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Abstract

In this paper, we study the asymptotic behavior of the bit–error probability (BEP) and the symbol–

error probability (SEP) of quadratic diversity combining schemes such as coherent maximum–ratio

combining (MRC), differential equal–gain combining (EGC), and noncoherent combining (NC) in

correlated Ricean fading and non–Gaussian noise, which in our definition also includes interference.

We provide simple and easy–to–evaluate asymptotic BEP and SEP expressions which show that at

high signal–to–noise ratios (SNRs) the performance of the considered combining schemes depends

on certain moments of the noise and interference impairing the transmission. We derive general rules

for calculation of these moments and we provide closed–form expressions for the moments of several

practically important types of noise such as spatially dependent and spatially independent Gaussian

mixture noise, correlated synchronous and asynchronous co–channel interference, and correlated

Gaussian interference. From our asymptotic results we observe that (a) the asymptotic performance

loss of binary frequency–shift keying (BFSK) with NC compared to binary phase–shift keying (BPSK)

with MRC is always 6 dB independent of the type of noise and the number of diversity branches, (b)

the asymptotic performance loss of differential EGC compared to MRC is always 3 dB for additive

white Gaussian noise but depends on the number of diversity branches and may be larger or smaller

than 3 dB for other types of noise, and (c) not only fading correlation but also noise correlation

negatively affects the performance of quadratic diversity combiners.
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1 Introduction

In recent years the performance analysis of wireless communication systems impaired by fading and

noise has received considerable attention, cf. e.g. [1] and references therein. In particular, for fading

channels impaired by additive white Gaussian noise (AWGN) simple closed–form expressions for the

symbol error probability (SEP) at high signal–to–noise ratio (SNR) have been developed, cf. [2]–[7].

These asymptotic expressions are very useful for communication system design as they reveal the

effects of the modulation scheme, the diversity combining scheme, and the channel parameters on

system performance.

In practice, wireless communication systems are often not only impaired by AWGN but also

by non–Gaussian noise and interference1. Examples of non–Gaussian noise include co–channel and

adjacent channel interference [8], impulsive noise [9], and ultra–wideband (UWB) interference [10].

Recently, the authors have provided a unified asymptotic SEP analysis of coherent equal gain com-

bining (EGC) and coherent selection combining (SC) which is applicable to many different types

of noise and independent identically distributed (i.i.d.) diversity branches [11]. Unfortunately, the

approach used in [11] cannot be extended to the important class of quadratic diversity combining

techniques which include coherent maximum ratio combining (MRC), differential EGC, and nonco-

herent combining (NC).

In this paper, we present a novel powerful framework for analyzing quadratic diversity combining

techniques in the high SNR regime when the received signal is impaired by correlated Ricean fading

and general non–Gaussian noise. Since the only assumption that we make on the noise is that

all of its moments exist, our results are applicable to a large number of practical scenarios. The

resulting asymptotic bit error probability (BEP) and SEP expressions are surprisingly simple and easy

to evaluate and only require the calculation of certain noise moments. We show how these noise

moments can be efficiently obtained for several practically relevant types of noise including spatially

dependent and spatially independent ǫ–mixture noise, synchronous and asynchronous co–channel

interference, spatially correlated Gaussian interference, and UWB interference.

The remainder of this paper is organized as follows. In Section 2, some definitions and the

1To simplify our notation, in the following, “noise” refers to any additive impairment of the received signal,

i.e., our definition of noise also includes what is commonly referred to as “interference”.
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considered signal model are introduced. In Section 3, general expressions for the asymptotic BEPs

and SEPs of MRC, differential EGC, and NC are derived. Techniques for calculation of the moments

of relevant types of noise are provided in Section 4. In Section 5, some examples are given to

illustrate the application of the obtained analytical results, and conclusions are drawn in Section 6.

2 Preliminaries

After introducing some definitions and notations, we present the considered signal and channel

model in this section.

2.1 Some Definitions and Notations

Notation: In this paper, bold lower case letters x and bold upper case letters X denote vectors and

matrices, respectively. Furthermore, E{·}, Pr{A}, [·]T , (·)∗, [·]H , || · ||, and det(·) denote statistical

expectation, the probability of event A, transposition, complex conjugation, Hermitian transposition,

the L2–norm of a vector, and the determinant of a matrix, respectively. We also use the following

definitions and functions: (2N−1)!! , 1·3·. . .·(2N−1), (2N)!! , 2·4·. . .·2N ,
(

L
k1,...,kL

)

, L!
k1!...kL!

,

and IX , 0X , and 1F1(·, ·; ·) denote the X ×X identity matrix, the X–dimensional all–zeros column

vector, and the Kummer confluent hypergeometric function, respectively. A
.
= B and A

·
≤ B mean

that A is asymptotically (for high SNR), respectively, equal to and smaller than or equal to B.

Finally, Φ(s) = L{p(x)} ,
∫∞
−∞ p(x)e−sx dx denotes the Laplace transform of p(x).

Moments: We define the Nth moment of the real random variable (RV) |x|2 as Mx(N) , E{|x|2N},
where x is a complex RV. Similarly, for a complex random vector variable (RVV) x we define the

Nth moment of ||x||2 as Mx(N) , E{||x||2N}. We note that Mx(0) = 1 and Mx(1) is the sum

of the powers of the elements of x.

Combining gain and diversity gain: For high SNRs the SEP in flat fading channels can be approxi-

mated by [2, 4]

SEP
.
= (Gc γ̄)−Gd, (1)
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where γ̄ denotes the average SNR, and Gc and Gd are referred to as the combining gain2 and the

diversity gain, respectively.

2.2 Signal Model

Assuming for the moment a linear modulation format3, the signal rl[k] received in the lth diversity

branch in the kth symbol interval can be modeled in equivalent complex baseband representation

as

rl[k] =
√

γ̄ hl b[k] + nl[k], 1 ≤ l ≤ L, (2)

where L, hl, b[k], and nl[k] denote the number of diversity branches, the fading gain of the lth

branch, the transmitted symbol, and the noise in the lth diversity branch, respectively. Using vector

notation, Eq. (2) can be rewritten as

r[k] =
√

γ̄ h b[k] + n[k], (3)

where r[k] , [r1[k] r2[k] . . . rL[k]]T , h , [h1 h2 . . . hL]T , and n[k] , [n1[k] n2[k] . . . nL[k]]T .

To simplify our notation, in the following, we will drop the argument k whenever this is possible

without loss of generality. The transmitted symbols b ∈ A are normalized to E{|b|2} = 1 and are

take from signal constellation A, cf. Section 3.

The channel vector h is Gaussian distributed with mean µh , E{h} and covariance matrix

Chh , E{(h−µh)(h−µh)
H}. We assume that Chh has full rank L and define the Ricean factor

of the lth branch as Kl , |µl|2/σ2
l , where µl and σ2

l denote the lth element of µh and the lth main

diagonal element of Chh, respectively. For convenience we apply the normalization Mh(1) = L, and

we note that for Rayleigh and Ricean fading µh = 0L and µh 6= 0L, respectively.

The noise vector n is independent of h and normalized to Mn(1) = L. We note that the

elements of n may be statistically dependent, non–circularly symmetric, and non–Gaussian. The

only condition that we impose on n is that all joint moments of the elements of n exist, i.e.,

E{nκ1

1 (n∗
1)

ν1nκ2

2 (n∗
2)

ν2 · · ·nκL

L (n∗
L)νL} < ∞ for all κl ≥ 0, νl ≥ 0, 1 ≤ l ≤ L.

2The combining gain is also often referred to as “coding gain” in the literature, e.g. [4]. We prefer the term

“combining gain” as channel coding is not applied here.
3We will extend our signal model in Section 3.2.3 to binary frequency–shift keying (BFSK) modulation.
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3 Asymptotic Performance Analysis

In this section, we develop asymptotic expressions for the BEPs and SEPs of coherent MRC, differ-

ential EGC, and NC for various modulation schemes. However, first we derive a general asymptotic

result for the pairwise error probability (PEP) of quadratic diversity combining receivers.

3.1 Asymptotic Pairwise Error Probability (PEP)

For quadratic diversity combining schemes the PEP can be generally expressed as

Pe(d) = Pr{||√γ̄ h e + n1||2 < ||n2||2}, (4)

where n1 and n2 denote two noise vectors and e is a complex scalar with d2 , |e|2. n1, n2, and e

will be specified for different combining schemes in Section 3.2. Based on Eq. (4) we can express

the conditional PEP as

Pe(d|n1, n2) =

||n2||2
∫

0

p∆(x) dx, (5)

where p∆(x) denotes the pdf of ∆ , ||u||2 with u ,
√

γ̄ h e + n1. Conditioned on n1, u

is a Gaussian random vector with mean µu , E{u|n1} =
√

γ̄ e µh + n1 and covariance matrix

Cuu , E{uuH |n1} = γ̄|e|2Chh. Therefore, the Laplace transform Φ∆(s) of p∆(x) can be expressed

as [12]

Φ∆(s) , E{e−s∆} =
exp

(

−s[
√

γ̄eµh + n1]
H(IL + sγ̄|e|2Chh)

−1[
√

γ̄eµh + n1]
)

det(IL + sγ̄|e|2Chh)
. (6)

Eq. (6) reveals that for full rank fading correlation matrices Chh and γ̄ → ∞ the Laplace transform

Φ∆(s) can be simplified to

Φ∆(s)
.
=

exp
(

−[µh + n1/(e
√

γ̄)]HC−1
hh [µh + n1/(e

√
γ̄)]
)

det(Chh) d2L γ̄L
s−L. (7)

An asymptotic expression for p∆(x) can now be easily obtained by applying the inverse Laplace

transform to Eq. (7). This result can then be used in Eq. (5) to obtain the asymptotic conditional

PEP

Pe(d|n1, n2)
.
=

exp
(

−[µh + n1/(e
√

γ̄)]HC−1
hh [µh + n1/(e

√
γ̄)]
)

L! det(Chh) d2L γ̄L
||n2||2L. (8)
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Using the expansion exp(x) =
∑∞

k=0 xk/k!, we can rewrite the exponential function in Eq. (8) as

exp
(

−[µh + n1/(e
√

γ̄)]HC−1
hh [µh + n1/(e

√
γ̄)]
)

= exp
(

−µH
h C−1

hhµh

)

(1 + f(n1)/γ̄) , (9)

where f(n1) is implicitly defined in Eq. (9). Furthermore, f(n1) can be written as a sum of

products of the form Cκ1,ν1,··· ,κL,νL
nκ1

1,1(n
∗
1,1)

ν1nκ2

1,2(n
∗
1,2)

ν2 · · ·nκL

1,L(n∗
1,L)νL, where Cκ1,ν1,··· ,κL,νL

are

coefficients that are non–increasing in γ̄, n1,l, 1 ≤ l ≤ L, denotes the elements of n1, and κl ≥ 0

and νl ≥ 0 are integers. Assuming now that all individual and joint moments of n1 and n2 exist (i.e.,

E{nκ1,1

1,1 (n∗
1,1)

ν1,1n
κ2,1

2,1 (n∗
2,1)

ν2,1 · · ·nκ1,L

1,L (n∗
1,L)ν1,Ln

κ2,L

2,L (n∗
2,L)ν2,L} < ∞, where n2,l are the elements of

n2, and ν1,l ≥ 0, ν2,l ≥ 0, κ1,l ≥ 0, and κ2,l ≥ 0, 1 ≤ l ≤ L), we obtain for γ̄ → ∞ from Eqs. (8)

and (9) for the asymptotic (unconditional) PEP the simple expression

Pe(d) = E{Pe(d|n1, n2)} .
=

ph Mn2
(L)

L! d2L
γ̄−L (10)

with

ph ,
exp

(

−µH
h C−1

hhµh

)

det(Chh)
. (11)

From Eq. (10) we observe that n1 has no influence on the asymptotic PEP. Furthermore, n2 affects

the PEP via Mn2
(L), i.e., only the number of diversity branches L determines which moment of

||n2||2 is relevant for the PEP but the mean µh and the correlation matrix Chh of h have no

influence in this regard.

3.2 Quadratic Diversity Combining Schemes

In this section, we apply the general asymptotic PEP result in Eq. (10) to calculate the asymptotic

SEP and BEP of coherent MRC, differential EGC, and NC. We note that diversity combining rules

optimized for AWGN are in general suboptimum for non–Gaussian noise, of course. However, in

practice, it may be unrealistic to assume that the receiver can accurately estimate the noise and

interference statistics which also may change with time. Therefore, as a pragmatic and popular

choice, we will adopt here quadratic combining schemes optimized for AWGN also for non–Gaussian

noise.
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3.2.1 Coherent Maximum Ratio Combining (MRC)

The MRC decision rule can be expressed as b̂ = argmin
b̃∈A

{||r−√
γ̄hb̃||2}, where b̂ and b̃ denote the

estimated symbol and a hypothetical symbol, respectively. As a consequence, Eq. (4) is valid for

MRC if we let n1 = n2 = n and e , b − b̄, where b, b̄ ∈ A and b 6= b̄. For high SNR the SEP will

be dominated by the PEP of the nearest–neighbor signal points of A. Therefore, exploiting Eq. (10)

we obtain for the asymptotic SEP

SEP
.
= βM Pe(dM)

.
=

βM ph Mn(L)

L! d2L
M

γ̄−L, (12)

where dM denotes the minimum Euclidean distance of A and βM is the average number of minimum–

distance neighbors. For convenience, the values of βM and dM are listed in Table 1 for commonly

used constellations A such as M–ary pulse amplitude modulation (M–PAM), M–ary quadrature

amplitude modulation (M–QAM), and M–ary phase–shift keying (M–PSK).

3.2.2 Differential Equal Gain (EGC) Combining

Differential EGC4 is applicable to differential M–PSK transmission. In differential M–PSK the

transmitted M–PSK symbols are obtained as b[k] = a[k]b[k − 1], where the differential symbols

a[k] also belong to an M–PSK constellation A. The differential EGC decision rule can be expressed

as â[k] = argmin
ã[k]∈A

{||r[k] − ã[k]r[k − 1]||2}, where â[k] and ã[k] are the estimated symbol and

a hypothetical symbol, respectively. Therefore, Eq. (4) is applicable to differential EGC if we let

e , (a[k] − ā[k])b[k − 1], where a[k], ā[k] ∈ A and a[k] 6= ā[k], n1 , n[k] − ā[k]n[k − 1], and

n2 = ñ , n[k] − a[k]n[k − 1]. (13)

If the marginal pdfs pnl
(nl), 1 ≤ l ≤ L, of all components of n[k − 1] are circular, i.e., pnl

(nl) =

pnl
(ejϕnl) for all ϕ ∈ [−π, π) [13], and n[k] and n[k − 1] are statistically independent, a[k] has no

influence on the distribution of ñ and ñ , n[k]−n[k − 1] may be used instead of the definition in

Eq. (13). Recalling again that the asymptotic SEP is dominated by the PEPs of the nearest–neighbor

4Differential EGC is also referred to as “differentially coherent” EGC and “post–detection” EGC in the

literature, cf. e.g. [1].
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signal points of A, we obtain with Eq. (10) for differential EGC the expression

SEP
.
=

βM ph Mñ(L)

L! d2L
M

γ̄−L, (14)

with βM and dM as specified in Table 1 for M–PSK.

3.2.3 Noncoherent Combining (NC)

In this subsection, we consider NC (also referred to as “square law combining”) of BFSK. For BFSK

the channel model in Section 2.2 has to be slightly modified since there are now two matched filters

per receive antenna. We collect the outputs of these two matched filters in vectors r and r̄ which

can be modeled as r ,
√

γ̄hb+n and r̄ ,
√

γ̄hb̄+ n̄, where b, b̄ ∈ {0, 1} and b 6= b̄ [2]. We note

that n and n̄ are identically distributed and statistically independent if the channel noise is Gaussian

[2]. For non–Gaussian noise n and n̄ are still identically distributed but not necessarily statistically

independent. Fortunately, the statistical dependence of n and n̄ does not affect the applicability of

the results of Section 3.1. For NC the magnitudes of ||r||2 and ||r̄||2 are compared to arrive at a

decision on the transmitted symbol and Eq. (4) is obviously applicable with e = 1. Therefore, the

asymptotic SEP of BFSK can be expressed as

SEP
.
=

ph Mn(L)

L! d2L
2

γ̄−L, (15)

where d2 = |e| = 1. We note that unlike for linear modulations, d2 is not the Euclidean distance

between the signal points of the BFSK constellation in the signal space.

3.2.4 Bit Error Probability (BEP)

For non–binary modulation with Gray mapping, the asymptotic BEPs can be obtained from the

corresponding SEPs as [2]

BEP
.
=

SEP

log2(M)
. (16)

Using Eqs. (12), (14)–(16) the SEPs and BEPs of MRC, differential EGC, and NC can be easily

calculated as long as closed–form expressions for the moments Mn(L) and Mñ(L) are available.

The calculation of these moments for practically relevant types of noise and interference is addressed

in Section 4.
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3.3 Combining Gain and Comparison

A comparison of Eqs. (12), (14), and (15) with Eq. (1) shows immediately that the diversity gain of all

considered quadratic combining schemes is Gd = L independent of the type of noise. Furthermore,

on a logarithmic scale, the combining gain can be expressed in a unified manner as

Gc =
10

L
log10(L!) +

10

L
log10

(

d2L
M

βM

)

− 10

L
log10(ph) −

10

L
log10(Mn2

(L)), (17)

where n2 = n and n2 = ñ for MRC, NC and differential EGC, respectively. The second, the third,

and the fourth term of Eq. (17) show the dependence of Gc on the modulation scheme, the channel

statistics, and the noise statistics, respectively. Eq. (17) reveals that for a given L the modulation

scheme, the channel statistics (i.e., µh and Chh), and the noise statistics independently contribute

to the combining gain. This new result is somewhat unexpected and means that increasing the

correlation of the fading or changing the modulation scheme will horizontally shift the asymptotic

SEP curves (on a log–log scale) for different types of noise by the same amount. On the other hand,

the asymptotic performance difference of different types of noise is independent of the modulation

scheme and the channel statistics.

In the following, we will consider the combining gain for three special cases more in detail.

1) L = 1: Since Mn(1) = L is valid for all types of noise, Eq. (15) shows that for L = 1

the asymptotic error rate performance of MRC and NC is independent of the type of noise as

long as all joint moments of n are finite. The same is true for EGC since in this case Mñ(1) =

E{|n[k] − a[k]n[k − 1]} = 2Mn(1) − ℜ{E{a∗[k]}E{n[k]n∗[k − 1]}} = 2L holds for all types of

noise because E{a∗[k]} = 0 for M–PSK. For L > 1 both Mn(L) and Mñ(L) depend on the type

of noise and the same is true for the asymptotic error rate performance, of course.

2) MRC vs. NC: It is interesting to compare MRC and NC for binary modulation. Using β2 = 1

and the appropriate values for d2 in Eq. (17) shows that for any given number of diversity branches

L the asymptotic SNR loss of BFSK with NC compared to BPSK with coherent MRC is 6 dB. While

this is a well known result for channels impaired by i.i.d. AWGN [2], our derivation shows that the

same loss results for any type of noise and interference as long as all of its moments exist.

3) MRC vs. differential EGC: Eq. (17) also reveals that for M–PSK the relative asymptotic
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performance loss of differential EGC compared to coherent MRC is

∆GEM =
10

L
log10

(

Mñ(L)

Mn(L)

)

. (18)

Eq. (18) shows that ∆GEM only depends on the number of diversity branches L and the noise

statistics. For L = 1 we obtain ∆GEM = 3 dB for all types of noise n with finite joint moments.

Similarly, it will be shown in Section 4, that for i.i.d. AWGN ∆GEM = 3 dB holds for all L. However,

for non–Gaussian noise and L > 1 the performance loss ∆GEM depends on L and may be smaller

or larger than 3 dB, cf. Section 4.

4 Calculation of Noise Moments

The main difficulty in evaluating the asymptotic SEP expressions in Eqs. (12), (14), and (15) is the

calculation of the moments Mn(L) and Mñ(L), respectively. In this section, we derive the moments

of some basic types of noise and we introduce general rules that facilitate the calculation of the

moments of more complicated, composite noises. For convenience we discuss spatially independent

and spatially dependent noise separately. We also present a Monte–Carlo based approach to moment

calculation for cases where closed–form results cannot be obtained.

4.1 Spatially Independent Noise

For many practically relevant scenarios the noises in different diversity branches are mutually inde-

pendent. In this case, the multinomial expansion [14] can be used to simplify Mn(L) to

Mn(L) =
∑

k1+...+kL=L

(

L

k1, . . . , kL

)

Mn1
(k1) · . . . · MnL

(kL). (19)

Therefore, for independent noise the calculation of Mn(L) reduces to finding the L(L + 1) scalar

moments Mnl
(kl), 0 ≤ kl ≤ L, 1 ≤ l ≤ L. This motivates us to consider the moments of scalar

RVs more in detail in the following subsections.

4.1.1 Moments of Elementary Scalar RVs

In Table 2, we provide the moments Mn(N) of elementary scalar RVs which are frequently encoun-

tered in the context of noise and interference. In particular, we consider Gaussian RVs with mean µn
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and variance σ2
n, Gaussian mixture RVs, interference with a fixed channel, and M–PSK interference

with a random channel phase. The non–Gaussian RVs are briefly discussed in the following.

E1) Gaussian mixture RVs: Gaussian mixture RVs are used to model the combined effect of

Gaussian background noise and man–made, impulsive noise [9]. The pdf of Gaussian mixture noise

with I terms is given by

pn(n) =

I
∑

k=1

ck

πσ2
k

exp

(

−|n|2
σ2

k

)

, (20)

where ck > 0,
∑I

k=1 ck = 1, and σ2
k, 1 ≤ k ≤ I, are constants. Special cases of Gaussian mixture

noise include Middelton’s Class-A noise (I → ∞) [15] and ǫ–mixture noise (I = 2). ǫ–mixture noise

with variance σ2
n is characterized by c1 = 1−ǫ, c2 = ǫ, σ2

1 = σ2
n/(1−ǫ+κǫ), σ2

2 = κσ2
n/(1−ǫ+κǫ),

0 ≤ ǫ < 1, and κ > 1.

E2) Interference with fixed channel: Interference with a fixed channel can be modeled as

n =
ku
∑

k=kl

g[k] i[k], (21)

where kl, ku, g[k], and i[k] denote the lower limit, the upper limit, fixed (in general complex)

coefficients, and i.i.d. interference symbols taken from an Mi–ary symbol alphabet. Eq. (21) can be

used to model multiple synchronous, a single asynchronous, or multiple asynchronous co–channel

interferers. For example, for I synchronous interferers we have kl = 1, ku = I, and g[k] and

i[k] denote the gain and the transmitted symbol of the kth interferer. In contrast, for a single

asynchronous interferer i[k] denotes symbols transmitted by the interferer in symbol intervals kl ≤
k ≤ ku and g[k] , g(kT + τ), where g(t), T , and τ are the overall interference pulse shape, the

symbol duration, and the delay of the interferer compared to the desired user, respectively. kl and

ku are appropriately chosen to ensure g(kT + τ) ≈ 0 for k < kl and k > ku, respectively. The

generalized moments of n are given in Table 2, where the set S includes the Mku−kl+1
i possible

values of n corresponding to all Mku−kl+1
i possible combinations of i[k], kl ≤ k ≤ ku, cf. Eq. (21).

E3) Synchronous Mi–PSK interference with random channel phase (CP): In this case, the noise

is given by n = g ejϕ i[k], where g, ϕ, and i[k] denote the channel gain, the random CP uniformly

distributed in [−π, π), and the interfering Mi–PSK symbol, respectively. Note that i[k] has no

influence on Mn(N) given in Table 2.



Nezampour et al.: Asymptotic BEP and SEP of Quadradic Diversity Combining 11

4.1.2 Calculus for Moments of Scalar RVs

In practice, the noise may consist of sums or/and products of different RVs. For example, co–channel

interference and Gaussian background noise may impair the received signal at the same time. For

the case where the involved RVs are statistically independent, we establish some general combining

rules for their scalar moments. The derivation of most of these combining rules (CRs) is relatively

straightforward and, due to space limitation, we do not provide any proofs here. In the following,

we assume that n1 and n2 are statistically independent RVs.

CR1) Product n = n1n2: It is easy to show that the Nth moment of |n|2 is given by

Mn(N) = E{|n1n2|2N} = E{|n1|2N} E{|n2|2N} = Mn1
(N) Mn2

(N). (22)

CR2) Sum n = n1 + n2: To arrive at a simple result, we have to assume that the pdfs of n1

and n2 are both circular [13]. For example, zero–mean Gaussian RVs and the RVs in E1) and E3)

are circular, whereas non–zero mean Gaussian RVs and the RV in E2) are not circular. Assuming

circularity, we obtain after some straightforward manipulations

Mn(N) =
∑

k1+2k2+k3=N

N !

k1!(k2!)2k3!
Mn1

(k1 + k2) Mn2
(k2 + k3). (23)

For example, for L = 1, 2, and 3 Eq. (23) yields Mn(1) = Mn1
(1) + Mn2

(1), Mn(2) = Mn1
(2) +

4Mn1
(1)Mn2

(1) + Mn2
(2), and Mn(3) = Mn1

(3) + 9Mn1
(1)Mn2

(2) + 9Mn1
(2)Mn2

(1) + Mn2
(3).

CR3) Scaling n = ξn1, ξ constant: The Nth moment of |n|2 can be obtained as

Mn(N) = |ξ|2NMn1
(N). (24)

Based on the scalar moments of the elementary RVs given in Table 2 and the combining rules

established in this section, the moments of a large class of composite noises can be calculated.

4.1.3 Moments of Composite Scalar RVs

In order to illustrate the application of the moment combining rules CR1)–CR5) established in the

previous subsection, we briefly discuss two relevant examples.

E4) Differential EGC with i.i.d. noise: Assuming circular noise, the SEP of differential EGC

depends on the moments Mñ(L) of ñ = n[k]−n[k−1], cf. Eqs. (13), (14). Therefore, if the noise
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nl[k], 1 ≤ l ≤ L, is spatially and temporally statistically independent, Mñ(L) can be calculated

from the scalar moments by applying Eqs. (19) and (23). Examples where the noise is spatially and

temporally statistically independent include the conventional AWGN model and Gaussian mixture

noise following “Model II” in [9]. Spatially independent Gaussian mixture noise is an appropriate

model for impulsive noise if the phenomenon causing the impulsive behavior affects the antennas

independently, see [9] for a detailed discussion.

We are now also in a position to shed some more light onto the performance loss of differential

EGC compared to coherent MRC. For example, assuming spatially and temporally i.i.d. noise (i.e.,

Mnl[k](N) = Mn(N), 1 ≤ l ≤ L, ∀k) and L = 1 Eq. (19) yields Mn(1) = Mn(1). Since a

similar relation holds for Mñ(1), we obtain ∆GEM = 10 log10(Mñ(1)/Mn(1)). On the other hand,

according to Eq. (23) Mñ(1) = 2Mn(1). Therefore, we find that for L = 1 and circular i.i.d. (possibly

non–Gaussian) noise, differential EGC suffers from a loss of ∆GEM = 3 dB compared to coherent

MRC. For L > 1 the loss ∆GEM may be different from 3 dB and depends on the type of noise. For

example, for L = 2 we obtain

∆GEM = 5 log10

(

2
Mn(2) + 4M2

n(1)

Mn(2) + M2
n(1)

)

, (25)

which can be simplified to

∆GEM = 3 dB + 5 log10

(

(1 − ǫ + ǫκ2) + 2(1 − ǫ + ǫκ)2

2(1 − ǫ + ǫκ2) + (1 − ǫ + ǫκ)2

)

(26)

for i.i.d. ǫ–mixture noise. For ǫ = 0 the ǫ–mixture noise degenerates to Gaussian noise and ∆GEM =

3 dB follows from Eq. (26). On the other hand, for impulsive noise (i.e., ǫ > 0) ∆GEM 6= 3 dB

holds in general.

E5) Ricean faded Mi–PSK interferer: The interference caused by a synchronous Ricean faded

Mi–PSK co–channel interferer i[k] can be modeled as nl = (ejϕlgl + n′
l) i[k], 1 ≤ l ≤ L, where

ejϕlgl and n′
l denote the direct and the specular Ricean components, respectively. Assuming that ϕl

is uniformly distributed in [−π, π), ejϕlgli[k] can be modeled by Example E3), and n′
l i[k] is a zero

mean Gaussian RV. Since the Mi–PSK symbol i[k] does not affect the distributions of ejϕlgli[k]

and n′
l i[k], we can drop it in the following. Furthermore, since both ejϕlgl and n′

l are circular we

can calculate the moments Mnl
(N) using Eq. (23) and Table 2. Once these scalar moments are

calculated, the moments of Mn(L) can be obtained from Eq. (19).
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4.1.4 I.I.D. Additive White Gaussian Noise (AWGN)

Since the case of (i.i.d.) AWGN has been extensively studied in the literature, it is instructive to

verify our novel asymptotic SEP results for this special case. Here, ||n||2 and ||ñ||2 are both chi–

square distributed RVs with 2L degrees of freedom and it is straightforward to derive Mn(L) as

given in Table 3 and

Mñ(L) = 2LMn(L). (27)

Therefore, according to Eq. (18), for AWGN the asymptotic performance loss ∆GEM of differential

EGC compared to coherent MRC is 3 dB independent of the number of diversity branches and

independent of the mean and the covariance matrix of h. For the special case of BPSK transmission

over i.i.d. Rayleigh fading channels this 3 dB loss is a well–known result, cf. [2, Section 14.4.1].

For coherent MRC our results for the special case of AWGN can be compared with those given

in [4]. On the other hand, an asymptotic analysis of differential EGC for general Ricean fading

does not seem to be available in the literature even for AWGN. For NC the case of independent

Ricean fading and AWGN was considered in [3], but our asymptotic results for correlated Rayleigh

and Ricean fading seem to be new even for AWGN. For i.i.d. Rayleigh fading and AWGN it can be

shown that Eq. (12) for BPSK with MRC, Eq. (14) for BPSK with differential EGC, and Eq. (15)

for BFSK with NC are equivalent to [2, Eq. (14.4-18)], [2, Eq. (14.4-28)], and [2, Eq. (14.4-33)],

respectively.

4.2 Spatially Dependent Noise

In this subsection, we illustrate the calculation of the moments Mn(L) and Mñ(L) for spatially

dependent noise for three different practically important types of noise and interference.

E6) Correlated Gaussian noise/interference: We consider the case where n can be modeled as a

zero–mean correlated Gaussian RVV with covariance matrix Cnn , E{nnH}. Such a model applies

for example if the received vector is impaired by I Rayleigh faded synchronous Mi–PSK co–channel

interferers i[k] [16, 17] and AWGN

n =

I
∑

k=1

g[k] i[k] + n0, (28)
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where g[k] are mutually independent complex zero–mean Gaussian RVVs with covariance matrices

Cg[k]g[k] , E{g[k]gH [k]}, 1 ≤ k ≤ I, and n0 is the AWGN vector. Because of the mutual

independence of the fading vectors and the constant envelope of the Mi–PSK interference signals

(|i[k]| = 1, 1 ≤ k ≤ I), n is a Gaussian vector with covariance matrix Cnn =
∑I

k=1 Cg[k]g[k] +

σ2
n0

IL, where σ2
n0

denotes the variance of the elements of n0. As shown in Table 3, Mn(L) can

be efficiently expressed in terms of the L eigenvalues λk, 1 ≤ k ≤ L, of Cnn. For the special case

L = 2, Mn(L) can be simplified to

Mn(2) = 2(4 − det(Cnn)), (29)

where we have used the normalization Mn(1) = L. Interestingly, the moment assumes its minimum

value Mn(L) = (2L − 1)!/(L − 1)! for the special case of uncorrelated Gaussian noise (λk = 1,

1 ≤ k ≤ L) and its maximum value Mn(L) = LLL! for fully correlated noise (λ1 = L and λk = 0,

2 ≤ k ≤ L). Therefore, using Eq. (12) we can bound the asymptotic SEP of MRC in correlated

Gaussian noise as
(

2L − 1

L

)

βM ph

d2L
M

γ̄−L
·
≤ SEP

·
≤ LL βM ph

d2L
M

γ̄−L. (30)

A similar result can be derived for NC, cf. Eq. (15). The combining gain loss ∆Gc caused in MRC

and NC by fully correlated Gaussian noise compared to i.i.d. AWGN is ∆Gc(L) = 10 log10(L[L!(L−
1)!/(2L− 1)!]1/L). For example, for L = 1, 2, and 3 we obtain ∆Gc(1) = 0 dB, ∆Gc(2) = 0.6 dB,

and ∆Gc(3) = 1.4 dB, respectively. For large L, we can use Stirling’s formula (x! ≈
√

2πe−xxx+1/2,

x ≫ 1) to obtain ∆Gc(L) ≈ 10 log10(
L
√

2
√

Lπ L/4) ≈ 10 log10(L/4), L ≫ 1, which shows that

the performance loss due to noise correlation increases with L. It is interesting to note that not only

correlation of the fading gains (elements of h) has an adverse effect on the performance of MRC

and NC but also correlation of the noise in different diversity branches.

E7) Asynchronous co–channel interference in correlated Rayleigh fading: A single Rayleigh faded

asynchronous co–channel interferer can be modeled as

n = g · z, (31)

where g is a correlated zero–mean Gaussian RVV and z can be modeled as in Example E2), i.e.,

z =
∑ku

k=kl
g[k]i[k], cf. Eq. (21). Since g and z are statistically independent, the moments of n can
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be calculated as

Mn(L) , E{||g z||2L} = E{||g||2L} E{|z|2L} = Mg(L)Mz(L), (32)

where Mz(L) and Mg(L) can be obtained from Table 2 (interference with fixed channel) and Table

3 (correlated Gaussian RVV), respectively.

We observe from Eq. (32) that for asynchronous co–channel interference correlation of the

interference channel has the same adverse effect as in case of Gaussian interference, cf. E6).

Assuming time–invariant fading the relevant noise term for differential EGC is given by ñ =

g(n[k]−a[k]n[k−1]), where n[k] and a[k]n[k−1] are the interference contributions in two successive

symbol intervals. Therefore, ñ = n[k]−a[k]n[k−1] can also be modeled as in Eq. (21) if g[k] and i[k]

are replaced with appropriately defined effective coefficients g̃[k] and effective interference symbol

ĩ[k], respectively. In order to illustrate this we consider the special case of a single synchronous co–

channel interferer, i.e., ñ = i[k]−a[k]i[k−1]. Assuming that the desired user and the interferer use

the same M–PSK constellation, i.e., Mi = M , we can simplify ñ to ñ = i[k]−i[k−1], which is in the

form of Eq. (21). The moment of ñ can be calculated to Mñ(L) = 1
M

2L
∑M−1

m=0 [1−cos(2πm/M)]L.

Therefore, since Mn(L) = 1 for M–PSK, the performance loss of differential EGC compared to MRC

is given by

∆GEM = 3 dB +
10

L
log10

(

1

M

M−1
∑

m=0

[

1 − cos

(

2π

M
m

)]L
)

. (33)

Eq. (33) reveals that the performance loss suffered by differential EGC in correlated co–channel

interference depends only on L and the adopted M–PSK constellation. For example, for BPSK

∆GEM = 3(2L − 1)/L dB, whereas for 4–PSK ∆GEM = 3 dB + 10 log(2
L
√

2−2 + 2−(L+1)). For

both BPSK and 4–PSK we obtain ∆GEM = 3 dB for L = 1 and ∆GEM = 6 dB for L ≫ 1. For

M ≫ 1 the sum in Eq. (33) can be approximated by an integral. This leads to

∆GEM = 6 dB − 10 log10

(

L

√

(2L)!!

(2L − 1)!!

)

, (34)

which yields ∆GEM = 3 dB, 3.9 dB, and 4.3 dB for L = 1, 2, and 3, respectively, and approaches 6

dB as L increases. From these considerations we conjecture that for a single synchronous M–PSK

co–channel interferer and any constellation size M the asymptotic performance loss of differential

EGC compared to MRC is between 3 dB and 6 dB, where the higher value is approached as L
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increases. Clearly, this is a very different behavior than that observed for AWGN, where we obtained

∆Gc = 3 dB for all L, cf. Section 4.1.4.

We also note that since correlation increases Mg(L), cf. E6, Eqs. (32), (12), (14), and (15)

show that, similar to the Gaussian interference case, correlation in the interference channel has an

adverse effect on the performance also for asynchronous co–channel interference.

E8) Spatially dependent Gaussian mixture noise: The pdf of spatially dependent Gaussian mixture

noise (“Model I” in [9]) is given by

pn(n) =

I
∑

k=1

ck

πLσ2L
k

exp

(

−||n||2
σ2

k

)

, (35)

where ck > 0,
∑I

k=1 ck = 1, and σ2
k, 1 ≤ k ≤ I, are constants. Spatially dependent Gaussian

mixture noise may be specialized to a multi–dimensional version of Middelton’s Class–A noise (I →
∞) and multi–dimensional ǫ–mixture noise (I = 2). Spatially dependent Gaussian mixture noise

is an appropriate model for impulsive noise if the physical process causing the impulsive behavior

affects all antennas at the same time, see [9] for more discussion. The moments Mn(L) for spatially

dependent Gaussian mixture noise are given in Table 3.

Assuming temporally independent, spatially dependent Gaussian mixture noise, it is easy to show

that ñ is also a Gaussian mixture RVV whose pdf can be obtained from Eq. (35) by replacing I,

ck, and σ2
k by Ĩ , I(I + 1)/2, c̃k, and σ̃2

k, respectively. The latter two parameters are defined as

c̃k , c2
k and σ̃2

k , 2σ2
k for 1 ≤ k ≤ I, and c̃k , 2cicj and σ̃2

k , σ2
i + σ2

j for I + 1 ≤ k ≤ Ĩ,

1 ≤ i ≤ I, 1 ≤ j ≤ I, i 6= j. With these definitions, the combining gain loss of differential EGC

compared to coherent MRC can be expressed as

∆GEM =
10

L
log10

(

∑Ĩ
k=1 c̃kσ̃

2L
k

∑I
k=1 ckσ2L

k

)

, (36)

which for ǫ–mixture noise can be simplified to

∆GEM =
10

L
log10

(

(1 − ǫ)22L + 2ǫ(1 − ǫ)(κ + 1)L + ǫ2(2κ)L

1 − ǫ + ǫκL

)

. (37)

For ǫ = 0 (Gaussian case) Eq. (37) yields ∆GEM = 3 dB as expected. However, for ǫ > 0 and

κ > 1 differential EGC will cause a loss different from 3 dB. For example, for ǫ = 0.25 and κ = 10

we obtain from Eq. (37) ∆GEM = 3 dB, 2.25 dB, and 2.0 dB for L = 1, 2, and 3, respectively.
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4.3 Calculation by Monte–Carlo Simulation

In some cases, the noise and interference statistics may be too complicated to obtain a closed–form

expression for the moments Mn(n) or only measurements of n may be available. In those cases, a

Monte–Carlo approach may be used to obtain moment estimates

M̂n(L) =
1

Ne

Ne
∑

k=1

||n̂k||2L, (38)

where n̂k, 1 ≤ k ≤ Ne, are Ne realizations of n which may be obtained by simulation or measure-

ment. The estimates M̂n(L) and M̂ñ(L) may then be used in Eqs. (12), (14), and (15), respectively,

instead of the true moments. This constitutes a semi–analytical approach to asymptotic SEP anal-

ysis. We note that this semi–analytical approach is much faster than Monte–Carlo simulation of

the SEP since M̂n(L) and M̂ñ(L) have to be calculated only once and are valid for all SNR values,

whereas the SEP has to be simulated for each SNR value separately.

5 Numerical Results and Discussions

In this section, we verify the derived analytical expressions for the asymptotic BEP and SEP for

several practically relevant cases with computer simulations. For calculation of the asymptotic BEP

and SEP we used Eqs. (12), (14)–(16) and the required moments were obtained using the methods

presented in Section 4. In all figures, we show the BEPs and SEPs as functions of the bit or symbol

SNR5 per branch.

BPSK vs. BFSK: Fig. 1 shows the BEPs of BPSK with MRC and BFSK with NC over an

i.i.d. Rayleigh fading channel (L = 3) impaired by AWGN, i.i.d. ǫ–mixture noise (ǫ = 0.25, κ = 10),

and an i.i.d. Ricean faded M–PSK interferer with Ricean factor KI = 6 dB (cf. E5), respectively.

For all considered cases the simulation points quickly approach the asymptotic BEP curves as the

SNR increases. Furthermore, Fig. 1 confirms that the 6 dB asymptotic performance loss of NC

compared to MRC is independent of the type of noise, cf. Section 3.3.

Spatially dependent ǫ–mixture noise (E8): In Fig. 2, we consider the BEP of 8–PSK with MRC

and differential EGC for L = 1, 2, and 3 over an i.i.d. Ricean fading channel (K = 3 dB) impaired
5Since, in this paper, we refer to any additive impairment as “noise”, we use the term “SNR” even if the

received signal is only impaired by what is traditionally referred to as “interference”.
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by spatially dependent ǫ–mixture noise (ǫ = 0.25, κ = 10). The simulation results nicely confirm

our asymptotic analysis also for spatially dependent noise. Furthermore, Fig. 2 shows that the

asymptotic performance loss of differential EGC compared to MRC is, respectively, 3 dB, 2.3 dB,

and 2 dB for L = 1, 2, and 3, which is in perfect agreement with the results obtained from Eq. (37).

Asynchronous co–channel interference (E7): Fig. 3 shows the SEP of 4–PSK with MRC over a

correlated Rayleigh fading channel (L = 3) impaired by a single asynchronous 4–PSK co–channel

interferer which also experiences correlated Rayleigh fading. The correlation matrix Chh of the

desired user is a Toeplitz matrix with vector [1 α α2] as its first row, where α is the correlation

coefficient. The correlation matrix Cgg of the interferer has the same structure and its correlation

coefficient is denoted by ρ. Both the desired user and the interferer employ square–root raised cosine

filters with roll–off factor 0.22 for transmit pulse shaping and as receiver input filters. The timing

offset between the desired user and the interferer is τ = T/4. Fig. 3 confirms that the performance

of the desired user is not only negatively affected if its own channel is correlated but also if the

interference channel is correlated, cf. Section 4.2, E7).

Synchronous co–channel interference (E7): In Fig. 4, we show the SEP of 16–PSK with MRC and

differential EGC for correlated Ricean fading (K = 3 dB) and impairment by a correlated Rayleigh

faded synchronous 16–PSK co–channel interferer. For L = 3 the correlation matrices Chh and Cgg

of the desired user and the interferer, respectively, have the same structure as the corresponding

matrices for Fig. 3 with α = ρ = 0.6. For L = 2 these matrices are also Toeplitz matrices with

[1 α] and [1 ρ] as first rows, respectively, and the same values for α and ρ are valid as for the L = 3

case. From Fig. 4 we observe that for the considered type of interference the performance loss of

differential EGC compared to MRC is 3 dB, 3.9 dB, and 4.3 dB for L = 1, 2, and 3, respectively,

which is in perfect agreement with the values obtained from Eq. (34).

Correlated Gaussian interference (E6): In Fig. 5, we consider the SEP of 4–PSK with MRC over

an i.i.d. Rayleigh fading channel with zero–mean correlated Gaussian interference. The interference

correlation matrix Cnn has the same structure as Cgg for Fig. 3 and asymptotic results for ρ = 0,

0.5, and 1.0 are shown. For clarity simulation results are only included for ρ = 0.5. As expected

from the discussion in Section 4.2 E6), ρ = 0 and ρ = 1.0 result in lower and upper bounds for the

SEP achievable for other values of ρ. We note that while fully correlated noise (ρ = 1.0) results
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in the worst performance, it does not cause a loss in diversity gain. A loss in diversity gain would

result of course if the diversity branches of the desired user were fully correlated.

UWB interference: In Fig. 6, we consider the SEP of a 16–QAM narrowband (NB) signal with

MRC over i.i.d. Rayleigh fading (L = 2) and impairment by direct–sequence UWB (DS–UWB)

[18] and multi–band orthogonal frequency multiplexing (MB–OFDM) UWB [19], respectively. The

interference channels modeled according to the CM1 UWB channel model [20] and are assumed

to be spatially independent. The 16–QAM NB system uses square–root raised cosine filters with

roll–off factor 0.22 for transmit pulse shaping and receive filtering. NB system bandwidths of B = 1

MHz and B = 5 MHz are considered. Since derivation of a closed–form solution for Mn(L) for the

relatively complicated UWB signal and channel models does not seem to be feasible, we used the

Monte–Carlo method discussed in Section 4.3 to obtain an estimate M̂n(L). This estimate was used

subsequently in Eq. (12) to calculate the asymptotic SEP. As can be observed from Fig. 6, the results

obtained with this semi–analytical method are in excellent agreement with the simulation results at

high SNR. Furthermore, Fig. 6 shows that for the considered scenario the SEP of the NB signal

shows a stronger dependence on the NB signal bandwidth B for MB–OFDM UWB interference than

for DS–UWB interference. However, for both considered values of B, DS–UWB interference is more

harmful to the SEP performance of the NB system than MB–OFDM UWB.

6 Conclusions

In this paper, we have presented simple, easy–to–evaluate, and insightful asymptotic BEP and

SEP expressions for quadratic diversity combining receivers operating in correlated Ricean fading

and non–Gaussian noise and interference. The only assumption necessary for the validity of the

presented results is that all joint noise moments exist. We could show that while the diversity order

of the considered combining schemes is independent of the type of noise, their combining gain is

affected by the type of noise via certain noise moments. We have provided general techniques for

calculation of these noise moments and we have tabulated the moments of many practically relevant

types of noise. Our analytical results show that not only fading correlation but also noise correlation

negatively affects the performance of diversity combiners. Furthermore, while BFSK with NC suffers
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from an asymptotic performance loss of 6 dB compared to BPSK with MRC regardless of the type

of noise, the performance loss of differential EGC compared to MRC crucially depends on the type

of noise if more than one diversity branches are available.
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Figures and Tables:

Table 1: Parameters βM and dM for various signal constellations A.

Modulation Scheme βM dM

M–PAM 2
(

1 − 1
M

)

2
√

3
M2−1

BPSK (M = 2) 1 2

M–PSK (M ≥ 4) 2 2 sin
(

π
M

)

M–QAM 4
(

1 − 1√
M

) √

6
M−1
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Table 2: Moments Mn(N) = E{|n|2N} of scalar Gaussian RVs and the RVs discussed in Exam-

ples E1)-E3). Gaussian RV: Mean µn and variance σ2
n. The parameters for the other RVs are

defined in Section 4.1.1.

Scalar Noise Model Moments Mn(N)

Gaussian RV (µn = 0) Mn(N) = N ! σ2N
n

Gaussian RV (µn 6= 0) Mn(N) = N ! 1F1(−N, 1;−|µn|2/σ2
n)σ2N

n

Gaussian Mixture Mn(N) = N !
∑I

k=1 ck σ2N
k

Mi–ary Interference

with Fixed Channel Mn(N) = 1

M
ku−kl+1

i

∑

n0∈S |n0|2N

Mi–PSK Interference

with Random CP Mn(N) = |g|2N
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Table 3: Moments Mn(L) = E{|n|2L} of RVVs. Zero–mean i.i.d. Gaussian RVV: Variance of

each element σ2
n. Correlated Gaussian RVV: λl, 1 ≤ l ≤ L, are the eigenvalues of covariance

matrix Cnn , E{nnH}. The parameters of the Gaussian mixture RVV are defined in Section

4.2, Example E9).

Vector Noise Model Moments Mn(L)

I.I.D. Gaussian RVV Mn(L) = (2L−1)!
(L−1)!

σ2L
n

Correlated

Gaussian RVV Mn(L) = L!
∑

k1+...+kL=L

λk1

1 · . . . · λkL

L

Spatially Dependent

Gaussian Mixture Mn(L) = (2L−1)!
(L−1)!

∑I
k=1 ck σ2L

k
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Figure 1: BEP of BPSK with MRC and BFSK with NC vs. bit SNR per branch

for i.i.d. Rayleigh fading and L = 3. Impairment by AWGN, i.i.d. ǫ–mixture noise

(ǫ = 0.25, κ = 10), and a Ricean faded M–PSK interferer with Ricean factor KI = 6

dB (cf. E5). Markers: Simulated BEP. Solid lines: Asymptotic BEP [Eqs. (12), (15),

and (16)].
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Figure 2: BEP of 8–PSK vs. bit SNR per branch for differential EGC and MRC over

an i.i.d. Ricean fading channel with Ricean factor K = 3 dB and spatially dependent

ǫ–mixture noise (ǫ = 0.25, κ = 10). Markers: Simulated BEP. Lines: Asymptotic BEP

[Eqs. (12), (14), and (16)].
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Figure 3: SEP of 4–PSK vs. symbol SNR per branch for MRC over uncorrelated

(α = 0.0) and correlated (α = 0.9) Rayleigh fading channels (L = 3) with uncorrelated

(ρ = 0.0) and correlated (ρ = 0.9) Rayleigh faded asynchronous 4–PSK co–channel

interference. Markers: Simulated SEP. Solid lines: Asymptotic SEP [Eq. (12)].
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Figure 4: SEP of 16–PSK vs. symbol SNR per branch for MRC and differential EGC

over correlated Ricean fading channels (K = 3 dB, α = 0.6) with correlated Rayleigh

faded co–channel interference (ρ = 0.6). Markers: Simulated SEP. Lines: Asymptotic

SEP [Eq. (12), (14)].
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Figure 5: SEP of 4–PSK vs. symbol SNR per branch for MRC over i.i.d. Rayleigh

fading channels with zero–mean correlated Gaussian interference. Markers: Simulated

SEP. Lines: Asymptotic SEP [Eq. (12)].
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Figure 6: SEP of 16–QAM vs. symbol SNR per branch for MRC over i.i.d. Rayleigh

fading channels (L = 2) with DS–UWB and MB–OFDM UWB interference. Markers:

Simulated SEP. Lines: Asymptotic SEP [Eq. (12)].


