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Abstract— In this paper, we present a general mathematical
framework for performance analysis of single–carrier (SC) and
orthogonal frequency division multiplexing (OFDM) systems
employing popular bit–interleaved coded modulation (BICM)
and multiple receive antennas. The proposed analysis is appli-
cable to BICM systems impaired by general types of fading
(including Rayleigh, Ricean, Nakagami–m, Nakagami–q, and
Weibull fading) and general types of noise and interference
with finite moments such as additive white Gaussian noise
(AWGN), additive correlated Gaussian noise, Gaussian mixture
noise, co–channel interference, narrowband interference, and
ultra–wideband interference. We present an approximate upper
bound for the bit error rate (BER) and an accurate closed–
form approximation for the asymptotic BER at high signal–to–
noise ratios for Viterbi decoding with the standard Euclidean
distance branch metric. For the standard rate–1/2 convolutional
code the proposed approximate upper bound and the asymp-
totic approximation become tight at BERs of 10

−6 and 10
−12,

respectively. However, if the code is punctured to higher rates
(e.g. 2/3 or 3/4), the asymptotic approximation also becomes tight
at a BER of 10

−6. Exploiting the asymptotic BER approximation
we show that the diversity gain of BICM systems only depends
on the free distance of the code, the type of fading, and the
number of receive antennas but not on the type of noise. In
contrast their coding gain strongly depends on the noise moments.
Our asymptotic analysis shows that as long as the standard
Euclidean distance branch metric is used for Viterbi decoding,
BICM systems optimized for AWGN are also optimum for any
other type of noise and interference with finite moments.

Index Terms— Bit–interleaved coded modulation (BICM), non–
Gaussian noise and interference, orthogonal frequency division
multiplexing (OFDM) and single–carrier (SC) systems, fading
channels, asymptotic analysis, coding gain, diversity gain.

I. I NTRODUCTION

Bit–interleaved coded modulation (BICM) is an efficient
technique to extract time diversity in systems with single–
carrier (SC) modulation [1] and frequency diversity in sys-
tems employing orthogonal frequency division multiplexing
(OFDM), and has been adopted by a number of recent
standards and is also expected to play a major role in future
wireless systems [2].

While wireless systems are usually optimized for additive
white Gaussian noise (AWGN), in practice, they are also
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subject to a multitude of other impairments such as narrow-
band interference (NBI) [3], co–channel interference (CCI)
[4], [5], correlated Gaussian noise and interference [6], man–
made impulsive noise [7], [8], and ultra–wideband (UWB)
interference [9]–[11]. Therefore, it is of both theoretical and
practical interest to investigate how the performance of BICM–
SC and BICM–OFDM systems designed for AWGN envi-
ronments is affected by non–Gaussian noise.1 We note that
almost all existing performance studies of BICM are limited
to AWGN. For example, union bounds for the bit error rate
(BER) of BICM–SC were provided in [1], [12], [13] and
similar expressions for BICM–OFDM can be found in [14].
Sattlepoint approximation techniques for BICM–SC systems
were introduced in [15], [16]. The combination of BICM–
OFDM and spatial diversity techniques was analyzed in [14],
[17], [18]. In contrast, only few analytical results are available
for non–AWGN types of noise. Namely, the performance of
BICM–SC in Middleton’s Class A impulsive noise and of
BICM–OFDM in UWB interference was analyzed in [19] and
[11], respectively.

Motivated by the lack of general performance results, in this
paper, we provide a mathematical framework for performance
analysis of BICM–SC and BICM–OFDM systems employing
Viterbi decoding with the standard Euclidean distance branch
metric [1] and multiple receive antennas in fully interleaved
fading and non–AWGN environments. This framework is very
general and applicable to arbitrary linear modulation formats,
all commonly used fading models, and all practically relevant
types of noise with finite moments. We first develop a general
approximate upper bound on the BER of BICM systems,
which is easy to compute but offers little insight since it
requires numerical integration. To overcome this problem,we
derive accurate closed–form asymptotic BER approximations
for BICM–SC and BICM–OFDM systems which provide
significant insight into the impact of system parameters such
as the modulation format, the free distance of the code, the
type of fading, and the type of noise on performance. At
what BER the asymptotic BER approximation converges to
the true BER strongly depends on the free distance of the
code but is practically independent of the underlying type of
noise. For example, for the standard rate–1/2 convolutional
code, which has a free distance of 10, the proposed approxi-
mate upper bound and the asymptotic approximation become

1In the rest of this paper, the term “noise” refers to any additive impairment
of the received signal, and also includes what is commonly referred to as
“interference”.
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tight at BERs of10−6 and 10−12, respectively. However, if
the code is punctured to higher rates (e.g. 2/3 or 3/4) the
asymptotic approximation also becomes tight at a BER of
10−6 because of the decreased free distance of the punctured
code. Furthermore, the asymptotic BER expressions reveal that
while the diversity gain of BICM systems is not affected by
the type of noise, the coding gain depends on certain noise
moments. We note that the asymptotic performance ofuncoded
SC modulation has been studied in AWGN [20], [21] and non–
AWGN [22], [23] channels before. However, both the analysis
techniques and the results in [20]–[23] are not applicable to
BICM.

The rest of this paper is organized as follows. In Section II,
the considered BICM–SC and BICM–OFDM system models
are introduced. The proposed upper bound and asymptotic
approximation for the BER are presented in Sections III and
IV, respectively. Various practically relevant noise models are
discussed in Section V. The presented analysis is verified via
computer simulations in Section VI, and conclusions are drawn
in Section VII.

II. SYSTEM MODEL

We consider BICM–SC and BICM–OFDM systems with
NR receive antennas. For convenience, in this paper, all
signals and systems are represented by their complex baseband
equivalents.

A. System Model

The BICM transmitter consists of a convolutional encoder
of rate Rc, an interleaver, and a memoryless mapper [1].
Specifically, the codewordc , [c1, c2, . . . , cmcKc

] of length
mcKc is generated by a convolutional encoder and interleaved.
The interleaved bits are broken up into blocks ofmc bits
each, which are subsequently mapped to symbolsxk from a
constellationX of size |X | , M = 2mc to form the transmit
sequencex , [x1, x2, . . . , xKc

] of length Kc. Assuming
perfect synchronization and demodulation, for both BICM–
SC and BICM–OFDM the signal observed at theNR receive
antennas can be modeled as

rk =
√

γ hk xk + nk, 1 ≤ k ≤ Kc, (1)

where hk , [hk,1 . . . hk,NR
]T with E{||hk||2} = NR and

nk , [nk,1 . . . nk,NR
]T with E{||nk||2} = NR contain the

fading gainshk,l and the noise variablesnk,l, 1 ≤ l ≤ NR,
respectively, andγ denotes the signal–to–noise ratio (SNR) per
receive antenna.2 As customary in the literature, cf. e.g. [1],
[13], [17], for our performance analysis we assume perfect
interleaving, which means thathk and nk can be modeled
as independent, identically distributed (i.i.d.) random vectors
and only their first order probability density functions (pdfs)
are relevant. Thus, to simplify our notation, in the following,

2In this paper,[·]T , (·)H , ℜ{·}, || · ||, det(·), andEx{·} denote transposi-
tion, Hermitian transposition, the real part of a complex number, theL2–norm
of a vector, the determinant of a matrix, and statistical expectation with respect
to x, respectively. Moreover,IM and0M are theM × M identity matrix
and the all–zero column vector of lengthM , respectively. Furthermore, we
use the notationu ⊜ v to indicate thatu andv are asymptotically equivalent,
and a functionf(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.

we will drop the time/frequency indexk wherever possible.
We discuss the assumptions necessary for the validity of the
i.i.d. assumption more in detail below.

BICM–SC: For BICM–SC we assume transmission over
a flat fading channel and coding overB frames ofN data
symbols, i.e.,Kc = NB. The channel is time–variant within
one frame and changes independently from frame to frame
(e.g. due to frequency hopping). For sufficiently largeN
and/orB assuming that the time–domain fading vectorsh are
i.i.d. is justified [1].

BICM–OFDM: We consider a BICM–OFDM system with
N sub–carriers where one codeword spansB OFDM symbols,
i.e.,Kc = BN . We assume that the length of the OFDM cyclic
prefix exceeds the length of the channel impulse response and
that the channel changes independently from OFDM symbol
to OFDM symbol. Thus, modeling the frequency–domain
channel gainsh as i.i.d. vectors implies that the channel is
severely frequency selective and/orB is sufficiently large.

Practical BICM–SC and BICM–OFDM systems that em-
ploy interleaving and coding overB > 1 frequency–hopped
frames include the GSM/EDGE mobile communication system
(N = 116/N = 348, B = 8) and the ECMA multi–band
OFDM (MB–OFDM) UWB system (N = 128, B = 3;
future versions of the standard may use up toB = 15) [9],
respectively.

B. Fading and Noise Model

Fading Model: The fading gains can be expressed ashl ,

ale
jΘl , where al and Θl are mutually independent random

variables (RVs). Specifically,Θl is uniformly distributed in
[−π, π) and al is a positive real RV characterized by its
distributionpa,l(al) or equivalently by its moment generating
function (MGF)Φa,l(s) , E{e−sal}. Correlated fading can be
modeled via the joint pdfpa(a) or the joint MGFΦa(s) ,

E{e−
PNR

l=1
slal}, s , [s1 . . . sNR

]T , of the elements of
a , [a1 . . . aNR

]T , cf. e.g. [24]–[26]. For the asymptotic
analysis in Section IV, we require the fading channel to be
asymptoticallyspatially i.i.d., i.e., fora → 0NR

the joint pdf
can be expressed as

pa(a) ⊜

NR
∏

l=1

pa(al), (2)

where
pa(a) = 2αca

2αd−1 + o(a2αd−1) (3)

with fading distribution dependent constantsαc andαd. Eq. (2)
is obvious for i.i.d. and independent, non–identically dis-
tributed (i.n.d.) fading [20]–[22], and we prove its validity for
the most popular correlated fading models (Rayleigh, Ricean,
and Nakagami–m) in Appendix I. For these correlated fading
models and for independent Nakagami–q and Weibull fading,
the fading pdfpa,l(al) and parametersαc andαd are specified
in Table I.

Noise Model: The proposed analysis is very general and
applicable to all types of noise for which all joint moments of
the elements ofn exist. This is a mild condition which is met
by most practically relevant types of noise and interference,
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TABLE I

PDF pa(a) OF FADING AMPLITUDE a FOR POPULAR FADING MODELS AND CORRESPONDING VALUES FORαc AND αd . WE HAVE OMITTED SUBSCRIPTl

FOR CONVENIENCE. THE PARAMETERS FORRAYLEIGH (Chh), RICEAN (µh , Chh), AND NAKAGAMI –m (m, Caa) FADING ARE DEFINED IN APPENDIX

I. THE PARAMETERS FORNAKAGAMI –q (q, b) AND WEIBULL (c) FADING ARE DEFINED AS IN [24].

Channel type pa(a) of the fading amplitudea αc αd

Rayleigh 2 a e−a2

det(Chh)−1/NR 1

Ricean 2(K + 1) a e−K−(1+K)a2

I0
“

2a
p

K(K + 1)
”

0

@

exp
“

−µH
h C−1

hh µh

”

det(Chh)

1

A

1/NR

1

Nakagami–m 2
Γ(m)

mm a2m−1 e−ma2 mm

Γ(m)
det(Caa)−m/NR m

Nakagami–q 2a√
1−b2

exp
“

− a2

(1−b2)

”

I0
“

ba2

(1−b2)

”

1+q2

2q
1

Weibull c
`

Γ(1 + 2
c
)
´

c
2 ac−1 exp

“

−
`

a2Γ(1 + 2
c
)
´

c
2

”

c
2

(Γ(1 + 2
c
))

c
2

c
2

see Section V for several examples. An exception isα–stable
noise, which is sometimes used to model impulsive noise
[27], as the higher order moments ofα–stable noise do not
exist. Note that our analysis is applicable to other types of
impulsive noise such as Middleton’s Class–A model andǫ–
mixture noise.

III. A PPROXIMATE UPPERBOUND FORBER

In this section, we present an approximate upper bound
for the BER of BICM systems operating in non–AWGN
environments.

A. MGF of Metric Difference

We assume Viterbi decoding with the standard Euclidean
distance (ED) branch metric [1]

λi , min
x∈X i

b

{

||r −√
γ hx||2

}

(4)

for bit i, 1 ≤ i ≤ mc, of symbol x. Here,X i
b denotes the

subset of all symbols in constellationX whose label has value
b ∈ {0, 1} in position i. In AWGN, the ED branch metricλi

performs close to optimum at sufficiently high SNR [1]. In
non–Gaussian noise, significant performance gains could be
achieved with optimum maximum–likelihood (ML) decoding,
which, however, requires knowledge of the noise pdf. Since
this knowledge is typically not available at the receiver, in
most practical systems, the ED branch metric is also used in
the presence of non–Gaussian impairments. For derivation of
the proposed upper bound it is convenient to first calculate the
MGF of the metric difference

∆(x, z) , ||r −√
γ h z||2 − ||r −√

γ h x||2

= d2
xz γ||h||2 − 2 dxz

√
γ ℜ{hHn}, (5)

wherex denotes the transmitted symbol andz is the nearest
neighbor ofx in X i

b̄
with b̄ being the bit complement ofb,

and x − z , dxze
jΘd with ED dxz > 0. Since we assume

the phasesΘl of hl to be uniformly distributed, in (5), we
have absorbedejΘd in h without loss of generality. Based on

(5) the MGF Φ∆(s) , Eh,n{e−s∆(x,z)} of ∆(x, z) can be
expressed as

Φ∆(s) = Eh

{

e−d2

xz γ||h||2 s En{e2 dxz
√

γ ℜ{hHn} s}
}

= Ea

{

e−d2

xz γ||a||2 s Φn̂(−2 dxz
√

γ as)
}

, (6)

where n̂ , [e−jΘ1n1 . . . e−jΘNR nNR
]T and Φn̂(s) ,

En̂{e−sT ℜ{n̂}} is the MGF of n̂. If the phases of the noise
componentsnl, 1 ≤ l ≤ NR, are mutually independent
and uniformly distributed in[−π, π), Φn̂(s) = Φn(s) ,

En{e−sT ℜ{n}} is valid and Φn̂(s) in (6) can be replaced
by Φn(s). Further simplifications are possible if both the
phases and the amplitudes ofnl, 1 ≤ l ≤ NR, are mutually
independent. In this case, we can expressΦn̂(s) as

Φn̂(s) =

NR
∏

l=1

Φn̂l
(slℜ{nl}), (7)

where only the scalar MGFsΦn̂l
(s) , En̂l

{e−sℜ{n̂l}} of the
elementsn̂l , e−jΘlnl of n̂ are required. If the phases of
the nl, 1 ≤ l ≤ NR, are uniformly distributed in[−π, π),
Φn̂l

(s) = Φnl
(s) , Enl

{e−sℜ{nl}} is valid, i.e., only the
scalar MGFs of the noise components are required.

The scalar MGFsΦn̂l
(s) of several practically relevant

types of noise are collected in Table II, cf. Section V. IfΦn̂(s)
cannot be calculated in closed form, it can be computed by
numerical integration even ifΦn̂(s) = Φn(s) is not valid (i.e.,
if the phases ofnl, 1 ≤ l ≤ NR, are not mutually independent
and/or are not uniformly distributed in[−π, π)). However,
even if closed–form expressions for the MGF are available,
calculation ofΦ∆(s) in closed form is usually not possible,
and evaluation of (6) entailsNR numerical integrals.

B. Approximate Upper Bound

Assuming a convolutional code of rateRc = kc/nc (kc and
nc are integers) the union bound for the BER of BICM is
given by [1]

Pb ≤
1

kc

∞
∑

d = df

wc(d)P (c, ĉ), (8)
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wherec andĉ are two distinct code sequences with Hamming
distance d that differ only in l ≥ 1 consecutive trellis
states,wc(d) denotes the total input weight of error events
at Hamming distanced, and df is the free distance of the
code.P (c, ĉ) is the pairwise error probability (PEP), i.e., the
probability that the decoder chooses code sequenceĉ when
code sequencec 6= ĉ is transmitted. Invoking the expurgated
bound from [1], the PEP can be expressed as

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

x∈X i
b

Φ∆(s)





d

ds

s
,

(9)
where c is a small positive constant that lies in the region
of convergence of the integrand. The integral in (9) can be
efficiently evaluated numerically using a Gauss–Chebyshev
quadrature rule, cf. [28]. Eqs. (8) and (9) constitute an ap-
proximate upper bound on the BER and are generalizations
of similar bounds in [1], [17] for AWGN to arbitrary types of
noise (and interference). We cannot prove that (8) with (9) is
a true upper bound since, as has been pointed out in [12], the
proof provided in [1] for the expurgated bound is not correct.
Nevertheless, our results in Section VI do suggest that (8) with
(9) is an asymptotically tight upper bound if Gray labeling is
applied. We note that all our results can be extended to the
revised expurgated bounds presented in [12].

IV. A SYMPTOTIC ANALYSIS

In this section, we analyze the asymptotic behavior of the
upper bound in (8) for high SNR, i.e.,γ → ∞. For this
purpose, it is convenient to consider the conditional PEP

P (c, ĉ |n) =
1

2πj

c+j∞
∫

c−j∞

Φ(s|n)
ds

s
, (10)

Φ(s|n) =





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

x∈X i
b

Φ∆(s|n)





d

, (11)

whereΦ∆(s|n) = Ea,Θ{e−s∆(x,z)} with channel phase vector
Θ , [Θ1 . . . ΘNR

]T . The conditional PEP in (10) is given
by the sum of the residues ofΦ(s|n)/s at poles lying in the
left hand side (LHS) of the complexs–plain (including the
imaginary axis) [28]. In order to investigate the singularities
of Φ(s|n)/s, we derive the Laurent series representation of
Φ(s|n) arounds = 0 for the asymptotic case ofγ → ∞ in
the following subsection.

A. Laurent Series Expansion ofΦ(s|n)

For γ → ∞ errors only occur for small channel gains, i.e.,
for a → 0NR

, see also [21]. Thus, forγ → ∞ we can model
the elements ofa andΘ as i.i.d., cf. Section II-B, and rewrite
Φ∆(s|n) as

Φ∆(s|n) ⊜

NR
∏

l=1

Φ∆(s|nl), (12)

where Φ∆(s|nl) , Eal,Θl
{ e−sγ d2

xz |al|2 e2
√

γdxz alℜ{n̂l} s}.
Exploiting the fact that forγ → ∞ errors only occur for

a → 0NR
once again, we can use (3) along with the

Taylor series expansionex =
∑∞

i=0 xi/i! and the integral
∫∞
0

xµ−1e−px2

dx = pµ/2Γ(µ/2) [29, 3.462] to express
Φ∆(s|nl) as

Φ∆(s|nl) =

Eal,Θl

{

e−sγ d2

xz |al|2
∞
∑

i=0

(2
√

γdxz alℜ{n̂l} s)i/i!

}

=
αc

(γd2
xzs)

αd

∞
∑

i=0

2i ηl,i Γ(αd + i/2)si/2 + o
(

γ−αd
)

.

(13)

with ηl,i = EΘl
{ℜ{n̂l}i}. Using ηl,i = i/2+1/2√

πΓ(i/2+1)
|nl|i, i

even, andηl,i = 0, i odd, in (13) leads to

Φ∆(s|nl) =
αc

(γd2
xzs)

αd

∞
∑

i=0

βi|nl|2isi + o
(

γ−αd
)

, (14)

whereβi is defined as

βi ,
22iΓ(αd + i)Γ(i + 1/2)

(2i)!Γ(i + 1)
=

Γ(αd + i)

(i!)2
. (15)

The asymptotic Laurent series expansion ofΦ(s|n) is obtained
from (11), (12), and (14) as

Φ(s|n) = X(α,NR, d)αNRd
c (γs)−αdNRd

(

NR
∏

l=1

zl(s)

)d

+ o
(

γ−αdNRd
)

(16)

with zl(s) ,
∑∞

i=0 βi|nl|2isi and modulation dependent
constant

X(αd, NR, d) ,





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

x∈X i
b

1

(d2
xz)

αdNR





d

.

(17)
In the next subsection, we will use (16) to calculate a closed–
form expression for the asymptotic BER.

B. Approximation for Asymptotic BER

As mentioned before, the conditional PEP (10) is given
by the sum of the residues ofΦ(s|n)/s in the LHS of the
complex s–plain. Using d’Alembert’s convergence test [29,
0.222] it is easy to show thatzl(s) is convergent for alls.
Thus,(

∏NR

l=1 zl(s))
d is also convergent for alls. Consequently,

the first term on the right hand side (RHS) of (16), which
dominates for high SNR, is convergent fors 6= 0, i.e., for
high SNR the only singularity ofΦ(s|n)/s is at s = 0. Thus,
the asymptotic conditional PEP is given by the residue of
Φ(s|n)/s ats = 0 or equivalently by the coefficient associated
with s0 in the series expansion of the first term on the RHS of
(16). AssumingαdNRd is an integer this leads to (18) given
at the top of the next page. In the next step, we calculate a
closed–form approximation for the asymptotic unconditional
BER. For this purpose, we need the assumptions that (a) the
first term in the summation in (8) is asymptotically dominant,
(b) the union bound is an accurate approximation for the BER
at high SNR, (c) the noise vectorsn are temporally i.i.d., and
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P (c, ĉ |n) = X(αd, NR, d)αNRd
c γ−αdNRd

∑

i1+···+id=αdNRd

d
∏

k=1

∑

j1+···+jNR
=ik

βj1 |n1|2j1 · · ·βjNR
|nNR

|2jNR + o
(

γ−αdNRd
)

(18)

M(αd, NR, d) =
∑

i1+···+id=αdNRd

d
∏

k=1

∑

j1+···+jNR
=ik

βj1 · · ·βjNR
Mn(j1, . . . , jNR

) (19)

(d) all joint moments of the elements ofn exist. Assumption
(d) is necessary since the terms absorbed ino(γ−αdNRd) in
(18), contain sums of products of elements ofn, cf. (13),
whose expected values are assumed to become negligible at
high SNRs. With these assumptions and based on (8) and (18)
we obtain for the asymptotic BER approximationPb ⊜

wc(df )
kcE{P (c, ĉ |n)} the closed–form expression

Pb⊜
wc(df )

kc
α

NRdf
c X(αd, NR, df )M(αd, NR, df ) γ−αdNRdf ,

(20)
where M(αd, NR, d) is given in (19) and the joint noise
momentsMn(j1, . . . , jNR

) are defined as

Mn(j1, . . . , jNR
) , En

{

|n1|2j1 . . . |nNR
|2jNR

}

. (21)

At what finite SNR the approximate upper bound (8) and
the true BER approach the asymptotic BER depends on
how fast the terms neglected in (20) become negligible
compared to the terms considered as the SNR increases.
Generally, the SNR values at which the asymptotic BER is
approached increase with increasingαdNRdf and increasing
w(df +1)/w(df ) since higher SNRs are necessary for the term
w(df )γ−αdNRdf considered in (20) to dominate the largest
term w(df + 1)γ−αdNRdf−1 absorbed ino(γ−αdNRd). Thus,
we expect the asymptotic BER to converge faster to the true
BER for codes with smaller free distancedf and smaller
relative weightw(df + 1)/w(df ), cf. Fig. 3.

Furthermore, depending on the properties of the noise, eval-
uation of Mn(j1, . . . , jNR

) may be cumbersome. However,
for two important special cases significant simplificationsare
possible.

Case 1 (spatially i.i.d. noise):If the components ofn are
independent, (19) simplifies to

M(αd, NR, d) =
∑

j1+···+jNRd=αdNRd

βj1Mn(j1) . . . βjNRd
Mn(jNRd)

(22)
with scalar noise momentsMn(j) , E{|nl|2j}, which are
independent ofl.

Case 2 (αd = 1): If αd = 1, which is true for exam-
ple for (possibly spatially correlated) Rayleigh, Ricean,and
Nakagami–q fading, (19) simplifies to

M(1, NR, d) =
1

(NRd)!

∑

i1+···+id=NRd

(

NRd

i1, . . . , id

)

× Mn(i1) . . . Mn(id) (23)

with vector noise momentsMn(i) , E{||n||2i}.

Closed–form expressions for the momentsMn(j) and
Mn(i) of several important types of noise are provided in
Tables II and III, respectively, cf. Section V.

In the remainder of this section, we discuss the implications
of the asymptotic BER (20) for system design and consider
the special cases of AWGN and uncoded transmission, respec-
tively.

C. Diversity Gain, Coding Gain, and Design Guidelines

To get more insight, it is convenient to express the asymp-
totic BER asPb ⊜ (Gcγ)−Gd [21], whereGd andGc denote
the diversity gain (i.e., the asymptotic slope of the BER curve
on a double logarithmic scale) and the coding gain (i.e.,
a relative horizontal shift of the BER curve), respectively.
Considering the asymptotic BER in (20), we obtain

Gd = αdNRdf (24)

Gc = − 10

αd
log10 αc −

10

Gd
log10

(

wc(df )X(αd, NR, df )

kc

)

− 10

Gd
log10 M(αd, NR, df ) (25)

From (24) we observe that the diversity gain of BICM is
independent of the type of noise. The coding gain in (25)
consists of three terms, where the first, the second, and the
third term depend on the fading channel, the modulation
scheme and the code, and the type of noise, respectively.
The primary goal of BICM design is to maximizedf for
a given decoding complexity in order to maximizeGd (and
to minimize the asymptotic BER). Gray labelings (yielding
smaller X(αd, NR, df ) than non–Gray labelings) and codes
with small wc(df ) are advantageous for maximizing the sec-
ond, modulation and coding dependent term in (25). Oncedf

is fixed, the last term in (25) cannot be further influenced
through system design making the BICM design guidelines
effectively indepenent of the type of noise in the system. Thus,
our results show that BICM systems optimized based on the
guidelines provided in [1] for systems operating in fading and
AWGN are also optimum for non–AWGN environments as
long as the standard ED branch metric is used for Viterbi
decoding.

D. Special Case I: AWGN

Although the main focus of this paper is non–AWGN, the
presented results are also valid for AWGN. We note that
although the AWGN case was covered extensively in the
literature, e.g. [1], [13], [17], our results are still moregeneral
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TABLE II

MGF Φn̂(s) AND SCALAR MOMENTS Mn(i) OF TYPES OF NOISE CONSIDERED INSECTION V. A LL VARIABLES IN THIS TABLE ARE DEFINED IN SECTION

V. (SC) AND (OFDM) MEANS THAT THE TYPE OF NOISE IS RELEVANT FORBICM–SC AND BICM–OFDM, RESPECTIVELY.

Noise type Noise MGFΦn̂(s) Scalar momentMn(i)

AWGN (SC & OFDM) exp(s2/4) i!

SI–GMN (SC)
PI

k=1 ck exp(s2σ2
k/4) i!

PI
k=1 ck σ2i

k

CCI (SC)
PB

µ=1

P

Sµ
cµ,Sµ

exp(s2σ2
Sµ

/4) i!
PB

µ=1

P

Sµ
cµ,Sµ

σ2i
Sµ

SI–GMN (OFDM)
P

k1+···+kI=N ck1,...,kI
exp(s2σ2

k1,...,kI
/4) i!

P

k1+···+kI=N ck1,...,kI
σ2i

k1,...,kI

NBI (OFDM)
PB

µ=1

PIµ

i=1

P

k∈Nµ,i
c0 exp(s2σ2

µ,i,k/4) i!(
PB

µ=1

PIµ

ν=1

P

k∈Nµ,ν
c0σ2i

µ,ν,k

+c1 exp(s2σ2
ñ/4) +c1σ2i

ñ )

than existing results as our work allows for spatially correlated
fading and more general fading models. For example, for
Ricean fading (αd = 1) we obtain from (22) with the help
of (15) and Table IIM(1, NR, d) =

(

2NRdf−1
NRdf

)

. Thus, with
(20) and Table I we get

Pb ⊜ X(1, NR, df )

(

wc(df ) exp
(

−µH
h C−1

hhµh

)

kc det(Chh)

)df

×
(

2NRdf − 1

NRdf

)

γ−NRdf , (26)

which is a new result. ForNR = 1, we may rewrite (26)
asPb ⊜

(

2df−1
df

)wc(df )
kc

[(1 + K)e−K ]df X(1, 1, df )γ−df with

Ricean factorK , |µh|2/σ2
h, whereµh and σ2

h denote the
mean and the variance ofh1. In contrast, for Ricean fading
with NR = 1 the Chernoff bound was used in [1] and [17] to
investigate the asymptotic behavior of BICM–SC and BICM–
OFDM, respectively, since “a closed–form expression for the
PEP for arbitraryK is missing” [1]. Comparing our result
with the asymptotic Chernoff bound [1, Eq. (62)] shows that
the Chernoff bound is by a factor of4df /

(

2df−1
df

)

> 1 larger
than the asymptotic BER, i.e., fordf = 3 and df = 6 the
Chernoff bound is horizontally shifted by 2.7 dB and 1.6 dB
compared to the asymptotic BER, respectively. Furthermore,
using the Stirling approximation we obtain for the difference
between asymptotic Chernoff bound and asymptotic BER
4df /

(

2df−1
df

)

→ 2
√

πdf for df ≫ 1, which agrees with the
result obtained in [16] for Rayleigh fading.

E. Special Case II: Uncoded Transmission

While BICM is the main focus of this paper, based on
(20) it is also possible to compute the asymptotic BER of
uncoded transmission with maximum–ratio combining (MRC)
at the receiver. In this case,df = 1, kc = 1, andwc(1) = 1
are valid. Furthermore, assuming a regular signal constellation
such asM–ary quadrature amplitude modulation (M–QAM)
or M–ary phase shift keying (M–PSK), it is easy to see
that X(αd, NR, 1) = Nmin/(mcd

2αdNR

min ), where Nmin and
dmin are the average number of minimum distance neighbors
and the minimum distance ofX , respectively. Therefore, the
asymptotic BER of uncoded transmission with MRC can be

expressed as

Pb ⊜
NminαNR

c

mcd
2αdNR

min

M(αd, NR, 1) γ−αdNR , (27)

where M(αd, NR, 1) =
∑

j1+···+jNR
=αdNR

βj1 · · ·βjNR

Mn(j1, . . . , jNR
), which can be further simplified forαd = 1

and spatially i.i.d. noise, cf. Section IV-B. In particular, for
αd = 1 we obtainM(1, NR, 1) = Mn(NR)/NR!, cf. (23),
and it can be shown that for Rayleigh and Ricean fading (for
both of whichαd = 1 holds) (27) is identical to [23, Eqs. (12),
(16)]. However, (27) is more general than the results in [23]
since it is not limited to Rayleigh and Ricean fading and is
also applicable to e.g. Nakagami–m, Nakagami–q, and Weibull
fading.

V. CALCULATION OF THE NOISE MOMENTS AND MGFS

In this section, we discuss several practically relevant types
of noise and compute the corresponding MGFsΦn̂(s) and
moments Mn(j1, . . . , jNR

) required for evaluation of the
upper bound in Section III and the asymptotic BER in Section
IV, respectively. We note that for spatially i.i.d. noise only the
scalar MGFsΦn̂(s) and the scalar momentsMn(i) have to be
computed for evaluation of the upper bound and the asymptotic
BER, respectively, cf. (7), (22), Table II. Furthermore, for most
types of spatially dependent noise, it is difficult to find closed–
form expressions for the joint MGFΦn(s) and the joint
momentsMn(j1, . . . , jM ), since the phases of the elements
of n are not independent. Therefore, unless stated otherwise,
we concentrate in case of spatially dependent noise on the
important special caseαd = 1, where only the vector moments
Mn(i) are required.

A. Noise Models for BICM–SC

In this section, we consider several time–domain noise mod-
els typical for BICM–SC systems. In particular, we consider
spatially independent Gaussian–mixture noise (SI–GMN) and
three different types of spatially dependent noise (spatially
dependent (SD) GMN, additive correlated Gaussian noise
(ACGN), and asynchronous co–channel interference (CCI)).

SI–GMN: GMN is often used to model the combined effect
of Gaussian background noise and man–made or impulsive
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TABLE III

VECTOR MOMENTSMn(i) OF TYPES OF NOISE CONSIDERED INSECTION V. A LL VARIABLES IN THIS TABLE ARE DEFINED IN SECTION V. (SC) AND

(OFDM) MEANS THAT THE TYPE OF NOISE IS RELEVANT FORBICM–SC AND BICM–OFDM, RESPECTIVELY.

Noise type Vector momentMn(i)

SD–GMN (SC) (i+NR−1)!
(NR−1)!

PI
k=1 ck σ2i

k

ACGN (SC) i!
P

k1+···+kNR
=i λk1

1 · · ·λkNR
NR

CCI (SC) i!
PB

µ=1

P

Sµ
cµ,Sµ

P

k1+···+kNR
=i λk1

1,Sµ
· · ·λkNR

NR,Sµ

SD–GMN (OFDM) (i+NR−1)!
(NR−1)!

P

k1+···+kI=N ck1,...,kI
σ2i

k1,...,kI

NBI (OFDM) i!
PB

µ=1

PIµ

ν=1

P

k∈Nµ,ν
c0

P

k1+···+kNR
=i λk1

1,µ,ν,k · · ·λkNR
NR,µ,ν,k

+c1
(i+NR−1)!
(NR−1)!

σ2i
ñ

noise, cf. e.g. [7], [8], [19]. If the phenomenon causing the
impulsive behavior affects the antennas independently, the
GMN is spatially i.i.d. [30] andnl is distributed according
to [8]

pn(nl) =
I
∑

i=1

ci

πσ2
i

exp

(

−|nl|2
σ2

i

)

, 1 ≤ l ≤ NR, (28)

whereci > 0 andσ2
i > 0 are parameters, and

∑I
i=1 ci σ2

i = 1.
Two popular special cases of Gaussian mixture noise are
Middleton’s Class–A noise [8] andǫ–mixture noise. Forǫ–
mixture noiseI = 2, c1 = 1 − ǫ, c2 = ǫ, σ2

1 = σ2
g ,

and σ2
2 = κσ2

g , where ǫ is the fraction of time when the
impulsive noise is present,κ is the ratio of the variances of
the Gaussian background noise and the impulsive noise, and
σ2

g = 1/(1 − ǫ + κǫ) = 1. The scalar MGFΦn̂(s) and the
scalar momentsMn(i) for SI–GMN are given in Table II.

SD–GMN: SD–GMN is an appropriate model for impul-
sive noise if all antennas are affected simultaneously by the
phenomenon causing the impulsive behavior. The joint pdf for
SD–GMN n is given by [30]

pn(n) =
I
∑

i=1

ci

πNRσ2NR

i

exp

(

−||n||2
σ2

i

)

, (29)

whereci andσ2
i are defined similarly as for SI–GMN. Since

the phases of the elements ofn are independent random
variables, the joint MGFΦn̂(s) can be calculated to

Φn̂(s) =
I
∑

i=1

ci exp

(

σ2
i

4

NR
∑

l=1

s2
l

)

. (30)

Furthermore, in this particular case, a closed–form expression
for the joint momentMn(j1, . . . , jNR

), cf. (21), can be
obtained as

Mn(j1, . . . , jNR
) = j1! · · · jNR

!

I
∑

i=1

ciσ
2(j1+···+jNR

)

i . (31)

The vector momentsMn(i) are provided in Table III.
ACGN: In BICM–SC systems, correlated Gaussian noise

n may be caused by narrowly spaced receive antennas [6].
Correlated Gaussian interferencen = h̃b + ñ is caused by
a synchronous co–channel interferer transmitting i.i.d. PSK

symbolsb over a spatially correlated Rayleigh fading channel
with gains h̃ and AWGN ñ. In both casesn is fully char-
acterized by its covariance matrixCnn , E{nnH}, and the
corresponding vector momentsMn(i) are given in Table III,
whereλl, 1 ≤ l ≤ NR, denotes the eigenvalues ofCnn.

Asynchronous CCI: Another common type of non–AWGN
impairment in BICM–SC systems is asynchronous CCI [4],
[5]. We consider coding overB different hopping frequencies
and assume that at hopping frequencyµ, 1 ≤ µ ≤ B, in addi-
tion to AWGN ñµ, there areIµ Rayleigh faded asynchronous
CCI signals leading to time–domain noise

nµ =

Iµ
∑

i=1

h̃µ[i]

ku
∑

l=kl

gi,µ[l]bi,µ[l] + ñµ, (32)

where h̃µ[i] and bi,µ[l] ∈ Mi,µ ( Mi,µ: M̃i,µ–ary symbol
alphabet) denote the temporally i.i.d. zero–mean Gaussian
random channel vector and the i.i.d. symbols of theith inter-
ferer at theµth hopping frequency, respectively. Furthermore,
gi,µ[l] , gi,µ(lT + τi,µ), wheregi,µ(t), T , and τi,µ are the
effective pulse shape, the symbol duration, and the time offset
of the ith interferer at theµth hopping frequency, respectively.
We assume thatgi,µ(lT +τi,µ) ≈ 0 for i < kl andi > ku, de-
note the set of all possible values ofξi,µ ,

∑ku

l=kl
gi,µ[l]bi,µ[l]

by Si,µ, and defineSµ , S1,µ × . . . × SIµ,µ. If Iµ = 0, we
formally setSµ = {0} with |Sµ| = 1. With these definitions,
the pdf ofnµ can be expressed as

pn(n) =
B
∑

µ=1

∑

Sµ

cµ,Sµ

πNR det(CSµ
)

exp
(

−nHC−1
Sµ

n
)

, (33)

where CSµ
,
∑Iµ

i=1 |ξi,µ|2E{h̃µ[i]h̃
H

µ [i]} + σ2
ñINR

(σ2
ñ:

variance of elements of̃nµ) andcµ,Sµ
, 1/(|Sµ|B). Eq. (33)

shows that CCI in BICM–SC systems can be interpreted
as correlated Gaussian mixture noise. For future reference
we denote the ratio of the total CCI variance and the total
AWGN variance byκ, cf. Section VI. The scalar moments
Mn(i) (valid for NR = 1) and vector momentsMn(i) of
asynchronous CCI are given in Tables II and III, respectively,
where we have replacedCSµ

by σ2
Sµ

for NR = 1 in Table II,
and in Table III,λl,Sµ

, 1 ≤ l ≤ NR, are the eigenvalues of
CSµ

.
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B. Noise Models for BICM–OFDM

Now, we turn our attention to several frequency–domain
noise models relevant to BICM–OFDM systems. In particular,
we consider SI–GMN and two types of spatially dependent
noise (SD–GMN and narrowband interference (NBI)).

SI–GMN: Taking into account that in OFDM systems time
domain and frequency domain are linked via the discrete
Fourier transform (DFT), it can be shown that time–domain
SI–GMN (28) results in frequency–domain noise with pdf

pn(nl) =
∑

k1+···+kI=N

ck1,...,kI

πσ2
k1,...,kI

exp

(

− |nl|2
σ2

k1,...,kI

)

, (34)

with 1 ≤ l ≤ NR, which is again an SI–GMN model with
parametersck1,...,kI

,
(

N
k1,...,kI

)

ck1

1 · · · ckI

I and σ2
k1,...,kI

,

(k1σ
2
1 + · · ·+kIσ

2
I )/N . We note that the spectral i.i.d. asump-

tion for nl is justified only if the interleaver spans several
OFDM symbols, i.e.,B ≫ 1, since the noise after DFT in
one OFDM symbol will be spectrally dependent. The scalar
MGF Φn̂(s) and the scalar momentsMn(i) for SI–GMN are
provided in Table II.

SD–GMN: The DFT operation at the receiver transforms
the noise pdf (29) into

pn(n) =
∑

k1+···+kI=N

ck1,...,kI

πNRσ2NR

k1,...,kI

exp

(

− ||n||2
σ2

k1,...,kI

)

,

(35)
where the same definition is used forck1,...,kI

andσ2
k1,...,kI

as
for SI–GMN, cf. (34). Since, similar to the BICM–SC case, the
phases of the elements ofn are independent random variables,
the joint MGF can be obtained as

Φn̂(s) =
∑

k1+···+kI=N

ck1,...,kI
exp

(

σ2
k1,...,kI

4

NR
∑

l=1

s2
l

)

.

(36)
The corresponding joint moment is given by

Mn(j1, . . . , jNR
) = j1! · · · jNR

!
∑

k1+···+kI=N

ck1,...,kI
σ

2(j1+···+jNR
)

k1,...,kI
.

(37)

The vector momentsMn(i) for SD–GMN are provided in
Table III.

NBI: We consider a BICM–OFDM system with coding over
B different hopping frequencies. At hopping frequencyµ,
1 ≤ µ ≤ B, the received frequency–domain signal is impaired
by AWGN ñk,µ andIµ Rayleigh faded PSK NBI signals. The
corresponding frequency–domain noise model is

nk,µ =

Iµ
∑

i=1

gk,µ[i]bµ[i]h̃k,µ[i] + ñk,µ, 1 ≤ k ≤ N, (38)

wherebµ[i] is the PSK symbol of theith interferer at theµth
hopping frequency affecting the setNµ,i of sub–carriers via
gk,µ[i] , exp[−jπ(N−1)(k+fµ,i/∆fs)/N +φµ,i] sin[π(k+
fµ,i/∆fs)]/ sin[π(k + fµ,i/∆fs)/N ] [3]. Here,fµ,i andφµ,i

denote the frequency and phase of theith interferer at hopping
frequency µ relative to the user, respectively, and∆fs is
the OFDM sub–carrier spacing. Since we consider NBI, the

same interference fading vectorh̃k,µ[i] (modeled as spatially
correlated zero–mean Gaussian random vector) affects all sub–
carriers inNµ,i. For fµ,i = ν∆f , the NBI affects only sub–
carrierν, i.e.,Nµ,i = ν, while, in theory, forfµ,i 6= ν∆f the
NBI affects all sub–carriers. However,gk,µ[i] decays quickly
and we limit Nµ,i such that|gk,µ[i]| ≈ 0 for k 6∈ Nµ,i.
Finally, we assume that no sub–carrier is affected by two
narrowband interferers at a given hopping frequency, i.e.,
Nµ,i1 ∩ Nµ,i2 = ∅, i1 6= i2. The pdf for this general
interference scenario is given by

pn(n) =

B
∑

µ=1

Iµ
∑

i=1

∑

k∈Nµ,i

c0

πNR det(Cµ,i,k)
exp

(

−nHC−1
µ,i,kn

)

+
c1

πNRσ2NR

ñ

exp

(

−||n||2
σ2

ñ

)

, (39)

whereσ2
ñ denotes the variance of the elements of the AWGN

ñ, c0 , 1/(BN), c1 , 1 − ∑B
µ=1

∑Iµ

i=1 |Nµ,i|/(BN),
Cµ,i,k , |gk,µ[i]|2Cµ,i + σ2

ñINR
, and Cµ,i ,

E{h̃k,µ[i](h̃k,µ[i])H}. Eq. (39) shows that, similar to
CCI in BICM–SC systems, NBI in BICM–OFDM systems
can be interpreted as correlated Gaussian mixture noise.
We denote the ratio of the total NBI variance and the
AWGN variance byκ, cf. Section VI. The corresponding
momentsMn(i) and Mn(i) are provided in Tables II and
III, respectively, where we have replacedCµ,i,k by σ2

µ,i,k for
NR = 1 in Table II, and in Table III,λl,µ,i,k, 1 ≤ l ≤ NR,
are the eigenvalues ofCµ,i,k.

C. Monte–Carlo Method

For complicated types of noise such as UWB interference, it
may be difficult to calculate the momentsMn(i), Mn(i), and
Mn(j1, . . . , jNR

) in closed form. In this case, these moments
may be obtained by Monte–Carlo simulation of (21), (22), or
(23) and subsequently be used in (20) for calculation of the
asymptotic BER. We note that this semi–analytical approach
is much faster than a full simulation since the moments are
independent from the SNRγ and have to be computed only
once.

VI. N UMERICAL AND SIMULATION RESULTS

In this section, we verify our derivations in Sections III–
V with computer simulations and employ the presented the-
oretical framework to study the performance of BICM in
non–AWGN environments. For the simulations, we consider
both idealized channels with temporally i.i.d. channel and
noise vectors, and non–ideal channels generated based on the
models presented in Sections II-A and V. In the non–ideal
case, for BICM–SC we assume a frame size ofN = 972
and a normalized fading bandwidthBfT of 0.007, which are
typical values for the DAMPS mobile communication system
[4]. For BICM–OFDM we consider systems withN = 64
and N = 128 sub–carriers transmitting over channels with
L = 10 and L = 20 i.i.d. impulse response coefficients.
For all simulations shown, a pseudo–random interleaver was
employed. Throughout this section we adopt the standard
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Fig. 1. BER of BICM–SC and BICM–OFDM impaired by GMN (ǫ–
mixture noise,ǫ = 0.1, κ = 100) and NBI, respectively, vs. SNRγ.
Rc = 3/4, Rayleigh fading, 4–PSK, andNR = 1. BICM–SC: Frequency–
flat time–selective fading,N = 972, andBf T = 0.007. BICM–OFDM
(N = 64): Frequency–selective Rayleigh fading withL = 10 and B
equal power, sub–carrier centered NBI signals withIµ = 1, 1 ≤ µ ≤ B,
κ = 7. BICM–OFDM (N = 128): Frequency–selective Rayleigh fading
with L = 20 and B equal power, sub–carrier centered NBI signals with
Iµ = 1, 1 ≤ µ ≤ B, κ = 2. Solid lines with markers: Simulated BER.
Solid lines without markers: BER bound (8). Dashed lines: Asymptotic
BER (20).

convolutional code with rateRc = 1/2 and generator poly-
nomials [133, 171] (octal representation). Higher code rates
are obtained via puncturing and, unless specified otherwise,
4–PSK modulation andNR = 1 receive antennas are used.
The parameters of the adopted noise models are specified in
the respective captions of Figs. 1–6.

In Fig. 1, we show simulation results for BICM–SC and
BICM–OFDM impaired by GMN and NBI, respectively. In
both cases, coding (Rc = 3/4) and interleaving is performed
over different numbers of framesB. Besides the simulation
results we also show the approximate upper bound and the
asymptotic BER derived in Sections III and IV, respectively.
For high enough SNR and BICM–OFDM withN = 128 and
the severely frequency–selective channel withL = 20 the
analytical results are accurate even forB = 3. In contrast, for
BICM–SC and BICM–OFDM withN = 64 andL = 10 the
interleaver is not able to generate i.i.d. channels for small B
which leads to performance degradation and the corresponding
simulated BER exceeds the upper bound (which was derived
assuming i.i.d. channels). However, asB increases, the sim-
ulation results approach the upper bound and the asymptotic
BER also in these cases for high SNR. Note that for non–
delay critical applications, such as data transmission, large B
can be afforded.

In Fig. 2, we show the BER of BICM–SC and BICM–
OFDM (N = 64) for Rayleigh fading and various different
noise and interference scenarios. Fig. 2 shows that the simu-
lated BERs (solid lines with markers), which were generated
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Fig. 2. BER of BICM–SC and BICM–OFDM impaired by various types
of noise vs. SNRγ. Rayleigh fading,Rc = 3/4, 4–PSK, andNR = 1.
BICM–SC: N = 972 and Bf T = 0.007. BICM–OFDM: N = 64 and
L = 10. GMN I: ǫ–mixture noise,ǫ = 0.01, κ = 100. GMN II: ǫ–
mixture noise,ǫ = 0.1, κ = 100. Asynchronous CCI: Two asynchronous
equal power 4–PSK CCI signals,Iµ = 1, µ ∈ {1, 2}, Iµ = 0, 3 ≤
µ ≤ 10, raised cosine pulsesg1,µ(t), µ ∈ {1, 2}, with roll–off factor
0.3, τ1,µ = 0.3T , µ ∈ {1, 2}, κ = 2. NBI: One sub–carrier–centered
NBI signal, I1 = 1, I2 = I3 = I4 = I5 = 0, κ = 9. Solid lines with
markers: Simulated BER. Solid lines without markers: BER bound(8).
Dashed lines: Asymptotic BER (20).

with non–ideal channels and for differentB, approach the
approximate upper bound (solid lines without markers) and the
asymptotic BER (dashed lines) for high SNR. In particular, for
the BER region ofBER < 10−5, which is difficult to simulate,
the proposed analytical results are accurate approximations for
the true BER. The simulated BER exceeds the upper bound
again because of the non–ideal channel. In accordance with
our findings in Section IV-C, Fig. 2 shows that for high SNR
all BER curves are parallel, i.e., all considered types of noise
lead to the same diversity gain ofGd = df = 5. Nevertheless,
there are large performance differences between differenttypes
of noise because of the different coding gainsGc. Fig. 2
confirms that OFDM is far more robust to GMN than SC
if BICM is used in both cases. For GMN II BICM–OFDM
outperforms BICM–SC by 5 dB at high SNR and approaches
the performance in AWGN. This is an interesting result, since
a previous comparison in [19] had shown that BICM–SC is
more robust to GMN thanuncodedOFDM. Note, however,
that for BICM–OFDM a relative largeB is necessary to make
the GMN approximately spectrally independent, whereas for
BICM–SC GMN is temporally independent even forB = 1,
cf. Section V.

In the remaining figures, we assume ideal channels where
both fading and noise are temporally or spectrally i.i.d.

In Fig. 3, we investigate the effect of the code rateRc on
the performance of BICM–OFDM (N = 128) in NBI for an
i.i.d. Rayleigh fading channel and 64–QAM. Fig. 3 shows
that as the code rate decreases, the diversity gain increases
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Fig. 3. BER of BICM–OFDM impaired by NBI (3 equal power, sub–
carrier–centered NBI signals,I1 = I2 = I3 = 1, κ = 10) vs. SNR
γ. I.i.d. Rayleigh fading, 64–QAM,N = 128, B = 3, and NR = 1.
Solid lines with markers: Simulated BER. Solid lines without markers:
BER bound (8). Dashed lines: Asymptotic BER (20).

since the free distance of the code increases, cf. (24). While
the approximate upper bound (solid line without markers)
approaches the simulation results (solid lines with markers)
for BER < 10−6 in all cases, the convergence of the upper
bound to the asymptotic BER (dashed lines) is slower for small
(Rc = 1/2) and large (Rc = 7/8) code rates. ForRc = 1/2,
df is large making the asymptotic BER curve very steep,
which leads to an over–estimation of the BER at low SNRs,
cf. Section IV-B. ForRc = 7/8, the slow convergence can be
explained by the large relative weight of terms neglected in
asymptotic BER expressions (e.g.w(df + 1)/w(df ) = 56),
cf. Section IV-B. For comparison,Rc = 3/4 shows a much
faster convergence sincew(df + 1)/w(df ) = 5.

In Fig. 4, we consider the impact of the type of fading
on the BER of BICM–SC withRc = 7/8 and 16–QAM
for GMN and AWGN. For all considered types of fading the
asymptotic BER approximations are tight forBER < 10−8.3

Since the type of fading affects the diversity gainGd = αddf ,
the asymptotic slopes of the BER curves for Nakagami–m
(αd = m = 2) and Weibull (αd = c/2 = 2/3) fading differ
from the asymptotic slopes of the BER curves for Rayleigh,
Ricean, and Nakagami–q fading, since for the latter three
αd = 1 holds. It can also be observed that the performance
loss caused by GMN compared to AWGN decreases with
decreasing diversity order.

In Fig. 5, we consider the BER of BICM–SC impaired
by temporally i.i.d., spatially uncorrelated/correlated(fading
correlation ρh = 0.9) Rayleigh fading and AWGN/ACGN
(noise correlationρn = 0.9) for NR = 2. Fig. 5 shows that,
while noise correlation has also adverse effects on perfor-
mance, fading correlation is more harmful. Furthermore, the

3We note that for clarity of presentation for Ricean and Nakagami–q fading
simulation results are not shown in Fig. 4.
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Fig. 4. BER of BICM–SC impaired by GMN (ǫ–mixture noise,ǫ = 0.25,
κ = 10) and AWGN, respectively, vs. SNRγ. Ideal i.i.d. fading,Rc =
7/8, 16–QAM, andNR = 1.

convergence of the asymptotic BER to the approximate union
bound is negatively affected by the spatial fading correlation.

Finally, in Fig. 6, we consider the BER of BICM–OFDM
impaired by UWB interference and temporally i.i.d. Rayleigh
fading. We consider MB–OFDM and impulse–radio UWB
(IR–UWB) interference following the EMCA [9] and the
IEEE 802.15.4a [10] standards, respectively. Specifically, for
IR–UWB we assumeNb = 32 bursts per symbol andLc

chips per burst [10]. The MGF required for the approximate
upper bound (8) was obtained using the methods proposed in
[11]. Since, due to the complicated nature of the interference
signal, closed–form expressions for the moments are difficult
to obtain, we used the Monte–Carlo approach discussed in
Section V-C for calculation of the moments for evaluation
of the asymptotic BER (20). Fig. 6 nicely illustrates that the
coding gain in UWB interference strongly depends on the sub–
carrier spacing of the victim BICM–OFDM system and the
format of the UWB interference. Interestingly, for∆fs = 1
MHz MB–OFDM has a more favorable noise pdf than AWGN
and thus, is less detrimental to the performance of the BICM–
OFDM system than AWGN.

VII. C ONCLUSIONS

In this paper, we have presented a framework for perfor-
mance analysis of BICM–SC and BICM–OFDM systems im-
paired by fading and non–Gaussian noise and interference. The
proposed analysis is very general and applicable to all pop-
ular fading models (including Rayleigh, Ricean, Nakagami–
m, Nakagami–q, and Weibull fading) and all types of noise
with finite moments (including AWGN, ACGN, GMN, CCI,
NBI, and UWB interference). In particular, we have derived
an approximate upper bound for the BER which allows for
efficient numerical evaluation and a simple, accurate closed–
form approximation for the asymptotic BER. Our asymptotic
analysis reveals that while the coding gain is strongly noise
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Fig. 5. BER of BICM–SC impaired by AWGN/ACGN vs. SNRγ.
Spatially i.i.d./spatially correlated, temporally i.i.d.Rayleigh fading,Rc =
7/8, 4–PSK, andNR = 2. Solid lines with markers: Simulated BER.
Solid lines without markers: BER bound (8). Dashed lines: Asymptotic
BER (20).

dependent, the diversity gain of the overall system is not
affected by the type of noise. This result is important from
a practical point of view since it shows that at high SNRs the
BER curves of BICM systems optimized for AWGN will only
suffer from a parallel shift if the impairment in a real–world
environment is non–Gaussian.

APPENDIX I
SPATIALLY CORRELATED FADING CHANNELS

In this appendix, we prove (2) for correlated Rayleigh,
Ricean, and Nakagami–m fading.

Ricean Fading: For Ricean fading the pdf of the channel
vectorh is given by

ph(h) =
1

πNR det(Chh)
exp

[

−(h − µh)HC−1
hh (h − µh)

]

,

(40)
whereµh , E{h} andChh , E{(h − µh) (h − µh)H} are
the channel mean and channel covariance matrix, respectively.
For h → 0NR

we can rewrite (40) as

ph(h) =
exp

(

−µH
h C−1

hhµh

)

πNR det(Chh)
+ o(1). (41)

Based on (41) and the relation|hl|2 = a2
l it can be shown

that (2) and (3) hold for correlated Rayleigh (µh = 0NR
) and

Ricean (µh 6= 0NR
) fading with αc and αd as specified in

Table I.
Nakagami–m Fading: For Nakagami–m fading the joint

MGF of a2
l , 1 ≤ l ≤ NR, is given by [24]

Φa2(s) , E
{

exp

(

−
NR
∑

l=1

a2
l sl

)}

= det(INR
+ SCaa/m)−m, (42)
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Fig. 6. BER of BICM–OFDM system with sub–carrier spacing∆fs

impaired by IR–UWB [10] (Nb = 8 bursts per symbol andLc chips
per burst) and MB–OFDM UWB [9], respectively, vs. SNRγ. Ideal
i.i.d. Rayleigh fading,Rc = 5/6, 4–PSK, andNR = 1. Solid lines with
markers: Simulated BER. Solid lines without markers: BER bound(8).
Dashed lines: Asymptotic BER (20). For comparison the bound and the
asymptotic BER for AWGN are also shown.

whereS , diag{s}, andCaa andm denote the channel cor-
relation matrix and the fading parameter, respectively. The be-
havior of the joint pdfpa2(a2

1, . . . , a2
NR

) of a2
l , 1 ≤ l ≤ NR,

for a → 0NR
can be deduced from the behavior ofΦa2(s)

for sl → ∞, 1 ≤ l ≤ NR, which is given by

Φa2(s) = mNRm det(Caa)−m
NR
∏

l=1

s−m
l + o

(

NR
∏

l=1

s−m
l

)

.

(43)
Consequently, we obtain

pa2(a2
1, . . . , a2

NR
) = mNRm det(Caa)−m

NR
∏

l=1

a
2(m−1)
l

Γ(m)

+ o

(

NR
∏

l=1

a
2(m−1)
l

)

, (44)

which clearly shows that theal, 1 ≤ l ≤ NR, are asymp-
totically i.i.d., i.e., (2) and (3) are valid. The corresponding
parametersαc and αd are provided in Table I and can be
obtained by exploiting the relation betweenpa2(a2

1, . . . , a2
NR

)
andpa(a).
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