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In this paper, we study network–coded cooperative diversity (NCCD) systems comprising multiple

sources, one relay, and one destination where the relay detects the packets received from all sources

and performs Galois field network coding. We develop a simple cooperative maximum–ratio combining

scheme for the destination which performs close to the optimal maximum–likelihood combining and

achieves the maximum diversity gain available in the system. Furthermore, we provide a mathematical

framework for performance analysis of NCCD systems for high signal–to–noise ratios in Rayleigh fading.

Based on this framework, we derive simple and elegant closed–form expressions for the asymptotic

symbol and bit error rates of NCCD systems. The derived error rate expressions are valid for arbitrary

number of sources, constellation mappings and modulations, and provide significant insight into the

impact of various system and channel parameters on performance. These expressions can also be

exploited for mapping optimization as well as for various practically relevant NCCD system optimization

problems such as optimal power allocation, relay selection, and relay placement. Simulation results

confirm the accuracy of the presented analysis and reveal that the performance of NCCD systems can

be considerably improved by optimizing the constellation mapping and the power allocation based on

the developed analytical results.
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1 Introduction

Cooperative diversity (CD) is an effective technique to exploit the spatial diversity offered by wireless

relay nodes. The main drawback of CD schemes is a reduction in throughput as in such systems dif-

ferent cooperating terminals use orthogonal channels for transmission [1]. This throughput reduction

is most noticeable in CD systems with multiple source terminals, since the relays forward the signals

received by different sources in separate orthogonal channels. As a result each relay can serve only a

single source in a given channel slot, and therefore the available channel resources may not be shared

among different sources.

One effective approach to increase the throughput in multi–source CD systems is network cod-

ing over Galois fields (GFs) [2]–[4]. The idea of network coding was originally developed for wired

networks as an efficient routing technique capable of enhancing the network throughput [5]. As this

throughput enhancement is achieved by allowing the network relays to simultaneously serve multiple

source terminals, the network coding technique is a promising candidate to overcome the throughput

bottle–neck in CD systems.

The combination of CD and GF network coding, which is referred to as network–coded CD (NCCD)

in this work, has received considerable attention recently. In particular, the outage capacity of such

systems was calculated in [2, 3], and their diversity–multiplexing tradeoff was analyzed in [4]. In

[6], for a network coding system featuring the algebraic superposition of channel codes and iterative

decoding at the destination optimal channel codes were designed based on an ad–hoc code search

approach. The diversity order of a NCCD system employing distributed error–correcting codes was

analyzed in [7], and it was shown that a maximum diversity order equal to the minimum distance of

the employed error–correcting code can be achieved. In addition to GF network coding, physical–layer

network coding (PNC) and complex field network coding (CFNC) have been proposed for CD systems

in [8] and [9], respectively, which provide additional throughput enhancement but at the cost of high

pick–to–average power ratios and stringent time–synchronization requirements.

Common to the works on NCCD systems is the fact that network coding is performed over

the GF of order two, thereby limiting the adopted modulation schemes to binary. Furthermore, a

general and accurate error rate analysis giving insight into the performance of NCCD systems is not

available in the literature. Motivated by this, in this paper, we investigate the error rate performance

of a NCCD system with multiple sources employing general M–ary modulation, one relay, and one

destination. To develop a simple combining scheme for the destination which yields a performance

close to that of the optimal maximum–likelihood (ML) combining and is also amenable to performance
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analysis, we generalize the cooperative maximum–ratio combining (C–MRC) scheme in [10] proposed

for conventional CD systems. For the resulting NCCD system we derive simple and elegant closed–

form expressions for the asymptotic symbol and bit error rates in Rayleigh fading. These closed–form

expressions give valuable insight into the impact of various system and channel parameters such as

the number of sources and the signal–to–noise ratios (SNRs) of the involved wireless channels. For

example, our analytical results reveal that the achieved diversity gain for all source terminals is two

irrespective of the number of sources. The network–coding gain, however, depends on the number

of source terminals, the employed signal constellation and constellation mapping, and the relevant

link qualities. Furthermore, mapping optimization as well as various other NCCD system optimization

problems such as optimal power allocation, relay selection, and relay placement can be formulated

and solved based on the derived error rate expressions.

The remainder of this paper is organized as follows. In Section 2, the system model for the

considered NCCD system as well as some notations and definitions are introduced. Asymptotic

expressions for the symbol error rate (SER) and the bit error rate (BER) are derived in Section 3.

Optimization of NCCD systems in considered in Section 4 and numerical and simulation results are

presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Preliminaries

In this section, we describe the model for the considered NCCD system and introduce some notations

and definitions.

2.1 Notations and Definitions

In this paper, [·]T , (·)∗, ℜ{·}, Ex{·}, and Γ(·), denote transposition, complex conjugation, the real

part of a complex number, statistical expectation with respect to x, and the Gamma function, re-

spectively. Q(x) , 1√
2π

∫∞
x
e−t2/2dt denotes the Gaussian Q–function. Furthermore, we use the

notation u ⊜ v to indicate that u and v are asymptotically equivalent, and a function f(x) is o(g(x))

if limx→0 f(x)/g(x) = 0.

2.2 Signal Model

The considered NCCD system is depicted in Fig. 1 and comprises Ns source terminals Si, 1 ≤ i ≤ Ns,

one relay R, and one destination terminalD. Transmission from the source terminals to the destination

terminal is organized in two hops. The first hop comprises Ns orthogonal channel slots, e.g. Ns
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different time slots or frequency bands, where each source terminal Si, 1 ≤ i ≤ Ns, transmits its

corresponding data to the relay and the destination using one channel slot. In particular, a data symbol

si ∈ A is generated at the source Si, where A , GF(2m) is the GF of order M = 2m. This data

symbol is mapped to a transmit symbol xi ∈ X with E{|xi|2} = 1 using the mapping xi = µX (si),

where X denotes an M–ary signal constellation such as M–ary phase–shift keying (M–PSK) or M–

ary quadrature amplitude modulation (M–QAM), and µX : A → X is a one–to–one constellation

mapping function from A to X . The transmit symbols xi are then transmitted to the relay and the

destination. The signals received by the destination and the relay in the first hop are given by

rSiD =
√

Pi fi xi + nD,i, rSiR =
√

Pi gi xi + nR,i, (1)

for 1 ≤ i ≤ Ns, respectively, where Pi is the average transmit power of the ith source, and fi and

gi denote the fading gains of the Si → D and the Si → R channels, respectively. Furthermore, nD,i

and nR,i denote the additive white Gaussian noise (AWGN) samples at the destination and the relay

with variances σ2
nD,i

, E{|nD,i|2} and σ2
nR,i

, E{|nR,i|2}, respectively.

Having received the signals rSiR, the relay performs coherent ML detection to obtain the detected

symbols

x̂R,i = arg min
x̃∈X

{|rSiR −
√

Pi gi x̃|2}, 1 ≤ i ≤ Ns. (2)

The corresponding detected data symbol is given by ŝR,i = µ−1
X (x̂R,i) ∈ A.

The second hop comprises a single channel slot which is orthogonal to those employed in the first

hop. In particular, in the second hop the relay performs network coding and computes the data symbol

ŝR , ŝR,1 ⊕ · · · ⊕ ŝR,Ns
∈ A, where ⊕ denotes addition in GF(2m). The relay then forwards the

transmit symbol x̂R , µX (ŝR) ∈ X to the destination. The signal received at the destination in the

second hop, rRD, can be modeled as

rRD =
√

PR hR x̂R + nD,R, (3)

where PR is the average transmit power of the relay, hR is the fading gain of the R → D channel,

and nD,R is the AWGN at the destination in the second hop having variance σ2
nD,R

, E{|nD,R|2}.
Throughout this paper we assume independent Rayleigh fading for all links of the network. Thus,

the fading gains fi , afi
e−jθfi , hi , agi

e−jθgi , 1 ≤ i ≤ Ns, and hR , ahR
e−jθhR , are independent

Gaussian random variables (RVs) with zero mean and variances Ωfi
, E{|fi|2}, Ωgi

, E{|gi|2},
1 ≤ i ≤ Ns, and ΩR , E{|hR|2}, respectively. Here, the channel amplitudes afi

, agi
, and ahR

are

positive real RVs and follow a Rayleigh distribution. Furthermore, the channel phases θfi
, θgi

, and

θhR
are uniformly distributed in [−π, π) and are independent from the channel amplitudes.
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For future reference, we define the instantaneous SNRs of the Si → D, Si → R, and R → D

links as γfi
, Pi a

2
fi
/σ2

nD,i
, γgi

, Pi a
2
gi
/σ2

nR,i
, and γhR

, PR a
2
hR
/σ2

nR
, respectively. The correspond-

ing average SNRs are given by γ̄fi
= Pi Ωfi

/σ2
nD,i

, γ̄gi
= Pi Ωgi

/σ2
nR,i

, and γ̄D,R = PR ΩR/σ
2
nD,R

,

respectively.

Remark 1: Based on the presented signal model, a total of Ns + 1 channel slots are required for

the transmission of signals from all sources to the destination. In contrast, a conventional CD system

[1, 10] requires 2Ns channel slots since the relay assists only a single source in a certain slot.

2.3 Equivalent Source–Relay Channel

In this subsection, we introduce an equivalent channel between the source terminals and the relay for

the considered NCCD system which will be particularly useful for developing the diversity combining

scheme in Section 2.4 and the performance analysis in Section 3. The input of this equivalent

channel, xR, is the relay transmit symbol in the absence of noise, i.e., xR , µX (sR) ∈ X with

sR , s1⊕· · ·⊕sNs
∈ A, and the output is the actual relay transmit symbol x̂R. Defining the source–

relay SNR vector γg , [γg1
, · · · , γgNs

]T , this channel is characterized by the equivalent error probability

Pe,eq(γg) , Pr{x̂R 6= xR}. For an M–ary signal constellation X , the equivalent error probability

Pe,eq(γg) is given by Pe,eq(γg) = βQ
(

√

2αγeq(γg)
)

, where α and β are two modulation dependent

constants (e.g. α = β = 1 for BPSK). Furthermore, γeq(γg) is the instantaneous SNR associated with

the equivalent source–relay channel which can be expressed as γeq(γg) = 1
2α

(

Q−1(Pe,eq(γg)/β)
)2

.

It is not difficult to see that for sufficiently high SNR γeq(γg) can be accurately approximated as

γeq(γg) = min{γg1
, · · · , γgNs

}. As a result, since γgi
, 1 ≤ i ≤ Ns, is an exponentially distributed RV

with mean γ̄gi
, γeq(γg) is also exponentially distributed with mean γ̄eq = (1/γ̄g1

+ · · · + 1/γ̄gNs
)−1.

2.4 Diversity Combining at the Destination

ML combining can be employed at the destination to optimally combine the signals received from

the sources and the relay. However, due to the possibility of erroneous decisions at the relay, the

ML decision metric is highly complex and not amenable to analysis. In order to avoid the problems

associated with the ML metric, we generalize the C–MRC scheme proposed in [10] for conventional

CD to NCCD. As will be shown in Section 3, this simple C–MRC scheme performs close to the

ML combining and achieves the full diversity of NCCD systems with any number of sources. The
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corresponding decision metric for the generalized C–MRC can be written as

mc(x̃) =
Ns
∑

i=1

|rSiD −√
Pi fi x̃i|2

σ2
nD,i

+ λR
|rRD −√

PR hR x̃R|2
σ2

nD,R

(4)

Here, vector x̃ , [x̃1 . . . x̃Ns
]T ∈ XNs contains trial transmit symbols x̃i = µX (s̃i) ∈ X , 1 ≤ i ≤ Ns,

where s̃i ∈ A, 1 ≤ i ≤ Ns, are trial data symbols. Furthermore we have defined x̃R , µX (s̃R) ∈ X
with s̃R , s̃1 ⊕ · · ·⊕ s̃Ns

∈ A, and the weighting factor λR ∈ [0, 1] is defined as λR ,
min{γeq(γg),γR}

γR
.

For the case that all source–relay channels are perfect, λR = 1 is valid and, as expected, (4) reduces to

the conventional MRC. However, if at least one of the source–relay channels is not perfect, the metric

in (4) assigns a smaller weight λR < 1 to the signal received from the relay to take into account the

effect of possible erroneous decisions at the relay. We further note that in order to compute λR, the

destination has to know the SNR of the weakest source–relay channel. This SNR is available at the

relay for coherent detection and can be forwarded to the destination over a low–rate feedback link.

Based on (4) signal detection at the destination can be performed as x̂D = arg minx̃∈XNs{mc(x̃)},
where x̂D , [x̂D,1 . . . x̂D,Ns

]T ∈ XNs contains the detected symbols at the destination for all sources

and the corresponding decoded data symbols are obtained as ŝD,i , µ−1
X (x̂D,i) ∈ A, 1 ≤ i ≤ Ns.

We note that the data vectors s̃e , [s̃1, · · · , s̃Ns
, s̃R]T ∈ XNs+1 form an (Ns + 1, Ns) single–parity–

check block code over GF(2m). As a result, the signal detection at the destination can be efficiently

implemented using various well–known soft–decision decoding algorithms for block codes available

in the literature [11], e.g., Viterbi decoding based on the trellis representation of the corresponding

single–parity–check block code [12]. A detailed discussion of such algorithms, however, is beyond the

scope and limits of the current paper.

3 Performance Analysis

In this section, we analyze the error rate performance of the considered NCCD system for high

SNRs, i.e., γ̄fi
, γ̄gi

→ ∞, 1 ≤ i ≤ Ns, and γ̄R → ∞. In particular, we develop asymptotic

closed–form expressions for the (average) pairwise error probability (PEP), SER, and BER. For con-

venience, we introduce the source–destination SNR vector γf , [γf1
, · · · , γfNs

]T , the normalized

noise samples n̄D,i , nD,i/σnD,i
, 1 ≤ i ≤ Ns, and n̄D,R , nD,R/σnD,R

, and the noise vector

n , [n̄D,1, · · · , n̄D,Ns
, n̄D,R]T .

For the ith source the SER, P i
s , can be accurately upper–bounded using a union–bound on the

pairwise error probabilities as

P i
s =

1

MNs

∑

x∈XNs

∑

x̃∈Bi(x)

P (x → x̃), (5)
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where P (x → x̃) denotes the PEP associated with the pair (x, x̃) which is the probability that

x , [x1 · · ·xNs
]T ∈ XNs was transmitted by the sources and x̃ = [x̃1 · · · x̃Ns

]T ∈ XNs , x̃ 6= x,

was detected at the destination, assuming that x and x̃ are the only two possible decision outcomes.

Furthermore, the set Bi(x) in (5) is defined as

Bi(x) ,
{

x̃|x̃j ∈ X − {xj}, j = i, x̃j ∈ X , j 6= i
}

. (6)

In the following, we first derive an asymptotic expression for the PEP in Subsection 3.1 and then use the

obtained result to develop closed–form expressions for the asymptotic SER and BER in Subsection 3.2.

3.1 Asymptotic Pairwise Error Probability

The PEP for the considered NCCD system can be expressed as

P (x → x̃) = Pr{mc(x) > mc(x̃)}. (7)

It is convenient to first obtain the PEP conditioned on the instantaneous SNRs γf , γg, γR, and

the noise vector n. To drive such an expression we assume that among the transmit signals xj,

1 ≤ j ≤ Ns, at most one is received in error at the relay. Furthermore, we assumed that if the

transmit signal xj is received erroneously, the erroneous x̂R,j at the relay is a nearest neighbor of xj,

i.e., x̂R,j ∈ N (xj), where set N (x) contains all nearest neighbors of x in X . These approximations

are well justified for γ̄gj
→ ∞, 1 ≤ j ≤ Ns, and their accuracy will be confirmed by simulations in

Section 5. Based on these assumptions the desired conditional PEP can be expressed as

P
(

x → x̃|γf ,γg, γR,n
)

= Pr
{

x̂R = xR

}

P
(

x → x̃|xR,γf , γeq, γR,n
)

+
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

β Q(
√

2α γgj
)P
(

x → x̃|x̂R,γf , γeq, γR,n
)

, (8)

where

Dj(x) ,
{

µX
(

µ−1
X (x̄1) ⊕ · · · ⊕ µ−1

X (x̄Ns
)
) ∣

∣x̄ν ∈ N (xν), ν = j, x̄ν = xν , ν 6= j
}

. (9)

Here, for a given transmit vector x the set Dj(x) collects all possible values for x̂R assuming that xj

is received in error at the relay while xi, i 6= j, are received correctly. Furthermore, the conditional

PEP P
(

x → x̃

∣

∣x̄R,γf , γeq, γR,n
)

, x̄R ∈ {xR, x̂R}, can be written as

P
(

x → x̃

∣

∣x̄R,γf , γeq, γR,n
)

= Pr
{

mc(x) > mc(x̃)
∣

∣x̄R,γf , γeq, γR,n
}

= Pr

{ Ns
∑

i=1

∆fi
(xi, x̃i)+λR∆R(xR, x̃R, x̄R)< 0

∣

∣

∣
γf , γeq, γR,n

}

, (10)
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where

∆fi
(xi, x̃i) , |√γfi

(x̃i − xi) + n̄D,i|2 − |n̄D,i|2, (11)

and

∆R(xR, x̃R, x̄R) , |√γR(x̃R − x̄R) + n̄D,R|2 − |√γR(xR − x̄R) + n̄D,R|2. (12)

For derivation of the unconditional PEP, we exploit that for any RV ∆ we have Pr {∆ < 0} =

1
2πj

∫ c+j∞
c−j∞ Φ∆(s)ds

s
with moment generating function (MGF) Φ∆(s) , E∆{e−∆s} and use the fact

that Pr{x̂R = xR} = 1 − Pe,eq(γg) = 1 − βQ
(√

2α γeq

)

, cf. Subsection 2.3. Using these relations,

we obtain the unconditional PEP from (8) and (10) as

P (x → x̃) = Eγf ,γg ,γR,n

{

P
(

x → x̃|γf ,γg, γR,n
)}

=
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

ΦR(s)
ds

s
, (13)

where c is a small positive constant that lies in the region of convergence of the integrand and

Φfi
(s) , Eγfi

,n̄D,i
{e−s∆fi

(xi,x̃i)}, (14)

ΦR(s) , Φc
R(s) +

Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

Φe
R,j(x̂R; s). (15)

with Φe
R,j(x̂R; s) and Φc

R(s) defined in Lemmas 2 and 4 in the Appendix, respectively. Based on (13)

and (15) the PEP can be written as

P (x → x̃) = Pc(x, x̃) +
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

Pe,j(x, x̃, x̂R) (16)

where

Pc(x, x̃) ,
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

Φc
R(s)

ds

s
, (17)

and

Pe,j(x, x̃, x̂R) ,
1

2πj

c+j∞
∫

c−j∞

( Ns
∏

i=1

Φfi
(s)

)

Φe
R,j(x̂R; s)

ds

s
. (18)

To facilitate the calculation of the asymptotic PEP, we now present the following proposition which

sheds some light on the asymptotic characteristics of the PEP P (x → x̃) (refer to the Appendix for

a proof).

Proposition 1: Assume without loss of generality that γ̄fi
= ζfi

γ̄, γ̄gi
= ζgi

γ̄, 1 ≤ i ≤ Ns, and

γ̄R = ζRγ̄, where ζfi
, ζgi

and ζR are finite (positive) constants, which are independent of γ̄, and
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define the diversity gain associated with the PEP as Gd,PEP , − limγ̄→∞ log (P (x → x̃)) / log(γ̄).

The diversity gain is then given by Gd,PEP = dH(x, x̃), where dH(x, x̃) denotes the Hamming

distance between data vector se , [s1, · · · , sNs
, sR]T ∈ XNs+1 and s̃e = [s̃1, · · · , s̃Ns

, s̃R]T ∈ XNs+1.

Furthermore, for all possible pairs (x, x̃) we have dH(x, x̃) ≥ 2.

The above proposition reveals that for calculation of the asymptotic SER based on (5), only error

events with dH(x, x̃) = 2 should be included since error events with dH(x, x̃) > 2 yield a higher

diversity gain and thus, their contribution to the asymptotic SER is negligible. We therefore in the

following calculate the asymptotic PEP only for error events with dH(x, x̃) = 2. For clarity, we

consider the cases xR 6= x̃R and xR = x̃R separately.

Case 1, xR 6= x̃R): It is easy to see that in this case dj , |xj − x̃j|, 1 ≤ j ≤ Ns, is non–zero only

for a single value of the index j, i.e., we have dj 6= 0, j = i, and dj = 0, j 6= i. As a result, from

Lemma 1 we obtain Φfj
(s) ⊜ 1

4s(1−s)γ̄fj

, j = i and Φfj
(s) ⊜ 1, j 6= i. Therefore, using (17) and

Lemma 4 we arrive at

Pc(x, x̃) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i s(1 − s)γ̄fi

(

2

γ̄eqd2
Rs

+
2

γ̄Rd2
Rs(1 − s)

− β

γ̄eqd2
R(s+ α

sin2 θ d2
R

)

)

ds

s
dθ.

(19)

The inner complex integral in (19) can be calculated using the standard inverse Laplace transform

techniques such as partial fraction expansion. This yields

Pc(x, x̃) ⊜
1

γ̄fi

(

φg
c (x, x̃)

Ns
∑

i=1

1

γ̄gi

+
φR

c (x, x̃)

γ̄R

)

, (20)

where

φg
c (x, x̃) ,

2 − β + β α√
α2+α d2

R

2d2
i d

2
R

, φR
c (x, x̃) ,

3

d2
i d

2
R

. (21)

Furthermore, from (18) and Lemma 2 we have

Pe,j(x, x̃, x̂R) ⊜
β

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i s

2(1 − s)
(

d̄R(x̂R)s+ α
sin2 θ

)

γ̄fi
γ̄gj

ds dθ =
φe(x, x̃, x̂R)

γ̄fi
γ̄gj

, (22)

with

φe(x, x̃, x̂R) =







β
2d2

i d̄R(x̂R)
− β α

2d2
i d̄R(x̂R)

√
α2+α d̄R(x̂R)

d̄R(x̂R) > 0

β
4αd2

i

− 3βd̄R(x̂R)

16d2
i α2 d̄R(x̂R) ≤ 0

(23)

Case 2, xR = x̃R): In this case dj is non–zero for two values of the index j, i.e., we have dj 6= 0,
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j = i1, i2, and dj = 0, otherwise. Using Lemma 1 then results in Φfj
(s) ⊜ 1

4s(1−s)γ̄fj

, j = i1, i2, and

Φfj
(s) ⊜ 1, otherwise. Furthermore, in this case dR = 0 is valid, and therefore based on Lemma 4

we obtain Φc
R(s) ⊜ 1. Thus, using (17) we can write

Pc(x, x̃) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

1

d2
i1
d2

i2
s3(1 − s)2 γ̄fi1

γ̄fi2

ds dθ =
φ̄c(x, x̃)

γ̄fi1
γ̄fi2

, (24)

with φ̄c(x, x̃) , 3
d2

i1
d2

i2

. Furthermore, from (18) and Lemma 2 we obtain

Pe,j(x, x̃, x̂R) ⊜
1

2π2j

∫ π/2

0

c+j∞
∫

c−j∞

β

d2
i1
d2

i2
s3(1 − s)2

(

d̄R(x̂R)s+ α
sin2 θ

)

γ̄fi1
γ̄fi2

γ̄gj

ds dθ =
φ̄e(x, x̃, x̂R)

γ̄fi1
γ̄fi2

γ̄gj

,

(25)

where φ̄e(x, x̃, x̂R) is a (positive) finite constant which depends on x, x̃, and x̂R.

With these asymptotic expressions for Pc(x, x̃) and Pe,j(x, x̃, x̂R) at hand, a closed–form expres-

sion for the asymptotic PEP can be calculated based on (16).

3.2 Asymptotic SER and BER

In order to obtain an expression for the asymptotic SER, we first expurgate the union–bound in (5)

according to proposition 1. In particular, we only include the error events with dH(x, x̃) = 2 in

the union–bound since the contribution of error events with dH(x, x̃) > 2 to the asymptotic SER is

negligible (cf. Proposition 1). This expurgation is accomplished by modifying the set Bi(x) in (6) as

Ci(x) ,
{

x̃|x̃j ∈ X − {xj}, j = i, x̃j ∈ X , j 6= i, dH(x, x̃) = 2
}

. (26)

We are now ready to state our main result. In particular, in the following proposition we use (5) and

(26) along with (16) to obtain a general expression for the asymptotic SER which is valid for arbitrary

number of sources, arbitrary signal constellations (modulations) and arbitrary constellation mappings

(refer to the Appendix for a proof).

Proposition 2: For the NCCD system described in Section 2, the asymptotic SER for the ith source

is given by

P i
s ⊜

1

γ̄fi

( Ns
∑

i=1

Cgi

γ̄gi

+
Ns
∑

j=1
j 6=i

Cfj

γ̄fj

+
CR

γ̄R

)

, (27)

where

Cgi
,

1

MNs

∑

x∈XNs

∑

x̃∈Ci
i(x)

(

φg
c (x, x̃) +

1

|Dj(x)|
∑

x̂R∈Dj(x)

φe(x, x̃, x̂R)
)

, (28)
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Cfj
,

1

MNs

∑

x∈XNs

∑

x̃∈Cj
i (x)

φ̄c(x, x̃). (29)

and

CR ,
1

MNs

∑

x∈XNs

∑

x̃∈Ci
i(x)

φR
c (x, x̃), (30)

In (28)–(29), Cl
i(x), 1 ≤ l ≤ Ns, is defined as

Cl
i(x) ,

{

x̃

∣

∣x̃j 6= xj, j = i, l, x̃j = xj, otherwise, dH(x, x̃) = 2
}

. (31)

Remark 2: The asymptotic SER in (27) is, in general, a function of the constellation mapping µX as

the sets Cl
i(x) and Dj(x) and consequently the coefficients Cgj

, Cfj
, and CR depend on the type of

mapping. We shall study this dependency in Section 5 and show that some performance improvement

is possible by optimizing the mapping µX . In the case of BPSK constellation, however, it can be

shown that the only two possible mappings are equivalent and lead to the same expression for the

asymptotic SER. Specifically, for BPSK constellation the asymptotic BER (which is equivalently given

by the asymptotic SER) can be obtained based on (27) as

P i
b,BPSK ⊜

1

γ̄fi

(

C1
BPSK

Ns
∑

i=1

1

γ̄gi

+ C2
BPSK

[ Ns
∑

j=1
j 6=i

1

γ̄fj

+
1

γ̄R

])

, (32)

independent of the mapping µX , where C1
BPSK , 45+

√
5

160
and C2

BPSK , 3
16

.

Remark 3: Letting γ̄fi
= ζfi

γ̄, γ̄gi
= ζgi

γ̄, 1 ≤ i ≤ Ns, and γ̄R = ζRγ̄, where ζfi
, ζgi

and ζR are finite

(positive) constants, we can express the asymptotic SER of the ith source as P i
s,X ⊜ (Gi

c,SERγ̄)
−Gi

d,SER ,

where Gi
d,SER and Gi

c,SER are the diversity gain and the network–coding gain corresponding to the

asymptotic SER, respectively. Thus, Gi
d,SER and Gi

c,SER correspond to the negative asymptotic slope

and a relative horizontal shift of the SER curve when plotted as a function of γ̄ on a double–logarithmic

scale, respectively. Based on (27) we therefore obtain

Gi
d,SER = 2, Gi

c,SER[dB] = 5 log10(ζfi
) − 5 log10

( Ns
∑

i=1

Cgi

ζgi

+
Ns
∑

j=1
j 6=i

Cfj

ζfj

+
CR

ζR

)

. (33)

From (33) it is evident that Gi
d,SER = 2 is achieved irrespective of the number of sources Ns.

Furthermore, for the network–coding gain, Gi
c,SER, the following observations are in order. Gi

c,SER is

a function of the number of sources Ns, the signal constellation X , the constellation mapping µX ,

as well as the relative link qualities ζfi
, ζgi

, and ζR. Letting ζfi
= ζgi

= ζR in (33) reveals that the

network–coding gain only logarithmically increases with increasing Ns. Furthermore, it is observed that
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for a NCCD system where the relay–destination link is a bottle–neck, i.e., ζR ≪ ζfi
, ζgi

,1 ≤ i ≤ Ns,

Gi
c,SER can be approximate as Gi

c,SER ≈ 5 log10(ζfi
ζR/CR), implying that the network–coding gain is

approximately independent of the number of sources. The above observations will be confirmed in

Section 5 via simulation results.

Remark 4: Having obtained the asymptotic SER from (27), for Gray labeling, the asymptotic BER

of the ith source, P i
b , can be tightly approximated as P i

b ⊜ 1
log2(M)

P i
s .

4 Optimization of NCCD Systems

In addition to the mapping optimization discussed in the previous section, the obtained analytical

performance results can be employed to formulate various practically relevant optimization problems

for NCCD systems. In this section, due to space limitations we only consider the problem of optimal

power allocation (OPA), but bare in mind that other optimization problems such as optimal relay

selection and optimal relay placement can be treated in a similar manner [13]. In particular, in this

section we investigate the optimal allocation of the source and relay powers, Pi, 1 ≤ i ≤ Ns, and

PR in a NCCD system for a given total power budget. In Section 5, we will show that such optimal

power allocation can lead to significant improvement in the performance of NCCD systems.

Based on the asymptotic SER given in (27), the OPA optimization problem can be mathematically

cast as

min
P1,...,PNs ,PR

Ns
∑

i=1

ψi

(

1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+
Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

)

(34a)

subject to :
Ns
∑

i=1

Pi + PR ≤ Pt (34b)

0 ≤ Pi ≤ Pi,max, 1 ≤ i ≤ Ns (34c)

0 ≤ PR ≤ PR,max, (34d)

where ψi(·) is an increasing convex cost function, Pt is the total power budget, Pi,max and PR,max

denote the maximum power available at the ith source and the relay, respectively, and we have defined

the link statistics ξfi
, Ωfi

/σ2
nD,i

, ξgi
, Ωgi

/σ2
nR,i

, and ξR , ΩR/σ
2
nR

, respectively.

It is easy to see that the solution set of the linear constraints (34b)–(34d) is non–empty, and

therefore the optimization problem is always feasible. In addition, using the transformation of variables

Pi = log(P̃i), 1 ≤ i ≤ Ns, PR = log(P̃R), the optimization problem of (34) can be transform into a

convex optimization problem in the new variables P̃i and P̃R which can be subsequently solved globally
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using convex optimization methods. We furthermore note that as customary in the literature, here we

assume that the power allocation is implemented at the destination node and this node notifies the

sources and the relay node of their assigned transmission power. To solve the optimization problem in

(34), the destination requires the knowledge about the channel statistics ξfi
, ξgi

, 1 ≤ i ≤ Ns, and ξR.

The destination can easily estimate ξfi
, 1 ≤ i ≤ Ns, and ξR, as the required information is already

available at the destination. ξgi
, 1 ≤ i ≤ Ns, can be similarly estimated by relay and then fed back

to the destination via a low–rate feedback link.

For the cost function ψi(·), of particular interest are two special cases, ψi(x) = x and ψi(x) =

exp(ρx), ρ → ∞, which lead to average–SER based OPA and min–max fair OPA, respectively. For

the scenario considered in this paper, the latter is practically more appealing as it is well known that

average–SER based OPA can be biased towards sources with best link qualities and therefore may be

unfair to the other sources [14]. Therefore, in the following we consider the min–max fair OPA which

aims at minimizing the maximum SER among all sources. In particular, letting ψi(x) = exp(ρx),

ρ→ ∞, in (34) this power allocation optimization problem can be formulated as

min
P1,...,PNs ,PR

max
i

{

1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+
Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

}

(35a)

subject to : The constraints (34b) − (34d). (35b)

Introducing an auxiliary variable ν, this optimization problem can be equivalently expressed as

min
P1,...,PNs ,PR,ν≥0

ν (36a)

subject to :
1

Piξfi

[ Ns
∑

i=1

Cgi

Piξgi

+
Ns
∑

j=1
j 6=i

Cfj

Pjξfj

+
CR

PRξR

]

≤ ν, 1 ≤ i ≤ Ns (36b)

The constraints (34b) − (34d). (36c)

Since in (36) the objective and constraint functions can be written in the form of posynomials, the

optimization problem in (36) is a geometric program (GP) which can be efficiently solved using GP

tools [15, 14].

5 Results and System Optimization

In this section, we verify the analytical results derived in Section 3 with computer simulations and

employ these results to study and optimize the performance of NCCD systems. In all figures for BPSK
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modulation the asymptotic BER is obtained based on (32), while for constellations with higher order

the asymptotic SER is obtained using (27).

5.1 Performance of NCCD Systems

In Fig. 2, we consider the BER performance of a NCCD system with Ns = 2 sources and BPSK

modulation for various settings of the involved channel qualities. For this system γ̄f1
= γ̄f2

, γ̄f and

γ̄g1
= γ̄g2

, γ̄g are assumed, and the results are shown for four combinations of channel qualities

(γ̄f , γ̄g, γ̄R). Due to the symmetry of the network, the BER results obtained for the two sources

are equal and therefore only the average BER of the two sources are shown. As observed from the

figure, the analytical results are in excellent agreement with the simulation results for sufficiently high

SNR, confirming the accuracy of the approximations made in Section 2 and 3. As expected from the

analysis in Section 3 (cf. Remark 3), the network–coding gain is a function of the respective channels

qualities, but nevertheless, a diversity gain of two is achieved for all channel quality combinations.

Also shown in this figure are the simulated BER results for ML combining at the destination, which

confirm that the performance achieved by the generalized C–MRC scheme is very close to that of the

ML combining in all cases.

The BER performance results for an asymmetric NCCD system with Ns = 4 sources and BPSK

modulation are shown in Fig. 3. For this system we have assumed γ̄f1
, γ̄, γ̄f2

= γ̄ + 10 dB,

γ̄f3
= γ̄ + 16 dB, γ̄f4

= γ̄ + 20 dB and γ̄g1
= γ̄g2

= γ̄g3
= γ̄g4

= γ̄R = γ̄. The BER results for

the individual sources as well as the average BER (of all sources) are shown as a function of γ̄ in

this figure. We observe that although all individual sources achieve a diverse order of two, different

network–coding gains are achieved by different sources as the network–coding gain depends on the

respective channel qualities.

In the next figure we study the impact of number of sources on the performance of NCCD systems.

In particular, we consider a NCCD system with γ̄fi
= γ̄gi

= γ̄, 1 ≤ i ≤ Ns, γ̄R = γ̄ and show the

average BER for different Ns as a function of γ̄ for BPSK. The analytical results are shown for three

values of γ̄R, but the simulation results are shown only for two γ̄R values to avoid crowding the figure.

As expected, a diversity gain of two is achieved in all cases irrespective of the number of sources.

Furthermore, in accordance with our findings in Remark 3 we observe that the network–coding gain

only logarithmically increases with Ns. In addition, as γ̄R decreases the network–coding gain becomes

less dependent on Ns and is rendered independent of Ns for low enough γ̄R. We also note that

although increasing Ns results in some performance degradation, increasing this quantity also leads

to an increase in the throughput savings (cf. Remark 1) which, in general, more than compensates
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for this slight performance loss.

5.2 Performance Optimization

As discussed in Remark 3, the performance of a NCCD system can be optimized by optimizing

the constellation mapping µX . In Figs. 5 and 6 we consider this mapping optimization problem for a

NCCD system with 16–QAM and Ns = 2 for two channel quality settings Case I (γ̄f1
= γ̄f2

= γ̄R = γ̄,

γ̄g1
= γ̄g2

= γ̄ + 30 dB) and Case II (γ̄f1
= γ̄f2

= γ̄g1
= γ̄g2

= γ̄, γ̄R = γ̄ − 30 dB). For both cases

a random search was performed to find the mapping that minimizes the asymptotic SER in (27).

The resulting optimal mappings along with a natural mapping are depicted in Fig. 5. The simulated

SER as well as the analytical SER results for the optimal and natural mappings are shown in Fig. 6

as a function of γ̄ for Cases I and II. As seen, for non–binary constellations the agreement between

the simulation and analytical results is not as close as in the binary case which is due to the fact

that a union–bound is used in (5) to upper–bound the SER. Nevertheless, for both cases the SER

upper–bound is able to accurately predict the difference between the simulated SER results for the

optimal and natural mappings, suggesting that this upper–bound is a suitable criterion for mapping

optimization. In addition, as observed from the figure, in both cases a performance gain of 1 dB is

achieved by the optimal mapping compared to the natural mapping. For 8–PSK, a natural mapping

as well as optimal mappings for Cases I and II (obtained using a similar approach as above) are shown

shown in Fig. 7. Simulation results (not shown) reveal that for both Cases I and II the optimal

mappings outperform the natural mapping by 0.8 dB.

In Fig. 8 we consider the min–max fair OPA problem described in Section 4 (cf. Eq. 35) for a

NCCD system with BPSK, Ns = 2, Ωf1
= Ωg1

= 1, Ωf2
= Ωg2

= 50, ΩR = 200, and σ2
nD,i

= σ2
nR,i

=

σ2
nD,R

, σ2. To allow an unobstructed view of the effect of system parameters on the power allocation,

we omit the constraints (35b) by letting Pi,max = ∞, i = 1, 2, and PR,max = ∞. The BERs of both

sources Si, i ∈ {1, 2} as well as the average BER of both sources are shown as a function of Pt/σ
2,

and are compared with that of equal power allocation (EPA), where P1 = P2 = PR = Pt/3. Since S1

has a weaker channel and therefore a higher BER compared to S2, the OPA aims at minimizing the

BER of S1 and improves the corresponding BER by 3.5 dB. This performance improvement is achieved

by allocating more power to S1 than to S2 (and the relay), and is accomplished at the expense of a

small degradation in the BER of source S2. Fig. 8 further reveals although the average BER was not

adopted as the cost function for the optimization problem, this performance measure is also improved

by 3.2 dB compared to EPA.
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6 Conclusions

In this paper, we studied NCCD systems where the network coding is performed over GF(2m) and

developed a simple C–MRC diversity combining scheme which achieves the maximum diversity of

the considered system even if erroneous decisions at the relay are taken into account. Assuming

independent Rayleigh fading for all links in the network, we derived closed–form expressions for the

asymptotic SER and BER of the considered NCCD system. These simple and elegant expressions

provide insight into the impact of various system and channel parameters on performance and can be

exploited for system design and performance optimization. Simulation results confirmed the accuracy

of the presented asymptotic SER and BER results and revealed that both mapping optimization and

optimal power allocation can considerably improve the performance of NCCD systems.

Appendix

In this appendix, we provide Lemmas 1–4 and prove Propositions 1 and 2.

Lemma 1: The asymptotic behavior of Φfi
(s), 1 ≤ i ≤ Ns, for γ̄fi

→ ∞ is given by

Φfi
(s) ⊜

1

d2
i s(1 − s)γ̄fi

, (37)

for di , |xi − x̃i| 6= 0 and Φfi
(s) ⊜ 1 for di = 0.

Proof. This result can be proved following the same steps as in [16, Section IV.A]. Due to space

considerations a detailed proof is not provided here. �

Lemma 2: The asymptotic behavior of Φe
R,j(x̂R; s) , Eγg ,γR,n̄D,R

{

βQ
[
√

2α γgj

]

e−sλR∆R(xR,x̃R,x̂R)
}

for γ̄gi
→ ∞, 1 ≤ i ≤ Ns, γ̄R → ∞ is given by

Φe
R,j(x̂R; s) ⊜

1

π

∫ π/2

0

β

γ̄gj
(d̄R(x̂R)s+ α

sin2 θ
)
dθ, (38)

where d̄R(x̂R) , |x̃R − x̂R|2 − |xR − x̂R|2.
Proof. Using the alternative representation for the Q–function Q[x] = 1

π

∫ π/2

0
e−x2/ sin2 θdθ we can

write

Φe
R,j(x̂R; s) =

β

π

∫ π/2

0

En̄D,R

{

Φ(s, θ)
}

dθ, (39)

where Φ(s, θ) , Eγg ,γR

{

e−
α γgj

sin2 θ e−sλR∆R(xR,x̃R,x̂R)
}

. Furthermore, from (12) we have

λR∆R(xR, x̃R, x̂R) = γm d̄R(x̂R) +
2γm√
γR

dR ℜ{n̄∗
D,R}, (40)

with γm , min{γeq, γR}. Using the Taylor series expansion ex =
∑∞

i=0 x
i/i! leads to

Φ(s, θ) =
∞
∑

i=0

2iηi

(2i)!
|n̄D,R|2is2i Ψi(s, θ), (41)
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with ηi ,
Γ(i+1/2)√
πΓ(i+1)

and

Ψi(s, θ) , Eγg ,γR

{

e−(γm d̄R(x̂R)s+
α γgj

sin2 θ
)

(

γm dR√
γR

)2i}

=
d2i

R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(γm d̄R(x̂R)s+
α γgj

sin2 θ
) γ2i

m γ−i
R e−γgj

/γ̄gj e−γR/γ̄R e−γu/γ̄u dγgj
dγR dγu. (42)

The auxiliary RV γu in (42) is defined as γu , min1≤i≤Ns

i6=j
{γgj

}, and is thus an exponentially distributed

RV with mean γ̄u =
(
∑Ns

j=1
j 6=i

γ̄−1
gj

)−1
. Based on the definition of γm we therefore conclude that

γm = min{γgj
, γu, γR}. It can be shown that among the three possible cases γm = γR, γm = γu, and

γm = γgj
, the latter dominates the asymptotic behavior of Ψi(s) (the proof is omitted due to space

limitations). Consequently, we can write Ψi(s) ⊜ Ψ1
i (s) + Ψ2

i (s), where Ψ1
i (s) and Ψ2

i (s) correspond

to the two cases γgj
≤ γR ≤ γu and γgj

≤ γu ≤ γR, respectively, and are defined as

Ψ1
i (s, θ) ,

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
γ2i

gj

∫ ∞

γgj

dγue
−γu/γ̄u

∫ γu

γgj

dγRe−γR/γ̄Rγ−i
R , (43)

and

Ψ2
i (s, θ) ,

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
γ2i

gj

∫ ∞

γgj

dγue
−γu/γ̄u

∫ ∞

γu

dγRe−γR/γ̄Rγ−i
R . (44)

In the following, we find the asymptotic behavior of Ψ1
i (s, θ) and Ψ2

i (s, θ) for γ̄gj
, γ̄u, γ̄R → ∞,

respectively. For Ψ1
i (s, θ), according to (43) we can write

Ψ1
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

×
∫ ∞

γgj

dγue
−γu/γ̄u

[

γ̄1−i
R Γ(1 − i, γgj

/γ̄R) − γ̄1−i
R Γ(1 − i, γu/γ̄R)

]

. (45)

To obtain the asymptotic behavior of Ψ1
i (s, θ) we consider three cases i > 1, i = 1, and i = 0,

respectively, and employ the asymptotic properties of the incomplete gamma function Γ(·, z) for

z → 0 given by

Γ(−κ, z) ⊜







(−1)κ

κ!
(ψ(κ+ 1) − log z) + z−κ

κ
κ ≥ 1

− log z − γ κ = 0
(46)

In particular, for i > 1 from (46) we have Γ(1 − i, γgj
/γ̄R) = 1/(i − 1)(γgj

/γ̄R)1−i. Therefore (45)

reduces to

Ψ1
i (s, θ) ⊜

d2i
R

γ̄gj
γ̄Rγ̄u(i− 1)

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

(

γ1−i
gj
γ̄u − γ̄2−i

u Γ(2 − i, γgj
/γ̄u)

)

⊜O
(

γ̄−1
gj
γ̄−1

R

)

, (47)
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where we have again used (46) to obtain the last asymptotic equality.

For i = 1 we have Γ(0, γgj
/γ̄R) = − log(γgj

/γ̄R) and therefore (45) can be written as

Ψ1
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2
gj

[

∫ ∞

γgj

dγu log γue
−γu/γ̄u − log(γgj

)γ̄u

]

⊜O
(

γ̄−1
gj
γ̄−1

R log(γ̄u)
)

. (48)

Finally, for i = 0, Γ(1, γeq/γ̄R) = 1 is valid and therefore after using appropriate transformation of

variables in (43) we arrive at

Ψ1
i (s, θ) =

1

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγu

∫ γu

0

dγR

∫ γR

0

dγgj
e−(γgj

d̄R(x̂R)s+
α γgj

sin2 θ
)e−γgj

/γ̄gj e−γR/γ̄R e−γu/γ̄u ,

=
γ̄u

γ̄gj
(γ̄R + γ̄u)

(

d̄R(x̂R)s+ α
sin2 θ

) . (49)

For Ψ2
i (s, θ) we first write (44) as

Ψ2
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

∫ ∞

γgj

dγue
−γu/γ̄u γ̄1−i

R Γ(1 − i, γu/γ̄R). (50)

Using an approach similar to that used in obtaining the asymptotic Ψ1
i (s, θ), for i > 1 we have

Ψ2
i (s, θ) ⊜

d2i
R

γ̄gj
γ̄Rγ̄u(i− 1)

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2i
gj

(γ̄2−i
u Γ(2 − i, γgj

/γ̄u)), (51)

which leads to Ψ2
i (s, θ) ⊜ O

(

γ̄−1
gj
γ̄−1

R γ̄−1
u

)

for i > 2, and Ψ2
i (s, θ) ⊜ O

(

γ̄−1
gj
γ̄−1

R γ̄−1
u log(γ̄u)

)

for i =

2. Furthermore, for i = 1 and i = 0 we obtain

Ψ2
i (s, θ) =

d2i
R

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγgj
e−γgj

(d̄R(x̂R)s+ α

sin2 θ
+1/γ̄gj

) γ2
gj

[

∫ ∞

γgj

dγue
−γu/γ̄u log(γu) − γ̄u log(γ̄R)

]

⊜O
(

γ̄−1
gj
γ̄−1

R

)

, (52)

and

Ψ2
i (s, θ) =

1

γ̄gj
γ̄Rγ̄u

∫ ∞

0

dγR

∫ γR

0

dγu

∫ γu

0

dγgj
e
−γgj

(d̄R(x̂R)s+ α

sin2 θ
+ 1

γ̄gj
)
e−γR/γ̄R e−γu/γ̄u

⊜
γ̄R

γ̄gj
(γ̄R + γ̄u)

(

d̄R(x̂R)s+ α
sin2 θ

) , (53)

respectively. As a result, based on (47)–(49) and (51)–(53) we obtain Ψi(s, θ) ⊜ Ψ1
i (s, θ) + Ψ2

i (s, θ)

as

Ψi(s, θ) ⊜



















O
(

γ̄−1
gj
γ̄−1

R

)

i > 1

O
(

γ̄−1
gj
γ̄−1

R log(γ̄u)
)

i = 1

1

γ̄gj

(

d̄R(x̂R)s+ α

sin2 θ

) i = 0

(54)
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Substituting this result into (41) leads to (38) upon using (39). �

Lemma 3: The asymptotic behavior of I(s) , Eγeq,γR,n̄D,R

{

e−sλR∆R(xR,x̃R,xR)
}

for γ̄gi
→ ∞, 1 ≤

i ≤ Ns, γ̄R → ∞ is given by

I(s) ⊜
1

γ̄eqd2
Rs

− 1

γ̄Rd2
Rs(s− 1)

, (55)

for dR 6= 0, while I(s) = 1 is valid for dR = 0.

Proof. Since from (40) we have λR∆R(xR, x̃R, xR) = γm d
2
R + 2γm√

γR
dR ℜ{n̄∗

D,R}, we conclude that

I(s) = 1 is valid for dR = 0. For dR 6= 0 we use Taylor series expansion ex =
∑∞

i=0 x
i/i! to write

I(s|n̄D,R) , Eγeq,γR
{e−sλR∆R(xR,x̃R,xR)} as

I(s|n̄D,R) = En̄D,R

{ ∞
∑

i=0

2iηi

(2i)!
|n̄D,R|2is2i Υi(s, θ)

}

, (56)

where

Υi(s, θ), Eγeq,γR

{

e−γm d2
Rs

(

γm dR√
γR

)2i
}

=
d2i

R

γ̄eqγ̄R

∫ ∞

0

∫ ∞

0

e−γm d2
Rs γ2i

m γ−i
R e−γeq/γ̄eq e−γR/γ̄R dγeq dγR.

(57)

Splitting the inner integration interval in (57) into two intervals [0, γeq], [γeq,∞) yields Υi(s, θ) =

Υ1
i (s, θ) + Υ2

i (s, θ) where

Υ1
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqe
−γeq/γ̄eq

∫ γeq

0

dγR γ
i
R e−(γR d2

Rs+γR/γ̄R), (58)

and

Υ2
i (s, θ) ,

d2i
R

γ̄eqγ̄R

∫ ∞

0

dγeqγ
2i
eqe

−γeq(d2
Rs+1/γ̄eq)

∫ ∞

γeq

dγR γ
−i
R e−(γR/γ̄R). (59)

We find the asymptotic behavior of Υ1
i (s, θ) and Υ2

i (s, θ), respectively, in the following for γ̄eq, γ̄R →
∞. For Ψ1

i (s, θ) we write (58) as

Υ1
i (s, θ) =

i!

γ̄R d2
Rs

i+1
− d2i

R

γ̄eqγ̄R

i
∑

k=0

∫ ∞

0

i! γk
eq e(d2

Rs+1/γ̄R+1/γ̄eq)γeq

k! (d2
Rs+ 1/γ̄R)

i−k+1
dγeq ⊜

i!

γ̄R d2
Rs

i+1
. (60)

For Υ2
i (s, θ) we first express (59) as

Υ2
i (s, θ) =

di
R

γ̄eqγ̄i
R

∫ ∞

0

dγeqγ
2i
eqe

−γeq(d2
Rs+1/γ̄eq) Γ(1 − i, γeq/γ̄R). (61)

Following steps similar to those used in Lemma 2 to obtain the asymptotic behavior of Ψ2
i (s, θ) we

arrive at

Υ2
i (s, θ) ⊜



















O
(

γ̄−1
eq γ̄

−1
R

)

i > 1
2 log(γ̄R)

d6
R

s3γ̄eqγ̄R
i = 1

1
γ̄eqd2

R
s

i = 0

(62)
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With (60) and (62) for Υi(s, θ) = Υ1
i (s, θ) + Υ2

i (s, θ) we get

Υi(s, θ) ⊜







i!
γ̄R d2

R
si+1 i ≥ 1

1
d2

R
s

(

1
γ̄eq

+ 1
γ̄R

)

i = 0
(63)

Substituting (63) in (56) results in

I(s|n̄D,R) =
1

d2
Rs

(

1

γ̄eq

+
1

γ̄R

)

+
1

d2
Rsγ̄R

∞
∑

i=1

2ii!ηi

(2i)!
|n̄D,R|2isi =

1

d2
Rsγ̄eq

+
e|n̄D,R|2s

d2
Rsγ̄R

, (64)

where we have used ηi = (2i)!
2i(i!)2

. Finally, averaging I(s|n̄D,R) over the Rayleigh distributed RV |n̄D,R|
leads to (55). �

Lemma 4: The asymptotic behavior of Φc
R(s) , Eγeq,γR,n̄D,R

{

[1 − βQ(
√

2α γeq)]e
−sλR∆R(xR,x̃R,xR)

}

for γ̄gi
→ ∞, 1 ≤ i ≤ Ns, γ̄R → ∞ is given by

Φc
R(s) ⊜

1

π

∫ π/2

0

(

2

γ̄eqd2
Rs

− 2

γ̄Rd2
Rs(s− 1)

− β

γ̄eqd2
R(s+ α

sin2 θ d2
R

)

)

dθ, (65)

for dR 6= 0, while Φc
R(s) ⊜ 1 is valid for dR = 0.

Proof. We first note that Φc
R(s) = I(s)−∑Ns

j=1 Φe
R,j(xR; s), where we have employed Q(

√

2α γeq) ≈
∑Ns

i=1Q(
√

2α γgj
) which is valid for γ̄gi

→ ∞, 1 ≤ i ≤ Ns. For dR 6= 0 combining (38) and (55)

readily results in (65). For dR = 0 from (38) and (55) we obtain Φc
R(s) = 1− 1

πγ̄eq

∫ π/2

0
β sin2 θ

α
dθ ⊜ 1.

�

Proof. [Proposition 1] Based on Lemma 1 Φfi
(s) can be written as Φfi

(s) ⊜ k̃1γ̄ for xi 6= x̃i and

Φfi
(s) ⊜ 1 for xi = x̃i, where k̃1 is a finite (positive) constant. Furthermore, using Lemmas 2 and

4 in (15) yields ΦR(s) ⊜ k̃2γ̄ for xR 6= x̃R where k̃2 is a finite (positive) constant, and ΦR(s) ⊜ 1

for xR = x̃R. Therefore, based on (13) we conclude that Gd,PEP is given by the number of non–zero

elements in the vector [x1−x̃1, · · · , xNs
−x̃Ns

, xR−x̃R]T . Since µX : A → X is a one–to–one mapping

function, Gd,PEP is alternatively given by the Hamming distance between the transmit symbol vectors

se and s̃e denoted as dH(x, x̃). To see dH(x, x̃) ≥ 2, we first note that by definition we have x 6= x̃,

and therefore si 6= s̃i is valid for i ∈ I, where I is a non–empty index set. For |I| ≥ 2, dH(x, x̃) ≥ 2

immediately follows. For |I| = 1 it is easy to see that sR 6= s̃R, resulting in dH(x, x̃) = 2. �

Proof. [Proposition 2] For a given transmit signal vector x, the set Ci(x) in (26) can be partitioned

into Ns disjoints sets Cl
i(x), 1 ≤ l ≤ Ns, i.e., Ci(x) =

⋃Ns

l=1 Cl
i(x), where Cl

i(x) is defined in (31).

Therefore, the asymptotic SER can be calculated by using (5) and (26) as

P i
s ⊜

1

MNs

∑

x∈XNs

Ns
∑

l=1

∑

x̃∈Cl
i(x)

P (x → x̃). (66)
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For x̃ ∈ Ci
i(x), the asymptotic PEP can be obtained from (20) and (22) as

P (x → x̃) ⊜
1

γ̄fi

(

φg
c (x, x̃)

Ns
∑

j=1

1

γ̄gj

+
φR

c (x, x̃)

γ̄R

)

+
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

φe(x, x̃, x̂R)

γ̄fi
γ̄gj

. (67)

For x̃ ∈ Cl
i(x), l 6= i, using (24) and (25) yields

P (x → x̃) ⊜
φ̄c(x, x̃)

γ̄fi
γ̄fl

+
Ns
∑

j=1

1

|Dj(x)|
∑

x̂R∈Dj(x)

φ̄e(x, x̃, x̂R)

γ̄fi
γ̄fl
γ̄gj

⊜
φ̄c(x, x̃)

γ̄fi
γ̄fl

. (68)

(27) can now be obtained by combining (66), (67), and (68). �
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Figure 1: Block diagram of the considered NCCD system. Solid and dashed lines denote links

belonging to first and second hop, respectively.
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Figure 2: BER of a symmetric NCCD system with Ns = 2 sources and BPSK modulation

vs. γ̄ for various channel qualities settings (γ̄f , γ̄g, γ̄R). Solid lines with markers: Simulated

BER. Dashed line: Asymptotic BER. Dash–dotted lines with markers: Simulated BER for ML

diversity combining at the destination.
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Figure 3: BER vs. γ̄ for an asymmetric NCCD system with Ns = 4 sources and BPSK modu-

lation. Solid lines with markers: Simulated BER. Dashed line: Asymptotic BER.
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Figure 4: BER of a NCCD system with BPSK modulation vs. γ̄ for different Ns. Solid lines

with markers: Simulated BER. Dashed line: Asymptotic BER.
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Figure 5: 16–QAM signal constellation with three different constellation mappings

µX : A → X . (a) A natural mapping, (b) Optimal mapping for Case I, and (c)

Optimal mapping for Case II.
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Figure 6: SER of a NCCD system with 16–QAM modulation and Ns = 2 for the optimal

and natural mappings depicted in Fig. 5 in two channel quality settings Case I and Case II.

Solid lines with markers: Simulated SER. Dashed line: Asymptotic SER for natural mapping.

Dash–dotted line: Asymptotic SER for optimal mapping.
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Figure 7: 8–PSK signal constellation with three different constellation mappings µX :

A → X . (a) A natural mapping, (b) Optimal mapping for Case I, and (c) Optimal

mapping for Case II.
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2 of a NCCD system with Ns = 2 and BPSK modulation for max–min

fair OPA and EPA. Solid lines with markers: Simulated BER. Dashed line: Asymptotic BER.


