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In this paper, we present a general mathematical framework for performance analysis of single—
carrier (SC) and orthogonal frequency division multiplexing (OFDM) systems employing popular bit—
interleaved coded modulation (BICM) and multiple receive antennas. The proposed analysis is appli-
cable to BICM systems impaired by general types of fading (including Rayleigh, Ricean, Nakagami—m,
Nakagami—q, and Weibull fading) and general types of noise and interference with finite moments such
as additive white Gaussian noise (AWGN), additive correlated Gaussian noise, Gaussian mixture noise,
co—channel interference, narrowband interference, and ultra—wideband interference. We present an
approximate upper bound for the bit error rate (BER) and an accurate closed—form approximation for
the asymptotic BER at high signal-to—noise ratios for Viterbi decoding with the standard Euclidean
distance branch metric. Exploiting the asymptotic BER approximation we show that the diversity gain
of BICM systems only depends on the free distance of the code, the type of fading, and the number
of receive antennas but not on the type of noise. In contrast their coding gain strongly depends on
the noise moments. Our asymptotic analysis shows that as long as the standard Euclidean distance
branch metric is used for Viterbi decoding, BICM systems optimized for AWGN are also optimum for

any other type of noise and interference with finite moments.

IThis work will be presented in part at the IEEE Global Telecommunications Conference (Globecom), New

Orleans, 2008.
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1 Introduction

Bit—interleaved coded modulation (BICM) is an efficient technique to extract time diversity in systems
with single—carrier (SC) modulation [1] and frequency diversity in systems employing orthogonal
frequency division multiplexing (OFDM), and has been adopted by a number of recent standards and
is also expected to play a major role in future wireless systems [2].

While wireless systems are usually optimized for additive white Gaussian noise (AWGN), in practice,
they are also subject to a multitude of other impairments such as narrowband interference (NBI)
[3], co—channel interference (CCI) [4, 5], correlated Gaussian noise and interference [6], man—made
impulsive noise [7, 8], and ultra—wideband (UWB) interference [9]-[11]. Therefore, it is of both
theoretical and practical interest to investigate how the performance of BICM-SC and BICM-OFDM
systems designed for AWGN environments is affected by non—Gaussian noise.? We note that almost
all existing performance studies of BICM are limited to AWGN. For example, union bounds for the bit
error rate (BER) of BICM-SC were provided in [1, 12, 13] and similar expressions for BICM—-OFDM
can be found in [14]. Sattlepoint approximation techniques for BICM-SC systems were introduced
in [15, 16]. The combination of BICM-OFDM and spatial diversity techniques was analyzed in
[14, 17, 18]. In contrast, only few analytical results are available for non—-AWGN types of noise.
Namely, the performance of BICM-SC in Middleton's Class A impulsive noise and of BICM-OFDM
in UWB interference was analyzed in [19] and [11], respectively.

Motivated by the lack of general performance results, in this paper, we provide a mathematical
framework for performance analysis of BICM-SC and BICM—OFDM systems employing Viterbi de-
coding with the standard Euclidean distance branch metric [1] and multiple receive antennas in fully
interleaved fading and non—AWGN environments. This framework is very general and applicable to
arbitrary linear modulation formats, all commonly used fading models, and all practically relevant
types of noise with finite moments. We first develop a general approximate upper bound on the BER
of BICM systems, which is easy to compute but offers little insight since it requires numerical inte-
gration. To overcome this problem, we derive accurate closed—form asymptotic BER approximations
for BICM-SC and BICM-OFDM systems which provide significant insight into the impact of system

parameters such as the modulation format, the free distance of the code, the type of fading, and

2Tn the rest of this paper, the term “noise” refers to any additive impairment of the received signal, and also

includes what is commonly referred to as “interference”.
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the type of noise on performance. In particular, the asymptotic BER expressions reveal that while
the diversity gain of BICM systems is not affected by the type of noise, the coding gain depends on
certain noise moments. We note that the asymptotic performance of uncoded SC modulation has
been studied in AWGN [20, 21] and non—AWGN [22, 23] channels before. However, both the analysis
techniques and the results in [20]-[23] are not applicable to BICM.

The rest of this paper is organized as follows. In Section 2, the considered BICM-SC and BICM-
OFDM system models are introduced. The proposed upper bound and asymptotic approximation for
the BER are presented in Sections 3 and 4, respectively. Various practically relevant noise models are
discussed in Section 5. The presented analysis is verified via computer simulations in Section 6, and

conclusions are drawn in Section 7.

2 System Model

We consider BICM-SC and BICM-OFDM systems with Ny receive antennas. For convenience, in

this paper, all signals and systems are represented by their complex baseband equivalents.

2.1 System Model

The BICM transmitter consists of a convolutional encoder of rate R,., an interleaver, and a memoryless
mapper [1]. Specifically, the codeword ¢ £ [ci, ¢, ..., Cm.x.] Of length m K. is generated by a
convolutional encoder and interleaved. The interleaved bits are broken up into blocks of m, bits
each, which are subsequently mapped to symbols x;, from a constellation X" of size |X| & M = 2™
to form the transmit sequence @ £ [x1, Ts, ..., xk,] of length K.. Assuming perfect synchronization
and demodulation, for both BICM-SC and BICM—-OFDM the signal observed at the Ny receive

antennas can be modeled as
T = /Y hi 1 + Ny, 1<k<K, (1)

Where hk é [hk,l Ce thVR]T Wlth 5{||hk||2} = NR and ng é [nm Ce nhNR]T Wlth 5{||nkH2} =
N, contain the fading gains hy; and the noise variables ny;, 1 <1 < Ng, respectively, and -y denotes

the signal-to—noise ratio (SNR) per receive antenna.® As customary in the literature, cf. e.g. [1, 13,

3In this paper, [-]7, (), R{-}, |||, det(:), and &,{-} denote transposition, Hermitian transposition, the real

part of a complex number, the Lo—norm of a vector, the determinant of a matrix, and statistical expectation with
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17], for our performance analysis we assume perfect interleaving, which means that hj and n; can
be modeled as independent, identically distributed (i.i.d.) random vectors and only their first order
probability density functions (pdfs) are relevant. Thus, to simplify our notation, in the following, we
will drop the time/frequency index k wherever possible. We discuss the assumptions necessary for
the validity of the i.i.d. assumption more in detail below.

BICM-SC: For BICM-SC we assume transmission over a flat fading channel and coding over
B frames of N data symbols, i.e., K. = NB. The channel is time—variant within one frame and
changes independently from frame to frame (e.g. due to frequency hopping). For sufficiently large N
and/or B assuming that the time-domain fading vectors h are i.i.d. is justified [1].

BICM-OFDM: We consider a BICM-OFDM system with N sub—carriers where one codeword
spans B OFDM symbols, i.e., K. = BN. We assume that the length of the OFDM cyclic prefix
exceeds the length of the channel impulse response and that the channel changes independently
from OFDM symbol to OFDM symbol. Thus, modeling the frequency—domain channel gains h as
i.i.d. vectors implies that the channel is severely frequency selective and/or B is sufficiently large.

Practical BICM-SC and BICM-OFDM systems that employ interleaving and coding over B > 1
frequency—hopped frames include the GSM/EDGE mobile communication system (N = 116/N =
348, B = 8) and the ECMA multi-band OFDM (MB-OFDM) UWB system (N = 128, B = 3;

future versions of the standard may use up to B = 15) [9], respectively.

2.2 Fading and Noise Model

Fading Model: The fading gains can be expressed as h; £ a;’®', where a; and ©; are mutually
independent random variables (RVs). Specifically, ©; is uniformly distributed in [—7,7) and q; is a
positive real RV characterized by its distribution p,;(a;) or equivalently by its moment generating
function (MGF) ®,,(s) = £{e™*%}. Correlated fading can be modeled via the joint pdf pg(a) or

. A — YR ga A T A T
the joint MGF ®,(s) = E{e” 2=1"1%}, s = [s1 ... sy, , of the elements of @ = [a; ... an,]",

cf. e.g. [24]-[26]. For the asymptotic analysis in Section 4, we require the fading channel to be

respect to x, respectively. Moreover, I, and 0y; are the M x M identity matrix and the all-zero column vector
of length M, respectively. Furthermore, we use the notation u = v to indicate that v and v are asymptotically

equivalent, and a function f(z) is o(g(x)) if limg_¢ f(z)/g(x) = 0.
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asymptotically spatially i.i.d., i.e., for a — Oy, the joint pdf can be expressed as

Pa(a) = Hpa(al)a (2)

where

pa(a) = 2a.a** 1 4 o(a®** 1) (3)

with fading distribution dependent constants «.. and a4. Eq. (2) is obvious for i.i.d. and independent,
non—identically distributed (i.n.d.) fading [20]-[22], and we prove its validity for the most popular
correlated fading models (Rayleigh, Ricean, and Nakagami-m) in Appendix A. For these correlated
fading models and for independent Nakagami—g and Weibull fading, the fading pdf p,;(a;) and
parameters o, and «g4 are specified in Table 1.

Noise Model: The proposed analysis is very general and applicable to all types of noise for
which all joint moments of the elements of n exist. This is a mild condition which is met by most
practically relevant types of noise and interference, see Section 5 for several examples. An exception
is a—stable noise, which is sometimes used to model impulsive noise [27], as the higher order moments
of a—stable noise do not exist. Note that our analysis is applicable to other types of impulsive noise

such as Middleton's Class—A model and e—mixture noise.

3 Approximate Upper Bound for BER

In this section, we present an approximate upper bound for the BER of BICM systems operating in

non—AWGN environments.

3.1 MGPF of Metric Difference

We assume Viterbi decoding with the standard Euclidean distance (ED) branch metric [1]
A 2 min {[|r — 7 hal[*) (1)
TEX]

for bit 2, 1 <1 < m,, of symbol z. Here, Xbi denotes the subset of all symbols in constellation X’
whose label has value b € {0, 1} in position 7. In AWGN, the ED branch metric A; performs close to
optimum at sufficiently high SNR [1]. In non—Gaussian noise, significant performance gains could be

achieved with optimum maximum-likelihood (ML) decoding, which, however, requires knowledge of
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the noise pdf. Since this knowledge is typically not available at the receiver, in most practical systems,
the ED branch metric is also used in the presence of non—Gaussian impairments. For derivation of

the proposed upper bound it is convenient to first calculate the MGF of the metric difference

Alz,2) & |lr =y hz|? = |lr — Vy hal]* = &bl - 2d.. /7 R{R 0}, ()

where x denotes the transmitted symbol and z is the nearest neighbor of x in Xg with b being the
bit complement of b, and x — z £ d,,e/® with ED d,, > 0. Since we assume the phases ©; of i
to be uniformly distributed, in (5), we have absorbed ¢/ in h without loss of generality. Based on

(5) the MGF ®a(,.)(5) £ Enn{e *2@)} of A(x,2) can be expressed as
Dpey(s) = Epfe BlhlPs g fo2deeyTR{P I} Ay g fo-dillalPs g (2 dyn/vas)},  (6)

where 72 £ [0, ... e 1ny |7 and ®p(s) 2 Eq{e " MM} is the MGF of 7. If the phases
of the noise components n;, 1 < [ < Ng, are mutually independent and uniformly distributed in
[—7, ), Da(s) = Pp(s) £ E {e = ™™} is valid and ®4(s) in (6) can be replaced by @, (s).
Further simplifications are possible if both the phases and the amplitudes of n;, 1 < [ < Npg, are

mutually independent. In this case, we can express ®;(s) as

®als) = [ [ Pa(sR{n}), (7)

where only the scalar MGFs @, (s) = &, {e~*®*{}} of the elements 7, = ¢=7%n; of n are required.
If the phases of the n;, 1 < [ < Ng, are uniformly distributed in [—7, 7), ©,(s) = Dy, (s) =S
En {e~s™Mm}Y s valid, i.e., only the scalar MGFs of the noise components are required.

The scalar MGFs @, (s) of several practically relevant types of noise are collected in Table 2,
cf. Section 5. If ®4(s) cannot be calculated in closed form, it can be computed by numerical
integration even if ®,(s) = ®,(s) is not valid (i.e., if the phases of n;, 1 < [ < Ng, are not
mutually independent and/or are not uniformly distributed in [—7, 7)). However, even if closed—form

expressions for the MGF are available, calculation of ®(, .)(s) in closed form is usually not possible,

and evaluation of (6) entails Nz numerical integrals.
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3.2 Approximate Upper Bound

Assuming a convolutional code of rate R. = k./n. (k. and n. are integers) the union bound for the

BER of BICM is given by [1]
1 o0
Pb < - Z U)C(d> P(C, é)u (8>

where ¢ and ¢ are two distinct code sequences with Hamming distance d that differ only in [ > 1
consecutive trellis states, w.(d) denotes the total input weight of error events at Hamming distance
d, and dy is the free distance of the code. P(c, ¢) is the pairwise error probability (PEP), i.e., the
probability that the decoder chooses code sequence ¢ when code sequence ¢ # ¢ is transmitted.

Invoking the expurgated bound from [1], the PEP can be expressed as

c+joo d

me 1 d
P(C, &) = % / mc]émc ZZ Z (I)A(as,z)(s) ?87 (9>

i=1 b=0 zex;

c—joo
where ¢ is a small positive constant that lies in the region of convergence of the integrand. The
integral in (9) can be efficiently evaluated numerically using a Gauss—Chebyshev quadrature rule,
cf. [28]. Egs. (8) and (9) constitute an approximate upper bound on the BER and are generalizations
of similar bounds in [1, 17] for AWGN to arbitrary types of noise (and interference). We cannot prove
that (8) with (9) is a true upper bound since, as has been pointed out in [12], the proof provided in
[1] for the expurgated bound is not correct. Nevertheless, our results in Section 6 do suggest that
(8) with (9) is an asymptotically tight upper bound if Gray labeling is applied. We note that all our

results can be extended to the revised expurgated bounds presented in [12].

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of the upper bound in (8) for high SNR, i.e.,

v — o0. For this purpose, it is convenient to consider the conditional PEP

c+joo
. 1 ds
Pleeln) = 5 / 2(sln) <. (10)
c—joo

d

CD(S’TL) = mcgmc iz Z CDA(:c,z)(S‘n) ) (11)

b=0 zex;
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where P, (s|n) = Eq0{e 2@} with channel phase vector ©® = [0 ... Oy,]T. The condi-
tional PEP in (10) is given by the sum of the residues of ®(s|n)/s at poles lying in the left hand
side (LHS) of the complex s—plain (including the imaginary axis) [28]. In order to investigate the
singularities of ®(s|n)/s, we derive the Laurent series representation of ®(s|n) around s = 0 for the

asymptotic case of ¥ — oo in the following subsection.

4.1 Laurent Series Expansion of ®(s|n)

For v — oo errors only occur for small channel gains, i.e., for a — Oy, see also [21]. Thus, for

v — 0o we can model the elements of @ and © as i.i.d., cf. Section 2.2, and rewrite ®r(,.)(s|n) as

(I)A(xz HCI)A (z,2) ‘nl (12)

where ®ag.)(siny) & E,.0,{ e % lal® e2vide aliu}s) - Exploiting the fact that for v — oo
errors only occur for @ — Oy, once again, we can use (3) along with the Taylor series expansion

e” = 3.7, @' /il and the integral [;° e " da = p/?T(11/2) [29, 3.462] to express Pa(q.)(s|m)

as
Paea(slm) = Eue, { 2 vAdss am{m}sy/ﬂ}
i=0

= (Pydi ZQF ag+1/2)Ee,{R{m} }s’/2+0(”y O‘d) ) (13)

Using o, {R{M}'} = \f’/rﬂ/lﬁl |ny|’, i even, and Eg, {R{M;}'} =0, i odd, in (13) leads to

Qe % i —a
DA, (slm) = sy ;@\”l\ s'+o(y™), (14)
where [; is defined as 4

5 2 2T (ag+ )1+ 1/2)  T(og+1) (15)

(20)!T(i + 1) IGIE
The asymptotic Laurent series expansion of ®(s|n) is obtained from (11), (12), and (14) as

Ngr

®(s|n) = X(a, N, d) ag ™ (ys)~oahn (H Zl(S)) +0 (y7 ) (16)

=1

with z;(s) £ 3°% B;|m|*s’ and modulation dependent constant

X(ad’ NR’ o me2me ZZ Z d? agNp ’ (17>

=1 b= OCCGXl
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In the next subsection, we will use (16) to calculate a closed—form expression for the asymptotic BER.

4.2 Approximation for Asymptotic BER

As mentioned before, the conditional PEP (10) is given by the sum of the residues of ®(s|n)/s in the
LHS of the complex s—plain. Using d'Alembert’s convergence test [29, 0.222] it is easy to show that
21(s) is convergent for all s. Thus, ( f\iﬁ z(s))? is also convergent for all s. Consequently, the first
term on the right hand side (RHS) of (16), which dominates for high SNR, is convergent for s # 0,
i.e., for high SNR the only singularity of ®(s|n)/s is at s = 0. Thus, the asymptotic conditional
PEP is given by the residue of ®(s|n)/s at s = 0 or equivalently by the coefficient associated with

sY in the series expansion of the first term on the RHS of (16). Assuming ayNgd is an integer this

leads to

d
P(e, &|n) = X(ag Np,d)alrdy=eabnt 3 =TT % 7 Bifml™ - By, I [P0

i1+-+ig=agNrd k=1 j1+"'+jNR:ik
+o (y7oaed). "

Based on (8) and (18) a closed—form approximation for the asymptotic unconditional BER P, = %ff)

E{P(c, ¢|m)} can be obtained as

(d
Pb = . ]E; f) aéVRdf X(ada NRa df) M(ad> NR> df) ViadNRdf’ (19)

where

d
M(Oéd,NR,d> = Z H Z ﬁjl'”ﬁjNR M’n(jlv"'?jNR>7 (20>

t1++ig=agNrd k=1 ji+--+jingp=ik

with the joint noise moments
My (i1, - dng) = En{Im|¥' . Iy, |[Vr } (21)

In arriving at (19)—(21) we have used the assumptions that (a) the first term in the summation in
(8) is asymptotically dominant, (b) the union bound is an accurate approximation for the BER at
high SNR, (c) the noise vectors m are temporally i.i.d., and (d) all joint moments of the elements
of m exist. Assumption (d) is necessary since the terms absorbed in o(y~®"&d) in (18), contain
sums of products of elements of n, cf. (13), which have been neglected in (19). At what finite

SNR the approximate upper bound (8) and the true BER approach the asymptotic BER depends
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on how fast the terms neglected in (19) become negligible compared to the terms considered as the
SNR increases. Generally, the SNR values at which the asymptotic BER is approached increase with
increasing ayNgrd; and increasing w(dy + 1)/w(dy) since higher SNRs are necessary for the term
w(dy)y~*Nrds considered in (19) to dominate the largest term w(d; + 1)y~ *Vrds=1 absorbed in
o(y~*NVrd)  Thus, we expect the asymptotic BER to converge faster to the true BER for codes with
smaller free distance d; and smaller relative weight w(d; + 1)/w(dy), cf. Fig. 3.

Furthermore, depending on the properties of the noise, evaluation of M, (ji,...,jn,) may be
cumbersome. However, for two important special cases significant simplifications are possible.

Case 1 (spatially i.i.d. noise): If the components of m are independent, (20) simplifies to

M(O‘Cb Nk, d) = Z ﬁlen(jl) s ﬂjNRd Mn(jNRd) (22)
Jit+inga=aaNrd
with scalar noise moments M,,(j) £ £{|n;|*}, which are independent of 1.
Case 2 (ag = 1): If ag = 1, which is true for example for (possibly spatially correlated) Rayleigh,

Ricean, and Nakagami—q fading, (20) simplifies to

1 Ngd , :
M(l,NR,d> = Z . R’ . Mn(ll)‘”Mn(ld) (23>
(NRd)' 4t igeNpd 11,...,1%g

with vector noise moments M, (i) = £{||n||*}.

Closed—form expressions for the moments M,,(j) and M, (i) of several important types of noise
are provided in Tables 2 and 3, respectively, cf. Section 5.

In the remainder of this section, we discuss the implications of the asymptotic BER (19) for

system design and consider the special cases of AWGN and uncoded transmission, respectively.

4.3 Diversity Gain, Coding Gain, and Design Guidelines

To get more insight, it is convenient to express the asymptotic BER as P, = (G.y) % [21], where G
and G, denote the diversity gain (i.e., the asymptotic slope of the BER curve on a double logarithmic
scale) and the coding gain (i.e., a relative horizontal shift of the BER curve), respectively. Considering

the asymptotic BER in (19), we obtain

Gq = agNgdy (24)

10 10 we(d) X (g, Na, d 10
G.[dB] = —&—d10g10 Qe — ey 1Oglo( ) (kd : f)) a adloglo M{aa, Ne,ds) (25)
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From (24) we observe that the diversity gain of BICM is independent of the type of noise. The coding
gain in (25) consists of three terms, where the first, the second, and the third term depend on the
fading channel, the modulation scheme and the code, and the type of noise, respectively. The primary
goal of BICM design is to maximize d for a given decoding complexity in order to maximize G4 (and
to minimize the asymptotic BER). Gray labelings (yielding smaller X (a4, Ng,ds) than non-Gray
labelings) and codes with small w,.(d¢) are advantageous for maximizing the second, modulation and
coding dependent term in (25). Once d; is fixed, the last term in (25) cannot be further influenced
through system design making the BICM design guidelines effectively indepenent of the type of noise
in the system. Thus, our results show that BICM systems optimized based on the guidelines provided
in [1] for systems operating in fading and AWGN are also optimum for non—AWGN environments as

long as the standard ED branch metric is used for Viterbi decoding.

4.4 Special Case I: AWGN

Although the main focus of this paper is non—AWGN, the presented results are also valid for AWGN.
We note that although the AWGN case was covered extensively in the literature, e.g. [1, 13, 17],
our results are still more general than existing results as they allow for spatially correlated fading and
more general fading models. For example, for Ricean fading (ay = 1) we obtain from (22) with the

help of (15) and Table 2 M (1, Ng,d) = (QNRdf_l). Thus, with (19) and Table 1 we get

Npdy

= (2Nrdy = 1Y ((weldy) exp (—pfl Ciipn)
b Nrdy k. det(Chp)

dy
) X (1, Ng,dg)y~Nndr, (26)

which is a new result. For Np = 1, we may rewrite (26) as P, = (Qdé;l)%f”[(l + K)e K4 X (1,
1,d;)y~% with Ricean factor K = |uy|?/0?, where 11, and o? denote the mean and the variance
of hy. In contrast, for Ricean fading with Nr = 1 the Chernoff bound was used in [1] and [17] to
investigate the asymptotic behavior of BICM-SC and BICM-OFDM, respectively, since “a closed—
form expression for the PEP for arbitrary K is missing” [1]. Comparing our result with the asymptotic
Chernoff bound [1, Eq. (62)] shows that the Chernoff bound is by a factor of 4df/(2d£f_1) > 1 larger
than the asymptotic BER, i.e., for d; = 3 and dy = 6 the Chernoff bound is horizontally shifted by
2.7 dB and 1.6 dB compared to the asymptotic BER, respectively. Furthermore, using the Stirling

approximation we obtain for the difference between asymptotic Chernoff bound and asymptotic BER

4df/(2dcfl‘f*1) — 2,/mdy for dy > 1, which agrees with the result obtained in [16] for Rayleigh fading.
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4.5 Special Case 1I: Uncoded Transmission

While BICM is the main focus of this paper, based on (19) it is also possible to compute the asymptotic
BER of uncoded transmission with maximum-ratio combining (MRC) at the receiver. In this case,
dy =1, k. =1, and w.(1) = 1 are valid. Furthermore, assuming a regular signal constellation such

as M—ary quadrature amplitude modulation (M—QAM) or M—-ary phase shift keying (M-PSK), it is

2O‘dNR
min

easy to see that X (ag, Ng, 1) = Npin/(m.d ), where Ny, and dy,;, are the average number of

minimum distance neighbors and the minimum distance of X', respectively. Therefore, the asymptotic

BER of uncoded transmission with MRC can be expressed as

N
Nminac R
2004 NR
min

Pb = M(Oéd, NR7 1) fy_adNR7 (27>

med

where M (ag, Ng,1) = Zj1+"'+jNR:adNR Bjy - - ‘ﬂjNR M, (j1,...,Jng), which can be further sim-
plified for ay = 1 and spatially i.i.d. noise, cf. Section 4.2. In particular, for «y = 1 we obtain
M(1, Ng,1) = M,(Ng)/Ng!, cf. (23), and it can be shown that for Rayleigh and Ricean fading (for
both of which «; = 1 holds) (27) is identical to [23, Egs. (12), (16)]. However, (27) is more general
than the results in [23] since it is not limited to Rayleigh and Ricean fading and is also applicable to

e.g. Nakagami—-m, Nakagami—¢, and Weibull fading.

5 Calculation of the Noise Moments and MGF's

In this section, we discuss several practically relevant types of noise and compute the corresponding
MGFs ®,,(s) and moments M, (j1, - .-, jny) required for evaluation of the upper bound in Section 3
and the asymptotic BER in Section 4, respectively. We note that for spatially i.i.d. noise only the scalar
MGFs ®;(s) and the scalar moments M,, (i) have to be computed for evaluation of the upper bound
and the asymptotic BER, respectively, cf. (7), (22), Table 2. Furthermore, for most types of spatially
dependent noise, it is difficult to find closed—form expressions for the joint MGF ®,,(s) and the joint
moments M, (j1,...,7um), since the phases of the elements of m are not independent. Therefore,
unless stated otherwise, we concentrate in case of spatially dependent noise on the important special

case oy = 1, where only the vector moments M, (i) are required.
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5.1 Noise Models for BICM-SC

In this section, we consider several time—domain noise models typical for BICM-SC systems. In
particular, we consider spatially independent Gaussian—mixture noise (SI-GMN) and three different
types of spatially dependent noise (spatially dependent (SD) GMN, additive correlated Gaussian noise
(ACGN), and asynchronous co—channel interference (CCl)).

SI-GMN: GMN is often used to model the combined effect of Gaussian background noise and
man—made or impulsive noise, cf. e.g. [7, 8, 19]. If the phenomenon causing the impulsive behavior
affects the antennas independently, the GMN is spatially i.i.d. [30] and n, is distributed according to
[8]

i Ing|?
—— 1<I<N 28
To? exp( o? )’ == (28)

7 7

pa(m) = Z

where ¢; > 0 and 07 > 0 are parameters, and Zle c;02 = 1. Two popular special cases of Gaussian
mixture noise are Middleton’s Class—A noise [8] and e-mixture noise. For e-mixture noise I = 2,
ci=1—¢co=¢ 0l =02 and 03 = /wg, where € is the fraction of time when the impulsive noise
is present, k is the ratio of the variances of the Gaussian background noise and the impulsive noise,
and 0] = 1/(1 — € + ke) = 1. The scalar MGF ®;(s) and the scalar moments M, (i) for SI-GMN
are given in Table 2.

SD-GMN: SD-GMN is an appropriate model for impulsive noise if all antennas are affected

simultaneously by the phenomenon causing the impulsive behavior. The joint pdf for SD-GMN n is

given by [30]

pam) =3 — e (-I25). (29)

perlle 5
where ¢; and o7 are defined similarly as for SI-GMN. Since the phases of the elements of n are

independent random variables, the joint MGF ®,(s) can be calculated to

I 0_2 Ngr
Dp(s) = Zci exp (Z’ Z s?) : (30)
i=1 =1

Furthermore, in this particular case, a closed—form expression for the joint moment M,,(j1, ..., jng;),

cf. (21), can be obtained as

I

. . . . 2(j1+-+j
Mn(jl7“‘?]NR):jllh'.jNR!ZCiJi(]l ]NR). (31)
=1

The vector moments M, (i) are provided in Table 3.
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ACGN: In BICM-SC systems, correlated Gaussian noise m may be caused by narrowly spaced
receive antennas [6]. Correlated Gaussian interference n = hb + 7 is caused by a synchronous
co—channel interferer transmitting i.i.d. PSK symbols b over a spatially correlated Rayleigh fading
channel with gains b and AWGN 7i. In both cases n is fully characterized by its covariance matrix
C.. = E{mn"}, and the corresponding vector moments M, (i) are given in Table 3, where \;,
1 <1 < Npg, denotes the eigenvalues of C,,,,.

Asynchronous CCI: Another common type of non—AWGN impairment in BICM-SC systems is
asynchronous CCl [4, 5]. We consider coding over B different hopping frequencies and assume that at
hopping frequency p, 1 < o < B, in addition to AWGN n,, there are I, Rayleigh faded asynchronous

CCl signals leading to time—domain noise

Iy kau
= Rl Y giulllbiull] + 7o, (32)
=1 I=k,

where h,,[i] and b; ,[l] € M;, ( M, ,: M; ,~ary symbol alphabet) denote the temporally i.i.d. zero—
mean Gaussian random channel vector and the i.i.d. symbols of the ith interferer at the uth hopping
frequency, respectively. Furthermore, ¢;,[l] = ¢;,(IT + 7;,), where g; ,(t), T, and 7;, are the
effective pulse shape, the symbol duration, and the time offset of the ith interferer at the uth
hopping frequency, respectively. We assume that g; ,(I7 + 7;,,) ~ 0 for i < k; and i > k,,, denote
the set of all possible values of &, & S iy iull1i (1] by Si i, and define S, = 8y, % ... X 8y, 4
If I, = 0, we formally set S, = {0} with |S,| = 1. With these definitions, the pdf of n, can be

expressed as
Pr Z Z —Nr det(Cg ) P < n"'Cs n) (33)
p=1 S,

where ¢, s, 2 1/(|S,|B) and Cs, £ S0 |&, . [2E{h,Jilh []} + 021y, (02: variance of elements
of ). Eq. (33) shows that CCl in BICM-SC systems can be interpreted as correlated Gaussian
mixture noise. For future reference we denote the ratio of the total CCl variance and the total AWGN
variance by x, cf. Section 6. The scalar moments M, (i) (valid for N = 1) and vector moments
M, (i) of asynchronous CCl are given in Tables 2 and 3, respectively, where we have replaced C's,

by O’%ﬂ for Ng = 1in Table 2, and in Table 3, A s,, 1 <1 < Ng, are the eigenvalues of C's, .
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5.2 Noise Models for BICM-OFDM

Now, we turn our attention to several frequency—domain noise models relevant to BICM-OFDM
systems. In particular, we consider SI-GMN and two types of spatially dependent noise (SD-GMN
and narrowband interference (NBI)).

SI-GMN: Taking into account that in OFDM systems time domain and frequency domain are
linked via the discrete Fourier transform (DFT), it can be shown that time—domain SI-GMN (28)
results in frequency—domain noise with pdf

c ny)?
pn(ny) = Z # exp <— ‘2 ! ) : 1 <1< Np, (34)
I

ki+-+kr=N k...l

N k1 kr L
)c1 ~ecptand of, . =

7777

which is again an SI-GMN model with parameters ¢, ., = (
(kyo? + -+ + kyo?)/N. We note that the spectral i.i.d. asumption for n; is justified only if the
interleaver spans several OFDM symbols, i.e., B > 1, since the noise after DFT in one OFDM
symbol will be spectrally dependent. The scalar MGF ®;(s) and the scalar moments M,, (i) for
SI-GMN are provided in Table 2.

SD-GMN: The DFT operation at the receiver transforms the noise pdf (29) into

Chy,ok |In]?
paln) = ), S exp <_02 ’ (35)
kr

.....

.........

to the BICM-SC case, the phases of the elements of n are independent random variables, the joint

MGF can be obtained as

2 Ng
o
DaH(s) = Z Chky... ki €XD (% Zs?) : (36)

The corresponding joint moment is given by

. . . . 2(' Hefg )
Mn(]17“‘7jNR) :]lleR' Z Ckrl ..... klakljl kr INR . (37)

.....

The vector moments M, (i) for SD-GMN are provided in Table 3.

NBI: We consider a BICM-OFDM system with coding over B different hopping frequencies. At
hopping frequency p, 1 < p < B, the received frequency—domain signal is impaired by AWGN 7y, ,,
and /,, Rayleigh faded PSK NBI signals. The corresponding frequency—domain noise model is

Iy
Ny =Y Grllbulile i) + gy, 1< k<N, (38)
=1
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where b, [i] is the PSK symbol of the ith interferer at the uth hopping frequency affecting the set \V,, ;
of sub—carriers via gy, ,[i] £ exp[—jim(N —1)(k+ f.;/Afs)/N+ ¢l sin[r(k+ f.i/Afs)]/ sin[r(k+
fui/Afs)/N] [3]. Here, f,; and ¢,,; denote the frequency and phase of the ith interferer at hopping
frequency p relative to the user, respectively, and Af, is the OFDM sub—carrier spacing. Since
we consider NBI, the same interference fading vector hy ,[i] (modeled as spatially correlated zero—
mean Gaussian random vector) affects all sub—carriers in NV,,;. For f,; = vAf, the NBI affects
only sub—carrier v, i.e., ./\/;m = v, while, in theory, for f,; # vAf the NBI affects all sub—carriers.
However, gy ,[i] decays quickly and we limit V,,; such that |gy ,[i]| = O for k& & N, ;. Finally, we
assume that no sub—carrier is affected by two narrowband interferers at a given hopping frequency,

i.e., Nuiy NN,i, =0, iy # is. The pdf for this general interference scenario is given by

B I
Co _ C1 ||In’H2
pn(n) = Z Z Z T det(C o) exp (—nHC“ikn) + 5N exp (— . . (39)

Ng 2 2
p=1 i=1 keN, ; LD n

where o2 denotes the variance of the elements of the ANGN 7, ¢g =2 1/(BN), ¢c; =1 — 25:1 Zfil
INwil/(BN), Crir 2 gk uli]|?Cit02In,, and Ci 2 E{hy . [i](h[i])"}. Eq. (39) shows that,
similar to CCl in BICM-SC systems, NBI in BICM-OFDM systems can be interpreted as correlated
Gaussian mixture noise. We denote the ratio of the total NBI variance and the AWGN variance by
Kk, cf. Section 6. The corresponding moments M, (i) and M,(i) are provided in Tables 2 and 3,
respectively, where we have replaced C,; . by o7, ;, for Np = 1 in Table 2, and in Table 3, A; .,
1 <1 < Ng, are the eigenvalues of C,; 1.

5.3 Monte—Carlo Method

For complicated types of noise such as UWB interference, it may be difficult to calculate the moments
M, (i), My (i), and My, (j1,...,Jny) in closed form. In this case, these moments may be obtained by
Monte—Carlo simulation of (21), (22), or (23) and subsequently be used in (19) for calculation of the
asymptotic BER. We note that this semi—analytical approach is much faster than a full simulation

since the moments are independent from the SNR ~ and have to be computed only once.
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6 Numerical and Simulation Results

In this section, we verify our derivations in Sections 3-5 with computer simulations and employ the
presented theoretical framework to study the performance of BICM in non—AWGN environments.
For the simulations, we consider both idealized channels with temporally i.i.d. channel and noise
vectors, and non—ideal channels generated based on the models presented in Sections 2.1 and 5.
In the non—ideal case, for BICM-SC we assume a frame size of N = 972 and a normalized fading
bandwidth BT of 0.007, which are typical values for the DAMPS mobile communication system
[4]. For BICM—OFDM we consider systems with N' = 64 and N = 128 sub—carriers transmitting
over channels with L = 10 and L = 20 i.i.d. impulse response coefficients. For all simulations
shown, a pseudo—-random interleaver was employed. Throughout this section we adopt the standard
convolutional code with rate R, = 1/2 and generator polynomials [133, 171] (octal representation).
Higher code rates are obtained via puncturing and, unless specified otherwise, 4—PSK modulation
and Ny = 1 receive antennas are used. The parameters of the adopted noise models are specified in
the respective captions of Figs. 1-7.

In Fig. 1, we show simulation results for BICM-SC and BICM-OFDM impaired by GMN and
NBI, respectively. In both cases, coding (R. = 3/4) and interleaving is performed over different
numbers of frames B. Besides the simulation results we also show the approximate upper bound
and the asymptotic BER derived in Sections 3 and 4, respectively. For high enough SNR and BICM-
OFDM with N = 128 and the severely frequency—selective channel with L. = 20 the analytical
results are accurate even for B = 3. In contrast, for BICM-SC and BICM-OFDM with N = 64 and
L = 10 the interleaver is not able to generate i.i.d. channels for small B which leads to performance
degradation and the corresponding simulated BER exceeds the upper bound (which was derived
assuming i.i.d. channels). However, as B increases, the simulation results approach the upper bound
and the asymptotic BER also in these cases for high SNR. Note that for non—delay critical applications,
such as data transmission, large B can be afforded.

In Fig. 2, we show the BER of BICM-SC and BICM-OFDM (N = 64) for Rayleigh fading
and various different noise and interference scenarios. Fig. 2 shows that the simulated BERs (solid
lines with markers), which were generated with non—ideal channels and for different B, approach
the approximate upper bound (solid lines without markers) and the asymptotic BER (dashed lines)
for high SNR. In particular, for the BER region of BER < 1075, which is difficult to simulate, the
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proposed analytical results are accurate approximations for the true BER. The simulated BER exceeds
the upper bound again because of the non—ideal channel. In accordance with our findings in Section
4.3, Fig. 2 shows that for high SNR all BER curves are parallel, i.e., all considered types of noise lead
to the same diversity gain of G; = dy = 5. Nevertheless, there are large performance differences
between different types of noise because of the different coding gains G.. Fig. 2 confirms that
OFDM s far more robust to GMN than SC if BICM is used in both cases. For GMN [l BICM-OFDM
outperforms BICM-SC by 5 dB at high SNR and approaches the performance in AWGN. This is an
interesting result, since a previous comparison in [19] had shown that BICM-SC is more robust to
GMN than uncoded OFDM. Note, however, that for BICM-OFDM a relative large B is necessary
to make the GMN approximately spectrally independent, whereas for BICM-SC GMN is temporally
independent even for B = 1, cf. Section 5.

In the remaining figures, we assume ideal channels where both fading and noise are temporally or
spectrally i.i.d.

In Fig. 3, we investigate the effect of the code rate R. on the performance of BICM-OFDM
(N = 128) in NBI for an i.i.d. Rayleigh fading channel and 64—-QAM. Fig. 3 shows that as the code
rate decreases, the diversity gain increases since the free distance of the code increases, cf. (24). While
the approximate upper bound (solid line without markers) approaches the simulation results (solid lines
with markers) for BER < 107 in all cases, the convergence of the upper bound to the asymptotic
BER (dashed lines) is slower for small (R, = 1/2) and large (R, = 7/8) code rates. For R, = 1/2, dy
is large making the asymptotic BER curve very steep, which leads to an over—estimation of the BER at
low SNRs, cf. Section 4.2. For R. = 7/8, the slow convergence can be explained by the large relative
weight of terms neglected in asymptotic BER expressions (e.g. w(d; + 1)/w(dy) = 56), cf. Section
4.2. For comparison, R, = 3/4 shows a much faster convergence since w(ds + 1)/w(ds) = 5.

In Fig. 4, we consider the impact of the type of fading on the BER of BICM-SC with 16-QAM
for GMN and AWGN. Since the type of fading affects the diversity gain Gy = aqdy, the asymptotic
slopes of the BER curves for Nakagami-m (ag = m = 2) and Weibull (ay = ¢/2 = 2/3) fading
differ from the asymptotic slopes of the BER curves for Rayleigh, Ricean, and Nakagami—¢ fading,
since for the latter three ay = 1 holds. It can also be observed that the performance loss caused by
GMN compared to AWGN decreases with decreasing diversity order.

In Fig. 5, we show the BERs of uncoded SC transmission over correlated Nakagami—m channels

with Nr = 2 receive antennas and impairment by SD- and SI-GMN (both cases: e-mixture noise
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with e = 0.1, k = 10). The spatial fading correlation coefficient is p, = 0.9. Note that for uncoded
transmission the temporal i.i.d. asumption for fading and noise is not required. Fig. 5 shows that
for uncoded transmission the derived approximate upper bound is very tight even at low SNR and
approaches the asymptotic BER at high SNR. Thereby, the asymptotic BER converges faster to the
upper bound for channels with smaller diversity gain. Furthermore, Fig. 5 confirms that spatial noise
dependencies lead to significant performance degradations.

In Fig. 6, we consider the BER of BICM-SC impaired by temporally i.i.d., spatially uncorre-
lated/correlated (fading correlation p, = 0.9) Rayleigh fading and AWGN/ACGN (noise correlation
pn = 0.9) for Nr = 2. Fig. 6 shows that, while noise correlation has also adverse effects on perfor-
mance, fading correlation is more harmful. Furthermore, the convergence of the asymptotic BER to
the approximate union bound is negatively affected by the spatial fading correlation.

Finally, in Fig. 7, we consider the BER of BICM-OFDM impaired by UWB interference and
temporally i.i.d. Rayleigh fading. We consider MB-OFDM and impulse-radio UWB (IR-UWB) in-
terference following the EMCA [9] and the IEEE 802.15.4a [10] standards, respectively. Specifically,
for IR-UWB we assume NN, = 32 bursts per symbol and L. chips per burst [10]. The MGF required
for the approximate upper bound (8) was obtained using the methods proposed in [11]. Since, due
to the complicated nature of the interference signal, closed—form expressions for the moments are
difficult to obtain, we used the Monte—Carlo approach discussed in Section 5.3 for calculation of the
moments for evaluation of the asymptotic BER (19). Fig. 7 nicely illustrates that the coding gain in
UWB interference strongly depends on the sub—carrier spacing of the victim BICM—OFDM system
and the format of the UWB interference. Interestingly, for Af, = 1 MHz MB-OFDM has a more
favorable noise pdf than AWGN and thus, is less detrimental to the performance of the BICM-OFDM
system than AWGN.

7 Conclusions

In this paper, we have presented a framework for performance analysis of BICM-SC and BICM-
OFDM systems impaired by fading and non—Gaussian noise and interference. The proposed analysis
is very general and applicable to all popular fading models (including Rayleigh, Ricean, Nakagami—
m, Nakagami—g, and Weibull fading) and all types of noise with finite moments (including AWGN,
ACGN, GMN, CCl, NBI, and UWB interference). In particular, we have derived an approximate upper
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bound for the BER which allows for efficient numerical evaluation and a simple, accurate closed—form
approximation for the asymptotic BER. Our asymptotic analysis reveals that while the coding gain is
strongly noise dependent, the diversity gain of the overall system is not affected by the type of noise.
This result is important from a practical point of view since it shows that at high SNRs the BER
curves of BICM systems optimized for AWGN will only suffer from a parallel shift if the impairment

in a real-world environment is non—Gaussian.

A Spatially Correlated Fading Channels

In this appendix, we prove (2) for correlated Rayleigh, Ricean, and Nakagami—m fading.

Ricean Fading: For Ricean fading the pdf of the channel vector h is given by

1

ph(h/> = N det(chh)

exp [—(h = )" C (h — )] | (40)
where p;, = E{h} and C},, = E{(h — p,,) (h— ;)" } are the channel mean and channel covariance
matrix, respectively. For b — Oy, we can rewrite (40) as

o) = O2 CH Crintin)
h R det(Chh)

+o(1). (41)

Based on (41) and the relation |/;|*> = a? it can be shown that (2) and (3) hold for correlated
Rayleigh (), = Oy,,) and Ricean (p;, # On,,) fading with a.. and oy as specified in Table 1.

Nakagami—m Fading: For Nakagami—m fading the joint MGF of a7, 1 < I < Np, is given by
[24]

Ngr
Do2(s) 2 € {exp (- > af sl> } = det(Iy, + SCou/m)™™, (42)
=1
where S £ diag{s}, and C,, and m denote the channel correlation matrix and the fading parameter,

respectively. The behavior of the joint pdf pa2(ai, ..., ak,) of af, 1 <1 < Ng, for @ — Oy, can

be deduced from the behavior of ®,2(s) for s; — 00, 1 <1 < Ng, which is given by

Ngr Ngr
DBg2(s) = mNEm det(Ca) ™ H s;" 40 <H slm> . (43)
1=1 1=1

Consequently, we obtain

2 2 N 5 a?(m_l) rr 2(m—1)
paz(ai, ..., aNR) =m " det(Cu)™ ™ H T0m) +o0 11 a; , (44)

=1
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which clearly shows that the a;, 1 <1 < Ng, are asymptotically i.i.d., i.e., (2) and (3) are valid. The
corresponding parameters o and oy are provided in Table 1 and can be obtained by exploiting the

relation between pg2(a3, ..., a3;,) and pa(a).
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Tables and Figures:

Table 1: Pdf p,(a) of fading amplitude a for popular fading models and corresponding values
for a. and ay. We have omitted subscript [ for convenience. The parameters for Rayleigh
(Chpn), Ricean (p,,, Chpp), and Nakagami-m (m, C,,) fading are defined in Appendix A. The
parameters for Nakagami—q (¢, b) and Weibull (c) fading are defined as in [24].

| Channel type | pa(a) of the fading amplitude a | Q. | o |
Rayleigh 2ae " det(C},,) "Nk 1
/N
. (R exp (—py Chup )
R 2K + 1) ae =090 1y (20, /KK +1)) 1
icean (K+1)ae 0 (2a/K(K+1) det (Cm)
Nakagami-m = fn) mm g?m emme’ F(m det(C,,) ™/ Nr m
Nakagami—q \/% exp( = b2)> I, <(1 b2)> 142:;1 1
Weibull c(D(1+2))2atexp (- (aQF(1+E))5> S(I(1+2)): ¢

Table 2: MGF @;(s) and scalar moments M, (i) of types of noise considered in Section 5. All
variables in this table are defined in Section 5. (SC) and (OFDM) means that the type of noise
is relevant for BICM-SC and BICM-OFDM, respectively.

| Noise type | Noise MGF ®;(s) | Scalar moment M,,(7)
AWGN (SC & OFDM) exp(s?/4) i!
SI-GMN (SC) ST e exp(s®ai/4) i S o
CCI (SC) et 2o, CuS exp(sos, /4) 1 s, 5,05,
SI-GMN (OFDM) Zkl+ b= N Chiks €XD(s70% o [4) | A Zkﬁ = Chypoooty Ot kz
NBI(OFDM) | 3 30 Sorenr,, €0 Oxp(320 0 /4) | 00y 30 ey 002
+cp exp(s o2 /4) +c102)
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Table 3: Vector moments M, (i) of types of noise considered in Section 5. All variables in this
table are defined in Section 5. (SC) and (OFDM) means that the type of noise is relevant for
BICM-SC and BICM-OFDM, respectively.

| Noise type | Vector moment M, ()
SD-GMN (SC) CFEsE Yo cof
ACGN (SC) D g +hnp=i A H)\;CV]\I;R
3
CCI (SC> ! Z,u, 1 ZS# Cpu, Su Zkl-l— +kN =i )\13 NA};I?S#
SD-GMN (OFDM) ST Yhi b Gkt OF g
3
NBI (OFDM) Z'Zu 121/ 1Zkze/\fw OZk:lJr FhNp=i )‘llﬂuuk ) )‘N]\;}?u,u,k
(i+Np—1)! 22
O e %n
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10

Figure 1: BER of BICM-SC and BICM-OFDM impaired by GMN (e-mixture noise,
e = 0.1, kK = 100) and NBI, respectively, vs. SNR 7. R, = 3/4, Rayleigh fading,
4-PSK, and Ng = 1. BICM-SC: Frequency-flat time-selective fading, N = 972, and
BT = 0.007. BICM-OFDM (N = 64): Frequency-selective Rayleigh fading with
L =10 and B equal power, sub—carrier centered NBI signals with I, = 1,1 <y < B,
k = 7. BICM-OFDM (N = 128): Frequency—selective Rayleigh fading with L = 20
and B equal power, sub—carrier centered NBI signals with [, = 1,1 < < B, k = 2.
Solid lines with markers: Simulated BER. Solid lines without markers: BER bound
(8). Dashed lines: Asymptotic BER (19).
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10° | —&— BICM-OFDM: NBI (B = 5)
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I I
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Figure 2: BER of BICM-SC and BICM-OFDM impaired by various types of noise
vs. SNR ~v. Rayleigh fading, R. = 3/4, 4-PSK, and Ng = 1. BICM-SC: N = 972 and
BT = 0.007. BICM-OFDM: N = 64 and L = 10. GMN I: e-mixture noise, € = 0.01,
k = 100. GMN II: e-mixture noise, ¢ = 0.1, kK = 100. Asynchronous CCI: Two
asynchronous equal power 4-PSK CCI signals, I, =1, p € {1, 2}, 1, =0, 3 < p < 10,
raised cosine pulses g1, (), p € {1, 2}, with roll-off factor 0.3, 7, = 0.37", pn € {1, 2},
k = 2. NBI: One sub—carrier—centered NBI signal, I; = 1, I, = I3 = I, = I5 = 0,
k = 9. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (8). Dashed lines: Asymptotic BER (19).
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Figure 3: BER of BICM-OFDM impaired by NBI (3 equal power, sub—carrier—centered
NBI signals, I} = I, = I3 = 1, k = 10) vs. SNR 7. Li.d. Rayleigh fading, 64—-QAM,
N =128, B = 3, and Ny = 1. Solid lines with markers: Simulated BER. Solid lines
without markers: BER bound (8). Dashed lines: Asymptotic BER (19).
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Figure 4: BER of BICM-SC impaired by GMN (e-mixture noise, ¢ = 0.25, k = 10) and
AWGN, respectively, vs. SNR ~. Ideal i.i.d. fading, R, = 7/8, 16-QAM, and Ny = 1.
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Figure 5: BER of uncoded SC transmission impaired by SD- and SI-GMN (e-mixture
noise, € = 0.1, k = 10), respectively, vs. SNR v. Nr = 2, Nakagami—-m fading spatial
correlation p, = 0.9, and 4-PSK.
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Figure 6: BER of BICM-SC impaired by AWGN/ACGN vs. SNR . Spatially
i.i.d./spatially correlated, temporally i.i.d. Rayleigh fading, R. = 7/8, 4-PSK, and
Ngr = 2. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (8). Dashed lines: Asymptotic BER (19).
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Figure 7: BER of BICM-OFDM system with sub—carrier spacing Af, impaired by
IR-UWB [10] (N, = 8 bursts per symbol and L. chips per burst) and MB-OFDM
UWRB [9], respectively, vs. SNR . Ideal i.i.d. Rayleigh fading, R. = 5/6, 4-PSK, and
Npr = 1. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (8). Dashed lines: Asymptotic BER (19). For comparison the bound and the
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asymptotic BER for AWGN are also shown.
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