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Abstract— Cognitive radio (CR) system are capable of using adjusted to the possibly time—variant noise statisticpdrtant
the frequency spectrum more effectively by utilizing unocapied  examples of such robust metrics in the literature include
or under—utilized frequency bands. The frequency bands use Huber's M—metric [8], Myriad and Meridian metrics [9],

by CR systems however, are expected to suffer from various . . .
forms of noise and interference with non—Gaussian distribtion the generalized Cauchy metric [10], and thg—norm metric

such as the co—channel interference caused by the primary es [11]. Among these metrics, the,—norm metric is particularly
and other cognitive radios, ultra—wideband (UWB) interference interesting due to its low complexity and the ability to merh
and man-made impulsive noise. To mitigate the harmful efféc well in both heavy—tailed and short—tailed noise provideat t
of non—-Gaussian noise and interference, we propose a robustthe metric parameter is adjusted accordingly.

L,—norm metric for CR systems that employ the popular In thi id d ¢ lovi
combination of bit-interleaved coded modulation (BICM) and n this paper, we consider secondary systems employing

orthogonal frequency division multiplexing (OFDM). We propose  bit=interleaved coded modulation (BICM) [12] in combina-
two approaches for metric optimization based on BER perfor- tion with orthogonal frequency division multiplexing (OM)

mance analysis and Maximum-Likelihood parameter estimattn  modulation. The motivation for considering BICM—OFDM
principal, respectively. In both cases we provide effcienadaptive systems is twofold. Firstly, BICM—OFDM is very efficient in

algorithms that can be used for online metric optimization. . . . - .
We show that the proposed adaptive algorithm can effectivgl exploiting the frequency diversity of wireless fading chats.

mitigate the adverse effects of non-Gaussian noise in pracal Secondly, this technique has been adopted in a number of

scenarios where noise statistics vary with time. recent standards [13], such as the ECMA multi-band OFDM
(MB—-OFDM) UWB system [14], and are also prime candi-
. INTRODUCTION dates for the air interface of future CR and UWB systems

The ever-increasing demand for high speed wireless acclgy. Here, we propose a robust,—norm decoding metric
and inflexible methods of spectrum allocation have mader secondary BICM-OFDM systems to mitigate the harmful
the radio spectrum an increasingly scarce resource. At téects of non—-Gaussian impairments. Thg-norm metric
same time, recent studies have indicated that large pertidi@s a tunable paramterand therefore can be optimized by
of the frequency spectrum are rarely used in both space di@perly adjusting this parameter. For metric optimizatice
time [1], [2] . This observation has spurred the developmeptopose two approaches. In the first approach, we develop
of secondary cognitive radio (CR) [3] and ultra—wideband general mathematical framework for bit-error rate (BER)
(UWB) [4] systems which are overlaid and underlaid on exisperformance analysis of the secondary systemsthat allsws u
ing licensed (primary) systems, respectively. The idedrizeh to obtain an accurate approximate upper bound for the BER as
both CR and UWB is to give secondary users opportunisti¢ell as a closed—form expression for the asymptotic BER. The
spectrum access as long as they do not cause noticed@i@ementioned performance measures are both obtained as a
interference to primary users. In the following, we will gef function of the metric parameterand thus can be employed
to CR and UWB systems collectively agcondarysystems. for metric optimization. In the second approach we develop a

While most proposed secondary systems employ traditiomapximum-likelihood (ML) estimator for the metric paramete
methods of signal detection designed for additive whitesGaw based on the noise samples observed at the receiver. In
sian noise (AWGN), various forms of non—Gaussian noise aR@th cases we provide effcient adaptive algorithms thablena
interference can be present in practice. Examples inclode online metric optimization. Using numerical and simulatie-
narrowband and co—channel interference caused by the gtilts, we show that the optimizeg,—norm metric can achieve
mary user and other secondary systems [5], [6], respegtivedignificant performance gains compared to the conventional
and man-made impulsive noise [7]. Therefore, the use of the—horm metric in secondary user environments with non—
Ly—norm metric (also referred to as the Euclidean distan&gussian noise. Furthermore, we study the performancesof th
metric) for signal detection, which is optimal for AWGN,proposed adaptive agroithms in a practical scenario witle-t
can result in significant performance losses in secondazy u¥arying noise statistics and show that these algorithmsene
environments where non—-Gaussian nbise dominant. This effective in dealing with the harmful effects of non-Gaassi
motivates the use of robust metrics that perform well for @oise.
large class of noises with (possibly) non—-Gaussian distidh. The rest of this paper is organized as follows. In Section II,

These metrics may also have tunable parameters that cariftfesystem model for the considered secondary communica-
tion systems is introduced. The BER analysis framework is
This work was supported in part by an NSERC Strategic Prafeint provided in Section Ill, and the metric parametere estiomati
(STPGP 350451) and in part by Bell University Laboratori@éanada. is developed in Section IV. In Section V, the adaptive met-
1To simplify our notation, in this paper, “noise” refers toyaadditive . SN . . ) . L
impairment of the received signal, i.e., our definition ofseoalso includes ric optimization Is considered, and analytlcal and simatat
what is commonly referred to as “interference”. results are presented in Section VI. Finally, some conghssi



are drawn in Section VII. B. L,—Norm Branch Metric

In this paper, we assume the secondary user employs an
Il. SYSTEM MODEL L,—norm branch metric for Viterbi decoding. The employed

) ) ) branch metric for decoding bit 1 < i < m,, of symbolzy
In this section, we consider BICM—-OFDM secondary sysz given by

tems employingL,—norm decoding and describe the corre- Ai(r,b) 2 min {fn(ur)} @)
sponding signal model and th&,—-norm metric. We also R opexi

present the models for practically relevant types of noiseg N P
affecting secondary user systems. For convenience, in thiac e Yk = 7 — /7 hizil, and X is the subset of all

paper, all signals and systems are represented by theirlemmﬁym_b_OIs, " constellgtloﬁc vyhose label has val_uee {0,1}in
baseband equivalents positioni, andf,,,(-) is a suitably chosen function that depends

on the considered metric. Fdr,—norm metric considered in

_ this paperf,,(u) = uP is valid. To achieve high performance

A. Signal Model the parametep should be adapted to the underlying type of
The transmitter for the considered secondary system cdipise. We note that for the special case= 2, (2) is the

sists of a BICM encoder and an OFDM modulator with ~Well=known Ly—norm branch metric which is typically used

sub—carriers. The BICM encoder comprises a convolutiodaIAWGN channels [12].

encoder of rateR,., arl interleaver, and a memoryless Mappet  Noise Model

[12]. The codewor@ = [cq, o, . . ., ¢m k.| Of lengthm K, is . . . o )

generated by the convolutional encoder and is interleayed b 1 € analysis and adaptive metric optimization presented in

the interleaver. The interleaved bits are broken up inteahdo this paper are applicable to a large class of noises. The only

of m. bits, which are subsequently mapped to symbels restriction that we impose is that all joint moments of the
from Ca co;ﬂstellationX of size |X| 2 M = 2™ to form elements ofy, exist. This condition is fulfilled by most noises

the transmit framez 2 [z1, z2 x.] of length K.. We of practical interest. An exception is-stable noise, which is
- ) L) c ct . . .
assume that one codeword spah®FDM symbols, i.e.K, — sometimes used to model impulsive phenomena [18]. How-

BN, and that the length of the OFDM cyclic prefix exceedgven other types of_impulsive no_ise suph as Gaussian_mixtur
the length of the channel impulse response. Furthermore, {(\fyse are 'nC“_Jded in our analysis. To illustrate the gdngra

assume that the channel changes independently from OF[9OUr analysis and for future reference, we present in the
symbol to OFDM symbol, which can be achieved by frequen(i‘?quel practically relevant noise models that are frequenc

hopping. For example, the ECMA multi-band OFDM (MB_encountered in secondary user environments. In partjcular

OFDM) ultra—wideband (UWB) system employs interleavin e consider narrowband interference (NBI) and frequency—
omain Gaussian mixture noise (GMN). These noise models

and coding ovelB = 3 (future versions of the standard ma ) : X
use up toB = 15) frequency—hopped OFDM symbols [14] &€ used in Section V for performance valuation of the

Assuming perfect synchronization and OFDM demodulatioRrPOS€dL,—norm metric.
the received signal can be written as 1) NBIl: We consider a secondary BICM-OFDM system

with coding overB different hopping frequencies. At hopping
re = /7 hi 2k + g, 1<k<K, (1) frequencyu, 1 < p < B, the received frequency—domain sig-
nal is impaired by AWGN;, .., and,, Rayleigh faded NBI
where h;, and n; with E{|hi]?} = &{|nx[?} = 1 are signals. The corresponding frequency—domain noise medel i
the fading gains and the noise variables, respectively, and I,
v denotes the SNR.In this paper, we consider Rayleigh N = ng,u[i]bu[i]ﬁk,u[i] + s ©)
fading which implies thak,, is a zero—mean complex Gaussian =1
random variable (RV). Therefore, the fading gaimscan be
expressed aBj, = a,e’©*, wherea;,, and©,, are independent
RVs. Specifically,©y is uniformly distributed in—=, 7) and

where E;W[z'] are temporally i.i.d. Gaussian random vari-
ables which model the Ricean interference channel gains

ay, 1S a positive real RV that follows a Rayleigh distibution\év(i)tlz (ﬁiiﬁz?thfai‘ri[(e):fé{riér Zl:rtﬂermo:]eo’ b#i[ri] 61::2 SZiCSyg;]' q
As customary in the literature, cf. e.g. [12], [16], [17],rfo ] 2 expl—j (N—l)(k+f%/Af )??Vfcb »]qsin[ (>;f+
our performance analysis we assume perfect interleavir ;M/A; )]710, [WEkJrf JAT )%V] [1‘*9] Hereufl antw
which means thak, andn, can be modeled as independent,ti/ =/s)l/ ST i B : o i ot
identically distributed (i.i.d.) RVs and only their first der fr‘znﬁt:nt:e f:zﬁa‘iflgcz’oat’;]depuhsaesrer‘;fsft"';':t‘itveer{erz';‘j} h?lpﬁlzg
probability density functions (pdfs) are relevant. Theli.ias- q Y » fesp Y s

sumption is justified for severely frequency selective cles :?]FDI\Q_ su?t—r::a:n?rl T\lpBalcmg: For futlérteh re;?/\r/eenlge, we dent;)te
and/or sufficiently large3. e ratio of the total variance and the variance by

K, cf. Section VI. We note that foK; — oo, the interference
S - ) ) channel gaing, ,[i] are constant values. The resulting noise
In this paper,&,{-} denotes statistical expectation with respectazto il b f d’ faded NBI (UE=NBI) in th f
Furthermore, we use the notatian= v to indicate that: andv are asymptot- W'_ e referred to as untade ( - ) In the rest o
ically equivalent, and a functioffi(z) is o(g(z)) if lim; o f(z)/g(z) = 0. this paper.



2) GMN: GMN can be used to model the combinedound from [12], the PEP can be expressed as
effects of frequency—domain Gaussian background noise and
impulsive phenomena that only affect a small number of sub—

ctjoo d m 1
. 1 1 - ds
carriers. For example, it can be used to model the effect off 46 €) = o] H me2me ZZ Z Pa(s) 5

Rayleigh faded NBI interferer or a tone interferer in a BICM— c—joo k=1 =1 6=0ae]
OFDM UWB system. For GMN noise the pdf af; is given _ . o (6) )
by [7] where ¢ is a small positive constant that lies in the region
, of convergence of the integrand. Furthermofley(s) =
¢ || Enpmple 2@ is the moment generating function
n = - , 4 kol A
Pa(ne) Z o} eXp( o? ) @ (MGF) of the metric difference

=1

2 _ P _ _ P
wherec; > 0 ando? > 0 are parameters. Two popular special Alwr,ze) = frw =V hi 2" = |rk = VA el (7)
cases of both spatially independent and spatially dependgsnditional on the transmission af, € A7. Here, z is the
TD-GMN are Middleton's Class—A noise [7] anemixture nearest neighbor af in X; with b being the bit complement

noise. Fore—mixture noisel = 2, ¢; = 1 —¢, ca = ¢, and of b, Since conditional on the transmission of, we have
o3 = rkoi, wheree denotes the fraction of subcarriers affected, — V7 i . + my,, we can rewrite (7) as

by the impulsive noise and is the ratio of the variances of
the Gaussian background noise and the impulsive noise. A(wg, 2k) =y — |nl” (8)

whereyy, £ |7 hiz), + ni|P andep = 25, — 2. Based on
I1l. BER ANALYSIS the MGF ®a(s) = &n,.n, {e*2E»2)) can be evaluated
In thi . | the BER ; ¢ efficiently 8 using e.g. a Gauss—Chebyshev quadrature rule,
n this section, we analyze the R performance of Segg [14]. The result can subsequently be used along with (5)
ondary BICM-OFDM systems employing,—norm decoding and (6) to calculate the approximate upper bound.

In_non-Gaussian noise environments. We first provide an e note that although the method described above provides

approximate upper bound for the BER based on the expurg% an efficient means of calculatin S
; . . g the approximation uppe
union—bound. We then analyze the behavior of the obtain B und, the calculation ob (s) required for the BER bound

tbhound for Tgth Sé\lERF;S t_})harl\éeEaRt ?)closded—fccj)rm exprtest_smgé ill involves numerical averaging over both fading andseoi
€ asymplotic - e ound and asymptotic erefore the provided bound is only suitable for offline

are bqth denve_d as a funct|_on Pf‘?‘”?‘ th_erefore can Seive a8 etric optimization where computational complexity is not

objective functions for metric optimization. a concern. In order to obtain analytical expressions skgitab
for online metric optimization, in the following subseatio

A. Approximate Upper Bound for BER we provide an asymptotic analysis that results in simple—to

Here, we provide an approximate upper bound for t}.pevaluate expressions for the BER.

BER performance of the cosidered secondary BICM—-OFDM Asymptotic BER

systems. We note that our derivation is based on the exmdgat . ) . .
union bound in [12], and therefore we cannot prove that the N this subsection we analyze the asymptotic behavior of the

obtained bound is a true upper bound (see discussion in [28pProximate upper bound in (5) for— oc. For this purpose,
[21]). However, numerical evidence in e.g. [21], [22] sugige 't IS convenient to first rewrite the PEP as

that the expurgated union bound does result in tight upper . ctjoo d
bounds if Gray labeling is applied. Our own results in Sectio P.c,e) = — / Eny {®(s|nr)} _S’ (9)
VI confirm this conjecture. 2mj s

Assuming a secondary BICM system with code r&e= , o
k./n. (k. andn,. are integers) the union bound for the BeRVith

is given by [12] d 1 me 1
| o D(s|ng) = H T ZZ Z Da(slng) |, (10)
Po< o D0 weld) Ple, @), (5) = ey
ke
d=d where

wherec and¢ are two distinct code sequences with Hamming  ®a (s|ny,) 2 E{e *2@) |n, ) = e sl ®, (5), (1)
distance d that differ only inl > 1 consecutive trellis

states,w.(d) denotes the total input weight of error event§©" the last equality we have use@?) and the definition

A —SYk
at Hamming distance, and d; is the free distance of the $u(s) = E{e™**}. Fory — oo, the pdf/f, (yi) of y. can be

code.P(c, &) is the pairwise error probability (PEP), i.e., théXPressed as?]
probability that the decoder chooses code sequénaden 2 2_

fooe) = —=ui  +o(17) (12)
code sequence # ¢ is transmitted. Adopting the expurgated v \Yk p(yd2.) Y 7o)



Therefore, the asymptotic MG®,, (s) can be obtained as the
Laplace transform off, (y;) as t z [

2 _2 _
D, (s) = ml"(?/]o) s ?»+o (7 1) . (13)
Applying (13) in (11) yields

9 e—sInkl?

ACCI, k=10

Wf@/p) s P +o (771) . (14) : 10°

We can now obtairP(s|n) from (10) in (14) as
®(s|ng) = 24X (d)y e * S \”k|p(r(2/p))d §—2d/p
t+o (V_d) ’ (15) 107

Da(s|ng) =

=NBI,B=1,k=4,N,210-5— 5
o0 2

where : :
d 10°F : : : i

me 1
X(d) L mc;mc ZZ Z d% ) (16) 0.5 1 15 2p 25 3 35

i=1b=0 g cxj 7

Fig. 1. BER of BICM-OFDM CR system wittB = 5 and N = 128
The PEP can be calculated from (15) and (9) as impaired by NBI (5 equal power, sub—carrier—centered NBhais, 7, = 1,

1 <p <5,k =40) vs. SNR~.

. B _a (T2/p)?
P.(c, &|ng) = 29X (d) dmﬂ/[n(d,p), (17)

where thegeneralizednoise moments\/,,(d,p) are defined (19) and (19), respectively. This value pfat with the BER

as bound is minimized denoted with,,; and the corresponding
d 2d/p point in the BER bound curve is marked using “X” markers.
M (d,p) = En, (Z |nk|p> : (18) For comparison and to confirm our analysis, we have also
k=1 shown the BER obtained via Monte—Carlo simulation. As

The generalized noise momerit, (d, p) can be obtained in S€€N, the BER bound and asymptotic BER are generally in
closed—form using a similar approach as in [23] or can gwod agreement with the simulation results. The observed
efficiently calculated using Monte—Carlo simulation. small differences between the BER bound, simulation and
Based on (17) and (5) a closed—form approximation for tisymptotic resu_lts are (_jue to assuming a finit_e value for SNR
asymptotic BERP, = wclgdf) P.(c, &) can be obtained as (SNR =15 dB) in thIS f|gure: Nevertheless, Fig. 1 shov_vs that
e for each type of noise the minimum BER happens at virtually
P we(dg) X (dy) 2% (0(2/p))% the same value of for all the three curves. Fig. 1 further
b kepds T'(2dys/p + 1) shows that the BER of the considered secondary sysmtems
whered; denotes the minimum free distance of the convol trongly depends on the metric paramqieanq as a Tesu"' .
tional code. In deriving (19), besides the assumption tHat rge performance improvements can be obtained usingaenetri
joint noise moments exist, we also have assumed that (a)

ﬂpéimization.
approximate BER bound in (5) is tight for high SNRs and (b)
the first term withd = dy in (5) is dominant. Assumption (a) _ ] ) ) -
is confirmed by simulations in Section VI and assumption (b) /N this section, we derive a Maximum Likelihood (ML)

M, (ds,p)y~%  (19)

IV. METRIC PARAMETER ESTIMATION

is justified for high SNR. paramter estimtor for the metric paramegtdrased on the noise
S samples observed at the receiver. For this purpose we first
C. BER Minimization introduce a family of densities called the generalized Giauns

Here, we study the depence of the BER bound and asyngensity (GGD) family which is parameterized by the paramete
totic BER onp and show how these performance measurgs We then aim at finding the best estimate fofor which
can be employed for minizing the BER and thus for metritie GGD most accurately approximates the distribution ef th
optimization. We consider a scenario where the noise statis underlying noise in an ML sense [24], [25]. This estimate
are knowna priori, and therefore it is possible to perform thes then used as metric paramter for thg—norm metric. We
task of metric optimization offline. We postpone the discus®te that this approach is suboptimal i.e. the metric pazamt
of online metric optimization until Section VI. estimate obtained using this approach will not necessarily
The offline optimization of the metric paramegeusing the minimize the BER. However, the computatinal compelexity
BER bound and the asymptotic BER is illustrated in Fig. Tof this appraoch is lower than the one presented in Section
In this figure we have shown these performance measutBss it leads to simpler expressions for the objective tiorc
vs. p for NBI, UF-NBI and GMN defined in Subsection lI-used for metric optimization. We note that this approach is
C. The BER bound and the asymptotic BER obtained usimdso amenable to both offline and online metric optimization



A. GGD Family

The GGD family encompasses a wide range of distributiol
and is also a popular model for non—Gaussian noise. T -

corresponding pdf for GGD family is give as [25] 2 R
oy B (1Y
pGG(Z7pa U) - o2 exp ( b(p) (C(p) ) (20) s

LLF

/2
where we have defined(p) £ (p(4/,,))1’ and c(p) =

T2/p)
£ L8, Furthermoreg andp, 0 < p < oo, denote the stan-

dard deviation and the shape parameter, respectively.|&maz /
values of the shape parametel0 < p < 2) correspond to asly | B=10,
heavier—tailed and thus more implusive distributions, rehe ’ AcCli=10

larger values op (p > 2) result in shorter—tailed distributions. |
Well-known special cases of this family are Laplacian=(1) |

-3 [

and Gaussian noise & 2). s 1 15 2 25 3 35

The motivation behind considering the GGD family for ’

parameter estimation is two fold. Firstly, the GGD is yer}gig. 2. BER of BICM—OFDM CR system witl3 — 5 and N — 128
felexible and therefore can be succusfully used to appratém impaired by NBI (5 equal power, sub—carrier—centered NBhais, /,, = 1,
a wide range of distributions. Secondly, tfig—norm metric 1 =# <5, £ = 40) vs. SNR~.

employed in this paper is closely related to the GGD family.

In fact, it is easy to see that an optimizég—norm metric

can achieve ML performance in the presence a non—Gass?.lj{ﬂse_fo”ﬁ,n expressions for the noise memerr_u;s(p) hgve .
impairment with GGD. been provided in [22] for different types of noise defined in

Section Il. The corresponding noise moments can be used in

B. ML Parameter Estimation (24) to arrive at a close—form and accurate approximation fo
Here, we first assume that the standard deviatimknown the LLF.

for the moment. The GGD family given in (20) can therefore In the end, we note that if the standard deviatiohappens
be parametrized using paramejﬁ[eading to f0||owing for- to be unknown, we first obtain the fO”OWing ML estimate
mulation for the ML parameter estimation problem. For i.i.d® = b(p)(p/2T(p))"/? assumingp is known. We then usé
noise samplesy,, 1 < k < K. 3, generated based on the pdfs Egs. (22) and (21) to obtain the ML estimaite
pn(nk), we wish to find the parameter estimatéor which the

GGD best approximates, (ny). The solution to this problem C. LLF Maximization

in an ML sense is the the estimategiven by In this subsection, assumimg= 1, we study the depence of
. the LLF onp for different types of noise and find the estimate
p = arginax {L(n;p)} (21) 5 that miximizes the LLF. Considering offline optimization

for a scenario with known noise statistics, we postpone the
discussion of online parameter estimation until Section VI
The offline paremter estimation is illustrated in Fig. 2 foe t
{Kc } same noise types as in Fig. 1. In this figure we have shown
(22)

wheren = [ny,...n;|"and the log-likelihood function (LLF)
L(n;p) is defined as

1
L(n:p) £ — log

€

HPGG(nMpv o) LLF obtained using (19) for the considered noise types vs.
k=1 p. For each type of noise we have marked the estinjate
Using (20) in (22) yealds that maximizes the LLF by “X” markers. Comparing Fig. 2
b(p) with Fig. 1 reveals that although parameter estimation is a
L(n;p) = log(c(p)) — 2log(o) — —=5T'(p) (23) suboptimal approach, the parameter estimatis generally
(c(p) very close top,,: and the incurred performance loss due to
with T(p) £ -1 "¢, |nk|?. For large enough values éf., Usingp instead ofp,,; is minimal.
the strong law of large number can be invoked to accurately ap
proximateT'(p) asT(p) ~ m,(p) wherem,,(p) = {|nx|?}
is the pth moment of the underlying noise. Therefore, from In practice, the type of noise impairing a secondary user
(23) it follows that system is usually not knowrm priori and changes with
b(p) time. Therefore, in this section, we present efficient astlapt
L(n;p) =~ log(c(p)) — 2log(o) — 51 () (24) algorithms for optimization of the metric parameteiVe first
(e(p)) develop an adaptive algorithm for BER minimization based on
3Assuming a frame length ok, thesek. noise samples are taken from th€ general BER analysis framework described in Section IlI
[K./K.] frames (cf. Eq. (1)). Then we propose an adaptive parameter estimation algorithm

V. ADAPTIVE METRIC OPTIMIZATION




OL(n;p) 1 4 4 1 <= |ngl? [rg 1
o 1 pzw(‘l/p) + p2¢(2/p) K. 2 log { == | + o [2¢(2/p) — 4)(4/p)] (25)
PLop) LS - S+ Buasm - L5 (g (10 1 L pyasp) - aiiaymy)’
ot Tt T 2 (P a ) T ! !
K
S oy Nl (L _ 2y 8w - L _
v@/p) k; o (2p2 [20(2/p) = 46(4/p)] = 50" (2/p) + 50" (4]p) = 55 26(2/p) — 4(4/p)]
(26)
based on the parameter estimation techniques developedinAdaptive Parameter Estimation
Section V. In this subsection, we provide an adaptive algorithm that
allows us to obtain an ML estimate fprby online maximiza-
A. Adaptive BER Minimization tion of LLF given in (23). For this porpose we use a Newton—

) ) ) ] ) Raphson (NR) based iterative algorithm that is widely used
_ Since the approximate upper bound derived in Section lll-fy the Jiterature for adaptive parameter estimation [27p W
is too cumbersome for real-time optimization, here we psepoy g ever note that a KW algorithm can also be constructed
an adaptive algorithm based on the asymptotic BER resulfseq on the approximate LLF in (24). We only present the
obtained in Section III-B. Due to the random nature of thQg pased algorithm since this algorithm is more widely used
optimization problem, a stochastic optimization algarithas , he Jirrature for parameter estimation. The proposed NR
to be used. Although several types of stochastic optimuratipy,qe jterative algorithm can be formulated as follows.hét t

methods are available in the literature, our experience ha, iteration the algorithm generates the new estimpate as
shown that the Kiefer—Wolfowitz (KW) algorithm [26] is the[27]

most suitable for the problem at hand.
Based on (18) and (19) the cost function for the KW
algorithm is given by

9*L(n;p)| " 9L(n;p)
Pk+1 = Pk — > ap lp=px

The partial derivatives used in the above equation are rodxdai

df df
B wC((Z};i f‘?‘();i f/(pffﬁz)))) My (ds,p)  (27) in (25) and (26) where we have definet2 |/F2/2), and
' ¥(-) and?’(-) denote the digamma and trigamma functions,
where respectively, for which efficient algorithms exist for nurcal
u 2d/p evaluation []. The convergence depends on the intial guads a
Mn(d,p) A <Z |nk|p> _ (28) the algori_th_r_n normally_converges to a local minimum pr_oclide
Pt that the initial guess is not too far from the that minimum.
The convergence rate is generally quadratice, i.e., thor er
where M, (d, p) is the instantaneous estimate for the gersquared at each iteration.
eralized noise moment, and we have omitted all terms th@t
do not affect the optimization. The proposed KW algorithm’ ] ]
recursively updates the estimates of the optimpali.e., it ~ e now present an practical example where the noise

generates the parameter estimajeat the kth iteration as statistics vary with time. For this example we illustrate th
[26]: versatiliy of the proposed adaptive algorithms in solvihg t

metric optimization problem and compare their performance
In Fig. 3

(30)

Example

k(P + k) — Li(pr — Ci) (29)
26k VI. NUMERICAL AND SIMULATION RESULTS

where o, > 0 and (;, > 0 are the gain sequences of the In this section, we verify the analytical results presented
KW algorithm. The convergence theory for the KW algorithnSections Il and IV with computer simulations and compare
[26] states that if the gain sequence fulfilis — 0, (;, — 0, the adaptivel,,—norm metric with several other popular robust
Yoreo0k = oo, and Y7 07/¢2 < oo, under some mild metrics. We also demonstrate how the off-line and on-line
conditions on the cost function, the algorithm is guarathtee optimization techniques described in Section V can be used
converge to a local minimum. However, in practice, it may b® optimize theL,—norm metric parameter. For all results
better to adopt, = 6 and(;, = ¢, whered and ¢ are small shown we consider a BICM-OFDM secondary system with
constants, to give the algorithm some tracking capability. N = 64 or N = 128, 4-PSK, and a code with rate

L
Phkil = P+ 0
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Fig. 3. BER of BICM-OFDM CR system wittB = 5 and N = 128
impaired by NBI (5 equal power, sub—carrier—centered NBhals,I,, = 1,
1 <p <5,k =40) vs. SNR~.

Fig 5, Rc = 3/4, FD-GMN noise with € = 0.05 and k = 50

Fig. 4.

BER of BICM-OFDM CR system witlB = 5 and N = 128
impaired by NBI (5 equal power, sub—carrier—centered NBhals,/,, = 1,
1 <p <5,k =40) vs. SNR~.

R. = 3/4 obtained through puncturing of the standard ratg0]

1/2 convolutional code with generator polynomi&l83, 171]

metric and theL,—norm metric using solid and dashed lines,
respectively. Also shown are the simulation results for all
considered metrics using solid lines with markers. The tgrea
agreements between the simulation results, the BER bouhd an
asymptotic BER for theL,—norm and theL,—norm metrics
again corroborate our analysis. Fig. 4 further shows that fo
the e—mixture noise the.,—norm metric outperforms the other
robust metrics and the gap to the optimum ML-metric is less
than 1 dB. Finally, Fig. 4 suggests that although the-
norm metric was optimized based on the presented asymptotic
analysis for high SNR, it also performs well for small SNRs.

VII. CONCLUSIONS

In this paper, we have proposed @p—norm metric for
BICM-OFDM secondary systems operating in the presence
of non— Gaussian noise. We have derived an approximate
upper bound and an accurate asymptotic approximation for
the BER of the considered secondary system. These analytica
results can be used for optimization of the metric parameter
Simulation results have confirmed the validity of the predd
analytical results and have shown the effectiveness of the
proposedL,—norm metric in mitigating the harmful effects
of non—Gaussian noise in secondary systems.
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