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In this paper, we present a general mathematical framework for performance analysis of single–

carrier (SC) and orthogonal frequency division multiplexing (OFDM) systems employing popular bit–

interleaved coded modulation (BICM) and multiple receive antennas. The proposed analysis is appli-

cable to BICM systems impaired by general types of fading (including Rayleigh, Ricean, Nakagami–m,

Nakagami–q, and Weibull fading) and general types of noise and interference with finite moments

such as additive white Gaussian noise (AWGN), additive correlated Gaussian noise, Gaussian mixture

noise, co–channel interference, narrowband interference, and ultra–wideband interference. We present

an asymptotically tight upper bound for the bit error rate (BER) and a closed–form expression for

the asymptotic BER at high signal–to–noise ratios. We show that the diversity gain of BICM systems

only depends on the free distance of the code, the type of fading, and the number of receive antennas

but not on the type of noise. In contrast their coding gain strongly depends on the noise moments.

Our analysis shows that, if the popular Euclidean distance metric is used for Viterbi decoding, BICM

systems optimized for AWGN are also optimum for any other type of noise and interference with finite

moments.

1This work has been submitted in part to the IEEE Global Telecommunications Conference (Globecom), New

Orleans, 2008.
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1 Introduction

Bit–interleaved coded modulation (BICM) is an efficient technique to extract time diversity in systems

with single–carrier (SC) modulation [1] and frequency diversity in systems employing orthogonal

frequency division multiplexing (OFDM), and has been adopted by a number of recent standards and

is also expected to play a major role in future wireless systems [2].

While wireless systems are usually optimized for additive white Gaussian noise (AWGN), in practice,

they are also subject to a multitude of other impairments such as narrowband interference (NBI) [3],

co–channel interference (CCI) [4], correlated Gaussian noise and interference [5], man–made impulsive

noise [6, 7], and ultra–wideband (UWB) interference [8, 9, 10]. Therefore, it is of both theoretical

and practical interest to investigate how the performance of BICM–SC and BICM–OFDM systems

designed for AWGN environments is affected by non–Gaussian noise.2 We note that almost all

existing performance studies of BICM are limited to AWGN. For example, union bounds for the bit

error rate (BER) of BICM–SC were provided in [1, 11] and similar expressions for BICM–OFDM can

be found in [12]. The combination of BICM–OFDM and spatial diversity techniques was analyzed

in [12, 13, 14]. In contrast, only few analytical results are available for non–AWGN types of noise.

Namely, the performance of BICM–SC in Middleton’s Class A impulsive noise and of BICM–OFDM

in UWB interference was analyzed in [15] and [10], respectively.

Motivated by the lack of general performance results, in this paper, we provide a mathematical

framework for performance analysis of BICM–SC and BICM–OFDM systems with multiple receive

antennas in fully interleaved fading and non–AWGN environments. This framework is very general

and applicable to arbitrary linear modulation formats, all commonly used fading models, and all

practically relevant types of noise with finite moments. We first develop a general upper bound

on the BER of BICM systems, which is easy to compute but offers little insight since it requires

numerical integration. To overcome this problem, we derive closed–form asymptotic BER expressions

for BICM–SC and BICM–OFDM systems which provide significant insight into the impact of system

parameters such as the modulation format, the free distance of the code, the type of fading, and the

type of noise on performance. In particular, we show that while the diversity gain of BICM systems

is not affected by the type of noise, the coding gain depends on certain noise moments. We note

2In the rest of this paper, the term “noise” refers to any additive impairment of the received signal, and also

includes what is commonly referred to as “interference”.
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that the asymptotic performance of uncoded SC modulation has been studied in AWGN [16, 17]

and non–AWGN [18, 19] channels before. However, both the analysis techniques and the results in

[16]–[19] are not applicable to BICM.

The rest of this paper is organized as follows. In Section 2, the considered BICM–SC and BICM–

OFDM system models are introduced. The proposed upper bound and asymptotic approximation for

the BER are presented in Sections 3 and 4, respectively. Various practically relevant noise models are

discussed in Section 5. The presented analysis is verified via computer simulations in Section 6, and

conclusions are drawn in Section 7.

2 System Model

We consider BICM–SC and BICM–OFDM systems with NR receive antennas. For convenience, in

this paper, all signals and systems are represented by their complex baseband equivalents.

2.1 System Model

The BICM transmitter consists of a convolutional encoder of rate Rc, an interleaver, and a memoryless

mapper [1]. Specifically, the codeword c , [c1, c2, . . . , cmcKc
] of length mcKc is generated by a

convolutional encoder and interleaved. The interleaved bits are broken up into blocks of mc bits

each, which are subsequently mapped to symbols xk from a constellation X of size |X | , M = 2mc

to form the transmit sequence x , [x1, x2, . . . , xKc
] of length Kc. Assuming perfect synchronization

and demodulation, for both BICM–SC and BICM–OFDM the signal observed at the NR receive

antennas can be modeled as

rk =
√

γ hk xk + nk, 1 ≤ k ≤ Kc, (1)

where hk , [hk,1 . . . hk,NR
]T with E{||hk||2} = NR and nk , [nk,1 . . . nk,NR

]T with E{||nk||2} =

NR contain the fading gains hk,l and the noise variables nk,l, 1 ≤ l ≤ NR, respectively, and γ denotes

the signal–to–noise ratio (SNR) per receive antenna.3 As customary in the literature, cf. e.g. [1, 11,
3In this paper, [·]T , (·)H , <{·}, || · ||, det(·), and Ex{·} denote transposition, Hermitian transposition, the real

part of a complex number, the L2–norm of a vector, the determinant of a matrix, and statistical expectation with

respect to x, respectively. Moreover, IM and 0M are the M ×M identity matrix and the all–zero column vector

of length M , respectively. Furthermore, we use the notation u $ v to indicate that u and v are asymptotically

equivalent, and a function f(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.
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13], for our performance analysis we assume perfect interleaving, which means that hk and nk can

be modeled as independent, identically distributed (i.i.d.) random vectors and only their first order

probability density functions (pdfs) are relevant. In the following, we will discuss the assumptions

necessary for the validity of this model more in detail.

BICM–SC: For BICM–SC we assume transmission over a flat fading channel and coding over

B frames of N data symbols, i.e., Kc = NB. The channel is time–variant within one frame and

changes independently from frame to frame (e.g. due to frequency hopping). For sufficiently large N

and/or B assuming that the time–domain fading vectors hk are i.i.d. is justified [1].

BICM–OFDM: We consider a BICM–OFDM system with N sub–carriers where one codeword

spans B OFDM symbols, i.e., Kc = BN . We assume that the length of the OFDM cyclic prefix

exceeds the length of the channel impulse response and that the channel changes independently

from OFDM symbol to OFDM symbol. Thus, modeling the frequency–domain channel gains hk as

i.i.d. vectors implies that the channel is severely frequency selective and/or B is sufficiently large.

Practical BICM–SC and BICM–OFDM systems that employ interleaving and coding over B > 1

frequency–hopped frames include the GSM/EDGE mobile communication system (N = 116/N =

348, B = 8) and the ECMA multi–band OFDM (MB–OFDM) UWB system (N = 128, B = 3;

future versions of the standard may use up to B = 15) [8], respectively.

2.2 Fading and Noise Model

Fading Model: The fading gains can be expressed as hk,l , ak,le
jΘk,l, where ak,l and Θk,l are

mutually independent random variables (RVs). Specifically, Θk,l is uniformly distributed in [−π, π)

and ak,l is a positive real RV characterized by its distribution pa,l(ak,l) or equivalently by its moment

generating function (MGF) Φa,l(s) , E{e−sak,l}. Correlated fading can be modeled via the joint

pdf pa(ak) or the joint MGF Φa(s) , E{e−
∑NR

l=1
slak,l}, s , [s1 . . . sNR

]T , of the elements of

ak , [ak,1 . . . ak,NR
]T , cf. e.g. [20, 21, 22]. For the asymptotic analysis in Section 4, we require the

fading channel to be asymptotically spatially i.i.d., i.e., for ak → 0NR
the joint pdf can be expressed

as

pa(ak) $

NR
∏

l=1

pa(ak,l), (2)

where

pa(a) = 2αca
2αd−1 + o(a2αd−1) (3)
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with fading distribution dependent constants αc and αd. Eq. (2) is obvious for i.i.d. and independent,

non–identically distributed (i.n.d.) fading [16]–[18], and we prove its validity for the most popular

correlated fading models (Rayleigh, Ricean, and Nakagami–m) in Appendix A. For these correlated

fading models and for independent Nakagami–q and Weibull fading, the fading pdf pa,l(ak,l) and

parameters αc and αd are specified in Table 1.

Noise Model: The proposed analysis is very general and applicable to all types of noise for which

all joint moments of the elements of nk exist. This is a mild condition which is met by most practically

relevant types of noise and interference, see Section 5 for several examples. An exception is α–stable

noise, which is sometimes used to model impulsive noise [23], as the higher order moments of α–

stable noise do not exist. Note that our analysis is applicable to other types of impulsive noise such

as Middleton’s Class–A model and ε–mixture noise.

3 Upper Bound for BER

In this section, we present an upper bound for the BER of BICM systems operating in non–AWGN

environments.

3.1 MGF of Metric Difference

We assume standard Viterbi decoding with Euclidean (ED) branch metric [1]

λi[k] , min
xk∈X i

b

{

||rk −
√

γ hk xk||2
}

(4)

for bit i, 1 ≤ i ≤ mc, of symbol xk. Here, X i
b denotes the subset of all symbols in constellation

X whose label has value b ∈ {0, 1} in position i. Although the ED metric is not optimum for non–

Gaussian noise, it is employed in most practical systems since the pdf of the noise, which is necessary

for optimum maximum–likelihood (ML) decoding, is usually not known at the receiver. For derivation

of the proposed upper bound it is convenient to first calculate the MGF of the metric difference

∆(xk, zk) , ||rk −
√

γ hk zk||2 − ||rk −
√

γ hk xk||2 = d2
xz[k] γ||hk||2 − 2 dxz[k]

√
γ <{hH

k nk}, (5)

where xk denotes the transmitted symbol and zk is the nearest neighbor of xk in X i
b̄

with b̄ being

the bit complement of b, and xk − zk , dxz[k]ejΘd[k] with ED dxz[k] > 0. Since we assume the
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phases Θk,l of hk,l to be uniformly distributed, in (5), we have absorbed ejΘd[k] in hk without loss of

generality. Based on (5) the MGF Φ∆(xk,zk)(s) of ∆(xk, zk) can be expressed as

Φ∆(xk,zk)(s) , Ehk,nk
{e−s∆(xk,zk)} = Ehk

{e−d2
xz[k] γ||hk||2 s Enk

{e2 dxz[k]
√

γ <{hH
k nk} s}}

= Eak
{e−d2

xz[k] γ||ak||2 s Φn̂(−2 dxz[k]
√

γ aks)} (6)

where n̂k , [e−jΘk,1nk,1 . . . e−jΘk,NRnk,NR
]T and Φn̂(s) , En̂k

{e−sT <{n̂k}} is the MGF of n̂k. If the

phases of the noise components nk,l, 1 ≤ l ≤ NR, are mutually independent and uniformly distributed

in [−π, π), Φn̂(s) = Φn(s) , Enk
{e−s

T <{nk}} is valid and Φn̂(s) in (6) can be replaced by Φn(s).

Further simplifications are possible if both the phases and the amplitudes of nk,l, 1 ≤ l ≤ NR, are

mutually independent. In this case, we can express Φn̂(s) as

Φn̂(s) =

NR
∏

l=1

Φn̂l
(sl<{nk,l}), (7)

where only the scalar MGFs Φn̂l
(s) , En̂k,l

{e−s<{n̂k,l}} of the elements n̂k,l , e−jΘk,lnk,l of n̂k are

required. If the phases of the nk,l, 1 ≤ l ≤ NR, are uniformly distributed in [−π, π), Φn̂l
(s) =

Φnl
(s) , Enk,l

{e−s<{nk,l}} is valid, i.e., only the scalar MGFs of the noise components are required.

The scalar MGFs Φn̂l
(s) of several practically relevant types of noise are collected in Table 2,

cf. Section 5. If Φn̂(s) cannot be calculated in closed form, it can be computed by numerical

integration. However, even if closed–form expressions for the MGF are available, calculation of

Φ∆(xk ,zk)(s) in closed form is usually not possible, and evaluation of (6) entails NR numerical integrals.

3.2 Upper Bound

Assuming a convolutional code of rate Rc = kc/nc (kc and nc are integers) the union bound for the

BER of BICM is given by [1]

Pb ≤
1

kc

∞
∑

d = df

wc(d) P (c → ĉ), (8)

where c and ĉ are two distinct code sequences with Hamming distance d that differ only in l ≥ 1

consecutive trellis states, wc(d) denotes the total input weight of error events at Hamming distance

d, and df is the free distance of the code. P (c → ĉ) is the pairwise error probability (PEP), i.e.,

the probability that the decoder chooses code sequence ĉ when code sequence c 6= ĉ is transmitted.
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Invoking the expurgated bound from [1], the PEP can be expressed as

P (c → ĉ) =
1

2πj

c+j∞
∫

c−j∞





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(xk ,zk)(s)





d

ds

s
, (9)

where c is a small positive constant that lies in the region of convergence of the integrand. The

integral in (9) can be efficiently evaluated numerically using a Gauss–Chebyshev quadrature rule,

cf. [24]. As will be shown in Section 6, (8) and (9) constitute an asymptotically tight upper bound

on the true BER. This bound is a generalization of similar bounds in [1, 13] for AWGN to arbitrary

types of noise (and interference). Unfortunately, the integrals in (6) and (9) obscure the impact of

system and channel parameters on performance. This motivates the asymptotic analysis in the next

section, which leads to closed–form results.

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of the upper bound in (8) for high SNR, i.e.,

γ → ∞. For this purpose, it is convenient to consider the conditional PEP

P (c → ĉ |n) =
1

2πj

c+j∞
∫

c−j∞

Φ(s|n)
ds

s
, (10)

where n , [nT
1 . . . nT

Kc
],

Φ(s|n) =





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(xk ,zk)(s|nk)





d

, (11)

and Φ∆(xk,zk)(s|nk) = Eak,Θk
{e−s∆(xk,zk)} with channel phase vector Θk , [Θk,1 . . . Θk,NR

]T . The

conditional PEP in (10) is given by the sum of the residues of Φ(s|n)/s at poles lying in the left

hand side (LHS) of the complex s–plain (including the imaginary axis) [24]. In order to investigate

the singularities of Φ(s|n)/s, we derive the Laurent series representation of Φ(s|n) around s = 0 for

the asymptotic case of γ → ∞ in the following subsection.
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4.1 Laurent Series Expansion of Φ(s|n)

Exploiting the fact that the elements of ak and Θk are asymptotically i.i.d., cf. Section 2.2, for

γ → ∞ we can rewrite Φ∆(xk ,zk)(s|nk) as

Φ∆(xk,zk)(s|nk) $

NR
∏

l=1

Φ∆(xk ,zk)(s|nk,l), (12)

where Φ∆(xk ,zk)(s|nk,l) , Eak,l,Θk,l
{ e−sγ d2

xz [k] |ak,l|2 e2
√

γdxz[k] ak,l<{n̂k,l} s}. Using the Taylor series

expansion ex =
∑∞

i=0 xi/i!, the integral
∫∞
0

xµ−1e−px2

dx = pµ/2Γ(µ/2) [25, 3.462], and (3),

Φ∆(xk ,zk)(s|nk,l) can be expressed as

Φ∆(xk,zk)(s|nk,l) = Eak,l,Θk,l

{

e−sγ d2
xz [k] |ak,l|2

∞
∑

i=0

(2
√

γdxz[k] ak,l<{n̂k,l} s)i/i!

}

=
αc

(γd2
xz[k]s)αd

∞
∑

i=0

2iΓ(αd + i/2)EΘk,l
{<{n̂k,l}i}si/2 + o

(

γ−αd
)

. (13)

Using EΘk,l
{<{n̂k,l}i} = i/2+1/2√

πΓ(i/2+1)
|nk,l|i, i even, and EΘk,l

{<{n̂k,l}i} = 0, i odd, in (13) leads to

Φ∆(xk ,zk)(s|nk,l) =
αc

(γd2
xz[k]s)αd

∞
∑

i=0

βi|nk,l|2isi + o
(

γ−αd
)

, (14)

where βi is defined as

βi ,
22iΓ(αd + i)Γ(i + 1/2)

(2i)!Γ(i + 1)
=

Γ(αd + i)

(i!)2
. (15)

The asymptotic Laurent series expansion of Φ(s|n) is obtained from (11), (12), and (14) as

Φ(s|n) = X(α, NR, d) αNRd
c (γs)−αdNRd

(

NR
∏

l=1

zk,l(s)

)d

+ o
(

γ−αdNRd
)

(16)

with zk,l(s) ,
∑∞

i=0 βi|nk,l|2isi and modulation dependent constant

X(αd, NR, d) ,





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

1

(d2
xz[k])αdNR





d

. (17)

In the next subsection, we will use (16) to calculate a closed–form expression for the asymptotic BER.

4.2 Asymptotic BER

As mentioned before, the conditional PEP (10) is given by the sum of the residues of Φ(s|n)/s in the

LHS of the complex s–plain. Using d’Alembert’s convergence test [25, 0.222] it is easy to show that
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zk,l(s) is convergent for all s. Thus, (
∏NR

l=1 zk,l(s))
d is also convergent for all s. Consequently, the first

term on the right hand side (RHS) of (16), which dominates for high SNR, is convergent for s 6= 0,

i.e., for high SNR the only singularity of Φ(s|n)/s is at s = 0. Thus, the asymptotic conditional

PEP is given by the residue of Φ(s|n)/s at s = 0 or equivalently by the coefficient associated with

s0 in the series expansion of the first term on the RHS of (16). Assuming αdNRd is an integer this

leads to

P (c → ĉ |n) = X(αd, NR, d) αNRd
c γ−αdNRd

∑

i1+···+id=αdNRd

d
∏

k=1

∑

j1+···+jNR
=ik

βj1 |nk,1|2j1 · · ·βjNR
|nk,NR

|2jNR

+o
(

γ−αdNRd
)

. (18)

Based on (8) and (18) a closed–form expression for the asymptotic unconditional BER Pb $
wc(df )

kc

E{P (c → ĉ |n)} can be obtained as

Pb $
wc(df)

kc
α

NRdf
c X(αd, NR, df) M(αd, NR, df) γ−αdNRdf , (19)

where

M(αd, NR, d) =
∑

i1+···+id=αdNRd

d
∏

k=1

∑

j1+···+jNR
=ik

βj1 · · ·βjNR
Mn(j1, . . . , jNR

), (20)

with the joint noise moments

Mn(j1, . . . , jNR
) , Enk

{

|nk,1|2j1 . . . |nk,NR
|2jNR

}

. (21)

In arriving at (19)–(21) we have used the assumptions that (a) the first term in the summation in

(8) is asymptotically dominant, (b) the union bound is asymptotically tight, (c) the noise vectors nk

are i.i.d., and (d) all joint moments of the elements of nk exist. Assumption (d) is necessary since

the terms absorbed in o(γ−αdNRd) in (18), contain sums of products of elements of nk, cf. (13),

which have been neglected in (19). Eq. (19) is a generalization of similar asymptotic expressions

for AWGN in [1, 13] to non–AWGN channels. Depending on the properties of the noise, evalua-

tion of Mn(j1, . . . , jNR
) may be cumbersome. However, for two important special cases significant

simplifications are possible.

Case 1 (spatially i.i.d. noise): If the components of nk are independent, (20) simplifies to

M(αd, NR, d) =
∑

j1+···+jNRd=αdNRd

βj1Mn(j1) . . . βjNRd
Mn(jNRd) (22)

with scalar noise moments Mn(j) , E{|nk,l|2j}, which are independent of k and l.
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Case 2 (αd = 1): If αd = 1, which is true for example for (possibly spatially correlated) Rayleigh,

Ricean, and Nakagami–q fading, (20) simplifies to

M(1, NR, d) =
1

(NRd)!

∑

i1+···+id=NRd

(

NRd

i1, . . . , id

)

Mn(i1) . . .Mn(id) (23)

with vector noise moments Mn(i) , E{||nk||2i}.
Closed–form expressions for the moments Mn(j) and Mn(i) of several important types of noise

are provided in Tables 2 and 3, respectively, cf. Section 5.

4.3 Diversity Gain, Coding Gain, and Design Guidelines

To get more insight, it is convenient to express the asymptotic BER as Pb $ (Gcγ)−Gd [17], where Gd

and Gc denote the diversity gain (i.e., the asymptotic slope of the BER curve on a double logarithmic

scale) and the coding gain (i.e., a relative horizontal shift of the BER curve), respectively. Considering

(19), we obtain

Gd = αdNRdf (24)

Gc [dB] = −10

αd
log10 αc −

10

Gd
log10

(

wc(df)X(αd, NR, df)

kc

)

− 10

Gd
log10 M(αd, NR, df) (25)

From (24) we observe that the diversity gain of BICM is independent of the type of noise. The coding

gain in (25) consists of three terms, where the first, the second, and the third term depend on the

fading channel, the modulation scheme and the code, and the type of noise, respectively. The primary

goal of BICM design is to maximize df for a given decoding complexity in order to maximize Gd (and

to minimize the asymptotic BER). Gray labelings (yielding smaller X(αd, NR, df) than non–Gray

labelings) and codes with small wc(df) are advantageous for maximizing the second, modulation and

coding dependent term in (25). Once df is fixed, the last term in (25) cannot be further influenced

through system design making the BICM design guidelines effectively indepenent of the type of noise

in the system. Thus, our results show that BICM systems optimized based on the guidelines provided

in [1] for systems operating in fading and AWGN are also optimum for non–AWGN environments as

long as the ED metric is used for Viterbi decoding.

4.4 Uncoded Transmission

While BICM is the main focus of this paper, based on (19) it is also possible to compute the asymptotic

BER of uncoded transmission with maximum–ratio combining (MRC) at the receiver. In this case,
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df = 1, kc = 1, and wc(1) = 1 are valid. Furthermore, assuming a regular signal constellation such

as M–ary quadrature amplitude modulation (M–QAM) or M–ary phase shift keying (M–PSK), it is

easy to see that X(αd, NR, 1) = Nmin/(mcd
2αdNR

min ), where Nmin and dmin are the average number of

minimum distance neighbors and the minimum distance of X , respectively. Therefore, the asymptotic

BER of uncoded transmission with MRC can be expressed as

Pb $
Nminα

NR
c

mcd
2αdNR

min

M(αd, NR, 1) γ−αdNR , (26)

where M(αd, NR, 1) =
∑

j1+···+jNR
=αdNR

βj1 · · ·βjNR
Mn(j1, . . . , jNR

), which can be further sim-

plified for αd = 1 and spatially i.i.d. noise, cf. Section 4.2. In particular, for αd = 1 we obtain

M(1, NR, 1) = Mn(NR)/NR!, cf. (23), and it can be shown that for Rayleigh and Ricean fading (for

both of which αd = 1 holds) (26) is identical to [19, Eqs. (12), (16)]. However, (26) is more general

than the results in [19] since it is not limited to Rayleigh and Ricean fading and is also applicable to

e.g. Nakagami–m, Nakagami–q, and Weibull fading.

5 Calculation of the Noise Moments and MGFs

In this section, we discuss several practically relevant types of noise and compute the corresponding

MGFs Φn̂(s) and moments Mn(j1, . . . , jNR
) required for evaluation of the upper bound in Section 3

and the asymptotic BER in Section 4, respectively. In the following, we add superscripts “t” and “f”

to the noise variables nk and nk,l to distinguish between time–domain and frequency–domain noise,

respectively.

5.1 Spatially I.I.D. Noise

For spatially i.i.d. noise only the scalar MGFs Φn̂(s) and the scalar moments Mn(i) have to be

computed for evaluation of the upper bound and the asymptotic BER, respectively, cf. (7), (22),

Table 2. In the following, we will consider two relevant examples for spatially i.i.d. noise.

5.1.1 AWGN

Although the main focus of this paper is non–AWGN, the presented results are also valid for AWGN.

Since the discrete Fourier transform (DFT) does not affect the statistical properties of AWGN, the
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results in this subsection are valid for both BICM–SC and BICM–OFDM. We note that although the

AWGN case was covered extensively in the literature, e.g. [1, 11, 13], our results are still more general

than existing results as they allow for spatially correlated fading and more general fading models.

For example, for Ricean fading (αd = 1) we obtain from (22) with the help of (15) and Table 2

M(1, NR, d) =
(

2NRdf−1
NRdf

)

. Thus, with (19) and Table 1 we get

Pb $

(

2NRdf − 1

NRdf

)

(

wc(df) exp
(

−µH
h C−1

hhµh

)

kc det(Chh)

)df

X(1, NR, df) γ−NRdf , (27)

which is a new result. For NR = 1, we may rewrite (27) as Pb $
(

2df−1
df

)wc(df )

kc
[(1 + K)e−K ]df X(1,

1, df)γ
−df with Ricean factor K , |µh|2/σ2

h, where µh and σ2
h denote the mean and the variance

of hk,1. In contrast, for Ricean fading with NR = 1 the Chernoff bound was used in [1] and [13] to

investigate the asymptotic behavior of BICM–SC and BICM–OFDM, respectively, since “a closed–

form expression for the PEP for arbitrary K is missing” [1]. Comparing our result with the asymptotic

Chernoff bound [1, Eq. (62)] shows that the Chernoff bound is by a factor of 4df /
(

2df−1
df

)

> 1 larger

than the asymptotic BER, i.e., for df = 3 and df = 6 the Chernoff bound is horizontally shifted by

2.7 dB and 1.6 dB compared to the asymptotic BER, respectively.

5.1.2 Spatially Independent Gaussian–Mixture Noise (SI–GMN)

GMN is often used to model the combined effect of Gaussian background noise and man–made or

impulsive noise, cf. e.g. [6, 7, 15]. If the phenomenon causing the impulsive behavior affects the

antennas independently, the GMN is spatially i.i.d. [26]. In the following, we will discuss the impact

of SI–GMN on BICM–SC and BICM–OFDM separately.

BICM–SC: The GMN model is a time–domain model, i.e., the time domain noise nt
k,l is distributed

according to

pn(nt
k,l) =

I
∑

i=1

ci

πσ2
i

exp

(

−|nt
k,l|2
σ2

i

)

, 1 ≤ l ≤ NR, (28)

where ci > 0 and σ2
i > 0 are parameters, and

∑I
i=1 ci σ

2
i = 1. Two popular special cases of Gaussian

mixture noise are Middleton’s Class–A noise [7] and ε–mixture noise. For ε–mixture noise I = 2,

c1 = 1 − ε, c2 = ε, σ2
1 = σ2

g , and σ2
2 = κσ2

g , where ε is the fraction of time when the impulsive noise

is present, κ is the ratio of the variances of the Gaussian background noise and the impulsive noise,

and σ2
g = 1/(1 − ε + κε) = 1.
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BICM–OFDM: Taking into account the fact that GMN is rotationally symmetric, it can be shown

that if the pdf of nt
k,l follows (28), the pdf of nf

k,l is given by

pn(nf
k,l) =

∑

k1+···+kI=N

ck1,...,kI

πσ2
k1,...,kI

exp

(

−
|nf

k,l|2
σ2

k1,...,kI

)

, 1 ≤ l ≤ NR, (29)

which is again an SI–GMN model with parameters ck1,...,kI
,
(

N
k1,...,kI

)

ck1

1 · · · ckI

I and σ2
k1,...,kI

,

(k1σ
2
1 + · · · + kIσ

2
I )/N . We note that the spectral i.i.d. asumption for nf

k,l is justified only if the

interleaver spans several OFDM symbols, i.e., B � 1, since the noise after DFT in one OFDM

symbol will be spectrally dependent.

5.2 Spatially Dependent Noise

For most practically relevant types of spatially dependent noise the phases of the elements of nk are

not independent. In these cases it is difficult to find closed–form expressions for the joint MGF Φn(s)

and the joint moments Mn(j1, . . . , jM). Therefore, unless stated otherwise, we will concentrate in

the following examples on the important special cases αd = 1 (with arbitrary NR) and NR = 1 (with

arbitrary αd), where only the vector moments Mn(i) and the scalar moments Mn(i) of the noise are

required, respectively.

5.2.1 Additive Correlated Gaussian Noise (ACGN) in BICM–SC Systems

In BICM–SC systems, correlated Gaussian noise nt
k may be caused by narrowly spaced receive an-

tennas [5]. Correlated Gaussian interference nt
k = h̃kbk + ñt

k is caused by a synchronous co–channel

interferer transmitting i.i.d. PSK symbols bk over a spatially correlated Rayleigh fading channel

with gains h̃k and AWGN ñt
k. In both cases nt

k is fully characterized by its covariance matrix

Cnn , E{nt
k(n

t
k)

H}, and the corresponding vector moments Mn(i) are given in Table 3, where λl,

1 ≤ l ≤ NR, denotes the eigenvalues of Cnn.

5.2.2 Asynchronous Co–Channel Interference (CCI) in BICM–SC Systems

Another common type of non–AWGN impairment in BICM–SC systems is asynchronous CCI. We

consider coding over B different hopping frequencies and assume that at hopping frequency µ,

1 ≤ µ ≤ B, in addition to AWGN ñt
k,µ, there are Iµ Rayleigh faded asynchronous CCI signals leading
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to time–domain noise

nt
k,µ =

Iµ
∑

i=1

h̃k,µ[i]
ku
∑

l=kl

gi,µ[l]bi,µ[k − l] + ñt
k,µ, 1 ≤ k ≤ N, (30)

where h̃k,µ[i] and bi,µ[l] ∈ Mi,µ ( Mi,µ: M̃i,µ–ary symbol alphabet) denote the temporally i.i.d. zero–

mean Gaussian random channel vector and the i.i.d. symbols of the ith interferer at the µth hopping

frequency, respectively. Furthermore, gi,µ[l] , gi,µ(lT + τi,µ), where gi,µ(t), T , and τi,µ are the

effective pulse shape, the symbol duration, and the time offset of the ith interferer at the µth

hopping frequency, respectively. We assume that gi,µ(lT + τi,µ) ≈ 0 for i < kl and i > ku, denote

the set of all possible values of ξi,µ ,
∑ku

l=kl
gi,µ[l]bi,µ[l] by Sµ,i, and define Sµ , Sµ,1 × . . . × Sµ,Iµ

.

If Iµ = 0, we formally set Sµ = {0} with |Sµ| = 1. With these definitions, the pdf of nt
k,µ can be

expressed as

pn(nt
k) =

B
∑

µ=1

∑

Sµ

cµ,Sµ

πNR det(CSµ
)
exp

(

−(nt
k)

HC−1
Sµ

nt
k

)

, (31)

where cµ,Sµ
, 1/(|Sµ|B) and CSµ

,
∑Iµ

i=1 |ξi,µ|2E{h̃k,µ[i]h̃
H

k,µ[i]}+σ2
ñINR

(σ2
ñ: variance of elements

of ñt
k,µ). Eq. (31) shows that CCI in BICM–SC systems can be interpreted as correlated Gaussian

mixture noise. For future reference we denote the ratio of the total CCI variance and the total AWGN

variance by κ, cf. Section 6. The scalar moments Mn(i) (valid for NR = 1) and vector moments

Mn(i) of asynchronous CCI are given in Tables 2 and 3, respectively, where we have replaced CSµ

by σ2
Sµ

for NR = 1 in Table 2, and in Table 3, λl,Sµ
, 1 ≤ l ≤ NR, are the eigenvalues of CSµ

.

5.2.3 Narrowband Interference (NBI) in BICM–OFDM Systems

We consider a BICM–OFDM system with coding over B different hopping frequencies. At hopping

frequency µ, 1 ≤ µ ≤ B, the received frequency–domain signal is impaired by AWGN ñ
f
k,µ and Iµ

Rayleigh faded PSK NBI signals. The corresponding frequency–domain noise model is

n
f
k,µ =

Iµ
∑

i=1

gk,µ[i]bµ[i]h̃k,µ[i] + ñ
f
k,µ, 1 ≤ k ≤ N, (32)

where bµ[i] is the PSK symbol of the ith interferer at the µth hopping frequency affecting the set Nµ,i

of sub–carriers via gk,µ[i] , exp[−jπ(N −1)(k+fµ,i/∆fs)/N +φµ,i] sin[π(k+fµ,i/∆fs)]/ sin[π(k+

fµ,i/∆fs)/N ] [3]. Here, fµ,i and φµ,i denote the frequency and phase of the ith interferer at hopping

frequency µ relative to the user, respectively, and ∆fs is the OFDM sub–carrier spacing. Since
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we consider NBI, the same interference fading vector h̃k,µ[i] (modeled as spatially correlated zero–

mean Gaussian random vector) affects all sub–carriers in Nµ,i. For fµ,i = ν∆f , the NBI affects

only sub–carrier ν, i.e., Nµ,i = ν, while, in theory, for fµ,i 6= ν∆f the NBI affects all sub–carriers.

However, gk,µ[i] decays quickly and we limit Nµ,i such that |gk,µ[i]| ≈ 0 for k 6∈ Nµ,i. Finally, we

assume that no sub–carrier is affected by two narrowband interferers at a given hopping frequency,

i.e., Nµ,i1 ∩ Nµ,i2 = ∅, i1 6= i2. The pdf for this general interference scenario is given by

pn(nf
k) =

B
∑

µ=1

Iµ
∑

i=1

∑

k∈Nµ,i

c0

πNR det(Cµ,i,k)
exp

(

−(nf
k)

HC−1
µ,i,kn

f
k

)

+
c1

πNRσ2NR

ñ

exp

(

−||nf
k ||2

σ2
ñ

)

,

(33)

where σ2
ñ denotes the variance of the elements of the AWGN ñ

f
k , c0 , 1/(BN), c1 , 1 −

∑B
µ=1

∑Iµ

i=1 |Nµ,i|/(BN), Cµ,i,k , |gk,µ[i]|2Cµ,i+σ2
ñINR

, and Cµ,i , E{h̃k,µ[i](h̃k,µ[i])
H}. Eq. (33)

shows that, similar to CCI in BICM–SC systems, NBI in BICM–OFDM systems can be interpreted

as correlated Gaussian mixture noise. We denote the ratio of the total NBI variance and the AWGN

variance by κ, cf. Section 6. The corresponding moments Mn(i) and Mn(i) are provided in Tables

2 and 3, respectively, where we have replaced Cµ,i,k by σ2
µ,i,k for NR = 1 in Table 2, and in Table 3,

λl,µ,i,k, 1 ≤ l ≤ NR, are the eigenvalues of Cµ,i,k.

5.2.4 Spatially Dependent (SD) GMN

SD–GMN is an appropriate model for impulsive noise if all antennas are affected simultaneously by

the phenomenon causing the impulsive behavior [26].

BICM–SC: The joint pdf for SD–GMN nt
k is given by

pn(nt
k) =

I
∑

i=1

ci

πNRσ2NR

i

exp

(

−||nt
k||2

σ2
i

)

, (34)

where ci and σ2
i are defined similarly as for SI–GMN is Section 5.1.2. Since the phases of the

elements of nt
k are independent random variables, the joint MGF Φn̂(s) can be calculated to Φn̂(s) =

∑I
i=1 ci exp(σ2

i

∑NR

l=1 s2
l /4). Furthermore, in this particular case, even a closed–form expression for

the joint moment Mn(j1, . . . , jNR
), cf. (21), can be found as

Mn(j1, . . . , jNR
) = j1! · · · jNR

!

I
∑

i=1

ciσ
2(j1+···+jNR

)

i . (35)
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BICM–OFDM: The DFT operation at the receiver transforms the noise pdf (34) into

pn(nf
k) =

∑

k1+···+kI=N

ck1,...,kI

πNRσ2NR

k1,...,kI

exp

(

− ||nf
k||2

σ2
k1,...,kI

)

, (36)

where the same definition is used for ck1,...,kI
and σ2

k1,...,kI
as for SI–GMN, cf. (29). In this case,

the joint MGF can be obtained as Φn̂(s) =
∑

k1+···+kI=N ck1,...,kI
exp(σ2

k1,...,kI

∑NR

l=1 s2
l /4). The

corresponding joint moment is given by

Mn(j1, . . . , jNR
) = j1! · · · jNR

!
∑

k1+···+kI=N

ck1,...,kI
σ

2(j1+···+jNR
)

k1,...,kI
. (37)

5.3 Monte–Carlo Method

For complicated types of noise such as UWB interference, it may be difficult to calculate the moments

Mn(i), Mn(i), and Mn(j1, . . . , jNR
) in closed form. In this case, these moments may be obtained by

Monte–Carlo simulation of (21), (22), or (23) and subsequently be used in (19) for calculation of the

asymptotic BER. We note that this semi–analytical approach is much faster than a full simulation

since the moments are independent from the SNR γ and have to be computed only once.

6 Numerical and Simulation Results

In this section, we verify our derivations in Sections 3–5 with computer simulations and employ the

presented theoretical framework to study the performance of BICM in non–AWGN environments.

For the simulations, we consider both idealized channels with temporally i.i.d. channel and noise

vectors, and non–ideal channels generated based on the models presented in Sections 2.1 and 5.

In the non–ideal case, for BICM–SC we assume a frame size of N = 972 and a normalized fading

bandwidth BfT of 0.007, which are typical values for the DAMPS mobile communication system

[4]. For BICM–OFDM we consider systems with N = 64 and N = 128 sub–carriers transmitting

over channels with L = 10 and L = 20 i.i.d. impulse response coefficients. For all simulations

shown, a pseudo–random interleaver was employed. Throughout this section we adopt the standard

convolutional code with rate Rc = 1/2 and generator polynomials [133, 171] (octal representation).

Higher code rates are obtained via puncturing and, unless specified otherwise, 4–PSK modulation

and NR = 1 receive antennas are used. The parameters of the adopted noise models are specified in

the respective captions of Figs. 1–7.
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In Fig. 1, we show simulation results for BICM–SC and BICM–OFDM impaired by GMN and NBI,

respectively. In both cases, coding (Rc = 3/4) and interleaving is performed over different numbers

of frames B. Besides the simulation results we also show the upper bound and the asymptotic BER

derived in Sections 3 and 4, respectively. For high enough SNR and BICM–OFDM with N = 128 and

the severely frequency–selective channel with L = 20 the analytical results are accurate even for B =

3. In contrast, for BICM–SC and BICM–OFDM with N = 64 and L = 10 the interleaver is not able

to generate i.i.d. channels for small B which leads to performance degradation and the corresponding

simulated BER exceeds the upper bound (which was derived assuming i.i.d. channels). However, as

B increases, the simulation results approach the upper bound and the asymptotic BER also in these

cases for high SNR. Note that for non–delay critical applications, such as data transmission, large B

can be afforded.

In Fig. 2, we show the BER of BICM–SC and BICM–OFDM (N = 64) for Rayleigh fading and

various different noise and interference scenarios. Fig. 2 shows that the simulated BERs (solid lines

with markers), which were generated with non–ideal channels and for different B, approach the

upper bound (solid lines without markers) and the asymptotic BER (dashed lines) for high SNR. In

particular, for the BER region of BER < 10−5, which is difficult to simulate, the proposed analytical

results are accurate approximations for the true BER. The upper bound is again not a true upper

bound for the simulated BER because of the non–ideal channel. In accordance with our findings in

Section 4.3, Fig. 2 shows that for high SNR all BER curves are parallel, i.e., all considered types of

noise lead to the same diversity gain of Gd = df = 5. Nevertheless, there are large performance

differences between different types of noise because of the different coding gains Gc. Fig. 2 confirms

that OFDM is far more robust to GMN than SC if BICM is used in both cases. For GMN II BICM–

OFDM outperforms BICM–SC by 5 dB at high SNR and approaches the performance in AWGN. This

is an interesting result, since a previous comparison in [15] had shown that BICM–SC is more robust

to GMN than uncoded OFDM. Note, however, that for BICM–OFDM a relative large B is necessary

to make the GMN approximately spectrally independent, whereas for BICM–SC GMN is temporally

independent even for B = 1, cf. Section 5.1.2.

In Fig. 3, we investigate the effect of the code rate Rc on the performance of BICM–OFDM

(N = 128) in NBI for a non–ideal Rayleigh fading channel with L = 20 and B = 3. Fig. 3

shows that as the code rate increases, the diversity gain increases since the free distance of the code

increases, cf. (24). While the upper bound (solid line without markers) approaches the simulation



Nasri et al.: Performance of BICM–SC and BICM–OFDM Systems 17

results (solid lines with markers) for BER < 10−6 in all cases, the convergence of the upper bound to

the asymptotic BER (dashed lines) is slower for small (Rc = 1/2) and large (Rc = 7/8) code rates.

For Rc = 1/2, df is large making the asymptotic BER curve very steep, which leads to an over–

estimation of the BER at low SNRs. For Rc = 7/8, the slow convergence can be explained by the

large relative weight of terms neglected in asymptotic BER expressions (e.g. w(df +1)/w(df) = 56).

For comparison, Rc = 3/4 shows a much faster convergence since w(df + 1)/w(df) = 5.

In Fig. 4, we consider the impact of the type of fading on BER for GMN and AWGN. Note that

idealized channels with i.i.d. coefficients have been used to obtain the simulations shown in Fig. 4

and, in contrast to the other figures in this paper, 16–QAM was employed instead of 4–PSK. Since

the type of fading affects the diversity gain Gd = αddf , the asymptotic slopes of the BER curves

for Nakagami–m (αd = m = 2) and Weibull (αd = c/2 = 2/3) fading differ from the asymptotic

slopes of the BER curves for Rayleigh, Ricean, and Nakagami–q fading, since for the latter three

αd = 1 holds. It can also be observed that the performance loss caused by GMN compared to AWGN

decreases with decreasing diversity order.

In Fig. 5, we show the BERs of uncoded SC transmission over correlated Nakagami–m channels

with NR = 2 receive antennas and impairment by SD- and SI–GMN (both cases: ε–mixture noise

with ε = 0.1, κ = 10). The spatial fading correlation coefficient is ρa = 0.9. Note that for uncoded

transmission the temporal i.i.d. asumption for fading and noise is not required. Fig. 5 shows that

for uncoded transmission the derived upper bound is very tight even at low SNR and approaches the

asymptotic BER at high SNR. Thereby, the asymptotic BER converges faster to the upper bound for

channels with smaller diversity gain. Furthermore, Fig. 5 confirms that spatial noise dependencies

lead to significant performance degradations.

In Fig. 6, we consider the BER of BICM–SC impaired by temporally i.i.d., spatially uncorre-

lated/correlated (fading correlation ρh = 0.9) Rayleigh fading and AWGN/ACGN (noise correlation

ρn = 0.9) for NR = 2. Fig. 6 shows that, while noise correlation has also adverse effects on perfor-

mance, fading correlation is more harmful. Furthermore, the convergence of the asymptotic BER to

the union bound is negatively affected by the spatial fading correlation.

Finally, in Fig. 7, we consider the BER of BICM–OFDM impaired by UWB interference and tempo-

rally i.i.d. Rayleigh fading. We consider MB–OFDM and impulse–radio UWB (IR–UWB) interference

following the EMCA [8] and the IEEE 802.15.4a [9] standards, respectively. Specifically, for IR–UWB

we assume Nb = 32 bursts per symbol and Lc chips per burst [9]. The MGF required for the upper
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bound (8) was obtained using the methods proposed in [10]. Since, due to the complicated nature

of the interference signal, closed–form expressions for the moments are difficult to obtain, we used

the Monte–Carlo approach discussed in Section 5.3 for calculation of the moments for evaluation of

the asymptotic BER (19). Fig. 7 nicely illustrates that the coding gain in UWB interference strongly

depends on the sub–carrier spacing of the victim BICM–OFDM system and the format of the UWB

interference.

7 Conclusions

In this paper, we have presented a framework for performance analysis of BICM–SC and BICM–

OFDM systems impaired by fading and non–Gaussian noise and interference. The proposed analysis

is very general and applicable to all popular fading models (including Rayleigh, Ricean, Nakagami–

m, Nakagami–q, and Weibull fading) and all types of noise with finite moments (including AWGN,

ACGN, GMN, CCI, NBI, and UWB interference). In particular, we have derived an asymptotically

tight upper bound for the BER which allows for efficient numerical evaluation and a simple closed–

form expression for the asymptotic BER. Our analysis reveals that while the coding gain is strongly

noise dependent, the diversity gain of the overall system is not affected by the type of noise. This

result is important from a practical point of view since it shows that at high SNRs the BER curves

of BICM systems optimized for AWGN will only suffer from a parallel shift if the impairment in a

real–world environment is non–Gaussian.

A Spatially Correlated Fading Channels

In this appendix, we prove (2) for correlated Rayleigh, Ricean, and Nakagami–m fading. For simplicity

of notation, we drop subscript k in this appendix.

Ricean Fading: For Ricean fading the pdf of the channel vector h is given by

ph(h) =
1

πNR det(Chh)
exp

[

−(h − µh)
HC−1

hh (h − µh)
]

, (38)

where µh , E{h} and Chh , E{(h − µh) (h−µh)
H} are the channel mean and channel covariance

matrix, respectively. For h → 0NR
we can rewrite (38) as

ph(h) =
exp

(

−µH
h C−1

hhµh

)

πNR det(Chh)
+ o(1). (39)
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Based on (39) and the relation |hl|2 = a2
l it can be shown that (2) and (3) hold for correlated

Rayleigh (µh = 0NR
) and Ricean (µh 6= 0NR

) fading with αc and αd as specified in Table 1.

Nakagami–m Fading: For Nakagami–m fading the joint MGF of a2
l , 1 ≤ l ≤ NR, is given by

[20]

Φa2(s) , E
{

exp

(

−
NR
∑

l=1

a2
l sl

)}

= det(INR
+ SCaa/m)−m, (40)

where S , diag{s}, and Caa and m denote the channel correlation matrix and the fading parameter,

respectively. The behavior of the joint pdf pa2(a2
1, . . . , a2

NR
) of a2

l , 1 ≤ l ≤ NR, for a → 0NR
can

be deduced from the behavior of Φa2(s) for sl → ∞, 1 ≤ l ≤ NR, which is given by

Φa2(s) = mNRm det(Caa)
−m

NR
∏

l=1

s−m
l + o

(

NR
∏

l=1

s−m
l

)

. (41)

Consequently, we obtain

pa2(a2
1, . . . , a2

NR
) = mNRm det(Caa)

−m

NR
∏

l=1

a
2(m−1)
l

Γ(m)
+ o

(

NR
∏

l=1

a
2(m−1)
l

)

, (42)

which clearly shows that the al, 1 ≤ l ≤ NR, are asymptotically i.i.d., i.e., (2) and (3) are valid. The

corresponding parameters αc and αd are provided in Table 1 and can be obtained by exploiting the

relation between pa2(a2
1, . . . , a2

NR
) and pa(a).
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Tables and Figures:

Table 1: Pdf pa(a) of fading amplitude a for popular fading models and corresponding values
for αc and αd. We have omitted the subscripts k and l for convenience. The parameters for
Rayleigh (Chh), Ricean (µh, Chh), and Nakagami–m (m, Caa) fading are defined in Appendix
A. The parameters for Nakagami–q (q, b) and Weibull (c) fading are defined as in [20].

Channel type pa(a) of the fading amplitude a αc αd

Rayleigh 2 a e−a2

det(Chh)
−1/NR 1

Ricean 2(K + 1) a e−K−(1+K)a2
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)1/NR

1

Nakagami–m 2
Γ(m)

mm a2m−1 e−ma2 mm

Γ(m)
det(Caa)

−m/NR m

Nakagami–q 2a√
1−b2

exp
(

− a2

(1−b2)

)

I0

(

ba2

(1−b2)

)

1+q2

2q
1

Weibull c
(

Γ(1 + 2
c
)
)

c
2 ac−1 exp

(

−
(

a2Γ(1 + 2
c
)
)

c
2

)

c
2
(Γ(1 + 2

c
))

c
2

c
2

Table 2: MGF Φn̂(s) and scalar moments Mn(i) of types of noise considered in Section 5. All
variables in this table are defined in Section 5. (SC) and (OFDM) means that the type of noise
is relevant for BICM–SC and BICM–OFDM, respectively.

Noise type Noise MGF Φn̂(s) Scalar moment Mn(i)

AWGN exp(s2/4) i!

GMN (SC)
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k=1 ck exp(s2σ2
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Table 3: Vector moments Mn(i) of types of noise considered in Section 5. All variables in this
table are defined in Section 5. (SC) and (OFDM) means that the type of noise is relevant for
BICM–SC and BICM–OFDM, respectively.

Noise type Vector moment Mn(i)
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Figure 1: BER of BICM–SC and BICM–OFDM impaired by GMN (ε–mixture noise,

ε = 0.1, κ = 100) and NBI, respectively, vs. SNR γ. Rc = 3/4, Rayleigh fading, 4–

PSK, and NR = 1. BICM–SC: Flat time–selective fading, N = 972, and BfT = 0.007.

BICM–OFDM (N = 64): Frequency–selective Rayleigh fading with L = 10 and B

equal power, sub–carrier centered NBI signals with Iµ = 1, 1 ≤ µ ≤ B, κ = 7. BICM–

OFDM (N = 128): Frequency–selective Rayleigh fading with L = 20 and B equal

power, sub–carrier centered NBI signals with Iµ = 1, 1 ≤ µ ≤ B, κ = 2. Solid lines

with markers: Simulated BER. Solid lines without markers: BER bound (8). Dashed

lines: Asymptotic BER (19).
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Figure 2: BER of BICM–SC and BICM–OFDM impaired by various types of noise

vs. SNR γ. Rayleigh fading, Rc = 3/4, 4–PSK, and NR = 1. BICM–SC: N = 972

and BfT = 0.007. BICM–OFDM: N = 64 and L = 10. GMN I: ε–mixture noise,

ε = 0.01, κ = 100. GMN II: ε–mixture noise, ε = 0.1, κ = 100. GMN III: ε–mixture

noise, ε = 0.1, κ = 10. Asynchronous CCI: Two asynchronous equal power 4–PSK

CCI signals, Iµ = 1, µ ∈ {1, 2}, Iµ = 0, 3 ≤ µ ≤ 10, raised cosine pulses g1,µ(t),

µ ∈ {1, 2}, with roll–off factor 0.3, τ1,µ = 0.3T , µ ∈ {1, 2}, κ = 2. NBI I: One

sub–carrier–centered NBI signal, I1 = 1, I2 = I3 = I4 = I5 = 0, κ = 9. NBI II: 2

equal power, sub–carrier–centered NBI signals, I1 = I2 = 1, I3 = I4 = I5 = 0, κ = 14.

Solid lines with markers: Simulated BER. Solid lines without markers: BER bound

(8). Dashed lines: Asymptotic BER (19).
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Figure 3: BER of BICM–OFDM impaired by NBI (3 equal power, sub–carrier–centered

NBI signals, I1 = I2 = I3 = 1, κ = 10) vs. SNR γ. Rayleigh fading, L = 20, 4–PSK,

N = 128, B = 3, and NR = 1. Solid lines with markers: Simulated BER. Solid lines

without markers: BER bound (8). Dashed lines: Asymptotic BER (19).
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Figure 4: BER of BICM–SC impaired by GMN (ε–mixture noise, ε = 0.25, κ = 10) and

AWGN, respectively, vs. SNR γ. Ideal i.i.d. fading, Rc = 7/8, 16–QAM, and NR = 1.
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Figure 5: BER of uncoded SC transmission impaired by SD- and SI–GMN (ε–mixture

noise, ε = 0.1, κ = 10), respectively, vs. SNR γ. NR = 2, Nakagami–m fading spatial

correlation ρa = 0.9, and 4–PSK.
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Figure 6: BER of BICM–SC impaired by AWGN/ACGN vs. SNR γ. Spatially

i.i.d./spatially correlated, temporally i.i.d. Rayleigh fading, Rc = 7/8, 4–PSK, and

NR = 2. Solid lines with markers: Simulated BER. Solid lines without markers: BER

bound (8). Dashed lines: Asymptotic BER (19).
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Figure 7: BER of BICM–OFDM system with sub–carrier spacing ∆fs impaired by

IR–UWB [9] (Nb = 8 bursts per symbol and Lc chips per burst) and MB–OFDM

UWB [8], respectively, vs. SNR γ. Ideal i.i.d. Rayleigh fading, Rc = 5/6, 4–PSK, and

NR = 1. Solid lines with markers: Simulated BER. Solid lines without markers: BER

bound (8). Dashed lines: Asymptotic BER (19). For comparison the bound and the

asymptotic BER for AWGN are also shown.


