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Unified Asymptotic Analysis of
Linearly Modulated Signals in Fading,
Non–Gaussian Noise, and Interference

Amir Nasri, Student Member, IEEE, Robert Schober, Senior Member, IEEE, and Yao Ma, Member, IEEE

Abstract— In this paper, we present a unified asymptotic
symbol error rate (SER) analysis of linearly modulated signals
impaired by fading and (possibly) non–Gaussian noise, which in
our definition also includes interference. The derived asymptotic
closed–form results are valid for a large class of fading and noise
processes. Our analysis also encompasses diversity reception with
equal gain and selection combining and is extended to binary
orthogonal modulation. We show that for high signal–to–noise
ratios (SNRs) the SER of linearly modulated signals depends
on the Mellin transform of the probability density function
(pdf) of the noise. Since the Mellin transform can be readily
obtained for all commonly encountered noise pdfs, the provided
SER expressions are easy and fast to evaluate. Furthermore, we
show that the diversity gain only depends on the fading statistic
and the number of diversity branches, whereas the combining
gain depends on the modulation format, the type of fading, the
number of diversity branches, and the type of noise. An exception
are systems with a diversity gain of one, since their combining
gain and asymptotic SER are independent of the type of noise.
However, in general, in a log–log scale for high SNR the SER
curves for different types of noise are parallel but not identical
and their relative shift depends on the Mellin transforms of the
noise pdfs.

Index Terms— Asymptotic analysis, non–Gaussian noise and
interference, linearly modulated signals, fading channels, diver-
sity combining.

I. INTRODUCTION

THE performance of digital communication systems im-
paired by fading and noise has been extensively studied

in the literature, cf. e.g. [1] and references therein. Since
analytical expressions for the symbol error rate (SER) are
often quite involved, simple yet accurate approximations are
desirable for system design [2]. For the asymptotic case of
high signal–to–noise ratio (SNR) simple approximations for
the SER giving insight into the influence of channel and
modulation parameters are available for various modulation
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schemes, types of fading, and diversity combining techniques,
cf. e.g. [3]–[7].

All existing asymptotic SER results were obtained for
impairment by additive white Gaussian noise (AWGN). How-
ever, while AWGN may often be the dominant noise source,
there are many practical applications where non–Gaussian
noise1 impairs the received signal. Examples include co–
channel and adjacent channel interference in mobile cellular
systems [2], [8], impulsive noise in wireless and powerline
communications [9], and ultra–wideband (UWB) interference
in wireless systems [10]. Although analytical expressions for
the SER are available for some types of non–Gaussian noise
and interference, a general asymptotic result giving insight
into how system performance is affected by the type of noise
(in addition to the type of fading) is missing in the literature.

In this paper, we derive simple and elegant asymptoti-
cally tight expressions for the SER of linear modulation
schemes impaired by fading and (possibly) non–Gaussian
noise. Thereby, we assume that the receiver does not know
which type of noise is present and applies the detection rule
which is optimum for Gaussian noise. The main restriction that
we impose on the noise is that the Mellin transform Mz(s)
[11] of its probability density function (pdf) exists for s ≥ 1.
Most practically relevant types of noise meet this condition.

We also extend our asymptotic SER results to binary
orthogonal modulation (BOM), equal gain combining (EGC),
and selection combining (SC). Furthermore, we show that for
high SNR the SER depends on the Mellin transform Mz(s)
of the pdf of the noise process, where the diversity gain
of the communication system determines the value of the
relevant s. Interestingly, we find that the diversity gain of the
communication system only depends on the type of fading and
the number of diversity branches, whereas the combining gain2

is also affected by the type of noise. Therefore, in a log–log
scale for high SNR the SER curves for different types of noise
are parallel. For the special case of a system with a diversity
gain of one for high SNR the SER becomes independent of
the type of noise.

The remainder of this paper is organized as follows.
In Section II, the considered signal and noise models are
introduced. In Section III, the asymptotic SERs of linear

1To simplify our notation, in this paper, “noise” refers to any additive
impairment of the received signal, i.e., our definition of noise also includes
what is commonly referred to as “interference”.

2The combining gain is also sometimes referred to as “coding gain” in the
literature, e.g. [4].
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modulation formats and BOM are derived. These results are
extended to systems with EGC and SC in Section IV. The
derived analytical results are verified by simulations for some
representative and relevant special cases in Section V, and
conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, we present the considered signal, channel,
and noise models. However, first we introduce some defini-
tions and notations.

A. Some Definitions and Notations

Notation: In this paper, �{·}, E{·}, and Pr{A}, denote
the real part of a complex number, statistical expectation,
and the probability of event A, respectively. Furthermore,
I0(x) � 1

2π

∫ π

−π
exp(x sin θ) dθ and Γ(x) �

∫∞
0

e−ttx−1 dt
are the zeroth order modified Bessel function of the first
kind and the Gamma function, respectively. Finally, Φ(s) =
L{p(x)} �

∫∞
−∞ p(x)e−sx dx denotes the Laplace transform

of p(x) and a function f(x) is o(x) if limx→∞ f(x)/x = 0.

Mellin transform: The Mellin transform M(s) = M{p(x)} �∫∞
0

p(x)xs−1 dx of a function p(x) will play an important role
in this paper. A detailed discussion of the Mellin transform and
its properties can be found in Appendix I.

Diversity and combining gain: It is well–known that for
transmission over flat fading channels impaired by Gaussian
noise the SER at high SNR can be approximated by [2], [4]

PE ≈ (Gc γ̄)−Gd (1)

where γ̄ denotes the average SNR, and Gc and Gd are referred
to as the combining gain and the diversity gain, respectively.
In this paper, we will show that Eq. (1) is also valid for general
non–Gaussian noise meeting the mild assumptions outlined in
Section II-C.

B. Signal Model

For clarity of presentation, we restrict our attention for the
moment to the single–receive–branch case. The extension to
diversity reception is provided in Section IV. Assuming a
frequency–nonselective channel and perfect phase and timing
synchronization for the desired signal, the received signal in
complex baseband representation can be modeled as

rc = a xc + zc (2)

where a, xc, and zc denote the real–valued fading gain, the
complex transmitted symbol, and the complex noise, respec-
tively. We assume that a, xc, and zc are mutually independent
random variables (RVs). The results derived in this paper
are applicable to all fading processes whose amplitude pdf
pa(a) can be expanded into a power series around a = 0
for high SNR, cf. Section III. In particular, we will consider
Rayleigh, Ricean, Nakagami–m, Nakagami–q, and Weibull
fading and the corresponding pdfs pa(a) are given in Table I.
We emphasize that in general the noise zc may include both
channel noise and interference. Unless stated otherwise3, in

3In Section II-D, for BOM it is necessary to also consider the imaginary
part of rc.

TABLE I

PDF pa(a) OF FADING AMPLITUDE a ≥ 0 AND CORRESPONDING SERIES

PARAMETERS pk , ξ , AND δ FOR THE SERIES EXPANSION

pa(a) = 1
a

∑∞
k=1 pk (a2/γ̄)ξk+δ . γ̄ = E{a2}.

Fading Model Pdf of Fading Amplitude a and Series Parameters

Rayleigh pa(a) = 2a
γ̄

exp
(
− a2

γ̄

)
pk = 2(−1)k−1

(k−1)!

ξ = 1, δ = 0

Ricean pa(a) = 2(K+1)a
γ̄

exp
(
−K − (1+K)a2

γ̄

)
×I0

(
2a
√

K(K+1)
γ̄

)
K ≥ 0 pk = 2(K + 1)ke−K

∑k−1
κ=0

(−1)k−1−κKκ

(k−1−κ)! (κ!)2

ξ = 1, δ = 0

Nakagami–q pa(a) = 2a

γ̄
√

1−b2
exp

(
− a2

(1−b2)γ̄

)
I0
(

ba2

(1−b2)γ̄

)
b = 1−q2

1+q2 pk = 2
(1−b2)k+1/2

∑�k/2�
κ=0

(−1)k−2κ(b/2)2κ

(κ!)2 (k−2κ)!

0 ≤ q < 1 ξ = 1, δ = 0

Nakagami–m pa(a) = 2
Γ(m)

(
m
γ̄

)m
a2m−1 exp

(
−ma2

γ̄

)
m ≥ 1/2 pk = 2(−1)k−1mk+m−1

Γ(m)(k−1)!

ξ = 1, δ = m − 1

Weibull pa(a) = c
(

Γ(1+2/c)
γ̄

)c/2
ac−1

× exp

[
−
(

a2

γ̄
Γ(1 + 2/c)

)c/2
]

c > 0 pk = (−1)k−1(Γ(1+2/c))ck/2

(k−1)!

ξ = c/2, δ = 0

our analysis we assume that the SER can be obtained by only
considering

r � �{rc} = a x + z (3)

where x � �{xc} and z � �{zc}. The validity of this as-
sumption is obvious for one–dimensional modulation schemes
such as binary phase–shift keying (BPSK) and M–ary pulse
amplitude modulation (M–PAM). The same is true for M–ary
quadrature amplitude modulation (M–QAM) if the real and
imaginary parts of zc are independent, identically distributed
(i.i.d.) RVs [2]. For general M–PSK the above assumption
always involves an approximation.

For convenience, we adopt the normalization σ2
z � E{z2} =

1, γ̄ � E{a2}, and σ2
x � E{x2} = 2, i.e., γ̄ is the average

SNR per symbol.

C. Admissible Types of Noise and Examples

For the presented asymptotic performance analysis method
to be applicable, the RVs zc and z have to fulfill the following
assumptions.
AS1) The pdf pz(z) of z is an even function, i.e.,
pz(z) = pz(−z).
AS2) The fundamental strip of the Mellin transform
Mz(s) � M{pz(z)} of pz(z) includes the interval [1, ∞),
i.e., Mz(s) exists for 1 ≤ �{s} < ∞.
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AS3) For two–dimensional linear modulation schemes and
for BOM we assume that zc has a rotationally symmetric pdf
pzc(·), i.e., zc and ejφz zc have the same pdf for all real φz .
AS4) The Mellin transform Mz(s) of pz(z) and the
coefficients pk of the series expansion of pa(a) given in
Table I fulfill the condition.

ρ(ξ, δ) � lim
k→∞

∣∣∣∣ pkMz(2ξk + 2δ + 1)
pk+1Mz(2ξ(k + 1) + 2δ + 1)

∣∣∣∣ > 0, (4)

where ξ > 0 and δ ≥ 0 are constants that depend on the
fading pdf and are also specified in Table I.

We note that AS1) is mainly made for convenience as
it simplifies our exposition and holds for most types of
noise of practical interest. Similar results as in Sections III
and IV could also be derived for non–even pz(z). AS2) is
necessary and holds for most practically relevant types of
noise. We note, however, that AS2) does not hold for alpha–
stable processes with α < 2 which have been occasionally
used in the past to model impulsive noise, cf. e.g. [12]. For
alpha–stable processes, Mz(s) does not exist for s > α + 1.
AS3) is not necessary for one–dimensional linear modulation
schemes but considerably simplifies the asymptotic analyses of
two–dimensional modulation formats and BOM, respectively.
AS4) is necessary and holds for most practically relevant
combinations of noise and fading. For all considered fading
distributions |pk/pk+1| increases at least with k for k → ∞.
This means AS4) is fulfilled as long as |Mz(2ξk + 2δ +
1)/Mz(2ξ(k + 1) + 2δ + 1)| does not decrease faster than
1/k for k → ∞.

Gaussian noise obviously fulfills AS1)–AS3). AS4) is also
fulfilled for Rayleigh, Ricean, Nakagami–q, Nakagami–m,
and Weibull fading with 0 < c ≤ 2. For Weibull fading
|Mz(2ξk + 2δ + 1)/Mz(2ξ(k + 1) + 2δ + 1)| decreases as
1/kc/2 and ρ(ξ, δ) = 0 follows for c > 2, i.e., AS4) is not
met in this case. In the following, we will briefly discuss three
relevant non–Gaussian types of noise which also fulfill at least
AS1), AS2), and AS4). The pdfs pz(z) and Mellin transforms
Mz(s) for these noises as well as those for Gaussian noise
and generalized Gaussian noise are summarized in Table II.

E1) Gaussian mixture noise: Gaussian mixture noise is often
used to model the combined effect of Gaussian background
noise and man–made or impulsive noise, cf. e.g. [9], [13],
[14]. In this case, the pdf of zc is given by

pzc(zc) =
I∑

k=1

ck

2πσ2
zk

exp
(
− |zc|2

2σ2
zk

)
(5)

where ck > 0 and σ2
zk

> 0 are parameters. Two popular
special cases of Gaussian mixture noise are Middleton’s
Class–A noise [13] and ε–mixture noise. For ε–mixture noise
I = 2, c1 = 1− ε, c2 = ε, σ2

z1
= σ2

g , and σ2
z2

= κσ2
g , where ε

is the fraction of time when the impulsive noise is present, κ
is the ratio of the variances of the Gaussian background noise
and the impulsive noise, and σ2

g = 1/(1−ε+κε). It is easy to
verify that AS1)–AS3) are valid for Gaussian mixture noise.
AS4) is also fulfilled for all types of fading considered in this
paper except for Weibull fading with c > 2.

E2) BPSK interference with fixed channel phase: The complex

TABLE II

PDF pz(z) AND MELLIN TRANSFORM Mz(s) = M{pz(z)} FOR

DIFFERENT TYPES OF NOISE. NOISE VARIANCE σ2
z = 1 IN ALL CASES.

GENERALIZED GAUSSIAN NOISE: η(C) = [Γ(1/C)/Γ(3/C)]C/2 . BPSK

INTERFERENCE WITH FIXED CHANNEL PHASE (CP): S IS THE SET OF ALL

2I POSSIBLE SUMS OF THE ±dk , 1 ≤ k ≤ I . S+ CONTAINS ALL POSITIVE

ELEMENTS OF S .

Noise Model pz(z) and Mz(s)

Gaussian Noise pz(z) = 1√
2π

exp
(
− z2

2

)
Mz(s) = 1

2
√

2π
Γ
(

s
2

)
2

s
2

Generalized Gaussian pz(z) = C
2 Γ(1/C)(η(C))1/C exp

(
− |z|C

η(C)

)
Noise, C > 0 Mz(s) = 1

2Γ(1/C)
Γ
(

s
C

)
(η(C))

s−1
C

Gaussian Mixture pz(z) =
∑I

k=1
ck√

2πσ2
zk

exp

(
− z2

2σ2
zk

)
∑I

k=1 ck = 1 Mz(s) =
Γ( s

2 ) 2
s
2

2
√

2π

∑I
k=1 ck σs−1

zk∑I
k=1 ckσ2

zk
= 1

BPSK Interference pz(z) = 1
2I

∑
d̄∈S δ(z − d̄)

with Fixed CP Mz(s) = 1
2I

∑
d̄∈S+ d̄s−1∑I

k=1 |dk|2 = 1

M–PSK Interference pz(z) = 1

π
√

|d1|2−z2
, |z| < |d1|, I = 1

with Random CP Mz(s) =
|d1|s−1Γ( s

2 )
2
√

πΓ
(

s+1
2

) , I = 1∑I
k=1 |dk|2 = 2

and real interference (noise) from I independent, symbol
synchronous4 BPSK signals ik ∈ {±1}, 1 ≤ k ≤ I , can
be modeled as

zc =
I∑

k=1

dc,k ik and z =
I∑

k=1

dk ik (6)

respectively, where dc,k � |dc,k| ejϕdc,k and dk �
|dc,k| cos(ϕdc,k

) denote the complex and the real gain of
the kth interference channel, respectively. The interference
channel phases ϕdc,k

are assumed to be constant. We note that
BPSK interference with fixed channel phase only fulfills A1),
A2) and AS4), i.e., the validity of the presented asymptotic
analysis is restricted to one–dimensional linear modulation
schemes in this case. Note also that in this case AS4) is also
fulfilled for Weibull fading with c > 2.

E3) M–PSK interference with random channel phase: In this
case, zc and z are also given by Eq. (6) but the phases
ϕdc,k

, 1 ≤ k ≤ I , are mutually independent RVs uniformly
distributed in the interval (−π, π] and ik ∈ {ej2πm/M |m ∈
{0, 1, . . . , M−1}}. The randomness of the phases ϕdc,k

may
be due to e.g. the lack of phase synchronization between the
interferers and the desired signal. Because of the uniformly
distributed phases, AS3) holds in addition to AS1), AS2), and
AS4). Again, AS4) holds for all types of fading considered.

4We note that even if the BPSK interference signals are not symbol
synchronous with the desired signal, for zc and z a similar model as in Eq. (6)
results, cf. e.g. [8], and the mathematical tools developed in this paper are
still applicable. However, because of space limitations, we only consider the
symbol synchronous case here.
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D. Mellin Transform of Composite Noise

In general, the noise z may be the sum or the product of
different RVs zk, 1 ≤ k ≤ I . In this case, the framework
developed in this paper is applicable as long as AS1)–AS4)
hold and we explain in Appendix I how the Mellin transform
Mz(s) of pz(z) can be obtained from the Mellin transforms
of the pdfs of zk, 1 ≤ k ≤ I . To illustrate the application of
the results in Appendix I, we briefly discuss two practically
relevant examples.

E4) Ricean faded M–PSK interferer: A Ricean faded M–PSK
interferer can be modeled as z = z1 + z2, where z1 and z2

represent the direct and the specular (Rayleigh) component,
respectively. z1 can be modeled by Example E3) and z2 is
a real Gaussian RV. The Mellin transform Mz(s) can be
obtained by applying Eqs. (47) and (48)5, where Mz1(s) and
Mz2(s) are given in Table II.

E5) Rayleigh faded multiple BPSK interferers: If multiple
synchronous BPSK interference signals ik, 1 ≤ k ≤ I ,
originate from the same transmitter (e.g. base station), they
arrive over the same channel at the receiver (e.g. moblile
station or base station of another cell) for the desired signal.
Therefore, if the interference channel is Rayleigh faded, this
type of interference can be modeled as z = z1z2, where z1

and z2 represent the fading gain (real Gaussian RV) and the
interference signal (modeled as in Example E2)), respectively.6

In this case, Mz(s) can be obtained from Eq. (43), where
Mz1(s) and Mz2(s) are again given in Table II. This interfer-
ence model applies for example to synchronous code–division
multiple access (CDMA) systems after despreading where the
coefficients dc,k in Eq. (6) denote the correlation of the desired
user’s signature sequence with the signature sequences of the
users in an neighboring cell [2].

For more complicated types of noise Eqs. (43), (47) and
(48) may have to be applied repeatedly. Alternatively, in cases
where a closed–form expression for Mz(s) cannot be found or
if only measurements of z are available, the Mellin transform
Mz(s) may also be estimated using Monte Carlo integration of
Eq. (39). Exploiting that pz(z) is an even function, an estimate
of Mz(s) is given by

M̂z(s) =
1

Nz

Nz∑
k=1

|z[k]|s−1 (7)

where z[k], 1 ≤ k ≤ Nz, are realizations of the RV z. For a
sufficiently large number Nz of samples the estimate M̂z(s)
will approach Mz(s). Of course, the validity of AS2) and AS4)
has to be verified. However, this can often be accomplished
without knowing pz(z) or Mz(s) explicitly.

III. SINGLE–BRANCH RECEPTION

In this section, we develop exact and asymptotic expressions
for the SER of linear modulation schemes such as M–PAM,
M–PSK, and M–QAM with a single diversity branch. In
addition, we also consider the asymptotic SER of BOM.

5We note that z1 and z2 are statistically independent although they involve
the same M–PSK interference signal.

6It is interesting to note that a similar interference model as in E5) also
holds for an asynchronous Rayleigh faded BPSK interferer, cf. [8].

A. Basic Error Probability Result

The calculation of the SER of linear modulation schemes
involves the evaluation of the probability Pe(d) that the
received signal r = ax + z is larger than a certain threshold
ay, where d � y − x > 0. Conditioned on z we obtain

Pe(d|z) = Pr{ax + z > ay|z} = Fa

(z

d

)
, (8)

where Fa(a) �
∫ a

0
pa(u) du is the cumulative distribution

function (cdf) of a. Averaging Pe(d|z) with respect to z yields

Pe(d) = E{Pe(d|z)} =

∞∫
0

pz(z)Fa

(z

d

)
dz, (9)

where we have exploited Fa(a) = 0 for a < 0. For most
practically relevant types of noise and fading the integral in
Eq. (9) cannot be solved in closed form. However, as long
as closed–form expressions for both pz(z) and Fa(a) are
available, numerical integration methods can be applied for
computation of Pe(d) based on Eq. (9). Unfortunately, this
numerical approach does not reveal how Pe(d) depends on
the SNR. Therefore, to simplify Eq. (9), we assume that for
high SNR γ̄ the pdf pa(a) can be expanded into a series

pa(a) =
1
a

∞∑
k=1

pk

(
a2

γ̄

)ξk+δ

, a ≥ 0, (10)

where ξ > 0 and δ ≥ 0 are real–valued constants and pk

are real–valued coefficients, cf. Table I. With Eq. (10) the cdf
Fa(a) can be expressed as

Fa(a) =
1
2

∞∑
k=1

pk

ξk + δ

(
a2

γ̄

)ξk+δ

. (11)

Applying Eq. (11) in Eq. (9) and assuming that AS2) in
Section II-C holds, we can express the error probability as

Pe(d) =
1
2

∞∑
k=1

pk Mz(2(ξk + δ) + 1)
ξk + δ

(d2γ̄)−(ξk+δ). (12)

The infinite series in Eq. (12) converges if AS4) is fulfilled.
To see this we may use the so–called quotient criterion [11]
to show that the series converges if

γ̄ > γ̄0 � 1
d2(ρ(ξ, δ))1/ξ

. (13)

Therefore, as long as ρ(ξ, δ) > 0 the series will start to
converge for some finite SNR value γ̄0. The exact value of
γ̄0 depends on both the type of fading and the type of noise,
of course. For example, for Nakagami–m fading and Gaussian
noise, we obtain ρ(1, m−1) = 1/(2m) and γ̄0 = 2m/d2. This
shows that for larger m (i.e., less severe fading) higher SNRs
are required for convergence.

B. Exact SER Expression for M–PAM

Although the main emphasis of this paper is on SER ap-
proximations offering insight into the system behavior at high
SNR, it is worth noting that for one–dimensional modulation
schemes such as BPSK and M–PAM, Pe(d) in Eq. (12) can be
used to derive an expression for the exact SER. In particular,
using similar steps as for the Gaussian case in [2, Ch. 5] and
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TABLE III

PARAMETERS βX
M AND dX

M FOR M–ARY MODULATION SCHEMES

X ∈ {PAM, PSK, QAM, BOM}.

Modulation Scheme βX
M dX

M

M–PAM 1 − 1
M

√
6

M2−1

BPSK (M = 2) 1
2

√
2

M–PSK (M ≥ 4) 1
√

2 sin
(

π
M

)
M–QAM 2

(
1 − 1√

M

) √
3

M−1

BOM (M = 2) 1
2

1

assuming that AS4) is fulfilled and the SNR is high enough
for Eq. (12) to converge, we obtain

PPAM
M = 2 βPAM

M Pe

(
dPAM

M

)
= βPAM

M

∞∑
k=1

pkMz(2(ξk + δ) + 1)

ξk + δ
((dPAM

M )2γ̄)−(ξk+δ)

(14)

where βPAM
M and dPAM

M are given in Table III. The SER of
BPSK PPSK

2 can be obtained from PPSK
2 = PPAM

2 . To verify
the result in Eq. (14), we can consider the special case of M =
2, Nakagami–m fading, and Gaussian noise. Using ξ, δ, and pk

from Table I and Mz(s) from Table II, it is straightforward to
show that under these conditions Eq. (14) can be simplified to
[4, Eq. (9)]. We emphasize that the technique in [4] is limited
to Gaussian noise, whereas Eq. (14) is valid for any type of
noise fulfilling AS1), AS2), and AS4) in Section II-C.

We note that PPAM
M can be evaluated numerically also by

combining Eqs. (9) and (14). This numerical approach also
succeeds at low SNRs, where Eq. (12) does not converge, but
does not reveal the connection between the Mellin transform
of pz(z) and the SER.

C. Asymptotic SER of Linear Modulations

As has been shown in Section III-A the series in Eq. (12)
will converge for high enough SNR if AS4) is fulfilled. In
that case we can also approximate Pe(d) by the first term of
the sum in Eq. (12). Based on this observation the asymptotic
SER of linear modulation schemes can be approximated as

PX
M ≈ βX

M

p1 Mz(2(ξ + δ) + 1)
ξ + δ

((dX
M )2γ̄)−(ξ+δ) (15)

where X stands for PAM, PSK, and QAM, respectively. The
respective values of βX

M and dX
M are summarized in Table III,

cf. also [2]. We note that for M–PSK with M ≥ 4 and M–
QAM AS3) in Section II-C is necessary to ensure that for high
enough SNR βX

M and dX
M are independent from the pdf of z.

Eq. (15) shows that Eq. (1) not only holds for Gaussian
noise but also for the more general class of noises considered
in this paper. In particular, comparing Eq. (1) and Eq. (15),
the diversity gain is Gd = ξ + δ and the combining gain is
given by

Gc = (dX
M )2

(
Gd

βX
M p1 Mz(2Gd + 1)

)1/Gd

. (16)

Therefore, for high SNR in a log–log scale the slope of the
SER curves (−Gd) only depends on the fading statistic but
is independent of the noise statistic. On the other hand, the
relative shift of the SER curves (Gc) depends on both the
fading and the noise statistics. The pdf pz(z) of the noise z
influences the combining gain via its Mellin transform Mz(s)
for s = 2Gd + 1. Since Gd = ξ + δ depends on the fading
process, the fading statistic also determines in part what effect
the type of noise has on Gc and on the asymptotic SER.
To further highlight this point, we specialize Eq. (15) in the
following.

1) Rayleigh, Ricean, and Nakagami–q fading: In this case,
ξ = 1 and δ = 0, cf. Table I. Since Mz(3) = σ2

z/2 = 1/2
holds always, we obtain

PX
M ≈ βX

M p1

2(dX
M )2 γ̄

(17)

i.e., surprisingly the asymptotic SER for Rayleigh, Ricean, and
Nakagami–q fading is independent of the noise statistic. If we
further specialize Eq. (17) to BPSK and Rayleigh fading, we
obtain PPSK

2 = 1/(4γ̄), which is a famous result for Gaussian
noise [2]. However, our analysis here shows that this result is
also valid for a much larger class of noises.

2) Nakagami–m fading: Using ξ = 1, δ = m − 1, and p1 =
2mm/Γ(m) in Eq. (15) yields

PX
M ≈ 2 βX

M mm−1 Mz(2m + 1)
Γ(m) (dX

M )2m γ̄m
(18)

i.e., the SER depends on Mz(2m+1). Therefore, in a log–log
scale non–Gaussian noise will result in a horizontal shift of
the SER curve by

GN (m) � 10
m

log10

( √
πMz(2m + 1)

Γ(m − 1/2)2m−1

)
dB (19)

compared to Gaussian noise. If GN (m) is negative, the SER
caused by the non–Gaussian noise is lower than what is caused
by Gaussian noise. The opposite is true if GN (m) is positive.
For the special case of ε–mixture noise, Eq. (19) simplifies to

GN (m) = 10 log10

(
m
√

1 − ε + εκm

1 − ε + εκ

)
dB. (20)

For example, for ε = 0.01 and κ = 100, we obtain
GN (0.5) = −2.24 dB, GN (1) = 0 dB, GN (2) = 7.03
dB, and GN (3) = 10.34 dB, which clearly shows that given
the same noise statistic, different fading statistics may cause
significantly different combining gains.

3) Weibull fading: Adopting ξ = c/2, δ = 0, and p1 =
(Γ(1 + 2/c))c/2, we obtain

PX
M ≈ 2 βX

M (Γ(1 + 2/c))c/2 Mz(c + 1)
c (dX

M )c γ̄c/2
(21)

i.e., the asymptotic SER depends on Mz(c + 1). Similar to
the Nakagami–m fading case, non–Gaussian noise causes a
horizontal shift of the SER curve. A comparison of Eqs. (18)
and (21) shows that for Weibull fading with parameter c this
shift is simply given by GN (c/2), i.e., the SER curves of
Nakagami–m fading with parameter m and those of Weibull
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fading with parameter c = 2m are shifted by the same
amount if the noise is non–Gaussian instead of Gaussian. Note
however that in case of Weibull fading the restriction c ≤ 2 is
necessary since AS4) is not met for Gaussian noise and c > 2.

D. Asymptotic SER of BOM

With the definitions r � �{rc} and r̄ � 
{rc}, in BOM,
the output of the two correlators is {r =

√
2a + z, r̄ = z̄}

and {r = z, r̄ =
√

2a + z̄} if bit “1” and “0” are transmitted,
respectively, where z � �{zc} and z̄ � 
{zc} [2]. Assuming
coherent detection, one defines the decision variable as

r̃ � r − r̄ = a x + z̃ (22)

where x ∈ {±√
2} and z̃ � z − z̄. Comparing Eq. (22) with

Eq. (3) it is obvious that the framework developed in Sections
III-B and III-C is also applicable to BOM. For calculation
of the Mellin transform Mz̃(s) of z̃ we note that z̃ can be
expressed as

z̃ = |zc|[cos(Θc) − sin(Θc)] =
√

2 |zc| cos(Θc + π/4) (23)

where Θc denotes the phase of zc. Since according to AS3) in
Section II-C Θc is uniformly distributed z = |zc| cos(Θc) and
|zc| cos(Θc+π/4) have the same pdf. Therefore, from Eq. (42)
we obtain Mz̃(s) = (

√
2)s−1 Mz(s). Using this result, we

obtain Eq. (15) with βOM
2 = 1/2 and dOM

2 = 1, cf. Table III.
A comparison of BOM and BPSK yields βOM

2 = βPSK
2

and dOM
2 = dPSK

2 /
√

2 which shows that BOM suffers from
an SNR loss of 3 dB compared to BPSK. While this 3 dB
loss is a well–known fact for Gaussian noise [2], our analysis
here shows that it also holds for a much larger class of noises
independent of the fading statistic. For completeness we note
that the exact SER of BOM can be obtained by replacing
Mz(s) by Mz̃(s) in Eq. (14).

IV. DIVERSITY COMBINING

In this section, we extend the framework introduced in
Section III to equal gain combining (EGC) and selection
combining (SC). We assume that the signal model in Eq. (3)
is valid for L diversity branches, i.e.,

rl = al x + zl, 1 ≤ l ≤ L (24)

where rl, al, and zl denote the received signal, the fading
amplitude, and the noise in the lth branch. Furthermore, we
assume σ2

z � E{z2
l } = 1, 1 ≤ l ≤ L, and the SNR of the

lth branch is γ̄l � E{a2
l }, i.e., different branches may have

different SNRs. For convenience, we assume that the fading
gains in different branches are statistically independent and
follow the same distribution (e.g. all branches are Nakagami–
m distributed with the same m). The latter restriction is
only made to arrive at simple and insightful results and the
extension to the case where different branches follow different
distributions is straightforward. We also assume that the noise
RVs zl, 1 ≤ l ≤ L, have the same pdf pz(z) and fulfill AS1)–
AS4) in Section II-C.

A. Equal Gain Combining (EGC)

In coherent EGC the complex received signals of all
branches are co–phased and combined. The resulting decision
variable is given by

r̃ =
L∑

l=1

rl = ãx + z̃ (25)

where ã �
∑L

l=1 al and z̃ �
∑L

l=1 zl.
For the framework developed in Section III to be applicable

to EGC, we require the series expansion of the pdf pã(a) of ã
and the Mellin transform Mz̃(s) of the pdf of z̃. For general
s and mutually dependent zl, 1 ≤ l ≤ L, the calculation of
Mz̃(s) may be quite involved. However, for the most important
special case where the zl, 1 ≤ l ≤ L, are mutually statistically
independent and s is an integer, Mz̃(s) can be easily obtained
by applying Eqs. (47) and (48) .

For the series expansion of pã(a) we first note that the
Laplace transform of pã(a) can be expressed as [15]

Φã(s) � L{pã(a)} =
L∏

l=1

Φal
(s) (26)

where Φal
(s) � L{pal

(a)} and pal
(a) denotes the pdf of al.

Considering Eq. (10) Φal
(s) can be expressed as

Φal
(s) =

∞∑
k=1

pk Γ(2(ξk + δ)) (s2γ̄l)−(ξk+δ). (27)

By combining Eqs. (26) and (27) we can obtain a series
expansion for Φã(s) which then can be used to obtain the
desired series expansion for pã(a). The first term of this
expansion is given by

pã(a) =
1
a

[
pL
1

[Γ(2(ξ + δ))]L

Γ(2L(ξ + δ))

L∏
l=1

(
a2

γ̄l

)ξ+δ

+ o

(
L∏

l=1

(
a2/γ̄l

)ξ+δ

)]
. (28)

With Eq. (28) and a similar approach as in Section III the
asymptotic SER of linear modulation schemes with EGC can
be approximated as

PX
M ≈ βX

M

pL
1 [Γ(2(ξ + δ))]L Mz̃(2L(ξ + δ) + 1)

L (ξ + δ) Γ(2L(ξ + δ))

×
L∏

l=1

(
(dX

M )2γ̄l

)−(ξ+δ)
. (29)

We note that Eq. (29) is only a valid asymptotic approximation
of the true SER if the corresponding series expansion con-
verges, cf. Eq. (12). To analytically verify this convergence, we
would have to establish a criterion similar to AS4) by replacing
pk and Mz(s) in Eq. (4) with the expansion coefficients
of pã(a) and Mz̃(s), respectively. Unfortunately, the full
series expansion of pã(a) is quite involved and offers little
insight. However, extensive comparisons of Eq. (29) with
simulation results suggest that Eq. (29) is a valid asymptotic
approximation for the SER for Rayleigh, Ricean, Nakagami–
q, and Nakagami–m fading with arbitrary number of diversity
branches and all types of noise considered in this paper.
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Specializing this result for BPSK to Ricean fad-
ing and Gaussian noise leads to PPSK

2 ≈ (1 +
K)Le−KLLL/[2L−1L!

∏L
l=1 γ̄l], which is in perfect agree-

ment with [3, Eq. (5)], [1, Eq. (9.38)].
We assume for simplicity equal branch SNRs γ̄l = γ̄, 1 ≤

l ≤ L, the diversity gain follows as Gd = L(ξ + δ), whereas
the combining gain is given by

Gc = (dX
M )2

(
Gd Γ(2Gd)

βX
M pL

1 [Γ(2Gd/L)]L Mz̃(2Gd + 1)

)1/Gd

.

(30)
From Eqs. (29) and (30) we observe that while the slope of
the SER curves is not influenced by the type of noise, the
SER curve for non–Gaussian noise experiences a horizontal
shift compared to the SER curve for Gaussian noise. This
horizontal shift corresponds to a difference in the combining
gain and depends on Mz̃(2Gd + 1). For Rayleigh, Ricean,
and Nakagami–q fading Gd = L and the Mellin transform
Mz̃(2L+1) (and therefore also the SER and Gc) depends on
the type of noise if L > 1.

B. Selection Combining (SC)

In SC, only the path with the largest fading amplitude is
considered for detection. Therefore, the decision variable can
be modeled as

ř � ǎ x + z (31)

where ǎ � max{a1, a2, . . . , aL} and z has the same pdf
pz(z) as zl, 1 ≤ l ≤ L. Since the cdf of ǎ is given by Fǎ(a) =∏L

l=1 Fal
(a) [1], where Fal

(a) is the cdf of al, we can obtain
the expansion

Fǎ(a) =
pL
1

2L(ξ + δ)L

L∏
l=1

(
a2

γ̄l

)ξ+δ

+ o

(
L∏

l=1

(
a2/γ̄l

)ξ+δ

)
(32)

cf. Eq. (11). Therefore, exploiting Eq. (32) and using similar
steps as in Section III-A, we can express the asymptotic SER
of linear modulations with SC as

PX
M ≈ βX

M

pL
1 Mz(2L(ξ + δ) + 1)

2L−1(ξ + δ)L

L∏
l=1

(
(dX

M )2 γ̄l

)−(ξ+δ)
.

(33)
Similar to the EGC case, we have verified the validity of
Eq. (33) by comparing it with simulation results for Rayleigh,
Ricean, Nakagami–q, and Nakagami–m fading and all types
of noise considered in this paper. For BPSK transmission
over a Rayleigh faded channel with Gaussian noise Eq. (33)
simplifies to PPSK

2 = (2L)!/ [22L−1L!
∏L

l=1 γ̄l], which can
be shown to be identical to [1, Eq. (9.268)] for L = 2 and
high SNR.7

If we assume again equal branch SNRs γ̄l = γ̄, 1 ≤ l ≤ L,
from Eq. (33) we obtain a diversity gain of Gd = L(ξ + δ)
and a combining gain of

Gc = (dX
M )2

(
2L−1GL

d

βX
M pL

1 LL Mz(2Gd + 1)

)1/Gd

. (34)

7More precisely, the variables ρ and g, which are defined in [1], have to
be set to ρ = 0 and g = 1 in [1, Eq. (9.268)] to obtain PPSK

2 ≈ 3/[8γ̄1γ̄2]
for high SNR.

Similar to the EGC case for L > 1 the SER and the combining
gain depend on the type of noise also for Rayleigh, Ricean,
and Nakagami–q fading.

C. Comparison of EGC and SC

It is interesting to compare the combining gains achievable
with EGC and SC. For this purpose, we define the relative
gain G

E/S
c (L) as the ratio of Eqs. (30) and (34)

GE/S
c (L) =

(
LL Γ(2Gd)

(2Gd)L−1[Γ(2Gd/L)]L
Mz(2Gd + 1)
Mz̃(2Gd + 1)

)1/Gd

(35)
i.e., for high enough SNRs EGC achieves a gain of
10 log10(G

E/S
c ) dB over SC. The first term on the right hand

side of Eq. (35) is only influenced by the type of fading,
whereas the second term is affected by both the type of noise
and the type of fading. If we assume Rayleigh, Ricean, or
Nakagami–q fading, Gd = L and Eq. (35) simplifies to

GE/S
c (L) =

(
(2L)! Mz(2L + 1)
2L Mz̃(2L + 1)

)1/L

. (36)

If we furthermore assume Gaussian noise, we obtain
G

E/S
c (L) = [(2L)!/(2LL2)]1/L > 1, i.e., EGC always out-

performs SC. For dual diversity and i.i.d. noise RVs z1 and
z2 Eq. (36) can be simplified to

GE/S
c (2) =

√
6Mz(5)

2Mz(5) + 3
(37)

where Eqs. (47) and (48), and Mz(3) = 1/2 have been
exploited. As an example, we may consider the case of an
interference limited system where z1 and z2 are due to a
Ricean faded M–PSK interferer with Ricean factor KI and
uniformly distributed channel phase8. The Mellin transform
Mz(5) for this case can be calculated as explained in Example
E4) in Section II-D. The resulting G

E/S
c (2) is

GE/S
c (2) =

√
6 + 12KI + 3K2

I

4 + 8KI + 3K2
I

(38)

which is a monotonic decreasing function in KI . For example,
from Eq. (38) we obtain that the performance gain of EGC
compared to SC is 0.88 dB, 0.23 dB, and 0 dB for KI = 0,
KI = 10, and KI → ∞, respectively.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we verify the derived analytical expressions
for the asymptotic SER for different practically relevant cases.
First, the case of a single diversity branch is considered, then
results for diversity combining are presented.

8We note that since the two interference processes are i.i.d. and the pdf of
the Ricean fading channel gain with uniformly distributed channel phase is
rotationally symmetric, z1 and z2 are statistically independent although they
involve the same M–PSK interference signal.
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Fig. 1. SER vs. SNR for 8–PSK over a Nakagami–m fading channel
with ε–mixture noise (ε = 0.25, κ = 10). Markers: Simulated SER. Solid
lines: Asymptotic SER [Eq. (18)].

A. Single–Branch Reception

Fig. 1 shows the SER of 8–PSK modulation in Nakagami–
m fading and ε–mixture noise (ε = 0.25, κ = 10). As ex-
pected, for high enough SNR the simulation curves (markers)
closely approach the asymptotic results obtained from our
analysis (solid lines).

In Fig. 2, we show the SER (which is identical to the bit
error rate in this case) for BPSK modulation in Nakagami–m
fading (m = 2) for some types of noise discussed in Sections
II-C and II-D. Fig. 2 clearly illustrates that for a given SNR the
SER caused by non–Gaussian noise and interference may be
considerably lower or higher than what is caused by Gaussian
noise.

Fig. 3 shows the SER of a narrowband (NB) signal hav-
ing bandwidth Bs and employing 16–QAM in Nakagami–
m fading (m = 2) with a multi–band orthogonal frequency
division multiplexing (MB–OFDM) and a direct–sequence
ultra–wideband (DS–UWB) interferer, respectively. The NB
pulse shape is a square–root raised cosine filter with roll–
off factor 0.35 and the receiver employs the correspond-
ing matched filter. The MB–OFDM and DS–UWB inter-
ferers were generated according to the corresponding IEEE
802.15.3a standard proposals [16], [17]. Since a closed–form
calculation of the related Mellin transforms is too involved,
we estimated Mz(s = 5) using Eq. (7) and then calculated
the asymptotic SER using Eq. (18). This semi–analytical
approach is much faster than directly simulating the SER.
Interestingly, Fig. 3 shows that while for Bs = 1 MHz the
MB-OFDM interference yields a lower SER than the DS-
UWB interference, the opposite is true for Bs = 20 MHz.

B. Diversity Combining

Fig. 4 shows the SER of BPSK with EGC and SC, respec-
tively, in Ricean fading (K = 2). We assume L = 2 and
identical SNRs for both diversity branches. The BPSK signal
is impaired by a Ricean faded M–PSK interferer with Ricean
factor KI and uniformly distributed phase, cf. Sections II-D,
IV-C. The relative performance loss of SC compared to EGC
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Fig. 2. SER vs. SNR for BPSK over a Nakagami–m fading channel
with m = 2 and different types of noise discussed in Sections II-C, II-D.
ε–mixture noise: Example E1) in Section II-C. M–PSK interference with
random channel phase (CP): Example E3) in Section II-C. Rayleigh faded
BPSK interference: Example E5) in Section II-D. BPSK interference with
fixed CP: Example E2) in Section II-C. Markers: Simulated SER. Solid
lines: Asymptotic SER [Eq. (18)].
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Fig. 3. SER vs. SNR for 16–QAM with bandwidth Bs over a Nakagami–
m fading channel with m = 2 and UWB interference. Markers: Simulated
SER. Solid lines: Asymptotic SER for MB–OFDM interference [Eq. (18)].
Dashed lines: Asymptotic SER for DS–UWB interference [Eq. (18)].

is smaller for KI = 10 than for KI = 0 as predicted by
Eq. (38). It is also interesting to note that both EGC and SC
achieve a better performance for the larger KI .

In Fig. 5, we consider the SER of 8–PSK in Rayleigh fading
with EGC. We assume that the composite noise impairing
the received signal is the sum of two Rayleigh faded BPSK
interferers [cf. Example E5) in Section II-D] and Gaussian
noise, where the interference power is 10 dB higher than the
Gaussian noise power. For comparison we also consider the
case of purely Gaussian noise. As expected from Eq. (17) for
L = 1 both types of noise yield the same asymptotic SER. In
contrast, assuming identical SNRs for L = 2 and L = 3 purely
Gaussian noise is less favorable than the composite noise.
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Fig. 4. SER vs. SNR per branch for BPSK over a Ricean fading channel
with Ricean factor K = 2, L = 2 diversity branches, and Ricean faded
M–PSK interference. The interference channel has Ricean factors of KI =
0 and KI = 10, respectively. All diversity paths have the same average
SNR. EGC and SC are considered. Markers: Simulated SER. Solid lines:
Asymptotic SER for EGC [Eq. (29)]. Dashed lines: Asymptotic SER for
SC [Eq. (33)].
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Fig. 5. SER vs. SNR per branch for 8–PSK over a Rayleigh fading channel
with EGC. All diversity paths have the same average SNR. Markers:
Simulated SER. Solid lines: Asymptotic SER for Rayleigh faded BPSK
interference (two interferers) and Gaussian noise [Eq. (29)]. Dashed lines:
Asymptotic SER for Gaussian noise [Eq. (29)].

VI. CONCLUSIONS

In this paper, we have presented a powerful new approach to
the asymptotic SER analysis of linearly modulated signals im-
paired by fading and (possibly) non–Gaussian noise. Thereby,
the only major assumption on the considered noise is that the
Mellin transform Mz(s) of its pdf exists for s ≥ 1, which
is true for most practically relevant types of noise. Based
on this assumption we have provided general and simple–to–
evaluate SER approximations for linear modulation formats
with single–branch reception, EGC, and SC and for BOM,
which become tight for high SNR. Our analysis has shown
that the diversity gain is independent of the noise statistic
and only depends on the fading statistic and the number of
diversity branches. In contrast, the combining gain depends
on both the type of fading and the type of noise. Therefore,

in a log–log scale for high SNR the SER curves for different
types of noise are all parallel and their relative shift depends
on the Mellin transform of the noise pdfs.

APPENDIX I
THE MELLIN TRANSFORM

The Mellin transform of the pdf pz(z) of the noise z plays
a central role in this paper. Therefore, we discuss the Mellin
transform and its properties in some detail in this appendix.
For further reading we recommend [18], [19].

A. Definition and Existence

The Mellin transform Mz(s) � M{pz(z)} of pz(z) is
defined as

Mz(s) �
∞∫
0

zs−1pz(z) dz (39)

where both pz(z) and s may be complex in general. The
Mellin transform exists if

∫∞
0

z�{s}−1|pz(z)| dz is finite. The
interval αl ≤ �{s} ≤ αu for which Mz(s) exists is referred
to as the fundamental strip. Tables of Mellin transforms can
be found in [18].

In the remainder of this appendix, pz(z), pz1(z), and pz2(z)
denote the pdfs of z, z1, and z2, respectively. Furthermore,
we use the notations Mz(s) � M{pz(z)}, Mz1(s) �
M{pz1(z)}, and Mz2(s) � M{pz2(z)}.

B. Basic Properties

The Mellin transform has many useful properties. A detailed
discussion of these properties in the context of RVs and pdfs
can be found in [19]. Here, we only state the properties most
relevant to this paper without proof.

1) Scaling:

M{pz(αz)} = α−s Mz(s), α > 0. (40)

2) Linearity:

M{α1 pz1(z) + α2 pz2(z)} = α1 Mz1(s) + α2 Mz2(s). (41)

3) Scaling of the RV: Let z1 = αz, α > 0, then

Mz1(s) = αs−1 Mz(s). (42)

C. Product of Two Independent RVs

The Mellin transform in Eq. (39) is only defined for positive
z, whereas pz(z) is an even function of z, cf. AS1) in Section
II-C. Usually this discrepancy is not a problem and we can just
ignore pz(z) for z < 0 when calculating the Mellin transform.
However, care must be taken when calculating the Mellin
transform of the product of two RVs.

Let z = z1z2, where z1 and z2 are two independent RVs
with even pdfs, respectively. The pdf of z can be expressed as
pz(z) =

∫∞
−∞ pz1(z1)pz2(z/z1) dz1/|z1|. Using the definition

in Eq. (39) and exploiting pz1(z) = pz1(−z) and pz2(z) =
pz2(−z), it is easy to show that the Mellin transform of pz(z)
can be expressed as

Mz(s) = 2 Mz1(s)Mz2(s) (43)

which differs from [19, Eq. (15)] by a factor of two since in
[19] non–negative RVs z1, z2 were assumed.
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D. Sum of Two Independent RVs

Let z = z1 +z2, where z1 and z2 are independent RVs. For
general s it is difficult to find a simple relation between Mz(s)
and Mz1(s), Mz2(s). In the following, we show however that
such a relation exists if s is an integer.

First, we establish a relation between Mz(s) and the mo-
ments mz(s) of z. If s is an even integer, we obtain

2Mz(s + 1) = mz(s) �
∞∫

−∞
zs pz(z) dz. (44)

Similarly, if s is odd, we can express 2Mz(s + 1) as

2Mz(s + 1) = m̃z(s) �
∞∫

−∞
zs p̃z(z) dz (45)

where p̃z(z) = p(z), z ≥ 0, and p̃z(z) = −p(z), z < 0.
Note that mz(s) = 0 and m̃z(s) = 0 for odd and even s,
respectively.

Recall that the Laplace transform of the pdf of z is given
by Φz(p) = Φz1(p)Φz2(p), where Φz1(p) � L{pz1(z)} and
Φz2(p) � L{pz2(z)}.9 For even s, the moments mz(s) of z
can be calculated from

mz(s) = (−1)s ds

dps
Φz(p)

∣∣∣
p=0

= (−1)s
s∑

k=0

( s

k

) ds−k

dps−k
Φz1(p)

dk

dpk
Φz2(p)

∣∣∣
p=0

= (−1)s
s∑

k=0

( s

k

)
mz1(s − k)mz2(k) (46)

where mz1(s) and mz2(s) denote the sth moment of z1 and
z2, respectively. It is easy to show that Eq. (46) also holds for
odd s if m̃(·) is replaced by m(·). Therefore, taking Eqs. (44)
and (45) into account, the Mellin transforms of pz(z) can be
calculated for even s as

Mz(s) = 2
s/2−1∑
k=0

(
s − 1
2k + 1

)
Mz1(s − 2k)Mz2(2k + 2) (47)

and for odd s as

Mz(s) = 2
(s−1)/2∑

k=0

(
s − 1
2k

)
Mz1(s− 2k)Mz2(2k + 1) (48)

where we have assumed s ≥ 1.

REFERENCES

[1] M. Simon and M.-S. Alouini, Digital Communication over Fading
Channels. Hoboken, NJ: Wiley, 2005.

[2] J. Proakis, Digital Communications, forth ed. New York: McGraw–Hill,
2001.

[3] H. Abdel-Ghaffar and S. Pasupathy, “Asymptotic performance of M -
ary and binary signals over multipath/multichannel Rayleigh and Ricean
fading,” IEEE Trans. Commun., vol. COM-43, pp. 2721–2731, Nov.
1995.

9Following the literature, in general we use “s” as transformation variable
for both Mellin and Laplace transform. In this appendix, however, we deviate
from this practice to avoid confusion and use “p” as transformation variable
for the Laplace transform.

[4] Z. Wang and G. Giannakis, “A simple and general parameterization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. COM-51, pp. 1389–1398, Aug. 2003.

[5] Y. Ma, Z. Wang, and S. Pasupathy, “Asymptotic performance of hybrid-
selection/maximal-ratio combining over fading channels,” IEEE Trans.
Commun., vol. COM-54, pp. 770–777, 2006.

[6] M. Win, N. Beaulieu, L. Shepp, B. Logan, and J. Winters, “On the SNR
penalty of MPSK with hybrid selection/maximal ratio combining over
I.I.D. Rayleigh fading channels,” IEEE Trans. Commun., vol. 51, pp.
1012–1023, June 2003.

[7] Z. Du, J. Chen, and N. Beaulieu, “Asymptotic BER performance of
OFDM in frequency-selective Nakagami-m channels,” in Proc. IEEE
Vehicular Technology Conference (VTC), Sept. 2004, pp. 612–615.

[8] A. Giorgetti and M. Chiani, “Influence of fading on the Gaussian
approximation for BPSK and QPSK with asynchronous cochannel
interference,” IEEE Trans. Wireless Commun., vol. 4, pp. 384–389, Mar.
2005.

[9] R. Prasad, A. Kegel, and A. de Vos, “Performance of microcellular
mobile radio in a cochannel interference, natural, and man-made noise
environment,” IEEE Trans. Veh. Technol., vol. VT-42, pp. 33–40, Feb.
1993.

[10] C. Corral, S. Emami, and G. Rasor, “Model of multi-band OFDM
interference on broadband QPSK receivers,” in Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Philadelphia, Nov. 2005, pp. 629–632.

[11] I. S. Gradshteyn and I. M. .Ryzhik, Table of Integrals, Series, and
Products. New York: Academic Press, 2000.

[12] G. Tsihrintzis and C. Nikias, “Performance of optimum and suboptimum
receivers in the presence of impulsive noise modeled as an alpha-
stable process,” IEEE Trans. Commun., vol. COM-43, pp. 904–914,
Feb./Mar./Apr. 1995.

[13] D. Middleton, “Statistical-physical models of man–made radio noise–
parts I and II,” U.S. Dept. Commerce Office Telecommun., Apr. 1974
and 1976.

[14] X. Wang and R. Chen, “Blind turbo equalization in Gaussian and
impulsive noise,” IEEE Trans. Veh. Technol., vol. VT-50, pp. 1092–
1105, July 2001.

[15] A. Annamalai, C. Tellambura, and V. Bhargava, “A general method
for calculating error probabilities over fading channels,” IEEE Trans.
Commun., vol. COM-53, pp. 841–852, May 2005.

[16] IEEE P802.15, “Multiband OFDM physical layer proposal for IEEE
802.15 Task Group 3a (Doc. Number P802.15-03/268r3),” Mar. 2004.

[17] ——, “DS–UWB physical layer submission to IEEE 802.15 Task Group
3a (Doc. Number P802.15-03/0137r4),” Jan. 2005.

[18] F. Oberhettinger, Tables of Mellin Transfroms. New York: Springer,
1974.

[19] Y. Tung, “Mellin transform applied to uncertainty analysis in hydrol-
ogy/hydraulics,” J. Hydraulic Engineering, vol. 116, pp. 659–674, May
1990.

Amir Nasri (S’06) received the B.S. degree from
Sharif University of Technology, Tehran, Iran in
2001, and the M.Sc. degree from University of
Tehran, Tehran, Iran in 2003, both in electrical en-
gineering. He is currently working toward the Ph.D.
degree in the wireless communications laboratory,
Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, BC,
Canada. His current research interests include ultra-
wideband (UWB) radio communications, coexis-
tence analysis for different wireless technologies,

digital communications over fading channels, and space-time processing and
coding.

He received the Best Paper Award at the IEEE International Conference
on Ultra-Wideband (ICUWB) 2006, and was finalist for the best paper award
at 2006 IEEE Global Telecommunications Conference (Globecom 2006). He
was also the recipient of the 2007 Li Tze Fong UGF Award from University
of British Columbia.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 14, 2009 at 20:46 from IEEE Xplore.  Restrictions apply.



990 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 6, JUNE 2008

Robert Schober (M’01, SM’07) was born in Neuen-
dettelsau, Germany, in 1971. He received the Diplom
(Univ.) and the Ph.D. degrees in electrical engi-
neering from the University of Erlangen–Nürnberg
in 1997 and 2000, respectively. From May 2001
to April 2002 he was a Postdoctoral Fellow at
the University of Toronto, Canada, sponsored by
the German Academic Exchange Service (DAAD).
Since May 2002 he has been with the University of
British Columbia (UBC), Vancouver, Canada, where
he is currently an Associate Professor and Canada

Research Chair (Tier II) in Wireless Communications. His research interests
include cooperative diversity systems, equalization, UWB, MIMO systems,
and space–time processing and coding.

Dr. Schober received the 2002 Heinz Maier–Leibnitz Award of the German
Science Foundation (DFG), the 2004 Innovations Award of the Vodafone
Foundation for Research in Mobile Communications, and the 2006 UBC
Killam Research Prize. In addition, he received best paper awards from the
German Information Technology Society (ITG), the European Association for
Signal, Speech and Image Processing (EURASIP), IEEE ICUWB 2006, the
International Zurich Seminar on Broadband Communications, and European
Wireless 2000. Dr. Schober is also the Area Editor for Modulation and Signal
Design for the IEEE Transactions on Communications.

Yao Ma (S’98, M’01) received the B.Sc. degree
from Anhui University, and M.Sc. degree from
University of Science and Technology of China
(USTC), China, in 1993 and 1996, respectively, both
in electrical engineering and information science;
and the Ph.D. degree in Electrical Engineering from
National University of Singapore, in year 2000. His
Ph.D thesis was on the diversity reception over
fading channels and CDMA multiuser detection.
From April 2000 to July 2001, he was a Member
of Technical Staff at the Centre for Wireless Com-

munications, Singapore. From July 2001 to July 2002, he was a Post-doctorate
Fellow at the ECE Department of the University of Toronto. Since August
2002, he has been an Assistant Professor at the ECE Department of the Iowa
State University.

His research interests include the digital communication over fading
channels, cross-layer design, adaptive filtering, OFDMA, MIMO systems, and
UWB communication. He is currently an Editor for the IEEE Transactions on
Wireless Communications and an Associate Editor for the IEEE Transactions
on Vehicular Technology.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 14, 2009 at 20:46 from IEEE Xplore.  Restrictions apply.


