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In this paper, we study network—coded cooperative diversity (NCCD) systems comprising multiple
sources, one relay, and one destination where the relay detects the packets received from all sources
and performs Galois field network coding. We develop a simple cooperative maximum-—ratio combining
scheme for the destination which performs close to the optimal maximum-likelihood combining and
achieves the maximum diversity gain available in the system. Furthermore, we provide a mathematical
framework for performance analysis of NCCD systems for high signal-to—noise ratios in Rayleigh fading.
Based on this framework, we derive simple and elegant closed—form expressions for the asymptotic
symbol and bit error rates of NCCD systems. The derived error rate expressions are valid for arbitrary
number of sources, constellation mappings and modulations, and provide significant insight into the
impact of various system and channel parameters on performance. These expressions can also be
exploited for mapping optimization as well as for various practically relevant NCCD system optimization
problems such as optimal power allocation, relay selection, and relay placement. Simulation results
confirm the accuracy of the presented analysis and reveal that the performance of NCCD systems can
be considerably improved by optimizing the constellation mapping and the power allocation based on

the developed analytical results.



1 Introduction

Cooperative diversity (CD) is an effective technique to exploit the spatial diversity offered by wireless
relay nodes. The main drawback of CD schemes is a reduction in throughput as in such systems dif-
ferent cooperating terminals use orthogonal channels for transmission [1]. This throughput reduction
is most noticeable in CD systems with multiple source terminals, since the relays forward the signals
received by different sources in separate orthogonal channels. As a result each relay can serve only a
single source in a given channel slot, and therefore the available channel resources may not be shared
among different sources.

One effective approach to increase the throughput in multi-source CD systems is network cod-
ing over Galois fields (GFs) [2]-[4]. The idea of network coding was originally developed for wired
networks as an efficient routing technique capable of enhancing the network throughput [5]. As this
throughput enhancement is achieved by allowing the network relays to simultaneously serve multiple
source terminals, the network coding technique is a promising candidate to overcome the throughput
bottle—neck in CD systems.

The combination of CD and GF network coding, which is referred to as network—coded CD (NCCD)
in this work, has received considerable attention recently. In particular, the outage capacity of such
systems was calculated in [2, 3], and their diversity-multiplexing tradeoff was analyzed in [4]. In
[6], for a network coding system featuring the algebraic superposition of channel codes and iterative
decoding at the destination optimal channel codes were designed based on an ad—hoc code search
approach. The diversity order of a NCCD system employing distributed error—correcting codes was
analyzed in [7], and it was shown that a maximum diversity order equal to the minimum distance of
the employed error—correcting code can be achieved. In addition to GF network coding, physical-layer
network coding (PNC) and complex field network coding (CFNC) have been proposed for CD systems
in [8] and [9], respectively, which provide additional throughput enhancement but at the cost of high
pick—to—average power ratios and stringent time—synchronization requirements.

Common to the works on NCCD systems is the fact that network coding is performed over
the GF of order two, thereby limiting the adopted modulation schemes to binary. Furthermore, a
general and accurate error rate analysis giving insight into the performance of NCCD systems is not
available in the literature. Motivated by this, in this paper, we investigate the error rate performance
of a NCCD system with multiple sources employing general M—ary modulation, one relay, and one
destination. To develop a simple combining scheme for the destination which yields a performance

close to that of the optimal maximum-likelihood (ML) combining and is also amenable to performance



analysis, we generalize the cooperative maximum-ratio combining (C-MRC) scheme in [10] proposed
for conventional CD systems. For the resulting NCCD system we derive simple and elegant closed—
form expressions for the asymptotic symbol and bit error rates in Rayleigh fading. These closed—form
expressions give valuable insight into the impact of various system and channel parameters such as
the number of sources and the signal-to—noise ratios (SNRs) of the involved wireless channels. For
example, our analytical results reveal that the achieved diversity gain for all source terminals is two
irrespective of the number of sources. The network—coding gain, however, depends on the number
of source terminals, the employed signal constellation and constellation mapping, and the relevant
link qualities. Furthermore, mapping optimization as well as various other NCCD system optimization
problems such as optimal power allocation, relay selection, and relay placement can be formulated
and solved based on the derived error rate expressions.

The remainder of this paper is organized as follows. In Section 2, the system model for the
considered NCCD system as well as some notations and definitions are introduced. Asymptotic
expressions for the symbol error rate (SER) and the bit error rate (BER) are derived in Section 3.
Optimization of NCCD systems in considered in Section 4 and numerical and simulation results are

presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Preliminaries

In this section, we describe the model for the considered NCCD system and introduce some notations

and definitions.

2.1 Notations and Definitions

In this paper, []7, (-)*, R{-}, &{-}, and T'(-), denote transposition, complex conjugation, the real

part of a complex number, statistical expectation with respect to x, and the Gamma function, re-
. Y 1 o0 _¢2/9 . .

spectively. Q(z) = \/—271; e~*/2dt denotes the Gaussian Q—function. Furthermore, we use the

notation u = v to indicate that u and v are asymptotically equivalent, and a function f(x) is o(g(z))
if lim, o f(z)/g(x) = 0.

2.2 Signal Model

The considered NCCD system is depicted in Fig. 1 and comprises NV, source terminals S;, 1 <7 < N,
one relay R, and one destination terminal D. Transmission from the source terminals to the destination

terminal is organized in two hops. The first hop comprises N, orthogonal channel slots, e.g. N,



different time slots or frequency bands, where each source terminal S;, 1 < ¢ < N, transmits its
corresponding data to the relay and the destination using one channel slot. In particular, a data symbol
s; € A is generated at the source S;, where A = GF(2™) is the GF of order M = 2™. This data
symbol is mapped to a transmit symbol z; € X with £{|z;|*} = 1 using the mapping x; = ux(s;),
where X’ denotes an M—ary signal constellation such as M-ary phase—shift keying (AM/—-PSK) or M-
ary quadrature amplitude modulation (M-QAM), and uy : A — X is a one-to—one constellation
mapping function from A to X'. The transmit symbols x; are then transmitted to the relay and the

destination. The signals received by the destination and the relay in the first hop are given by

rs,p =V B fixi +np, rs,r =V i gi vi + N, (1)

for 1 < i < N, respectively, where P; is the average transmit power of the ith source, and f; and
g; denote the fading gains of the S; — D and the S; — R channels, respectively. Furthermore, np;
and np; denote the additive white Gaussian noise (AWGN) samples at the destination and the relay
with variances oy, = E{|np,[*} and o7 = E{[ngl*}, respectively.

Having received the signals 7, g, the relay performs coherent ML detection to obtain the detected
symbols

i = argmin{|rs. — VP gi?}, 1<i<N, (2)
The corresponding detected data symbol is given by $r; = uy'(Zr;) € A.

The second hop comprises a single channel slot which is orthogonal to those employed in the first
hop. In particular, in the second hop the relay performs network coding and computes the data symbol
§p 2 Sp1® - @ Spn, € A, where & denotes addition in GF(2™). The relay then forwards the
transmit symbol 2 = 1y (3g) € X to the destination. The signal received at the destination in the

second hop, rgp, can be modeled as

rrp =\ PrhrZr +np R, (3)

where Py is the average transmit power of the relay, hg is the fading gain of the R — D channel,
and np g is the AWGN at the destination in the second hop having variance O-ELDA,R 2 &{|np.rl*}.
Throughout this paper we assume independent Rayleigh fading for all links of the network. Thus,
the fading gains f; = ay, e %, h; & a, e 7%, 1 <i < N,, and hr = a,, e 7%=, are independent
Gaussian random variables (RVs) with zero mean and variances Q;, = E{|fi|*}, Q4 = E{|g:[*},
1 <i < N, and Qp = E{|hgr|?}, respectively. Here, the channel amplitudes ay,, ag,, and aj, are
positive real RVs and follow a Rayleigh distribution. Furthermore, the channel phases 6y, 0,,, and

01, are uniformly distributed in [—m, 7) and are independent from the channel amplitudes.



For future reference, we define the instantaneous SNRs of the S; — D, S; — R, and R — D

links as vy, £ Pa}, /oy, v, = Pial,/on, . and y, = Praj, /o7, respectively. The correspond-

2
nR,i'

2
np,R'

ing average SNRs are given by 7, = Piin/anzD,w Vo = P Qg /o and ypr = PrQr/o
respectively.

Remark 1: Based on the presented signal model, a total of N, + 1 channel slots are required for
the transmission of signals from all sources to the destination. In contrast, a conventional CD system

[1, 10] requires 2N, channel slots since the relay assists only a single source in a certain slot.

2.3 Equivalent Source—Relay Channel

In this subsection, we introduce an equivalent channel between the source terminals and the relay for
the considered NCCD system which will be particularly useful for developing the diversity combining
scheme in Section 2.4 and the performance analysis in Section 3. The input of this equivalent
channel, xg, is the relay transmit symbol in the absence of noise, i.e., xg £ px (sr) € X with
Sp =5 @---Dsy, € A, and the output is the actual relay transmit symbol . Defining the source—
relay SNR vector v, £ [Yg1, -+ »Ygn. |7, this channel is characterized by the equivalent error probability
Peeq(7,) 2 Pr{ig # xg}. For an M-ary signal constellation X', the equivalent error probability
Peeq(7v,) is given by P q(v,) = BQ( 20[76(1(79)), where «v and [ are two modulation dependent
constants (e.g. « = 3 = 1 for BPSK). Furthermore, 7.q(,) is the instantaneous SNR associated with
the equivalent source-relay channel which can be expressed as yeq(v,) = 5= (Q_l(P&eq('yg)/ﬁ))?
It is not difficult to see that for sufficiently high SNR ~.q(7,) can be accurately approximated as
Yeq(Vg) = Min{yg,, -+, Yoy, }- As a result, since vy, 1 <7 < N, is an exponentially distributed RV

with mean 7, 7eq(y,) is also exponentially distributed with mean 7eq = (1/9,, + -+ 1/74,.) 7"

2.4 Diversity Combining at the Destination

ML combining can be employed at the destination to optimally combine the signals received from
the sources and the relay. However, due to the possibility of erroneous decisions at the relay, the
ML decision metric is highly complex and not amenable to analysis. In order to avoid the problems
associated with the ML metric, we generalize the C~MRC scheme proposed in [10] for conventional
CD to NCCD. As will be shown in Section 3, this simple C-MRC scheme performs close to the

ML combining and achieves the full diversity of NCCD systems with any number of sources. The



corresponding decision metric for the generalized C—-MRC can be written as

N ~ ~
- < |rs,p — VP, fi &)? kD — V' Pr hgr Zgl?
) = 3 0T VBEEE | o= g
i=1 nD,i MD,R

Here, vector & = [#; ... 7y,]T € &N contains trial transmit symbols #; = uy(3;) € X, 1 <i < N,

where §; € A, 1 < i < N, are trial data symbols. Furthermore we have defined Tg = px (Sg) € X

A min{%q ('Yg ) YR}
YR '

For the case that all source—relay channels are perfect, A\g = 1 is valid and, as expected, (4) reduces to

with 5 = 5, @--- @ 3y, € A, and the weighting factor Az € [0, 1] is defined as A\

the conventional MRC. However, if at least one of the source—relay channels is not perfect, the metric
in (4) assigns a smaller weight Ap < 1 to the signal received from the relay to take into account the
effect of possible erroneous decisions at the relay. We further note that in order to compute \g, the
destination has to know the SNR of the weakest source—relay channel. This SNR is available at the
relay for coherent detection and can be forwarded to the destination over a low—rate feedback link.
Based on (4) signal detection at the destination can be performed as & p = arg mingeyn, {m.(Z)},
where &p £ [Zp1 .. .iD7NS]T € XM= contains the detected symbols at the destination for all sources
and the corresponding decoded data symbols are obtained as sp; = ,u;(l(:i:m) c A 1<i<N,.
We note that the data vectors 3, = [31,- -+ ,3n.,85]T € XNsT! form an (N, + 1, N,) single—parity—
check block code over GF(2™). As a result, the signal detection at the destination can be efficiently
implemented using various well-known soft—decision decoding algorithms for block codes available
in the literature [11], e.g., Viterbi decoding based on the trellis representation of the corresponding
single—parity—check block code [12]. A detailed discussion of such algorithms, however, is beyond the

scope and limits of the current paper.

3 Performance Analysis

In this section, we analyze the error rate performance of the considered NCCD system for high
SNRs, ie., 74,7, — o0, 1 < @ < Ny, and g — oo. In particular, we develop asymptotic

closed—form expressions for the (average) pairwise error probability (PEP), SER, and BER. For con-

. . . . A .

venience, we introduce the source-destination SNR vector v; £ [y, -+ ,7s,.|", the normalized
. _ A . — A .

noise samples np; = np;/on,,, 1 < i < Ny, and npr = npr/on,  and the noise vector
2[5 = = T

n = [nD,h T anD,NSynD,R] .

For the ith source the SER, P!

s

can be accurately upper—bounded using a union—bound on the

pairwise error probabilities as

i 1 ~
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where P(x — &) denotes the PEP associated with the pair (x, &) which is the probability that
x = [r1---2n,]7 € XN was transmitted by the sources and & = [7,---2n,|T € XN, & #
was detected at the destination, assuming that x and @ are the only two possible decision outcomes.

Furthermore, the set B;(x) in (5) is defined as

In the following, we first derive an asymptotic expression for the PEP in Subsection 3.1 and then use the

obtained result to develop closed—form expressions for the asymptotic SER and BER in Subsection 3.2.

3.1 Asymptotic Pairwise Error Probability

The PEP for the considered NCCD system can be expressed as
P(x — &) = Pr{m.(x) > m.(&)}. (7)

It is convenient to first obtain the PEP conditioned on the instantaneous SNRs Y Yo VR and
the noise vector m. To drive such an expression we assume that among the transmit signals z;,
1 < 5 < N,, at most one is received in error at the relay. Furthermore, we assumed that if the
transmit signal z; is received erroneously, the erroneous 2 ; at the relay is a nearest neighbor of z;,
i.e., Tp; € N(z;), where set N'(x) contains all nearest neighbors of = in X'. These approximations
are well justified for 7, — oo, 1 < j < N, and their accuracy will be confirmed by simulations in

Section 5. Based on these assumptions the desired conditional PEP can be expressed as

P(z — &lv;,7, R 1) = Pf{i“R =zr} P (x = &[2r, V1, Yeas TR 1)

Ns
+ Z Z ﬁQ 20‘79]) (w - j|jR77fa’yeq7’yR7 n) ) (8)
j=1 x €D;(
where
Dy() 2 {jux (13 (2) @ - @ u'(ow)) |10 EN@), v =, By =mv £ 5} (9)

Here, for a given transmit vector  the set D;(x) collects all possible values for Z assuming that z;
is received in error at the relay while x;, i # j, are received correctly. Furthermore, the conditional

PEP P (z — i‘i’R,'yf,'yeq,’yR,n), Tr € {Tr,Tr}, can be written as
P (:B - 53‘£R77f77€q7’7R7 ) Pr {mc > mc )|5R77f7%q77R7n}

= Pr{ ZAfi(xiyji>+)\RAR($Ra TR, TR) < O‘W’fﬁeq,%z, n}, (10)

i=1



where
Ap (2, %) £ |5 (8 — 2) + fip|? — [p gl (11)
and
Ag(zr, Zr, Tr) = V(TR — Tr) + np rl* = Vr(rR — TR) + Nip R|*. (12)

For derivation of the unconditional PEP, we exploit that for any RV A we have Pr{A <0} =
%j f(ir]ﬁ;o@A(s)% with moment generating function (MGF) ®a(s) = Ex{e™2°} and use the fact

that Pr{Zg = 2r} = 1 — P.ey(v,) = 1 — 8Q (,/2@ yeq), cf. Subsection 2.3. Using these relations,
we obtain the unconditional PEP from (8) and (10) as

c+j00
- - d
P(w - CU) = S‘Yf,’)’g,“{R,n {P (15 - CU"'}’f, 75]7 TR, n)} 27T] / <H (I)fz ) SS (13)

c—joo

where ¢ is a small positive constant that lies in the region of convergence of the integrand and
Op(s) =&y, aDi{e_SAfi(“’j” 2 (14)
Dp(s) 2 dg(s +Z|D Z@RJ:{:R, : (15)
TRED;(

with ®f .(7;s) and ®j(s) defined in Lemmas 2 and 4 in the Appendix, respectively. Based on (13)
and (15) the PEP can be written as

N,

1
P(Q’,'—>Q~3) :Pc(w7j:>+z— Z Pe,j(w7£7£R> (16)
=D,
TR j X
where
c+joo d
s
Pz, &) £ @ 17
(x, ) 2@/(1—[ 7 (s ) (17)
c—joo
and
c+jo0
P.i(x, &, ip) & — / H<I> o, (& -s)§ (18)
ej\Ly Ly LR) — 271'] fils RJ s
c—joo

To facilitate the calculation of the asymptotic PEP, we now present the following proposition which
sheds some light on the asymptotic characteristics of the PEP P(x — &) (refer to the Appendix for
a proof).

Proposition 1: Assume without loss of generality that 7;, = (7, ¥, = (5,7, 1 <@ < Ny, and

Ar = Cr?Y, where (s, (, and (g are finite (positive) constants, which are independent of 7, and



define the diversity gain associated with the PEP as G ppp = — limy o, log (P(x — %)) /log(7).
The diversity gain is then given by Gyprp = dpu(x, ), where dy(x,Z) denotes the Hamming
distance between data vector s, = [s1,--- ,sn., 58] € XM and 3, = [31,- - , 3N, 85]T € ANFL,
Furthermore, for all possible pairs (x, ) we have dy(x,x) > 2.

The above proposition reveals that for calculation of the asymptotic SER based on (5), only error
events with dy(x, ) = 2 should be included since error events with dy(x, &) > 2 yield a higher
diversity gain and thus, their contribution to the asymptotic SER is negligible. We therefore in the
following calculate the asymptotic PEP only for error events with dy(x,&) = 2. For clarity, we

consider the cases xr # Tr and xr = TR separately.

Case 1, xg # TR): It is easy to see that in this case d; £ |z, — T,

s, IS non—zero only
for a single value of the index j, i.e., we have d; # 0, j =4, and d; = 0, j # i. As a result, from
Lemma 1 we obtain @y (s) = m Jj =1t1and &y (s) =1, j # i. Therefore, using (17) and
Lemma 4 we arrive at

c+j00

P.(x, &) =

| ( 2, 2 p ) 45 0.
Bs(1 = )75, \Feadps — Trdps(1—5)  Feadi(s + 55ar) ) s
(19)

The inner complex integral in (19) can be calculated using the standard inverse Laplace transform

27Tj

c—joo

techniques such as partial fraction expansion. This yields

N, _
~ 1 =1 qu(:E, )
Pcw’w éT qbfaz,:c — + C, ) 20
( ) Tfi ( ( >Z-Zl’79i YR (20)
where
2— [+ L
~ \/m B a3
¢g(m7 m) é s ¢C (a}, m) = . (21)
2d;dy, 22,
Furthermore, from (18) and Lemma 2 we have
c+joco ¢ ( ) )
- L, T, R
Fejl@, &, &n) = dsdf = 75 . (22)
J 27r 7 e d252 1—39) dR( )s+ nZ )'yfﬁgj Y17,
with
e — e Inlin) > 0
(s 5,) = 4 TR intan) v M) (23)
45513 - 3%512(25 ) dr(zr) <0

Case 2, xg = &g): In this case d; is non—zero for two values of the index j, i.e., we have d; # 0,



J = 11,12, and d; = 0, otherwise. Using Lemma 1 then results in (Iij(s) = m, j = 11,19, and
j

(I)f].(S) = 1, otherwise. Furthermore, in this case dp = 0 is valid, and therefore based on Lemma 4

we obtain ®f(s) = 1. Thus, using (17) we can write

c+joo

o &C(wﬂ 5:)
PC(CU, r) = — dsdf = e — (24)

272] d, di,s°(1 = 8) Vi Vi Vs Vi

c—joo
with ¢.(x, &) = EE d2 . Furthermore, from (18) and Lemma 2 we obtain
G 5
Powdin =g [ [ s dsdg = L& T Tn)
om JJo c—joo dzldbs (1 - S> (dR(xR)S + sin? )an fyf12fygj foil'YfQ'ng

(25)
where ¢.(x, &, i) is a (positive) finite constant which depends on x, &, and Zx.

With these asymptotic expressions for P.(x,Z) and P, j(x,Z,%p) at hand, a closed—form expres-

sion for the asymptotic PEP can be calculated based on (16).

3.2 Asymptotic SER and BER

In order to obtain an expression for the asymptotic SER, we first expurgate the union—bound in (5)
according to proposition 1. In particular, we only include the error events with dy(x,Z) = 2 in
the union—bound since the contribution of error events with dy(x,Z) > 2 to the asymptotic SER is

negligible (cf. Proposition 1). This expurgation is accomplished by modifying the set 5;(x) in (6) as
Cz(a:) = {i‘i] eX— {mj}aj - ia i'j € X?] 7é i> dH(a:>j) = 2} (26)

We are now ready to state our main result. In particular, in the following proposition we use (5) and
(26) along with (16) to obtain a general expression for the asymptotic SER which is valid for arbitrary
number of sources, arbitrary signal constellations (modulations) and arbitrary constellation mappings
(refer to the Appendix for a proof).

Proposition 2: For the NCCD system described in Section 2, the asymptotic SER for the ith source

is given by
i o 1 ~9i Cf] )
Pl = = <Zl ot Z 3 T (27)
J#Z
where
1 -
Gt X X W” By & @En) (28)

xeXNs geCl(x
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0t e Y ) (20)

zeXNs gecl ()

Y Y s (30)

xeXNs geCl(x)

In (28)—(29), Ci(x), 1 <1 < N, is defined as

and
Cg 2

Clx) 2 {5:‘:@ #+aj,j =11, & = x;, otherwise, dy(x,&) = 2}. (31)

Remark 2: The asymptotic SER in (27) is, in general, a function of the constellation mapping 11y as
the sets C!(x) and D;(x) and consequently the coefficients Cy,, Cy,, and Cr depend on the type of
mapping. We shall study this dependency in Section 5 and show that some performance improvement
is possible by optimizing the mapping px. In the case of BPSK constellation, however, it can be
shown that the only two possible mappings are equivalent and lead to the same expression for the
asymptotic SER. Specifically, for BPSK constellation the asymptotic BER (which is equivalently given
by the asymptotic SER) can be obtained based on (27) as

1 N L
bBPSK — % <C]13PSK Z ’_Y_ + Cipsk [Z — + _—1 )7 (32)

i=1 19

independent of the mapping juxv, where Cpgic 2 125Y5 and O g

Remark 3: Letting 77, = (.7, Vg = (7, 1 <@ < Ny, and g = (g7, where (y,, (,, and (g are finite
(positive) constants, we can express the asymptotic SER of the ith source as P; , = (G gpr7)~ Gisen,
where G gpr and Gl gpy are the diversity gain and the network—coding gain corresponding to the
asymptotic SER, respectively. Thus, G sgr and G gpg correspond to the negative asymptotic slope
and a relative horizontal shift of the SER curve when plotted as a function of 4 on a double—logarithmic

scale, respectively. Based on (27) we therefore obtain

i i ij
d,SER = 2, G¢ serldB] = 5log,((r,) — 5logy, (Z c -+ Z c > (33)
i=1 >9Yi 1 CR
J#z

From (33) it is evident that G gz = 2 is achieved irrespective of the number of sources Ni.
Furthermore, for the network—coding gain, G?. g, the following observations are in order. G? gy is
a function of the number of sources N, the signal constellation X', the constellation mapping fx,
as well as the relative link qualities (y,, (;,, and Cg. Letting (., = (,, = (g in (33) reveals that the

network—coding gain only logarithmically increases with increasing N,. Furthermore, it is observed that
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for a NCCD system where the relay—destination link is a bottle-neck, i.e., (r < (y,, (.1 < i < Nj,
G;SER can be approximate as GQSER ~ 51og,(Cr.Cr/CRr), implying that the network—coding gain is
approximately independent of the number of sources. The above observations will be confirmed in
Section 5 via simulation results.

Remark 4: Having obtained the asymptotic SER from (27), for Gray labeling, the asymptotic BER

of the ith source, P/, can be tightly approximated as P} = mP;.

4 Optimization of NCCD Systems

In addition to the mapping optimization discussed in the previous section, the obtained analytical
performance results can be employed to formulate various practically relevant optimization problems
for NCCD systems. In this section, due to space limitations we only consider the problem of optimal
power allocation (OPA), but bare in mind that other optimization problems such as optimal relay
selection and optimal relay placement can be treated in a similar manner [13]. In particular, in this
section we investigate the optimal allocation of the source and relay powers, P;, 1 < i < N, and
Pr in a NCCD system for a given total power budget. In Section 5, we will show that such optimal
power allocation can lead to significant improvement in the performance of NCCD systems.

Based on the asymptotic SER given in (27), the OPA optimization problem can be mathematically

cast as

N.
. - Cy,
Py PrePr ;wl(ng [ZP Zpgfj pRgRD (34a)
J#Z

N

subject to : Z P, +Pr <P, (34b)
i=1

0< P <Py 1Z1<N (34c)

0 S PR S PR,maXa (34d)

where ;(-) is an increasing convex cost function, P; is the total power budget, P ax and Pgmax
denote the maximum power available at the ¢th source and the relay, respectively, and we have defined
and fR QR/U

It is easy to see that the solution set of the linear constraints (34b)—(34d) is non-empty, and

the link statistics &;, = Q. /om0 o £Q, /02 respectively.

’IIR" nr'

therefore the optimization problem is always feasible. In addition, using the transformation of variables
P; =log(P), 1 <i < N,, Pr = log(Pg), the optimization problem of (34) can be transform into a

convex optimization problem in the new variables P, and Px which can be subsequently solved globally
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using convex optimization methods. We furthermore note that as customary in the literature, here we
assume that the power allocation is implemented at the destination node and this node notifies the
sources and the relay node of their assigned transmission power. To solve the optimization problem in
(34), the destination requires the knowledge about the channel statistics §f,0 g0 1 <1 < Ny, and &p.
The destination can easily estimate 7, 1 < i < N;, and g, as the required information is already
available at the destination. &,,, 1 <14 < N, can be similarly estimated by relay and then fed back
to the destination via a low-rate feedback link.

For the cost function 1);(), of particular interest are two special cases, ¥;(x) = = and ¥;(z) =
exp(px), p — o0, which lead to average-SER based OPA and min—-max fair OPA, respectively. For
the scenario considered in this paper, the latter is practically more appealing as it is well known that
average-SER based OPA can be biased towards sources with best link qualities and therefore may be
unfair to the other sources [14]. Therefore, in the following we consider the min—max fair OPA which
aims at minimizing the maximum SER among all sources. In particular, letting ¢;(z) = exp(px),

p — 00, in (34) this power allocation optimization problem can be formulated as

N, N,
| 1 [, o, O }
min max — + —— + 35a
Puon, P {Pﬁfz {Z RPN Tl 5
J#i
subject to : The constraints  (34b) — (34d). (35b)

Introducing an auxiliary variable v, this optimization problem can be equivalently expressed as

min v (36a)
Py,....Px, PRw>0
1 [ Y Oy,
subject to : { + ! ] <y 1<1< N 36b
P, |2 e, Z Pty | Pukn (36)
The constraints (34b) — (344d). (36¢)

Since in (36) the objective and constraint functions can be written in the form of posynomials, the
optimization problem in (36) is a geometric program (GP) which can be efficiently solved using GP

tools [15, 14].

5 Results and System Optimization

In this section, we verify the analytical results derived in Section 3 with computer simulations and

employ these results to study and optimize the performance of NCCD systems. In all figures for BPSK
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modulation the asymptotic BER is obtained based on (32), while for constellations with higher order

the asymptotic SER is obtained using (27).

5.1 Performance of NCCD Systems

In Fig. 2, we consider the BER performance of a NCCD system with Ny, = 2 sources and BPSK
modulation for various settings of the involved channel qualities. For this system 7;, = 7, = 7; and
Vo1 = Vo2 = 7 are assumed, and the results are shown for four combinations of channel qualities
(%f,%g:7r). Due to the symmetry of the network, the BER results obtained for the two sources
are equal and therefore only the average BER of the two sources are shown. As observed from the
figure, the analytical results are in excellent agreement with the simulation results for sufficiently high
SNR, confirming the accuracy of the approximations made in Section 2 and 3. As expected from the
analysis in Section 3 (cf. Remark 3), the network—coding gain is a function of the respective channels
qualities, but nevertheless, a diversity gain of two is achieved for all channel quality combinations.
Also shown in this figure are the simulated BER results for ML combining at the destination, which
confirm that the performance achieved by the generalized C-MRC scheme is very close to that of the
ML combining in all cases.

The BER performance results for an asymmetric NCCD system with N, = 4 sources and BPSK
modulation are shown in Fig. 3. For this system we have assumed 7y, 2 3, ¥ = 7+ 10dB,
Vs =7 +16dB, ¢, = ¥+ 20dB and Yy, = Y5, = Vg5 = You = Y& = 7- The BER results for
the individual sources as well as the average BER (of all sources) are shown as a function of ¥ in
this figure. We observe that although all individual sources achieve a diverse order of two, different
network—coding gains are achieved by different sources as the network—coding gain depends on the
respective channel qualities.

In the next figure we study the impact of number of sources on the performance of NCCD systems.
In particular, we consider a NCCD system with 75, =7, =7, 1 <17 < N, g = 7 and show the
average BER for different N; as a function of 4 for BPSK. The analytical results are shown for three
values of 4R, but the simulation results are shown only for two 7z values to avoid crowding the figure.
As expected, a diversity gain of two is achieved in all cases irrespective of the number of sources.
Furthermore, in accordance with our findings in Remark 3 we observe that the network—coding gain
only logarithmically increases with ;. In addition, as 4 decreases the network—coding gain becomes
less dependent on N, and is rendered independent of N, for low enough ~4z. We also note that
although increasing N, results in some performance degradation, increasing this quantity also leads

to an increase in the throughput savings (cf. Remark 1) which, in general, more than compensates
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for this slight performance loss.

5.2 Performance Optimization

As discussed in Remark 3, the performance of a NCCD system can be optimized by optimizing
the constellation mapping px. In Figs. 5 and 6 we consider this mapping optimization problem for a
NCCD system with 16-QAM and N, = 2 for two channel quality settings Case | (74, =75, = 7r = 7,
Yo = Vgo = 7 +30dB) and Case Il (Y, =7, = Y91 = V9o =7, 7 =7 — 30dB). For both cases
a random search was performed to find the mapping that minimizes the asymptotic SER in (27).
The resulting optimal mappings along with a natural mapping are depicted in Fig. 5. The simulated
SER as well as the analytical SER results for the optimal and natural mappings are shown in Fig. 6
as a function of 74 for Cases | and II. As seen, for non—binary constellations the agreement between
the simulation and analytical results is not as close as in the binary case which is due to the fact
that a union—bound is used in (5) to upper-bound the SER. Nevertheless, for both cases the SER
upper—bound is able to accurately predict the difference between the simulated SER results for the
optimal and natural mappings, suggesting that this upper—bound is a suitable criterion for mapping
optimization. In addition, as observed from the figure, in both cases a performance gain of 1 dB is
achieved by the optimal mapping compared to the natural mapping. For 8-PSK, a natural mapping
as well as optimal mappings for Cases | and Il (obtained using a similar approach as above) are shown
shown in Fig. 7. Simulation results (not shown) reveal that for both Cases | and Il the optimal
mappings outperform the natural mapping by 0.8 dB.

In Fig. 8 we consider the min—max fair OPA problem described in Section 4 (cf. Eq. 35) for a
NCCD system with BPSK, Ny =2, Q; = Q,, =1, Qp, = Q,, = 50, 2z = 200, and Uim =02 =

NR,i
2

Onpr £ 52, To allow an unobstructed view of the effect of system parameters on the power allocation,
we omit the constraints (35b) by letting P, jax = 00, ¢ = 1,2, and Pgmax = 00. The BERs of both
sources S;, 1 € {1, 2} as well as the average BER of both sources are shown as a function of P;/o?,
and are compared with that of equal power allocation (EPA), where P, = P, = Pp = P,/3. Since S
has a weaker channel and therefore a higher BER compared to S5, the OPA aims at minimizing the
BER of S; and improves the corresponding BER by 3.5 dB. This performance improvement is achieved
by allocating more power to S; than to Sy (and the relay), and is accomplished at the expense of a
small degradation in the BER of source S5. Fig. 8 further reveals although the average BER was not
adopted as the cost function for the optimization problem, this performance measure is also improved

by 3.2 dB compared to EPA.
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6 Conclusions

In this paper, we studied NCCD systems where the network coding is performed over GF(2™) and
developed a simple C—-MRC diversity combining scheme which achieves the maximum diversity of
the considered system even if erroneous decisions at the relay are taken into account. Assuming
independent Rayleigh fading for all links in the network, we derived closed—form expressions for the
asymptotic SER and BER of the considered NCCD system. These simple and elegant expressions
provide insight into the impact of various system and channel parameters on performance and can be
exploited for system design and performance optimization. Simulation results confirmed the accuracy
of the presented asymptotic SER and BER results and revealed that both mapping optimization and

optimal power allocation can considerably improve the performance of NCCD systems.

Appendix
In this appendix, we provide Lemmas 1-4 and prove Propositions 1 and 2.

Lemma 1: The asymptotic behavior of @, (s), 1 <1i < N, for 75, — oo is given by

1
Pr(s) = ———
fl(S) d?s(l - S)fj/fz"

for d; £ |x; — %;| # 0 and ®,(s) = 1 for d; = 0.

Proof. This result can be proved following the same steps as in [16, Section IV.A]. Due to space

(37)

considerations a detailed proof is not provided here. [ |
Lemma 2: The asymptotic behavior of ®f, ;(Zr; s) = €y ypapn {0Q [/2007, ] e rdrlrinin) |

for 4y, — 00, 1 <@ < Ny, yr — 00 is given by

e L [0 35)
O% (TR;s é—/ — —do, 38
e T Jo e (dr(Zr)s + 55)
where CZR(QA?R) = |i’R — i’R‘Q — ’.CCR — :IAZ'RIQ.
Proof. Using the alternative representation for the Q—function Q[z] = %foﬂm e=7*/sm*049 we can
write
R 5 /2
CIDEJ(;ER; s) = ;/ E,:LD’R{(I)(S,H)} do, (39)
0

g, L
where ®(s,0) = 579,7R{e*ﬁ e~ rAr(@RIRER) L Furthermore, from (12) we have

2%m

- — dR §R{'r_L*D,R}a (40)
TR

ArAR(TR, TR, ER) = Ym dr(ir) +
with 7,, £ min{7eq, Yr}. Using the Taylor series expansion e = Y >° z'/i! leads to

o0

Z 2 i 20
=0
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A T(i+1/2)
with n; = NN RSy

o0 A\ %
\I/i(S,e) £ g,ygﬁR{e—(Wde(xR)s-i- 5) (’y_’y;) }

dZi
- R / / / ~(ym dr xR)er ),Y va i 07 9;/Y95 o= VR/TR = Vu/Tu v, dvr de. (42)
ng]”nyYu

and

The auxiliary RV 7, in (42) is defined as v, = mini<;<n, {7y, }, and is thus an exponentially distributed
RV with mean 7, = (Zf;lﬁgjl)_l. Based on Z’Z;]e definition of ~,, we therefore conclude that
Ym = Min{yg;, Yu, Yr}- It cjarz be shown that among the three possible cases 7,, = Vg, Ym = Y, and
Ym = 7g;, the latter dominates the asymptotic behavior of W;(s) (the proof is omitted due to space
limitations). Consequently, we can write W;(s) = W}(s) + U%(s), where W} (s) and WU?(s) correspond

to the two cases v, < g < 7, and 7y, < 7y < YR, respectively, and are defined as

d2i o 4. (dr(ZR)s L , o0
7

— ’yu — .
dfyue*'yu/’yu / d,yRe*VR/’YR,YEZ’ (43)
v

/ngrYRrYu 95 95
and
2 dQRi > g, [dRr(ER)s+ TS5 T5) 9 * v/ > YR/ AR—i
Ui (s,0) = dyg,e 5y dry, e T/ dype TRTRA LY (44)
Va; VR Yu J Yo; -

In the following, we find the asymptotic behavior of W}(s,6) and W7 (s,0) for 3y, 7,7 — 00,

respectively. For Wl(s, ), according to (43) we can write

21 00
\I’il(s, 9) = C{R _ / d7 e 9 (dR(:ER)s+ St/ Ye;) 7?
Va; TR Vu j

x / dye™ /T | JE T (L — i, g, /73)—7};%1—@',%/73)]. (45)
v

95
To obtain the asymptotic behavior of ¥!(s,0) we consider three cases i > 1, i = 1, and i = 0,

respectively, and employ the asymptotic properties of the incomplete gamma function T'(-, z) for

z — (0 given by
ED (k4 1) —log2) + 25 k>1
D(—k, 2) = (W ) g2) + = = (46)
—logz —7 k=0

In particular, for i > 1 from (46) we have I'(1 — 4,7y, /r) = 1/(i — 1)(7y,/7r)"". Therefore (45)
reduces to

5
Vo; VR Vu(
=03, "), (47)

Wi (s, 0) =

* g (dr(ZR)s+—%—+1 i —i = _2g . _
i 1) /0 d'nge Yo; (drR(ZR)S+ Soog+ /W])’Yi <'791j Yu — ’YZ F(2 — @7’7gj/’)/u)>
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where we have again used (46) to obtain the last asymptotic equality.

For i = 1 we have I'(0, vy, /r) = —log(v,,/7r) and therefore (45) can be written as

d2i e © _
Ul(s,0) = / dryg, e e (IRERI g T1/70) 42 [ / dry log e /7 —log (Y4, )Fu
’Yg]’VR’yu "/_q]-
=0 (7, 77" log(u)).- (48)

Finally, for ¢ = 0, I'(1,7eq/7r) = 1 is valid and therefore after using appropriate transformation of

variables in (43) we arrive at

[e'e} Yu YR dnls ag; _ _ _
/ d%/ d’VR/ d%je—(vgj R(ER)S 276) 0 =9/ V95 o= VR/VR e—vu/vu’
0 0

_ Yu
B Yg; (VR + %)(dR(xR)S + 5z 9> ' (49)

\1111(379) [ ——
'ng")/Rqu

For W2(s,0) we first write (44) as

U2(s,0) =

d2i 00 ) o _ .
/ dryg e (dr(Zr)st3 29+1/ng)7§;/ dy,e A3 T (1 — i, v, /AR). (50)
’Yg]’YR’Yu Tg;

Using an approach similar to that used in obtaining the asymptotic ¥}(s,#), for i > 1 we have
5

U3(s,0) = ———
( ) ”ng’YR’Yu(

— 1)/0 dy,,e” va; (Ar(ER)s+ %5 +1/wg]),y§j(:yg—ir(2—i,’ygj/%)), (51)

which leads to ¥?(s,0) = O(ﬁ;jlﬁélﬁqjl) for i > 2, and ¥?(s,0) = O(ﬁ;jlﬁélﬁqjllog(%)) for i =
2. Furthermore, for i = 1 and 7 = 0 we obtain

d2z‘ o0 0 B
\I/?(S, 9) - _R _ / d,ygvef'ygj (dR(xR)er 55 +1/79;) ’Y; [/ d%ewu/n 10g(’yu) — log(’_ypb)}

Yg; TR Yu Jo ! J o
=07, 7:"); (52)
and
oo YR Yu T A o 1
\I’?(S,G) El— / d’}/R/ d’yu/ dfygje_’ygj (dR(mR)Ser—i_?j) e~ YR/AR o=Yu/Tu
Yg; VTR Vu 0 0
- T (53)

Vg, (VR + ) (dr(ZR)S + <%5)

respectively. As a result, based on (47)—(49) and (51)-(53) we obtain W;(s,0) = Wl(s,0) + ¥?(s,0)

as
0(7,,'7%") i>1
Uy(s,0) = { O, og(Fu)) i=1 (54)
L 1=0

Ya; (dR(IR)S-f' 2 9)
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Substituting this result into (41) leads to (38) upon using (39). |
Lemma 3: The asymptotic behavior of I(s) £ &, 1nnp . {e S FARERIRIRY for 5, — 00, 1 <
1 < Ny, ¥ — 00 is given by
I65) = — 1 (55)
s) = —
Veqd®s — Frd%s(s — 1)’
for dg # 0, while I(s) =1 is valid for dg = 0.

Proof. Since from (40) we have \gAgr(Tg, TR, TR) = Ym d% +\2/771R dr ®{n}p r}, we conclude that

I(s) = 1is valid for dg = 0. For dg # 0 we use Taylor series expansion e = Y > z'/i! to write

I(s‘ﬁD,R> = S'qu:'VR{e_SARAR(xR@R’wR)} as

I(s|ip.r) = ,m{z ynD 2062 Yy (s, 9)} (56)

i=0
where
21 21 o0 o0
_ Ym dr dp i s A 20~ o —Yea/Tea o= VR/T

T@,@)g)égy 7R{e Ym d3;s (_ }: R / / e Rs%;lee Yea/Vea g ~VR md%qd%%-
o \/’Y_R Yeq VR

(57)

Splitting the inner integration interval in (57) into two intervals [0, Veq], [Veq, 00) yields Y;(s,0) =
Yi(s,0)+ Y3(s,0) where

T d% > d _'qu/:feq Jea d = ('YR d?{S'i'FYR/:YR)
Hs,0) = Veq€ YR VR © , (58)
7eq'7R 0
and 9
T?(s, 9) A _dF: / d%qﬁée—%q(d%%l/%q) / dvr %? e~ (YR/R) (59)
’qu’yR 0 Yeq

We find the asymptotic behavior of T} (s, ) and Y?(s, ), respectively, in the following for Jeq, 78 —
oo. For Wl(s,0) we write (58) as

» 2% 1t 00 ;1 ak o(dRST1/ARF1/Feq ) Vea :
Ti(s,0) = — 12! - _d]i / z.%,qe( R R “H)l Ayeq = +‘+1 (60)
TR dRSH_ Yeq VR k=0 /0 k! (d%s -+ 1/’_}/3) RdRSZ
For T?(s, ) we first express (59) as
di
T2(3 0) = / d%q'ygle tea(dgst1/%ea) F(l — 1, %q/ﬁR)- (61)
’qu’YR

Following steps similar to those used in Lemma 2 to obtain the asymptotic behavior of WZ(s, ) we

arrive at

O (Veg'm') i>1

T(s,0) = di;f% i=1 (62)
L i=0

:qudés
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With (60) and (62) for T;(s,8) = Y} (s,0) + T?(s,0) we get

o YR d2 87‘+1
dgs \Vea ' IR N
Substituting (63) in (56) results in
1 1 1 1 > 21Z'Th P 1 elﬁD,R‘Qs
I(s|np.r) = —— (— + —) + - ~ |"D,R st = — + —, 64
(s] ) d%s \Yeq R d%sVr Zz_; (24)! | | d%$Yeq  d%STR (64)

(20)!
2002

leads to (55). |
Lemma 4: The asymptotic behavior of ®f(s) £ &, 1nnpn {[1 — BQ(\/20 Yeq)|e~ P rARERTRTR) L

for 4y, — 00, 1 <@ < Ny, yr — 00 is given by

1 [7/? 2 2 3
D (s) = _/ ( — - — = — )d@, (65)
i T Jo YeadRs — ArdRs(s — 1) Feqdh(s + m)
for dg # 0, while ®f,(s) = 1 is valid for dg = 0.
Proof. We first note that ®5,(s) = I(s) — Z;V:SI ®f, ;(zR; s), where we have employed Q(/2 Yeq) ~
S Q(y/2a7,,) which is valid for 7, — oo, 1 < i < N;. For dg # 0 combining (38) and (55)

readily results in (65). For dp = 0 from (38) and (55) we obtain ®f(s) = 1— Fleq OW/Q B%HQ(’ do = 1.
|

where we have used 7; = Finally, averaging I(s|fip r) over the Rayleigh distributed RV |7ip g|

Proof. [Proposition 1] Based on Lemma 1 ®;,(s) can be written as ®,(s) = k7 for z; # #; and
O, (s) =1 for x; = Z;, where ki is a finite (positive) constant. Furthermore, using Lemmas 2 and
4 in (15) yields ®p(s) = ko7 for 2z # ir where ky is a finite (positive) constant, and ®p(s) = 1
for xp = Zp. Therefore, based on (13) we conclude that G pgp is given by the number of non-zero
elements in the vector [z, —71, - , 2N, —TN,, Tr—Zp|’. Since uy : A — X is a one—to—one mapping
function, G4 prp is alternatively given by the Hamming distance between the transmit symbol vectors
S. and S, denoted as dy(x, ). To see dy(x,x) > 2, we first note that by definition we have & # &,
and therefore s; # §; is valid for i € Z, where 7 is a non—empty index set. For |Z| > 2, dy(x,Z) > 2
immediately follows. For |Z| = 1 it is easy to see that sp # Sg, resulting in dy(x, &) = 2. |
Proof. [Proposition 2] For a given transmit signal vector @, the set C;(x) in (26) can be partitioned
into N, disjoints sets C(z), 1 < I < Ny, ie., Ci(x) = U~ Ci(x), where Cl(x) is defined in (31).
Therefore, the asymptotic SER can be calculated by using (5) and (26) as

Pjé]\st 3 Z Y P a). (66)

weXNs 1=1 zeCl(x)
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For & € C!(x), the asymptotic PEP can be obtained from (20) and (22) as

=1 9 V£ Vg;

.1 & ol (x, x) N 1 bz, T, TR)
P o2 g _ e 2 E E _— 67
S Vhi (d)c ) = ' TR ) ' j=1 |D;()| #rED; () 17 o

For € Cl(x), | # i, using (24) and (25) yields

P — 5) = %®2) Z Z b, 5q) o Pl 8) (63)
Y11 |D Y1715 Y171

(27) can now be obtained by combining (66), (67), and (68). |
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Figures:

Figure 1: Block diagram of the considered NCCD system. Solid and dashed lines denote links
belonging to first and second hop, respectively.
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BER

Figure 2: BER of a symmetric NCCD system with Ny = 2 sources and BPSK modulation
vs. 74 for various channel qualities settings (97,7%,,7r). Solid lines with markers: Simulated
BER. Dashed line: Asymptotic BER. Dash—dotted lines with markers: Simulated BER for ML

diversity combining at the destination.
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SER

Figure 3: BER vs. 4 for an asymmetric NCCD system with N; = 4 sources and BPSK modu-
lation. Solid lines with markers: Simulated BER. Dashed line: Asymptotic BER.
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Figure 4: BER of a NCCD system with BPSK modulation vs. 4 for different N,. Solid lines

with markers: Simulated BER. Dashed line: Asymptotic BER.
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Figure 5: 16-QAM signal constellation with three different constellation mappings
py A — X.

Optimal mapping for Case II.

(a) A natural mapping, (b) Optimal mapping for Case I, and (c)
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Figure 6: SER of a NCCD system with 16-QAM modulation and Ny = 2 for the optimal
and natural mappings depicted in Fig. 5 in two channel quality settings Case I and Case II.
Solid lines with markers: Simulated SER. Dashed line: Asymptotic SER for natural mapping.
Dash—dotted line: Asymptotic SER for optimal mapping.



(b)

Figure 7: 8-PSK signal constellation with three different constellation mappings py :
A — X. (a) A natural mapping, (b) Optimal mapping for Case I, and (c) Optimal
mapping for Case II.
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BER

Figure 8: BER vs. P;/0? of a NCCD system with N, = 2 and BPSK modulation for max—min
fair OPA and EPA. Solid lines with markers: Simulated BER. Dashed line: Asymptotic BER.



