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In this paper, we study network–coded cooperative diversity (NCCD) systems comprising multiple

sources, one relay, and one destination, where the relay detects the packets received from all sources

and performs Galois field network coding before forwarding a single packet to the destination. We

develop a simple generalized cooperative maximum–ratio combining scheme for the destination which

achieves a similar performance as optimal maximum–likelihood combining. Furthermore, assuming

independent Rayleigh fading for all links of the network, we provide a mathematical framework for the

analysis of the error performance of NCCD systems in the high signal–to–noise ratio regime. Based on

this framework, we derive simple and elegant closed–form expressions for the asymptotic symbol and

bit error rates of NCCD systems. The derived error rate expressions are valid for arbitrary numbers of

sources, arbitrary modulation schemes, and arbitrary constellation mappings and provide significant

insight into the impact of various system and channel parameters on performance. These expressions

can also be exploited for optimization of the constellation mapping as well as for formulation of

various NCCD system optimization problems including optimal power allocation, relay selection, and

relay placement. Simulation results confirm the accuracy of the presented analysis and reveal that the

performance of NCCD systems can be considerably improved by optimizing the constellation mapping

and the power allocation based on the developed analytical results.

1This work will be presented in part at the IEEE Global Telecommunications Conference (Globecom), Miami,

2010.
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1 Introduction

Cooperative diversity (CD) is an effective technique to exploit the spatial diversity offered by wireless

relay nodes. However, since the cooperating terminals typically use orthogonal channels for transmis-

sion to simplify processing at the relays and the destination, CD entails a throughput reduction [1, 2].

This throughput reduction is most noticeable in CD systems with multiple source terminals since in

such systems the relays use separate orthogonal channels to forward the signals received from different

sources. As a result, the relays can serve only a single source in a given time or frequency slot, and

therefore the available resources are not shared efficiently by different sources.

Network coding over Galois fields (GFs) is an efficient approach to increase the throughput of

multi–source CD systems [3]–[5]. The idea of network coding was originally developed for wired

networks as an efficient routing technique capable of enhancing the network throughput [6]. In the

context of CD, network coding can be employed to overcome the associated throughput bottleneck

by allowing relays to simultaneously serve multiple source terminals.

The combination of CD and GF network coding, which we refer to as network–coded CD (NCCD)

in this work, has received considerable attention recently. In particular, the outage capacity of NCCD

systems was calculated in [3, 4], and their diversity–multiplexing tradeoff was analyzed in [5]. In

[7], for a network coding system employing an algebraic superposition of channel codes and iterative

decoding at the destination, optimal channel codes were designed based on an ad–hoc code search.

The diversity order of an NCCD system employing distributed error–correcting codes was analyzed in

[8], and it was shown that a maximum diversity order equal to the minimum distance of the employed

error–correcting code can be achieved. Also, physical–layer network coding (PNC) [9] and complex

field network coding (CFNC) [10] have been proposed as interesting alternatives to NCCD. However,

unlike NCCD, for both of these schemes the relay receives the transmissions of multiple sources

simultaneously, which makes time and frequency synchronization very challenging. Furthermore, the

relay transmit signals for PNC and CFNC do not belong to a standard signal constellation and, as a

result, may suffer from a high peak–to–average power ratio.

While error rate expressions which facilitate performance evaluation and system optimization are

desirable, existing works on NCCD systems [3]–[8] do not provide a general and accurate error rate

analysis. Furthermore, these works assume network coding in the GF of order two, and therefore do

not explore potential benefits of notwork coding over GFs of higher order. Thus, in this paper, we

investigate the error rate performance of NCCD systems comprising multiple sources, one relay, and

one destination, where network coding is performed over the GF of order M = 2m and an arbitrary

M–ary modulation is empolyed by the sources and the relay. Furthermore, in order to obtain a

simple combining scheme at the destination, which is amenable to analysis and achieves a similar

performance as optimal maximum–likelihood (ML) combining, we generalize cooperative maximum–
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ratio combining (C–MRC), which was proposed in [11] for conventional CD systems, to NCCD. For

the resulting NCCD system we derive simple and elegant closed–form expressions for the asymptotic

symbol and bit error rates in Rayleigh fading. These closed–form expressions give valuable insight into

the impact of various system and channel parameters (e.g., the number of sources, the signal–to–noise

ratios (SNRs) of the involved wireless links, the signal constellation, and the constellation mapping) on

performance. For example, our analytical results reveal that the achieved diversity gain for all source

terminals is equal to two irrespective of the number of sources. In contrast, the network–coding gain

is source dependent and is affected by various system and channel parameters. Furthermore, the

developed error rate expressions can be exploited for various NCCD system optimization problems

including optimal constellation mapping, power allocation, relay selection, and relay placement.

The remainder of this paper is organized as follows. In Section 2, the some notations and defi-

nitions and the system model of the considered NCCD system are introduced. Accurate asymptotic

expressions for the symbol error rate (SER) and the bit error rate (BER) of NCCD systems are derived

in Section 3. Optimal power allocation for NCCD systems is discussed in Section 4, and numerical

and simulation results are presented in Section 5. Finally, some conclusions are drawn in Section 6.

2 Preliminaries

In this section, we describe the model for the considered NCCD system and introduce some notations

and definitions.

2.1 Notations and Definitions

In this paper, [·]T , (·)∗, ℜ{·}, Ex{·}, Γ(·), Γ(·, ·), and ψ(·) denote transposition, complex conjugation,

the real part of a complex number, statistical expectation with respect to x, the Gamma function, the

upper incomplete Gamma function, and the Digamma function, respectively. Q(x) , 1√
2π

∫∞
x

e−t2/2dt

denotes the Gaussian Q–function. Furthermore, we use the notation u ⊜ v to indicate that u and v

are asymptotically equivalent, and a function f(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.

2.2 Signal Model

The considered NCCD system is depicted in Fig. 1 and comprises Ns source terminals Si, 1 ≤ i ≤ Ns,

one relay R, and one destination terminalD. Transmission from the source terminals to the destination

terminal is organized in two hops. The first hop comprises Ns orthogonal time or frequency slots

(referred to as channel slots in the following), where each source terminal Si, 1 ≤ i ≤ Ns, transmits

its message to the relay and the destination. In particular, a data symbol si ∈ A is generated at

source Si, where A , GF(2m) is the GF of order M = 2m. This data symbol is mapped to a
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transmit symbol xi ∈ X with E{|xi|2} = 1 using the mapping xi = µX (si), where X denotes an M–

ary signal constellation such as M–ary phase–shift keying (M–PSK) or M–ary quadrature amplitude

modulation (M–QAM), and µX : A → X is a one–to–one constellation mapping function from A to

X . Subsequently, source Si transmits symbol xi to the relay and the destination. The signals received

by the destination and the relay in the first hop, rSiD, are given by

rSiD =
√

Pi fi xi + nD,i and rSiR =
√

Pi gi xi + nR,i, 1 ≤ i ≤ Ns, (1)

respectively, where Pi is the average transmit power of the ith source, and fi and gi denote the fading

gains of the Si → D and the Si → R channels, respectively. Furthermore, nD,i and nR,i denote

the additive white Gaussian noise (AWGN) samples at the destination and the relay with variances

σ2
nD,i

, E{|nD,i|2} and σ2
nR,i

, E{|nR,i|2}, respectively.

The relay performs coherent ML detection and generates the detected symbols

x̂R,i = arg min
x̃∈X

{|rSiR −
√

Pi gi x̃|2}, 1 ≤ i ≤ Ns, (2)

which correspond to detected data symbols ŝR,i = µ−1
X (x̂R,i) ∈ A, 1 ≤ i ≤ Ns.

The second hop comprises a single channel slot. In particular, in the second hop the relay performs

network coding and computes the data symbol ŝR , ŝR,1⊕· · ·⊕ ŝR,Ns
∈ A, where ⊕ denotes addition

in GF(2m). The relay then forwards the transmit symbol x̂R , µX (ŝR) ∈ X to the destination. The

signal received at the destination in the second hop, rRD, can be modeled as

rRD =
√

PR hR x̂R + nD,R, (3)

where PR is the average transmit power of the relay, hR is the fading gain of the R → D channel,

and nD,R is the AWGN at the destination in the second hop having variance σ2
nD,R

, E{|nD,R|2}.
Throughout this paper we assume independent Rayleigh fading for all links of the network. Thus,

the fading gains fi , afi
e−jθfi , gi , agi

e−jθgi , 1 ≤ i ≤ Ns, and hR , ahR
e−jθhR are independent

Gaussian random variables (RVs) with zero mean and variances Ωfi
, E{|fi|2}, Ωgi

, E{|gi|2},
1 ≤ i ≤ Ns, and ΩR , E{|hR|2}, respectively. Here, the channel amplitudes afi

, agi
, and ahR

are

positive real RVs and follow a Rayleigh distribution. Furthermore, the channel phases θfi
, θgi

, and

θhR
are uniformly distributed in [−π, π) and are independent from the channel amplitudes.

For future reference, we define the instantaneous SNRs of the Si → D, Si → R, and R → D

links as γfi
, Pi a

2
fi
/σ2

nD,i
, γgi

, Pi a
2
gi
/σ2

nR,i
, and γhR

, PR a
2
hR
/σ2

nR
, respectively. The correspond-

ing average SNRs are given by γ̄fi
= Pi Ωfi

/σ2
nD,i

, γ̄gi
= Pi Ωgi

/σ2
nR,i

, and γ̄D,R = PR ΩR/σ
2
nD,R

,

respectively.

Remark 1: Based on the presented signal model, a total of Ns + 1 channel slots are required for

transmission of the signals of all Ns sources to the destination. In contrast, a conventional CD system

[1, 11] requires 2Ns channel slots since the relay assists only a single source in a given channel slot.
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2.3 Equivalent Source–Relay Channel

In this subsection, we introduce an equivalent channel between the source terminals and the relay for

the considered NCCD system which will be particularly useful for developing the diversity combining

scheme in Section 2.4 and the performance analysis in Section 3. The input of this equivalent

channel, xR, is the relay transmit symbol in the absence of noise, i.e., xR , µX (sR) ∈ X with

sR , s1 ⊕ · · · ⊕ sNs
∈ A, and the output is the actual relay transmit symbol x̂R. Defining the

source–relay SNR vector γg , [γg1
, · · · , γgNs

]T , this channel is characterized by the equivalent error

probability Pe,eq(γg) , Pr{x̂R 6= xR}. For an M–ary signal constellation X , the equivalent error

probability Pe,eq(γg) can be approximated by Pe,eq(γg) = βQ
(

√

2αγeq(γg)
)

, where α and β are

two modulation dependent constants (e.g. α = β = 1 for BPSK). Furthermore, γeq(γg) is the

instantaneous SNR associated with the equivalent source–relay channel which can be expressed as

γeq(γg) = 1
2α

(

Q−1(Pe,eq(γg)/β)
)2

. It can be shown that for sufficiently high SNR γeq(γg) can be

accurately approximated as γeq(γg) = min{γg1
, · · · , γgNs

}. As a result, since γgi
, 1 ≤ i ≤ Ns, is

an exponentially distributed RV with mean γ̄gi
, γeq(γg) is also exponentially distributed with mean

γ̄eq = (1/γ̄g1
+ · · · + 1/γ̄gNs

)−1. In the following, we use γeq instead of γeq(γg) for simplicity of

notation.

2.4 Diversity Combining at the Destination

ML combining can be employed at the destination to optimally combine the signals received from

the sources and the relay. However, due to the possibility of erroneous decisions at the relay, the ML

decision metric is complex and not amenable to analysis. In order to avoid the problems associated

with the ML metric, we generalize the C–MRC scheme proposed in [11] for conventional CD to NCCD.

As will be shown in Sections 3 and 5, the simple C–MRC scheme performs close to the ML combining

and exploits the full diversity of NCCD systems for any number of sources. The proposed generalized

C–MRC metric is given by

mc(x̃) =

Ns
∑

i=1

|rSiD −√
Pi fi x̃i|2

σ2
nD,i

+ λR
|rRD −√

PR hR x̃R|2
σ2

nD,R

. (4)

Here, vector x̃ , [x̃1 . . . x̃Ns
]T ∈ XNs contains trial transmit symbols x̃i = µX (s̃i) ∈ X , 1 ≤ i ≤ Ns,

where s̃i ∈ A, 1 ≤ i ≤ Ns, are trial data symbols. Furthermore, in (4) we have introduced

x̃R , µX (s̃R) ∈ X with s̃R , s̃1 ⊕ · · · ⊕ s̃Ns
∈ A and the weighting factor λR ,

min{γeq,γR}
γR

∈ [0, 1].

For the case that all Sj → R channels have higher SNRs than the R → D channel, λR = 1 is valid

and (4) reduces to conventional MRC. However, if at least one of the Sj → R channels has a poorer

quality than the R → D channel, the metric in (4) assigns a smaller weight λR < 1 to the part of

the metric associated with the signal received from the relay in order to take into account the effect
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of possibly erroneous decisions at the relay. In order to compute λR, the destination has to know

the SNR of the weakest source–relay channel. This SNR can be estimated at the relay, which has to

know the corresponding channel gain for coherent detection, and be forwarded to the destination over

a low–rate feedback channel.

Based on (4) signal detection at the destination can be performed as x̂D = arg minx̃∈XNs{mc(x̃)},
where x̂D , [x̂D,1 . . . x̂D,Ns

]T ∈ XNs contains the detected symbols at the destination for all sources

and the corresponding decoded data symbols are obtained as ŝD,i , µ−1
X (x̂D,i) ∈ A, 1 ≤ i ≤

Ns. Brute force determination of x̂D requires MNs metric computations, i.e., complexity increases

exponentially with Ns. However, detection complexity can be significantly reduced by exploiting the

fact that the data vectors se , [s1, · · · , sNs
, sR]T ∈ ANs+1 form an (Ns + 1, Ns) single–parity–

check block code over GF(2m). As a result, the signal detection at the destination can be efficiently

implemented using well–known soft–decision decoding algorithms for block codes from the literature

[12], e.g. Viterbi decoding based on the trellis representation of the corresponding single–parity–check

block code [13]. However, a detailed discussion of such algorithms is beyond the scope and the page

limits of the current paper.

3 Performance Analysis

In this section, we analyze the error rate performance of the considered NCCD system for high SNRs,

i.e., γ̄fi
, γ̄gi

→ ∞, 1 ≤ i ≤ Ns, and γ̄R → ∞. In particular, we develop accurate asymptotic closed–

form expressions for the pairwise error probabilities (PEPs), SERs, and BERs of all sources. For

convenience, we introduce the source–destination SNR vector γf , [γf1
, · · · , γfNs

]T , the normalized

noise samples n̄D,i , nD,i/σnD,i
, 1 ≤ i ≤ Ns, and n̄D,R , nD,R/σnD,R

, and the noise vector

n , [n̄D,1, · · · , n̄D,Ns
, n̄D,R]T .

Using a union bound over the pairwise error probabilities, for the ith source, the SER, P i
s , can be

upper–bounded as

P i
s ≤ 1

MNs

∑

x∈XNs

∑

x̃∈Bi(x)

P (x → x̃), (5)

where P (x → x̃) denotes the PEP associated with the pair (x, x̃) which is the probability that

x , [x1 · · ·xNs
]T ∈ XNs was transmitted by the sources and x̃ = [x̃1 · · · x̃Ns

]T ∈ XNs, x̃ 6= x, was

detected at the destination assuming that x and x̃ are the only possible decision outcomes. The set

Bi(x) in (5) is defined as

Bi(x) ,
{

x̃|x̃j ∈ X \ {xj}, j = i, x̃j ∈ X , j 6= i
}

. (6)

In the following, we first derive an asymptotic expression for the PEP in Subsection 3.1 before we use

an expurgated version of the union bound in (5) to arrive at an accurate closed–form expressions for

the asymptotic SER and BER in Subsection 3.2.
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3.1 Asymptotic Pairwise Error Probability

The PEP for the considered NCCD system can be expressed as

P (x → x̃) = Pr{mc(x) > mc(x̃)}. (7)

It is convenient to calculate first the PEP conditioned on the instantaneous SNRs (γf ,γg, γR) and

noise vector n. To obtain such an expression, we assume that among the transmit symbols xj ,

1 ≤ j ≤ Ns, at most one is received in error at the relay. Furthermore, we assumed that if transmit

symbol xj is received in error, the erroneous x̂R,j at the relay is a nearest neighbor of xj , i.e.,

x̂R,j ∈ N (xj), where set N (x) contains all nearest neighbors of x in X . The approximations related

to these assumptions are well justified for γ̄gj
→ ∞, 1 ≤ j ≤ Ns, and their accuracy will be confirmed

by simulations in Section 5. The desired conditional PEP can now be expressed as

P
(

x → x̃|γf ,γg, γR,n
)

= Pr
{

x̂R = xR

}

P
(

x → x̃|xR,γf , γeq, γR,n
)

+
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

β Q(
√

2α γgj
)P
(

x → x̃|x̂R,γf , γeq, γR,n
)

, (8)

where
Dj(x) ,

{

µX
(

µ−1
X (x̄1) ⊕ · · · ⊕ µ−1

X (x̄Ns
)
)
∣

∣x̄ν ∈ N (xν), ν = j, x̄ν = xν , ν 6= j
}

. (9)

Here, for a given transmit vector x, set Dj(x) collects all possible values for x̂R assuming that xj is

received in error at the relay, while all xi, i 6= j, are correctly received. Furthermore, the conditional

PEP P
(

x → x̃

∣

∣x̄R,γf , γeq, γR,n
)

, x̄R ∈ {xR, x̂R}, can be written as

P
(

x → x̃

∣

∣x̄R,γf , γeq, γR,n
)

, Pr
{

mc(x) > mc(x̃)
∣

∣x̄R,γf , γeq, γR,n
}

= Pr

{ Ns
∑

i=1

∆fi
(xi, x̃i)+λR∆R(xR, x̃R, x̄R)< 0

∣

∣

∣
γf , γeq, γR,n

}

, (10)

where

∆fi
(xi, x̃i) , |√γfi

(x̃i − xi) + n̄D,i|2 − |n̄D,i|2 (11)

and

∆R(xR, x̃R, x̄R) , |√γR(x̃R − x̄R) + n̄D,R|2 − |√γR(xR − x̄R) + n̄D,R|2. (12)

For derivation of the unconditional PEP, we exploit the relations Pr {∆ < 0} = 1
2πj

∫ c+j∞
c−j∞ Φ∆(s)ds

s
,

which is valid for any random variable ∆ with moment generating function (MGF) Φ∆(s) , E∆{e−∆s},
and Pr{x̂R = xR} = 1 − Pe,eq(γg) = 1 − βQ

(√

2α γeq

)

, which follows from Subsection 2.3. Using

these relations, we obtain the unconditional PEP from (8) and (10) as

P (x → x̃) = Eγf ,γg,γR,n

{

P
(

x → x̃|γf ,γg, γR,n
)}

=
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

ΦR(s)
ds

s
, (13)
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where c is a small positive constant that lies in the region of convergence of the integrand and

Φfi
(s) , Eγfi

,n̄D,i
{e−s∆fi

(xi,x̃i)}, (14)

ΦR(s) , Φc
R(s) +

Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

Φe
R,j(x̂R; s), (15)

with Φe
R,j(x̂R; s) and Φc

R(s) as defined in the Appendix in Lemmas 2 and 4, respectively. Based on

(13) and (15) the PEP can be expressed as

P (x → x̃) = Pc(x, x̃) +

Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

Pe,j(x, x̃, x̂R) (16)

where

Pc(x, x̃) ,
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

Φc
R(s)

ds

s
, (17)

and

Pe,j(x, x̃, x̂R) ,
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

Φe
R,j(x̂R; s)

ds

s
. (18)

To facilitate the calculation of the asymptotic PEP, we now present the following proposition which

sheds some light on the asymptotic behavior of the PEP P (x → x̃).

Proposition 1: Assume without loss of generality that γ̄fi
= ζfi

γ̄, γ̄gi
= ζgi

γ̄, 1 ≤ i ≤ Ns, and

γ̄R = ζRγ̄, where ζfi
, ζgi

and ζR are finite (positive) constants, which are independent of γ̄, and define

the diversity gain associated with the PEP as Gd,PEP , − limγ̄→∞ log (P (x → x̃)) / log(γ̄). The

diversity gain is then given by Gd,PEP = dH(x, x̃), where dH(x, x̃) denotes the Hamming distance

between data vector se and s̃e = [s̃1, · · · , s̃Ns
, s̃R]T ∈ ANs+1. Furthermore, for all possible pairs

(x, x̃) we have dH(x, x̃) ≥ 2.

Please refer to the Appendix for a proof of Proposition 1. From Proposition 1 we conclude that

for calculation of the asymptotic SER based on (5), only error events with dH(x, x̃) = 2 have to be

included since error events with dH(x, x̃) > 2 yield a higher diversity gain and thus, their contribution

to the asymptotic SER is negligible. Therefore, in the following, we calculate the asymptotic PEP

only for error events with dH(x, x̃) = 2. For clarity, we consider the cases xR 6= x̃R and xR = x̃R

separately.

Case 1 (xR 6= x̃R): It is easy to see that in this case, dj , |xj − x̃j |, 1 ≤ j ≤ Ns, is non–zero only

for a single value of index j, i.e., we have dj 6= 0, j = i, and dj = 0, j 6= i. As a result, from Lemma

1 we obtain Φfj
(s) ⊜ 1

d2
js(1−s)γ̄fj

, j = i and Φfj
(s) ⊜ 1, j 6= i. Therefore, using (17) and Lemma 4
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we arrive at

Pc(x, x̃) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i s(1 − s)γ̄fi

(

2

γ̄eqd
2
Rs

+
2

γ̄Rd
2
Rs(1 − s)

− β

γ̄eqd
2
R(s+ α

sin2 θ d2
R

)

)

ds

s
dθ,

(19)

where dR , |xR − x̃R|. The inner complex integral in (19) can be calculated using standard inverse

Laplace transform techniques such as partial fraction expansion. This leads to

Pc(x, x̃) ⊜
1

γ̄fi

(

φg
c (x, x̃)

Ns
∑

i=1

1

γ̄gi

+
φR

c (x, x̃)

γ̄R

)

, (20)

where

φg
c (x, x̃) ,

2 − β + β α√
α2+α d2

R

2d2
id

2
R

and φR
c (x, x̃) ,

3

d2
id

2
R

. (21)

Furthermore, from (18) and Lemma 2 we have

Pe,j(x, x̃, x̂R) ⊜
β

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i s

2(1 − s)
(

d̄R(x̂R)s+ α
sin2 θ

)

γ̄fi
γ̄gj

ds dθ =
φe(x, x̃, x̂R)

γ̄fi
γ̄gj

, (22)

with

φe(x, x̃, x̂R) =







β
2d2

i d̄R(x̂R)
− β α

2d2
i d̄R(x̂R)

√
α2+α d̄R(x̂R)

d̄R(x̂R) > 0

β
4αd2

i

− 3βd̄R(x̂R)

16d2
i α2 d̄R(x̂R) ≤ 0

(23)

where d̄R(x̂R) , |x̃R − x̂R|2 − |xR − x̂R|2.
Case 2 (xR = x̃R): In this case, dj is non–zero for two values of index j, i.e., we have dj 6= 0,

j ∈ {i1, i2}, and dj = 0, otherwise. Thus, based on Lemma 1, we obtain Φfj
(s) ⊜ 1

d2
js(1−s)γ̄fj

,

j ∈ {i1, i2}, and Φfj
(s) ⊜ 1, otherwise. Furthermore, in this case, dR = 0 is valid, and therefore,

based on Lemma 4, we obtain Φc
R(s) ⊜ 1. Thus, using (17) we obtain

Pc(x, x̃) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i1
d2

i2
s3(1 − s)2 γ̄fi1

γ̄fi2

ds dθ =
φ̄c(x, x̃)

γ̄fi1
γ̄fi2

, (24)

with φ̄c(x, x̃) , 3
d2

i1
d2

i2

. Furthermore, from (18) and Lemma 2 we get

Pe,j(x, x̃, x̂R) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

β

d2
i1
d2

i2
s3(1 − s)2

(

d̄R(x̂R)s+ α
sin2 θ

)

γ̄fi1
γ̄fi2

γ̄gj

ds dθ =
φ̄e(x, x̃, x̂R)

γ̄fi1
γ̄fi2

γ̄gj

,

(25)

where φ̄e(x, x̃, x̂R) is a (positive) finite constant which does not appear in the final SER and BER

expressions.

With these asymptotic expressions for Pc(x, x̃) and Pe,j(x, x̃, x̂R) at hand, a closed–form expres-

sion for the asymptotic PEP can be calculated based on (16).
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3.2 Asymptotic SER and BER

In order to obtain an accurate expression for the asymptotic SER, we first expurgate the union bound

in (5) according to Proposition 1. In particular, we only include error events with dH(x, x̃) = 2 in

the union bound since the contribution of error events with dH(x, x̃) > 2 to the asymptotic SER is

negligible (cf. Proposition 1). This expurgation is accomplished by replacing the set Bi(x) in (6) with

subset

Ci(x) ,
{

x̃|x̃j ∈ X \ {xj}, j = i, x̃j ∈ X , j 6= i, dH(x, x̃) = 2
}

. (26)

We are now ready to state our main result. In particular, in the following proposition, we combine

(5), (16), and (26) to obtain a general and accurate expression for the asymptotic SER which is valid

for arbitrary numbers of sources, arbitrary signal constellations, and arbitrary constellation mappings

(refer to the Appendix for a proof).

Proposition 2: For the NCCD system described in Section 2, an accurate expression for the asymp-

totic SER of the ith source can be obtained as2

P i
s ⊜

1

γ̄fi

( Ns
∑

i=1

Cgi

γ̄gi

+

Ns
∑

j=1
j 6=i

Cfj

γ̄fj

+
CR

γ̄R

)

, (27)

where

Cgi
,

1

MNs

∑

x∈XNs

∑

x̃∈Ci
i(x)

(

φg
c (x, x̃) +

1

|Dj(x)|
∑

x̂R∈Dj(x)

φe(x, x̃, x̂R)
)

, (28)

Cfj
,

1

MNs

∑

x∈XNs

∑

x̃∈Cj
i (x)

φ̄c(x, x̃), and CR ,
1

MNs

∑

x∈XNs

∑

x̃∈Ci
i
(x)

φR
c (x, x̃). (29)

In (28) and (29), Cl
i(x), 1 ≤ l ≤ Ns, is defined as

Cl
i(x) ,

{

x̃

∣

∣x̃j 6= xj , j ∈ {i, l}, x̃j = xj , otherwise, dH(x, x̃) = 2
}

. (30)

Remark 2: The asymptotic SER in (27) is, in general, a function of the constellation mapping

µX because the sets Cl
i(x) and Dj(x) and consequently the coefficients Cgj

, Cfj
, and CR depend

on the constellation mapping. We will study this dependency in Section 5 where we show that

some performance improvement can be achieved by optimizing the mapping µX . In case of a BPSK

constellation, however, the two possible mappings are equivalent and lead to the same expression for

the asymptotic SER. Specifically, based on (27) the asymptotic BER of BPSK (which is identical to

2For BPSK modulation, the SER expression in (27) is asymptotically exact. A comparison with simulations

suggests that for general M–ary modulation, the SER in (27) is a tight upper bound, cf. Section 5.
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the asymptotic SER) is obtained as

P i
b,BPSK ⊜

1

γ̄fi

(

C1
BPSK

Ns
∑

i=1

1

γ̄gi

+ C2
BPSK

[ Ns
∑

j=1
j 6=i

1

γ̄fj

+
1

γ̄R

])

, (31)

where C1
BPSK , 45+

√
5

160
and C2

BPSK , 3
16

.

Remark 3: Letting γ̄fi
= ζfi

γ̄, γ̄gi
= ζgi

γ̄, 1 ≤ i ≤ Ns, and γ̄R = ζRγ̄, where ζfi
, ζgi

, and ζR are finite

(positive) constants, we can express the asymptotic SER of the ith source as P i
s ⊜ (Gi

c,SERγ̄)
−Gi

d,SER,

where Gi
d,SER and Gi

c,SER are the SER–based diversity gain and network–coding gain, respectively.

Thus, Gi
d,SER and Gi

c,SER correspond to the negative asymptotic slope and a relative horizontal shift

of the SER curve when plotted as a function of γ̄ on a double–logarithmic scale, respectively. Based

on (27) we therefore obtain

Gi
d,SER = 2, Gi

c,SER[dB] = 5 log10(ζfi
) − 5 log10

( Ns
∑

i=1

Cgi

ζgi

+

Ns
∑

j=1
j 6=i

Cfj

ζfj

+
CR

ζR

)

. (32)

From (32) it is evident that Gi
d,SER = 2 is achieved irrespective of the number of sources Ns.

Furthermore, for the network–coding gain, Gi
c,SER, we make the following observations. Gi

c,SER is a

function of the number of sources Ns, the signal constellation X , the constellation mapping µX , as

well as the relative link qualities ζfi
, ζgi

, and ζR. Eq. (32) reveals that for ζfi
= ζgi

= ζR, the network–

coding gain increases only logarithmically with increasing Ns. Furthermore, for NCCD systems where

the R → D link is the bottleneck link, i.e., ζR ≪ ζfi
, ζgi

, 1 ≤ i ≤ Ns, G
i
c,SER can be approximated as

Gi
c,SER ≈ 5 log10(ζfi

ζR/CR), implying that the network–coding gain is practically independent of the

number of sources. The above observations will be confirmed in Section 5 with simulation results.

Remark 4: Having obtained the asymptotic SER from (27), for Gray labeling, the asymptotic BER

of the ith source, P i
b , can be tightly approximated as P i

b ⊜ 1
log2(M)

P i
s .

4 Optimization of NCCD Systems

In addition to the mapping optimization discussed in the previous section, the obtained analytical error

rate expressions can be exploited to formulate various practically relevant optimization problems for

NCCD systems. In particular, as was done in [14, 15] for conventional amplify–and–forward CD, we

may formulate optimal power allocation (OPA), relay selection, and relay placement problems. Due to

space limitations, we concentrate in the following on OPA. In particular, in this section, we investigate

the optimal allocation of the source and relay powers, Pi, 1 ≤ i ≤ Ns, and PR in NCCD systems for

a given power budget.
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Based on the asymptotic SER given in (27), the OPA optimization problem can be mathematically

cast as

min
P1,...,PNs ,PR

Ns
∑

i=1

ψi

(

1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+

Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

)

(33a)

subject to :
Ns
∑

i=1

Pi + PR ≤ Pt (33b)

0 ≤ Pi ≤ Pi,max, 1 ≤ i ≤ Ns (33c)

0 ≤ PR ≤ PR,max, (33d)

where ψi(·) is an increasing convex cost function which can be chosen to achieve certain design goals,

Pt is the total power budget, Pi,max and PR,max denote the maximum power available at the ith source

and the relay, respectively, and we have defined the link statistics ξfi
, Ωfi

/σ2
nD,i

, ξgi
, Ωgi

/σ2
nR,i

,

and ξR , ΩR/σ
2
nR

, respectively.

It is easy to see that the solution set of the linear constraints (33b)–(33d) is non–empty, and

therefore the optimization problem is always feasible. Furthermore, using the transformation of vari-

ables Pi = log(P̃i), 1 ≤ i ≤ Ns, and PR = log(P̃R) optimization problem (33) is transformed into

a convex optimization problem in the new variables P̃i and P̃R. The resulting convex problem can

be efficiently solved using well–known interior point methods [16]. We note that as is customary in

the literature, we assume that the OPA is computed at the destination terminal, which subsequently

informs the sources and the relay of their assigned transmission power via a low–rate feedback chan-

nel. To compute the OPA the destination requires knowledge about the channel statistics ξfi
, ξgi

,

1 ≤ i ≤ Ns, and ξR. The destination can estimate ξfi
, 1 ≤ i ≤ Ns, and ξR, directly as the required

information is readily available at the destination. ξgi
, 1 ≤ i ≤ Ns, can be estimated at the relay and

then fed back to the destination via another low–rate feedback channel.

For cost function ψi(·), the two special cases, ψi(x) = x and ψi(x) = exp(ρx), ρ → ∞, are of

particular interest which lead to a minimum average SER and a min–max fair design, respectively.

For the purpose of OPA in NCCD systems the latter appears to be practically more appealing since

minimizing the average SER may favor sources with good link qualities and result in solutions that

are unfair to the other sources [17]. Therefore, in the following, we focus on the min–max fair design

which aims at minimizing the maximum SER among all sources. In particular, letting ψi(x) = exp(ρx),

ρ→ ∞, in (33) the power allocation problem can be equivalently stated as

min
P1,...,PNs ,PR

max
i

{

1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+
Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

}

(34a)

subject to : Constraints (33b) − (33d). (34b)
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Introducing an auxiliary variable ν, problem (34) can be further transformed into

min
P1,...,PNs ,PR,ν≥0

ν (35a)

subject to :
1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+
Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

≤ ν, 1 ≤ i ≤ Ns (35b)

Constraints (33b) − (33d). (35c)

Since both the objective function and constraints can be written in the form of posynomials, opti-

mization problem (35) is a geometric program (GP) which can be efficiently solved using standard

tools from the literature [16, 17].

5 Results and System Optimization

In this section, we use the derived the analytical results to investigate the impact of the various system

and channel parameters on the performance of NCCD systems and to optimize the performance of

these systems. For all figures shown this section, the asymptotic BER of BPSK and the asymptotic

SER of higher order modulation schemes were obtained based on (31) and (27), respectively. Unless

specified otherwise, we assume generalized C–MRC detection at the destination.

5.1 Performance of NCCD Systems

In Fig. 2, we show the BER of an NCCD system with Ns = 2 sources and BPSK modulation for

the generalized C–MRC detection scheme as well as ML detection. We assume γ̄f1
= γ̄f2

, γ̄f and

γ̄g1
= γ̄g2

, γ̄g and show results for four combinations of the channel quality vector (γ̄f , γ̄g, γ̄R). We

note that due to the symmetry of the network, the BERs of both sources are identical. For C–MRC

detection the the analytical results (dashed lines) are in excellent agreement with the corresponding

simulation results (solid lines with markers) for sufficiently high SNR, which confirms the accuracy

of the approximations made in Sections 2 and 3. Furthermore, the simulated BER results for ML

combining at the destination (dash–dotted lines) are practically identical to the BERs achieved with

generalized C–MRC, which confirms the viability of generalized C–MRC. We also observe from Fig. 2

that, as expected from the analysis in Section 3 (cf. Remark 3), the network–coding gain is a function

of the respective channels qualities but the diversity gain is equal to two for all channel quality

settings. Furthermore, having a relatively strong S → D channel is most beneficial in terms of BER

performance. However, this scenario may not be realistic in practice since the relay is usually closer

to the sources than the destination.

In Fig. 3, we investigate the BER of an asymmetric NCCD system with Ns = 4 sources and

BPSK modulation. For this system, we have assumed γ̄f1
, γ̄, γ̄f2

= γ̄ + 10 dB, γ̄f3
= γ̄ + 16 dB,
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γ̄f4
= γ̄ + 20 dB, and γ̄g1

= γ̄g2
= γ̄g3

= γ̄g4
= γ̄R = γ̄. The BER of each source as well as the

average BER of all sources are shown as a function of γ̄ for both generalized C–MRC (simulation and

asymptotic results) and ML combining. We observe that although the diversity gain for each source

is equal to two, the network–coding gain is source dependent because of the non–identical channel

qualities of the sources. Again, for generalized C–MRC the analytical results are in excellent agreement

with the simulations at high SNRs, and the performance gain achievable with ML combining compared

to generalized C–MRC is negligible.

In Fig. 4, we study the impact of number of sources on the performance of NCCD systems.

Thereby, we consider an NCCD system with BPSK modulation, γ̄fi
= γ̄gi

= γ̄, 1 ≤ i ≤ Ns, and

γ̄R = γ̄ and show the average BER for different Ns as a function of γ̄ for BPSK. Asymptotic BER

results are shown for three values of γ̄R, but corresponding simulation results are shown only for

two γ̄R values for clarity of presentation. As expected, a diversity gain of two is achieved in all

cases irrespective of the number of sources. Furthermore, in accordance with Remark 3, we observe

that for γ̄R = γ̄ the network–coding gain increases only logarithmically with Ns. In addition, as γ̄R

decreases (i.e., the R→ D link becomes the bottleneck link), the network–coding gain becomes less

dependent on Ns and is rendered practically independent of Ns for low enough γ̄R. We also note that

although increasing Ns results in some BER performance degradation, in general, this loss is more

than compensated by the associated gain in throughput (cf. Remark 1).

5.2 Performance Optimization

As discussed in Remark 2, the performance of NCCD systems with non–binary modulation can be

improved by optimizing the constellation mapping µX . The optimal mapping depends on the qualities

of the different channels. As an example, we consider two different channel quality settings for a

NCCD system with Ns = 2: Case I with γ̄f1
= γ̄f2

= γ̄R = γ̄, γ̄g1
= γ̄g2

= γ̄ + 30 dB and Case

II with γ̄f1
= γ̄f2

= γ̄g1
= γ̄g2

= γ̄, γ̄R = γ̄ − 30 dB. For both cases, we performed a search over

all possible constellation mappings for 8–PSK and 16–QAM modulation to find the mapping which

minimizes the asymptotic SER in (27), respectively. The results for this search along with a natural

mapping for both constellations are shown in Figs. 5 and 6. We note that in both cases the optimal

mapping is not unique as rotations of the mapping do not affect performance.

For the 16–QAM mappings in Fig. 6, the simulated and asymptotic SERs are shown in Fig. 7

as functions of γ̄. Fig. 7 reveals that for non–binary signal constellations the agreement between

simulation results and analytical results is not as good as for BPSK modulation. The reason for the

discrepancy is the union bound in (5), which, despite the employed expurgation, still overestimates

the SER to some extent. Nevertheless, for both considered cases the analytical SER upper bound

accurately predicts the performance difference between the optimal and natural mappings, suggesting
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that this upper bound is a useful tool for optimization of the constellation mapping. As can be

observed from Fig. 7, in both considered cases a performance gain of 1 dB is achieved by the optimal

mapping compared to the natural mapping.

For the 8–PSK mappings shown in Fig. 5, the optimal mappings achieve performance gains of 0.8

dB compared to the natural mapping for Cases I and II. However, in the interest of space, we do not

show corresponding SER results.

In Fig. 8, we consider the min–max fair OPA described in Section 4 for an NCCD system with

BPSK, Ns = 2, Ωf1
= Ωg1

= 1, Ωf2
= Ωg2

= 50, ΩR = 200, and σ2
nD,i

= σ2
nR,i

= σ2
nD,R

, σ2. In

order to investigate the maximum benefits of OPA, we omit the per–node power constraints (33c)

and (33d) in (35) by letting Pi,max = ∞, i ∈ {1, 2}, and PR,max = ∞. The individual BERs of

both sources Si, i ∈ {1, 2} as well as the average BER of both sources are shown as functions of

Pt/σ
2 for OPA (P1 = 0.87 × Pt, P2 = 0.10 × Pt, PR = 0.03 × Pt) and equal power allocation EPA

(P1 = P2 = PR = Pt/3), respectively. Since S1 has a weaker channel, and therefore a higher BER

compared to S2, OPA aims at minimizing the BER of S1 and improves the corresponding BER by 3.5

dB. This performance improvement is achieved by allocating more power to S1 compared to S2 and

the relay, and at the expense of a small degradation in the BER of S2. However, the BER degradation

suffered by S2, if OPA is applied instead of EPA, is small compared to the gain experienced by S1.

Consequently, OPA also improves the average BER by 3.2 dB over EPA.

6 Conclusions

In this paper, we studied NCCD systems employing GF(2m) network coding and developed a simple

generalized C–MRC scheme which achieves the maximum diversity of the considered system even

if erroneous decisions at the relay are taken into account. Assuming independent Rayleigh fading

for all links in the network, we derived closed–form expressions for the asymptotic SER and BER

of the considered NCCD system. These simple and elegant expressions provide insight into the

impact of various system and channel parameters on performance and can be exploited for design and

optimization of NCCD systems. Simulation results confirmed the accuracy of the presented asymptotic

SER and BER results and facilitated the following insights: 1) The performance loss of generalized

C–MRC compared to optimal ML combining is negligible. 2) All sources achieve a diversity gain of

two irrespective of the number of sources while the source dependent network–coding gain is affected

by various system and channel parameters. 3) Both constellation mapping optimization and optimal

power allocation can considerably improve the performance of NCCD systems.
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Appendix

In this appendix, we provide Lemmas 1–4 and prove Propositions 1 and 2.

Lemma 1: The asymptotic behavior of Φfi
(s), 1 ≤ i ≤ Ns, for γ̄fi

→ ∞ is given by

Φfi
(s) ⊜

1

d2
i s(1 − s)γ̄fi

(36)

for di , |xi − x̃i| 6= 0 and Φfi
(s) ⊜ 1 for di = 0.

Proof. This result can be proved following the same steps as in [18, Section IV.A]. A detailed proof

is omitted here because of space limitations. �

Lemma 2: The asymptotic behavior of Φe
R,j(x̂R; s) , Eγg,γR,n̄D,R

{

βQ
(
√

2α γgj

)

e−sλR∆R(xR,x̃R,x̂R)
}

for γ̄gi
→ ∞, 1 ≤ i ≤ Ns, γ̄R → ∞ is given by

Φe
R,j(x̂R; s) ⊜

1

π

∫ π/2

0

β

γ̄gj
(d̄R(x̂R)s+ α

sin2 θ
)

dθ, (37)

where d̄R(x̂R) , |x̃R − x̂R|2 − |xR − x̂R|2.
Proof. Using the alternative representation of the Q–function, Q(x) = 1

π

∫ π/2

0
e−x2/ sin2 θdθ, we can

write

Φe
R,j(x̂R; s) =

β

π

∫ π/2

0

En̄D,R

{

Φ(s, θ)
}

dθ, (38)

where Φ(s, θ) , Eγg,γR

{

e−
α γgj

sin2 θ e−sλR∆R(xR,x̃R,x̂R)
}

. Furthermore, from (12) we have

λR∆R(xR, x̃R, x̂R) = γm d̄R(x̂R) +
2γm√
γR

dR ℜ{n̄∗
D,R}, (39)

with γm , min{γeq, γR}. Using the Taylor series expansion ex =
∑∞

i=0 x
i/i! leads to

Φ(s, θ) =

∞
∑

i=0

2iηi

(2i)!
|n̄D,R|2is2i Ψi(s, θ), (40)

with ηi ,
Γ(i+1/2)√
πΓ(i+1)

and

Ψi(s, θ) , Eγg,γR

{

e−(γm d̄R(x̂R)s+
α γgj

sin2 θ
)

(

γm dR√
γR

)2i}

=
d2i

R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(γm d̄R(x̂R)s+
α γgj

sin2 θ
) γ2i

m γ−i
R e−γgj

/γ̄gj e−γR/γ̄R e−γu/γ̄u dγgj
dγR dγu. (41)

The auxiliary RV γu in (41) is defined as γu , min1≤i≤Ns

i6=j
{γgi

}, and is thus an exponentially dis-

tributed RV with mean γ̄u =
(
∑Ns

i=1
i6=j

γ̄−1
gi

)−1
. Based on the definition of γm, we therefore have

γm = min{γgj
, γu, γR}. It can be shown that among the three possible cases γm = γR, γm = γu, and
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γm = γgj
, the latter dominates the asymptotic behavior of Ψi(s) (the proof is omitted due to space

limitations). Consequently, we can write Ψi(s) ⊜ Ψ1
i (s) + Ψ2

i (s), where Ψ1
i (s) and Ψ2

i (s) correspond

to the two cases γgj
≤ γR ≤ γu and γgj

≤ γu ≤ γR, respectively, and are defined as

Ψ1
i (s, θ) ,

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
γ2i

gj

∫ ∞

γgj

dγue
−γu/γ̄u

∫ γu

γgj

dγRe−γR/γ̄Rγ−i
R (42)

and

Ψ2
i (s, θ) ,

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
γ2i

gj

∫ ∞

γgj

dγue
−γu/γ̄u

∫ ∞

γu

dγRe−γR/γ̄Rγ−i
R . (43)

In the following, we investigate the asymptotic behavior of Ψ1
i (s, θ) and Ψ2

i (s, θ) for γ̄gj
, γ̄u, γ̄R → ∞,

respectively. For Ψ1
i (s, θ), according to (42), we can write

Ψ1
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

×
∫ ∞

γgj

dγue
−γu/γ̄u

[

γ̄1−i
R Γ(1 − i, γgj

/γ̄R) − γ̄1−i
R Γ(1 − i, γu/γ̄R)

]

. (44)

To determine the asymptotic behavior of Ψ1
i (s, θ) we consider the three cases i > 1, i = 1, and

i = 0, respectively, and exploit the asymptotic properties of the incomplete Gamma function Γ(·, z)
for z → 0 [19]

Γ(−κ, z) ⊜

{

(−1)κ

κ!
(ψ(κ+ 1) − log z) + z−κ

κ
κ ≥ 1

− log z − γ κ = 0
(45)

In particular, for i > 1 from (45) we have Γ(1 − i, γgj
/γ̄R) ⊜ 1/(i− 1)(γgj

/γ̄R)1−i. Therefore, (44)

reduces to

Ψ1
i (s, θ) ⊜

d2i
R

γ̄gj
γ̄Rγ̄u(i− 1)

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

(

γ1−i
gj
γ̄u − γ̄2−i

u Γ(2 − i, γgj
/γ̄u)

)

⊜ o
(

γ̄−1
gj
γ̄−1

R

)

, (46)

where we have again used (45) to obtain the last asymptotic equality.

For i = 1, we have Γ(0, γgj
/γ̄R) ⊜ − log(γgj

/γ̄R), and therefore, (44) can be written as

Ψ1
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2
gj

[

∫ ∞

γgj

dγu log γue
−γu/γ̄u − log(γgj

)γ̄u

]

⊜o
(

γ̄−1
gj
γ̄−1

R log(γ̄u)
)

. (47)

Finally, for i = 0, Γ(1, γeq/γ̄R) ⊜ 1 is valid and therefore after using an appropriate transformation of

variables in (42), we arrive at

Ψ1
i (s, θ) =

1

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγu

∫ γu

0

dγR

∫ γR

0

dγgj
e−(γgj

d̄R(x̂R)s+
α γgj

sin2 θ
)e−γgj

/γ̄gj e−γR/γ̄R e−γu/γ̄u

=
γ̄u

γ̄gj
(γ̄R + γ̄u)

(

d̄R(x̂R)s+ α
sin2 θ

) . (48)
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For Ψ2
i (s, θ), we first write (43) as

Ψ2
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

∫ ∞

γgj

dγue
−γu/γ̄u γ̄1−i

R Γ(1 − i, γu/γ̄R). (49)

Using an approach similar to that used in obtaining the asymptotic Ψ1
i (s, θ), for i > 1, we have

Ψ2
i (s, θ) ⊜

d2i
R

γ̄gj
γ̄Rγ̄u(i− 1)

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

(γ̄2−i
u Γ(2 − i, γgj

/γ̄u)), (50)

which leads to Ψ2
i (s, θ) ⊜ o

(

γ̄−1
gj
γ̄−1

R γ̄−1
u

)

for i > 2 and Ψ2
i (s, θ) ⊜ o

(

γ̄−1
gj
γ̄−1

R γ̄−1
u log(γ̄u)

)

for i = 2.

Furthermore, for i = 1 and i = 0, we obtain

Ψ2
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2
gj

[

∫ ∞

γgj

dγue
−γu/γ̄u log(γu) − γ̄u log(γ̄R)

]

⊜ o
(

γ̄−1
gj
γ̄−1

R

)

(51)

and

Ψ2
i (s, θ) =

1

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγR

∫ γR

0

dγu

∫ γu

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
e−γR/γ̄R e−γu/γ̄u

⊜
γ̄R

γ̄gj
(γ̄R + γ̄u)

(

d̄R(x̂R)s+ α
sin2 θ

) , (52)

respectively. As a result, based on (46)–(48) and (50)–(52) we obtain Ψi(s, θ) ⊜ Ψ1
i (s, θ) + Ψ2

i (s, θ)

as

Ψi(s, θ) ⊜



















o
(

γ̄−1
gj
γ̄−1

R

)

i > 1

o
(

γ̄−1
gj
γ̄−1

R log(γ̄u)
)

i = 1
1

γ̄gj

(

d̄R(x̂R)s+ α

sin2 θ

) i = 0

(53)

Substituting this result into (40) leads to (37) upon using (38). �

Lemma 3: The asymptotic behavior of I(s) , Eγeq,γR,n̄D,R

{

e−sλR∆R(xR,x̃R,xR)
}

for γ̄gi
→ ∞, 1 ≤

i ≤ Ns, γ̄R → ∞ is given by

I(s) ⊜
1

γ̄eqd
2
Rs

− 1

γ̄Rd
2
Rs(s− 1)

(54)

for dR 6= 0, while I(s) = 1 is valid for dR = 0.

Proof. Since from (39) we have λR∆R(xR, x̃R, xR) = γm d
2
R + 2γm√

γR
dR ℜ{n̄∗

D,R}, we conclude that

I(s) = 1 is valid for dR = 0. For dR 6= 0 we use Taylor series expansion ex =
∑∞

i=0 x
i/i! to write

I(s|n̄D,R) , Eγeq,γR
{e−sλR∆R(xR,x̃R,xR)} as

I(s|n̄D,R) = En̄D,R

{ ∞
∑

i=0

2iηi

(2i)!
|n̄D,R|2is2i Υi(s, θ)

}

, (55)
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where

Υi(s, θ),Eγeq,γR

{

e−γm d2
Rs

(

γm dR√
γR

)2i
}

=
d2i

R

γ̄eqγ̄R

∫ ∞

0

∫ ∞

0

e−γm d2
Rs γ2i

m γ−i
R e−γeq/γ̄eq e−γR/γ̄R dγeq dγR.

(56)

Splitting the inner integration interval in (56) into two intervals [0, γeq), [γeq,∞) yields Υi(s, θ) =

Υ1
i (s, θ) + Υ2

i (s, θ) where

Υ1
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqe
−γeq/γ̄eq

∫ γeq

0

dγR γ
i
R e−(γR d2

Rs+γR/γ̄R) (57)

and

Υ2
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqγ
2i
eqe

−γeq(d2
Rs+1/γ̄eq)

∫ ∞

γeq

dγR γ
−i
R e−(γR/γ̄R). (58)

In the following, we determine the asymptotic behavior of Υ1
i (s, θ) and Υ2

i (s, θ), respectively, for

γ̄eq, γ̄R → ∞. For Υ1
i (s, θ), we write (57) as

Υ1
i (s, θ) =

i!

γ̄R d2
Rs

i+1
− d2i

R

γ̄eqγ̄R

i
∑

k=0

∫ ∞

0

i! γk
eq e(d2

Rs+1/γ̄R+1/γ̄eq)γeq

k! (d2
Rs+ 1/γ̄R)

i−k+1
dγeq ⊜

i!

γ̄R d2
Rs

i+1
. (59)

For Υ2
i (s, θ), we first express (58) as

Υ2
i (s, θ) =

di
R

γ̄eqγ̄i
R

∫ ∞

0

dγeqγ
2i
eqe

−γeq(d2
R

s+1/γ̄eq) Γ(1 − i, γeq/γ̄R). (60)

Following steps similar to those used in Lemma 2 to obtain the asymptotic behavior of Ψ2
i (s, θ) we

arrive at

Υ2
i (s, θ) ⊜















o
(

γ̄−1
eq γ̄

−1
R

)

i > 1
2 log(γ̄R)

d6
R

s3γ̄eqγ̄R
i = 1

1
γ̄eqd2

R
s

i = 0

(61)

For Υi(s, θ) = Υ1
i (s, θ) + Υ2

i (s, θ), we get with (59) and (61)

Υi(s, θ) ⊜







i!
γ̄R d2

R
si+1 i ≥ 1

1
d2

R
s

(

1
γ̄eq

+ 1
γ̄R

)

i = 0
(62)

Substituting (62) in (55) results in

I(s|n̄D,R) =
1

d2
Rs

(

1

γ̄eq

+
1

γ̄R

)

+
1

d2
Rsγ̄R

∞
∑

i=1

2ii!ηi

(2i)!
|n̄D,R|2isi =

1

d2
Rsγ̄eq

+
e|n̄D,R|2s

d2
Rsγ̄R

, (63)

where we have used ηi = (2i)!
2i(i!)2

. Finally, averaging I(s|n̄D,R) over the Rayleigh distributed RV |n̄D,R|
leads to (54). �
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Lemma 4: The asymptotic behavior of Φc
R(s) , Eγeq,γR,n̄D,R

{

(1 − βQ(
√

2α γeq))e
−sλR∆R(xR,x̃R,xR)

}

for γ̄gi
→ ∞, 1 ≤ i ≤ Ns, γ̄R → ∞ is given by

Φc
R(s) ⊜

1

π

∫ π/2

0

(

2

γ̄eqd
2
Rs

− 2

γ̄Rd
2
Rs(s− 1)

− β

γ̄eqd
2
R(s+ α

sin2 θ d2
R

)

)

dθ (64)

for dR 6= 0, while Φc
R(s) ⊜ 1 is valid for dR = 0.

Proof. We first note that Φc
R(s) = I(s)−∑Ns

j=1 Φe
R,j(xR; s), where we have employed Q(

√

2α γeq) ≈
∑Ns

i=1Q(
√

2α γgi
) which is valid for γ̄gi

→ ∞, 1 ≤ i ≤ Ns. For dR 6= 0, combining (37) and (54)

readily results in (64). For dR = 0 from (37) and (54) we obtain Φc
R(s) ⊜ 1− 1

πγ̄eq

∫ π/2

0
β sin2 θ

α
dθ ⊜ 1.

�

Proof. [Proposition 1] Based on Lemma 1, Φfi
(s) can be written as Φfi

(s) ⊜ k̃1/γ̄ for xi 6= x̃i and

Φfi
(s) ⊜ 1 for xi = x̃i, where k̃1 is a finite (positive) constant. Furthermore, using Lemmas 2 and

4 in (15) yields ΦR(s) ⊜ k̃2/γ̄ for xR 6= x̃R, where k̃2 is a finite (positive) constant, and ΦR(s) ⊜ 1

for xR = x̃R. Therefore, based on (13) we conclude that Gd,PEP is given by the number of non–zero

elements of vector [x1 − x̃1, · · · , xNs
− x̃Ns

, xR − x̃R]T . Since µX : A → X is a one–to–one mapping

function, Gd,PEP is alternatively given by the Hamming distance between the transmit symbol vectors

se and s̃e denoted by dH(x, x̃). To show that dH(x, x̃) ≥ 2, we first note that by definition we

have x 6= x̃, and therefore si 6= s̃i is valid for i ∈ I, where I is a non–empty index set. For

|I| ≥ 2, dH(x, x̃) ≥ 2 immediately follows. For |I| = 1 it is easy to see that sR 6= s̃R, resulting in

dH(x, x̃) = 2. �

Proof. [Proposition 2] For a given transmit signal vector x, set Ci(x) in (26) can be partitioned

into Ns disjoints sets Cl
i(x), 1 ≤ l ≤ Ns, i.e., Ci(x) =

⋃Ns

l=1 Cl
i(x), where Cl

i(x) is defined in (30).

Therefore, using (5) and (26) the asymptotic SER can be approximated as

P i
s ⊜

1

MNs

∑

x∈XNs

Ns
∑

l=1

∑

x̃∈Cl
i(x)

P (x → x̃). (65)

For x̃ ∈ Ci
i(x), the asymptotic PEP can be obtained from (20) and (22) as

P (x → x̃) ⊜
1

γ̄fi

(

φg
c (x, x̃)

Ns
∑

j=1

1

γ̄gj

+
φR

c (x, x̃)

γ̄R

)

+
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

φe(x, x̃, x̂R)

γ̄fi
γ̄gj

. (66)

For x̃ ∈ Cl
i(x), l 6= i, using (24) and (25) yields

P (x → x̃) ⊜
φ̄c(x, x̃)

γ̄fi
γ̄fl

+

Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

φ̄e(x, x̃, x̂R)

γ̄fi
γ̄fl
γ̄gj

⊜
φ̄c(x, x̃)

γ̄fi
γ̄fl

. (67)

Eq. (27) can be obtained by combining (65)–(67). �
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Figure 1: Block diagram of the considered NCCD system. Solid and dashed lines denote links

belonging to first and second hop, respectively.
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Figure 2: BER of a symmetric NCCD system with Ns = 2 sources and BPSK modulation

vs. γ̄ for various channel quality settings (γ̄f , γ̄g, γ̄R). Solid lines with markers: Simulated BER.

Dashed lines: Asymptotic BER approximation. Dash–dotted lines: Simulated BER for ML

combining at the destination.
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Figure 3: BER of an asymmetric NCCD system with Ns = 4 sources and BPSK modulation

vs. γ̄. Solid lines with markers: Simulated BER. Dashed lines: Asymptotic BER approximation.

Dash–dotted lines: Simulated BER for ML combining at the destination.
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Figure 4: BER of an NCCD system with BPSK modulation vs. γ̄ for different Ns. Solid lines

with markers: Simulated BER. Dashed lines: Asymptotic BER approximation.
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Figure 5: 8–PSK signal constellation with three different constellation mappings µX :

A → X . (a) Natural mapping, (b) Optimal mapping for Case I, and (c) Optimal

mapping for Case II.
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Figure 6: 16–QAM signal constellation with three different constellation mappings

µX : A → X . (a) Natural mapping, (b) Optimal mapping for Case I, and (c) Optimal

mapping for Case II.
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Figure 7: SER of an NCCD system with 16–QAM modulation, Ns = 2, and the optimal

and natural mappings depicted in Fig. 6 vs. γ̄. Two channel quality settings are considered

(Case I and Case II). Solid lines with markers: Simulated SER. Dashed lines: Asymptotic SER

approximation for natural mapping. Dash–dotted lines: Asymptotic SER approximation for

optimal mapping.
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Figure 8: BER of an NCCD system with Ns = 2 and BPSK modulation vs. Pt/σ
2 for max–min

fair OPA and EPA. Solid lines with markers: Simulated BER. Dashed lines: Asymptotic BER

approximations.


