAND BICM-OFDM, RESPECTIVELY

Noise type Vector momentMy, ()
SD-GMN (SC) LR Tho ok od
. k kN
ACGN (SC) Dkt =i M AN
ccl (sc) D A o
LDy Zs“ Cu,Sy Zkl+-~+kNR:i 1,5, ‘Ng,S,
i+Np—1)!
SD-GMN (OFDM) e S kg O,k TR
J— I k kn
NBI (OFDM) | i 30,1 3001 ke, €0 Xyt =i Mok " AN ik
i+Np—1)! P
+c1 4(1<NR131)!) %7

noise, cf. e.g. [7], [8], [19]. If the phenomenon causing thgymbolsb over a spatially correlated Rayleigh fading channel

impulsive behavior affects the antennas independently,

GMN is spatially i.i.d. [30] andn; is distributed according acterized by its covariance matrX

to [8]
I

pn(nl) = Z

i=1

exp | — [ru”
AN

]
wherec; > 0 ando? > 0 are parameters, a@le cio?=1.
Two popular special cases of Gaussian mixture noise
Middleton’s Class—A noise [8] and-mixture noise. For—
mixture noisel = 2, ¢ l—¢ c = ¢ 07 = 0,
and o3

Ci

), <1< Np (28)

e

g’

impulsive noise is present; is the ratio of the variances of

the Gaussian background noise and the impulsive noise,
07 = 1/(1 — e + re) = 1. The scalar MGF®;,(s) and the
scalar momentd/,, (i) for SI-GMN are given in Table .
SD-GMN: SD-GMN is an appropriate model for impu
sive noise if all antennas are affected simultaneously ley

= ko2, wheree is the fraction of time when the

twith gains A and AWGN 7. In both cases: is fully char-
o 2 E{nnf}, and the
corresponding vector momenid,, () are given in Table lIl,
where\;, 1 <[ < Ng, denotes the eigenvalues 6f,,,.

Asynchronous CCI: Another common type of non—AWGN
impairment in BICM-SC systems is asynchronous CCI [4],
[5]. We consider coding oveB different hopping frequencies
and assume that at hopping frequepgyl < p < B, in addi-
36n to AWGN n,,, there arel,, Rayleigh faded asynchronous
CClI signals leading to time—domain noise

II»L
Ny = Z hy
and i=1

where h,[i] and b; ,[l] € M;, ( M;,: M, ,~ary symbol
alphabet) denote the temporally i.i.d. zero-mean Gaussian
l-random channel vector and the i.i.d. symbols of itheinter-
tferer at theuth hopping frequency, respectively. Furthermore,

ku
(1] Z Giu[l10i 1] + 70, (32)

1=k,

phenomenon causing the impulsive behavior. The joint pdf fg, 1] 2 ¢, (7T + 7, ), whereg; ,.(t), T, and;, are the

SD-GMN n is given by [30]

> v
Ng ~2Nr
i—1 s O‘i

_In|]?
o}

(29)

o (120,

effective pulse shape, the symbol duration, and the timgeoff
of theith interferer at theith hopping frequency, respectively.
We assume thay; ,(IT'+7;,,) ~ 0 for i < k; andi > k,,, de-
note the set of all possible values&f, = z;gkl Gip[1]bi 1]

wherec; ando? are defined similarly as for SI-GMN. SincePY Si» and defineS,, é St X oo X Sy I I = 0, we
the phases of the elements ef are independent randomformally setS,, = {0} with |5, | = 1. With these definitions,

variables, the joint MG, (s) can be calculated to

I o2 Ngr
D;(s) = Zci exp <4Z Zs?) .
i=1 1=1

(30)

Furthermore, in this particular case, a closed—form exjoes \here C

for the joint momentM,,(jq,...
obtained as

,jNg), cf. (21), can be

201+ +ing)

I
My (i1, dng) = g1l dng! Y cio; (31)
=1

7

The vector momentd/,, (i) are provided in Table IIl.

the pdf ofn, can be expressed as

pn(n) = Z Z
=18

“w

.S,

_mHeA—1
VR det(CSH)eXp( " Csun), (33)

s = S €ulPethulilhy, [} + o3 x, (0%
variance of elements ai,,) andc,, s, = 1/(/S,|B). Eq. (33)
shows that CCIl in BICM-SC systems can be interpreted
as correlated Gaussian mixture noise. For future reference
we denote the ratio of the total CCI variance and the total
AWGN variance byk, cf. Section VI. The scalar moments
M, (i) (valid for Ng 1) and vector momentd/, (i) of

A

ACGN: In BICM-SC systems, correlated Gaussian noissynchronous CCl are given in Tables Il and Ill, respedfivel
n may be caused by narrowly spaced receive antennas [Ghere we have replaceds, by 0‘29” for Np =1 in Table I,
Correlated Gaussian interferenee= hb + n is caused by and in Table Ill,\;s,, 1 <1 < Ng, are the eigenvalues of
a synchronous co—-channel interferer transmitting i.i.8KP Cs,.
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B. Noise Models for BICM-OFDM same interference fading vectfuzw[i] (modeled as spatially
Now, we turn our attention to several frequency—domafPrrelated zero-mean Gaussian random vector) affectstai s
noise models relevant to BICM—OFDM systems. In particulaf@mers i, ;. For f,; = vAf, the NBI affects only sub—
we consider SI-GMN and two types of spatially dependef@!"i€rv, i-e., N, ; = v, while, in theory, forf, ; # vAf the
noise (SD—-GMN and narrowband interference (NBI)). NBI affects all sub—carriers. Howeveyy, . [i] decays quickly
SI-GMN: Taking into account that in OFDM systems timdnd We limit AV, ; such that|g, ,[i]| ~ 0 for k & N, ;.
domain and frequency domain are linked via the discrefdnally, we assume that no sub-carrier is affected by two
Fourier transform (DFT), it can be shown that time—domafi@rowband interferers at a given hopping frequency, i.e.,

SI-GMN (28) results in frequency—domain noise with pdf Nuwir N Nui, = 0, i # iy. The pdf for this general
interference scenario is given by

Cky,...kr || I
D (—2 . (34) B L o .
A SN P =332 Y ey @ (- Culan)
oty

with 1 < I < Ng, which is again an SI-GMN model with =L I=L RN

. 2

parameterscy, ., = (klﬂkj)c’{lmc’}’ ando?, ,, = +ﬁexp <_|"| )’ (39)
(kyo%+---+kjo?)/N. We note that the spectral i.i.d. asump- Rop

tion for n; is justified only if the interleaver spans severa‘}vh

2
n

erec? denotes the variance of the elements of the AWGN

OFDM symbols, i.e.,.B > 1, since the noise after DFT in . A A 4 B I, _
one OFDM symbol will be spectrally dependent. The scaldr’ © — Al/(BN)’ .0120— 1 %f}:l 2t Z\/"’CZJ/(BNi
MGF &, (s) and the scalar moments/,, (i) for SI-GMN are 7mik = 19k lI17Crui + 07dng, and Cu, =

E{hy i) (hruliD"}. Eq. (39) shows that, similar to
gCI in BICM-SC systems, NBI in BICM-OFDM systems
can be interpreted as correlated Gaussian mixture noise.
We denote the ratio of the total NBI variance and the

provided in Table II.
SD-GMN: The DFT operation at the receiver transform
the noise pdf (29) into

Chy o ks ||n]|? AWGN variance by, cf. Section VI. The corresponding
pn(n) = Z Nrg2Na exp | — 2 moments M,, (i) and M, (i) are provided in Tables Il and
ky+otk =N ki, k1 Loenkr (35) 1, respectively, where we have replacé€q, ; ;. by Ui,i,k for

where the same definition is used fay .., ando?, _, as NRt:h Lin Tablle I, igd in Table W\ i, 1 <1< Ng,
for SI-GMN, cf. (34). Since, similar to the BICM-SC case, th8r€ the eigenvalues @, ; .
phases of the elements afare independent random variables,

the joint MGF can be obtained as C. Monte—Carlo Method

o2 Nr For complicated types of noise such as UWB interference, it
p(s) = > Chy.k XD <’“4’” > s?) . may be difficult to calculate the momentg,, (i), M, (i), and
kit k=N =1 My (j1,--.,jng) in closed form. In this case, these moments
o o (36) may be obtained by Monte—Carlo simulation of (21), (22), or
The corresponding joint moment is given by (23) and subsequently be used in (20) for calculation of the
. . . . 201++ing)  asymptotic BER. We note that this semi—analytical approach
=g, | R

M (o) =dub v D Chnr 91" s " is much faster than a full simulation since the moments are

(37) independent from the SNR and have to be computed only
once.
The vector moments\/,, (i) for SD—-GMN are provided in
Table 111
NBI: We consider a BICM—OFDM system with coding over ) ) . o ) .
B different hopping frequencies. At hopping frequeney In_ this section, we ver_lfy our derivations in Sections Ill—-
1 < u < B, the received frequency—domain signal is impaireﬁ with computer simulations and employ the presented the-

by AWGN ., andJ, Rayleigh faded PSK NBI signals. Theoretical framework to study the performance of BICM in
correspondiné frequency—domain noise model is non-AWGN environments. For the simulations, we consider

both idealized channels with temporally i.i.d. channel and

ln [ noise vectors, and non-ideal channels generated base@ on th
Mk = ng’ﬂ[’]bﬂ[l]hk,u[’] T e 1<k<N, (38) models presented in Sections II-A and V. In the non-ideal

=1 case, for BICM-SC we assume a frame sizeNof= 972
whereb,, [i] is the PSK symbol of théth interferer at theuth and a normalized fading bandwidf®;7" of 0.007, which are
hopping frequency affecting the saf, ; of sub—carriers via typical values for the DAMPS mobile communication system
i uli) = exp[—in(N —1)(k+ f,.i/Afs) /N +¢,. | sin[r(k+ [4]. For BICM-OFDM we consider systems with = 64
fui/ Afo)]/sin[w(k + f.:/Afs)/N] [3]. Here, f,; and¢,;, and N = 128 sub—carriers transmitting over channels with
denote the frequency and phase of itheinterferer at hopping L = 10 and L = 20 i.i.d. impulse response coefficients.
frequency i relative to the user, respectively, amif, is For all simulations shown, a pseudo—random interleaver was
the OFDM sub—carrier spacing. Since we consider NBI, tlemployed. Throughout this section we adopt the standard

VI. NUMERICAL AND SIMULATION RESULTS
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107°

Fig. 1. BER of BICM-SC and BICM-OFDM impaired by GMN-{ Fig. 2. BER of BICM—SC and BICM—OFDM impaired by various types

mixture noise,e = 0.1,‘n = 100) and NBI, respectively, vs. SNR. of noise vs. SNRy. Rayleigh fading,R. = 3/4, 4-PSK, andNp = 1.
Re = 3/4, Rayleigh fading, 4-PSK, alli; = 1. BICM-SC: Frequency—  gjcM_sc: N = 972 and BT = 0.007. BICM-OFDM: N = 64 and
flat time—selective fadingN = 972, and ByT' = 0.007. BICM—OFDM L = 10. GMN I: e—mixture noisee — 0.01. x — 100. GMN 1I: e—
(N = 64): Frequency-selective Rayleigh fading with = 10 and B mixture noisec = 0.1, k = 100. Asynchronous CCI: Two asynchronous

equal power, sub—carrier centered NBI signals with=1, 1 < p < B, equal power 4-PSK CCl signald,, = 1, u € {1,2}, I, = 0, 3 <
x = 7. BICM-OFDM (N = 128): Frequency-selective Rayleigh fading 1 < 10, raised cosine pulsesy ,,(t), p € {1, 2}, with roll—off factor
with . = 20 and B equal power, sub—carrier centered NBI signals with 0.3_71 L, = 03T, p € {1,2} K — 2. NBI: One sub—carrier—centered

I, =1,1<p < B, k=2 Solid lines with markers: Simulated BER. g signal, [; =1, I, = I3 = Iy = Iy = 0, k = 9. Solid lines with
Solid lines without markers: BER bound (8). Dashed lines: mgtotic markers: Simulated BER. Solid lines without markers: BER bo(8)d
BER (20). Dashed lines: Asymptotic BER (20).

convolutional code with raté?. = 1/2 and generator poly- with non—ideal channels and for differer, approach the
nomials [133, 171] (octal representation). Higher code rategpproximate upper bound (solid lines without markers) ed t
are obtained via puncturing and, unless specified otheywiggymptotic BER (dashed lines) for high SNR. In particular, f
4-PSK modulation andVr = 1 receive antennas are usedthe BER region oBER < 10~?, which is difficult to simulate,
The parameters of the adopted noise models are specifiedhi® proposed analytical results are accurate approxinsafir

the respective captions of Figs. 1-6. the true BER. The simulated BER exceeds the upper bound

In Fig. 1, we show simulation results for BICM-SC andhgain because of the non-ideal channel. In accordance with
BICM—OFDM impaired by GMN and NBI, respectively. Inour findings in Section IV-C, Fig. 2 shows that for high SNR
both cases, codingR. = 3/4) and interleaving is performed all BER curves are parallel, i.e., all considered types a$@o
over different numbers of frameB. Besides the simulation lead to the same diversity gain 6f; = d; = 5. Nevertheless,
results we also show the approximate upper bound and there are large performance differences between difféypes
asymptotic BER derived in Sections Il and IV, respectivelyf noise because of the different coding gaifis. Fig. 2
For high enough SNR and BICM-OFDM witN = 128 and confirms that OFDM is far more robust to GMN than SC
the severely frequency-selective channel with= 20 the if BICM is used in both cases. For GMN Il BICM-OFDM
analytical results are accurate even o= 3. In contrast, for outperforms BICM-SC by 5 dB at high SNR and approaches
BICM-SC and BICM—OFDM withN = 64 and L = 10 the the performance in AWGN. This is an interesting result, since
interleaver is not able to generate i.i.d. channels for kigal a previous comparison in [19] had shown that BICM-SC is
which leads to performance degradation and the correspgndinore robust to GMN thauncodedOFDM. Note, however,
simulated BER exceeds the upper bound (which was deriviiét for BICM—OFDM a relative largé3 is necessary to make
assuming i.i.d. channels). However, Bsincreases, the sim- the GMN approximately spectrally independent, whereas for
ulation results approach the upper bound and the asympt®@i€CM—-SC GMN is temporally independent even fBr= 1,

BER also in these cases for high SNR. Note that for norst. Section V.
delay critical applications, such as data transmissiagel® In the remaining figures, we assume ideal channels where
can be afforded. both fading and noise are temporally or spectrally i.i.d.

In Fig. 2, we show the BER of BICM-SC and BICM- In Fig. 3, we investigate the effect of the code rélg on
OFDM (N = 64) for Rayleigh fading and various differentthe performance of BICM—OFDMXN = 128) in NBI for an
noise and interference scenarios. Fig. 2 shows that the-simud. Rayleigh fading channel and 64-QAM. Fig. 3 shows
lated BERs (solid lines with markers), which were generatdddat as the code rate decreases, the diversity gain insrease
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Fig. 3. BER of BICM-OFDM impaired by NBI (3 equal power, sub—
carrier—centered NBI signald; = I> = I3 = 1, kK = 10) vs. SNR
~. Li.d. Rayleigh fading, 64—-QAMN = 128, B = 3, and Np = 1.
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Upper bound (GMN)

= = = Asymptotic BER (GMN)
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— — — Asymptotic BER (AWGN)
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Fig. 4. BER of BICM-SC impaired by GMNefmixture noise¢ = 0.25,
x = 10) and AWGN, respectively, vs. SNR. Ideal i.i.d. fading,R. =
7/8, 16-QAM, andNg = 1.

Solid lines with markers: Simulated BER. Solid lines withoutrkess:
BER bound (8). Dashed lines: Asymptotic BER (20).
convergence of the asymptotic BER to the approximate union
bound is negatively affected by the spatial fading corretat

since the free distance of the code increases, cf. (24). Whilerjng|ly, in Fig. 6, we consider the BER of BICM—OFDM
the approximate upper bound (solid line without markerghpaired by UWB interference and temporally i.i.d. Rayleigh
approaches the simulation results (solid lines with makefading. We consider MB-OFDM and impulse-radio UWB
for BER < 107° in all cases, the convergence of the UPPgIR-UWB) interference following the EMCA [9] and the
bound to the asymptotic BER (dashed lines) is slower for sm@tEE 802.15.4a [10] standards, respectively. Specificédy
(R = 1/2) and large {. = 7/8) code rates. FoR. = 1/2, |R-UWB we assume\, = 32 bursts per symbol and..
dy is large making the asymptotic BER curve very steegnips per burst [10]. The MGF required for the approximate
which leads to an over—estimation of the BER at low SNR§pper bound (8) was obtained using the methods proposed in
cf. Section IV-B. ForR. = 7/8, the slow convergence can be11]. Since, due to the complicated nature of the interfeeen
explained by the large relative weight of terms neglected ¥ignal, closed—form expressions for the moments are difficu
asymptotic BER expressions (e.@(dy + 1)/w(ds) = 56), to obtain, we used the Monte—Carlo approach discussed in
cf. Section IV-B. For comparisoniz. = 3/4 shows a much gection V-C for calculation of the moments for evaluation
faster convergence sinee(d; + 1)/w(dy) = 5. of the asymptotic BER (20). Fig. 6 nicely illustrates thae th

In Fig. 4, we consider the impact of the type of fadingoding gain in UWB interference strongly depends on the sub—
on the BER of BICM-SC withkR. = 7/8 and 16-QAM carrier spacing of the victim BICM—OFDM system and the
for GMN and AWGN. For all considered types of fading thgormat of the UWB interference. Interestingly, féxf, = 1
asymptotic BER approximations are tight fBER < 10™°*  MHz MB-OFDM has a more favorable noise pdf than AWGN

Since the type of fading affects the diversity gl = aady, and thus, is less detrimental to the performance of the BICM—
the asymptotic slopes of the BER curves for Nakagami-oFpmM system than AWGN.

(g = m = 2) and Weibull ¢z = ¢/2 = 2/3) fading differ
from the asymptotic slopes of the BER curves for Rayleigh,
Ricean, and Nakagamj-fading, since for the latter three In this paper, we have presented a framework for perfor-

ag = 1 holds. It can also be observed that the performan?ﬁame analysis of BICM—SC and BICM—OFDM systems im-
l(;) s(fr (;\lejr? eddi\t/)yrsﬁlvlNrdcormIoared to AWGN decreases WIBaired by fading and non—Gaussian noise and interferetge. T
elneFi 95 We ynoider.th BER of BICM-SC impair OProposed analysis is very general and applicable to all pop-
9. >, We consider the 0 B PAIreC, o fading models (including Rayleigh, Ricean, Nakagami—
by temporally ii.d., spat|ally uncor_related/correlatéfddlng m, Nakagamig, and Weibull fading) and all types of noise
correlatlon Ph = 0.9) Rayleigh fading ar_ld AWGN/ACGN with finite moments (including AWGN, ACGN, GMN, CClI,
(nq|se cqrrelauorpn — 0.9) for N = 2. Fig. 5 shows that, NBI, and UWB interference). In particular, we have derived
while noise correlation has also adverse effects on perf%rﬁ approximate upper bound for the BER which allows for
mance, fading correlation is more harmful. Furthermore, thefficient numerical evaluation and a simple, accurate dese
form approximation for the asymptotic BER. Our asymptotic
analysis reveals that while the coding gain is strongly eois

VIl. CONCLUSIONS

3We note that for clarity of presentation for Ricean and Nakaigq fading
simulation results are not shown in Fig. 4.
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Fig. 5. BER of BICM-SC impaired by AWGN/ACGN vs. SNR. Fig. 6. BER of BICM-OFDM system with sub—carrier spacidgfs

impaired by IR-UWB [10] (V, = 8 bursts per symbol and.. chips
per burst) and MB-OFDM UWB [9], respectively, vs. SNRR Ideal
i.i.d. Rayleigh fading,R. = 5/6, 4—PSK, andVr = 1. Solid lines with
markers: Simulated BER. Solid lines without markers: BER bo(8)
Dashed lines: Asymptotic BER (20). For comparison the bourtl tae
asymptotic BER for AWGN are also shown.

dependent, the diversity gain of the overall system is not
affected by the type of noise. This result is important from A
a practical point of view since it shows that at high SNRs théhereS = diag{s}, andC., andm denote the channel cor-
BER curves of BICM systems optimized for AWGN will only relation matrix and the fading parameter, respectivele bb-

H ini 2 2 2
suffer from a parallel shift if the impairment in a real—weobrl N2Vior of the joint pdfpg: (af, ..., ay,) of af, 1 <1 < Ng,
environment is non—-Gaussian. for a — Oy, can be deduced from the behavior ®f:(s)

for s; — o0, 1 <1 < Npg, which is given by

Spatially i.i.d./spatially correlated, temporally i.idayleigh fading,R. =
7/8, 4-PSK, andNgr = 2. Solid lines with markers: Simulated BER.
Solid lines without markers: BER bound (8). Dashed lines: mgtotic
BER (20).

APPENDIXI Nr Nr
SPATIALLY CORRELATED FADING CHANNELS D2 (s) =mN"" det(Caa) ™™ [[s7™ +o [ [[ 5™
In this appendix, we prove (2) for correlated Rayleigh, = =1 (43)
Ricean, and Nakagamh—fading. Consequenﬂy' we obtain
Ricean Fading: For Ricean fading the pdf of the channel e 2ot
vector h is given b r g Rmet
g . y paz(a%, . a?VR) = mNem det(Coo)™™ H LF(m)
— _ _ HM~—1 o 1=1
ph(h) 7TNR det(chh,) P [ (h N*h) Chh (h Hh()] 7) Ngr ( )
40 2(m—1
+ o0 a , 44
wherep,;, = £{h} andC};, = E{(h — u,,) (h — p;,)"} are 11;[1 : (44)

the channel mean and channel covariance matrix, resplgctive
For h — Oy, We can rewrite (40) as which clearly shows that the;, 1 < [ < Ng, are asymp-
R

totically i.i.d., i.e., (2) and (3) are valid. The corresplorg
parametersy, and «g are provided in Table | and can be
obtained by exploiting the relation betwegg (a, ..., a3;,)
andpg(a). '

exp (—pi Crbon)

R det(Chh)
Based on (41) and the relatidh;|> = a7 it can be shown
that (2) and (3) hold for correlated Rayleigh,(= Oy,) and
Ricean 1, # On,) fading with . and a; as specified in
Table 1.

Nakagami—m Fading: For Nakagamis fading the joint
MGF of a?, 1 <1 < Npg, is given by [24]

Ngr

A

= £4exp fE a? s
1=1

det(In, + SCuo/m)™ ™,

pr(h) = (41)

+ o(1).
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