
Robust Lp–Norm Metric for Cognitive Radio Systems

1 Amir Nasri and Robert Schober

Department of Electrical and Computer Engineering

The University of British Columbia

2356 Main Mall, Vancouver, BC, V6T 1Z4, Canada

Phone: +604 - 822 - 3515

Fax: +604 - 822 - 5949

E-mail: {amirn, rschober}@ece.ubc.ca

Cognitive radio (CR) system are capable of using the frequency spectrum more effectively by utilizing

unoccupied or under–utilized frequency bands. The frequency bands used by CR systems however, are

expected to suffer from various forms of noise and interference with non–Gaussian distribution such

as the co–channel interference caused by the primary user and other cognitive radios, ultra–wideband

(UWB) interference and man–made impulsive noise. To mitigate the harmful effect of non–Gaussian

noise and interference, we propose a robust Lp–norm metric for CR systems that employ the popular

bit–interleaved coded modulation (BICM) scheme. For the considered CR system we provide an

approximate upper bound on the BER as well as simple and easy–to–evaluate analytical expressions

for the asymptotic BER. The BER bound and the asymptotic BER are both obtained as functions

of the metric parameters and therefore can be employed for metric optimization. While the BER

bound is used for offline metric optimization, an effective adaptive algorithm is provided for online

metric optimization based on the asymptotic BER results. Numerical and simulation results show

that using the optimized Lp–norm metric significant performance gains can be achieved compared to

the conventional L2–norm metric.

1This work will be presented in part at the IEEE Global Telecommunications Conference (Globecom), New

Orleans, 2008.
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1 Introduction

While demand for high speed wireless access and inflexible methods of spectrum allocation have made

the spectral resources increasingly scarce, recent studies [1, 2] have indicated that wide spectral ranges

are rarely used in both space and time. This observation has motivated the new idea of Cognitive

Radios [3]. In a broad sense a cognitive radio is a smart radio capable of sensing the environment

in order to provide efficient utilization of spectrum bands that temporally or spatially unoccupied or

under–utilized by their licensed (primary) users. While primary users have priority in accessing the

spectrum, CR (secondary) users can use the available spectrum opportunistically without interfering

with the primary users. As a results, the spectrum is used more efficiently and the deployment of

new applications is simplified.

The aforementioned definition of CR implies that the CR users have to be able to maintain their

required quality–of–service (QoS) in the presence of the interference from the primary user. The CR

users also should be able to cope with the interference caused by other CR user who aim at exploiting

the same under–utilized frequency band [4]. Furthermore, other sources of interference such as UWB

interference and man–made impulsive noise [5, 6] can be presence in CR environments.

While conventional CR systems are design for Gaussian noise, various forms of noise and interfer-

ence present in CR environments can have non–Gaussian distribution. In particular, the interference

caused by the primary user and other CR systems are forms of co–channel interference and therefore

can potentially be non–Gaussian distributed [7]. Furthermore, recent studies have shown that other

types of noise and interference present in CR environments such as UWB interference [8, 9] and

man–made impulsive noise [10] can have pronounced non–Gaussian characteristics. Therefore, the

use of an L2–norm metric (also referred to as the Euclidean distance (ED) metric) for signal detection

which is only optimal in the case of Gaussian noise can result in significant performance losses in CR

environments where non–Gaussian noise2 is present.

Fortunately, these harmful effects and be effectively reduced if the non–Gaussian behavior of the

noise is carefully taken into account. In particular, a maximum–likelihood (ML) metric with optimal

performance in the presence of non–Gaussian noise can be designed based on the noise statistics. We

note however that depending on the noise distribution the implementation of the ML metric at the

2Unless stated otherwise, in the rest of this thesis, by “noise” we refer to any additive impairment of the

received signal, i.e., our definition of noise also includes what is commonly referred to as “interference”.
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receiver may not be feasible due to high computational complexity. Furthermore, the design of ML

metric requires the knowledge of the noise statistics which may not be available in many practical

scenarios.

To overcome this problem, suboptimal robust metrics should be used that offer low complexity

and perform well in a large class of noise distributions. Since the noise statistics may be time variant

in practice, these metrics should also be able to adjust to variations in noise statistics. Important

examples of such robust metrics available in the literature include Huber metric [11], generalized

Cauchy metric [12], and Lp–norm metric [13]. Among these metrics, the Lp–norm metric is partic-

ularly interesting due to its low complexity and the ability to perform well in both heavy–tailed and

short–tailed noise provided that the metric parameters are adjusted accordingly [13].

In this paper, we propose a robust CR system that exploits an Lp–norm metric to mitigate the

harmful effects of non–Gaussian noise present in CR environments. The considered CR system employs

a combination of bit–interleaved coded modulation (BICM) with single–carrier (SC) modulation or

orthogonal frequency division multiplexing (OFDM). Furthermore, the receiver of the considered CR

system is equipped with multiple receiver antennas. The motivation behind considering BICM–SC

and BICM–OFDM is two fold. Firstly, it is well known that BICM–SC and BICM–OFDM are very

efficient in exploiting time diversity and frequency diversity in wireless fading channels, respectively.

The inclusion of the multiple receiver antennas allows the CR system to exploit the space diversity

as well and therefore achieve more robustness against fading. Secondly, these techniques have been

adopted by a number of recent standards [14] and are also expected to play a major role in future

wireless standards.

For the considered CR system we provide a general mathematical framework for analyzing the

BER performance in non–Gaussian environments. This framework is very general and applicable to

arbitrary linear modulation formats, all commonly used fading models, and all practically relevant

types of noise. Based on the developed framework we provide an approximate upper bound on

the bit error rate (BER) performance based on the expurgated union bound of [15]. This bound

is obtained as a function of the metric parameters and therefore can be used for the purpose of

metric optimization. Furthermore, the obtained bound is very accurate in the BER range of practical

interest (i.e. BER < 10−5) and computationally much more efficient compared to direct Monte–Carlo

simulation of the communication system. However, since this bound is not obtained in closed–form,

its computational complexity makes it unsuitable for scenarios where the noise statistics vary with time
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and therefore online optimization is required. As a result, we use the approximate upper bound only in

scenarios where the noise statistics are known a priori and the optimization can be performed offline.

For online optimization we provide closed–formed asymptotic expressions by analyzing the asymptotic

behavior of the BER bound for high signal–to–noise ratios (SNR’s). Based on the obtained asymptotic

results we develop an efficient adaptive multivariate finite difference stochastic approximation (FDSA)

algorithm for online metric optimization. Simulation results confirm the validity of our analysis and

show that the proposed Lp–norm metric is very effective in dealing with the harmful effects of

nonGaussian noise.

The rest of this paper is organized as follows. In Section 2, the system model for the considered

CR system is introduced. The approximate upper bound for the BER is derived in Section 3 and

asymptotic BER expressions are obtained in Section 4. In Section 5, off–line and on–line optimization

of the metric parameters are discussed and analytical and simulation results are presented in Section 6.

Finally conclusions are drawn in Section 7.

Notations: In this paper, [·]T , (·)H , ℜ{·}, || · ||, det(·), and Ex{·} denote transposition, Hermitian

transposition, the real part of a complex number, the L2–norm of a vector, the determinant of a

matrix, and statistical expectation with respect to x, respectively. Moreover, IM and 0M are the

M × M identity matrix and the all–zero column vector of length M , respectively. Furthermore, we

use the notation u ⊜ v to indicate that u and v are asymptotically equivalent, and a function f(x)

is o(g(x)) if limx→0 f(x)/g(x) = 0.

2 System Model

We consider a CR system employing one of the popular BICM–SC or BICM–OFDM schemes combined

with Nr receive antennas. In the rest of this paper, we refer to the aforementioned CR systems as

CR–BS and CR–BO, respectively. In the following we provide unified signal and fading models that

are applicable to both CR–BS and CR–BO systems. We also present several practically relevant noise

models for the considered CR–BS and CR–BO systems. For convenience, in this paper, all signals

and systems are represented by their complex baseband equivalents.
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2.1 Signal Model

The CR transmitter employs a BICM transmission scheme, i.e., it consists of a convolutional en-

coder of rate Rc, an interleaver, and a memoryless mapper [15]. Specifically, the codeword c ,

[c1, c2, . . . , cmcKc
] of length mcKc is generated by a convolutional encoder and interleaved. The in-

terleaved bits are broken up into blocks of mc bits each, which are subsequently mapped to symbols xk

from a constellation X of size |X | , M = 2mc to form the transmit sequence x , [x1, x2, . . . , xKc
].

The Kc transmit symbols are broken up into B frames of N symbols each implying Kc = BN . In

CR–BS systems, all the N symbols in a frame are transmitted over a single carrier. In contrast, these

symbols are modulated onto N OFDM sub–carriers in CR–BO systems.

Assuming perfect synchronization and demodulation, for both CR–BS and CR–BO systems the

observed signal at the Nr receive antennas for the Lth transmitted frame can be modeled as

rk =
√

γ hk xk + nk, (L − 1)Kc + 1 ≤ k ≤ LKc, (1)

where k denotes the time index in CR–BS systems and the frequency index in CR–BO systems,

respectively. Furthermore, in the above equation γ denotes the SNR per receive antenna as we have

assumed without loss of generality E{||hk||2} = Nr and E{||nk||2} = Nr. In (1) we have also defined

hk , [hk,1 . . . hk,Nr
]T and nk , [nk,1 . . . nk,Nr

]T where hk,l and nk,l, 1 ≤ l ≤ Nr, denote the

fading gains and the noise variables, respectively.

As customary in the literature, cf. e.g. [15, 16, 17], for our performance analysis we assume perfect

interleaving, which means that hk and nk can be modeled as independent, identically distributed

(i.i.d.) random vectors and only their first order probability density functions (pdfs) are relevant.

2.1.1 The Lp–Norm Branch Metric

Traditional BICM–based system employ an L2–norm branch metric for Viterbi decoding at the re-

ceiver. In this paper, we assume that the Viterbi decoder at the CR system receiver employs an

Lp–norm branch metric that allows it to adapt to the ambient noise and interference by adjusting

the metric parameters. The employed branch metric for decoding bit i, 1 ≤ i ≤ mc, of symbol xk is

given as

λi(rk, b) , min
xk∈X i

b

{fM(rk −
√

γ hk xk)} (2)

where X i
b is the subset of all symbols in constellation X whose label has value b ∈ {0, 1} in position

i. Furthermore, fM(.) denotes a non–linearity that depends on the adopted branch metric for Viterbi
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decoding. For the Lp–norm branch metric assumed in this paper we have

fM(r) =
Nr
∑

l=1

ql |rl|pl, (3)

where r , [r1, . . . , rNr
]T , and q , [q1, . . . , qNr

]T and p , [p1, . . . , pNr
]T are the adjustable metric

parameters.

2.2 Fading Model

We assume that the fading gains can be expressed as hk,l , ak,le
jΘk,l, where ak,l and Θk,l are

independent random variables (RVs). Specifically, Θk,l is uniformly distributed in [−π, π) and ak,l is

a positive real RV that follows the distribution pak,l
(ak,l). In this paper, we consider spatially i.i.d.

as well as spatially correlated fading channels. For spatially i.i.d. fading the first order pdf pa(ak,l) is

sufficient to describe the properties of the RV ak,l, while for spatially correlated fading the joint pdf

pak
(ak) of the elements of ak , [a1 . . . aNr

]T (cf. e.g. [18]–[20]) is also required. However, as shown

in [21], for asymptotically high SNR’s spatially correlated fading can be regarded as asymptotically

spatially i.i.d. fading. Therefore for γ → ∞ the joint pdf can be expressed as

pak
(ak) ⊜

Nr
∏

l=1

pa(ak,l), (4)

where

pa(ak,l) = 2A a2ν−1
k,l + o(a2ν−1

k,l ) (5)

with fading distribution dependent constants A and ν. The fading pdf pa(ak,l) and the parameters

A and ν are specified in Table 1 for correlated Rayleigh, Ricean and Nakagami-m fading as well as

for spatially independent Nakagami–q and Weibull fading channels.

2.3 Noise Model

In this subsection, we present several practically relevant noise models that are frequency encountered

in CR environments. We use these noise models in Section 5 to show the ability of our proposed CR

system to mitigate the harmful non–Gaussian noise effects, and to adjust to changes in the statistics

of the ambient noise. Since the receivers of CR–BS and CR–BO systems effect the noise differently,

in the following we discuss the noise models for these two systems separately.
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2.3.1 Noise Models for CR–BS

Here, we consider two important time–domain noise models for CR–BS systems. In particular, we

consider asynchronous CCI (ACCI) ad time–domain Gaussian–mixture noise (TD–GMN).

ACCI: In CR–BS systems, ACCI [22, 7] can be used to model the CCI caused by the primary user

and other CR systems. To describe this noise model, we consider a CR–BS system with B different

hopping frequencies and assume that at hopping frequency µ, 1 ≤ µ ≤ B, in addition to AWGN

ñk,l,µ, there are Iµ Ricean faded asynchronous CCI signals leading to time–domain noise

nk,l,µ =

Iµ
∑

i=1

h̃k,l,µ[i]
υu
∑

υ=υl

gµ,i[υ]bµ,i[υ] + ñk,l,µ (6)

where h̃k,l,µ[i] are temporally i.i.d. Gaussian random variables which model the Ricean interference

channel gains with Ricean factor Kµ,i and bµ,i[υ] ∈ Mµ,i ( Mµ,i: M̃µ,i–ary symbol alphabet) are

the i.i.d. symbols of the ith interferer at the µth hopping frequency, respectively. Furthermore,

gµ,i[υ] , gµ,i(υT + τµ,i), where gµ,i(t), T , and τµ,i are the effective pulse shape, the symbol duration,

and the time offset of the ith interferer at the µth hopping frequency, respectively, and we assume

that gµ,i(υT + τµ,i) ≈ 0 for υ < υl and υ > υu. In addition, for future reference we denote the set

of all possible values of ξµ,i ,
∑υu

υ=υl
gµ,i[υ]bµ,i[υ] by Sµ,i, define Sµ , Sµ,1 × . . . × Sµ,Iµ

(if Iµ = 0,

we formally set Sµ = {0} with |Sµ| = 1) and denote the ratio of the total CCI variance and the total

AWGN variance by κ, cf. Section 6. Finally, we note that for Kµ,i → ∞, the interference channel

gains h̃k,l,µ[i] will be constant values. The refer to the resulting noise as unfaded ACCI (UF–ACCI).

TD–GMN: TD–GMN can be used to model the combined effect of Gaussian background noise

and man–made or impulsive noise, cf. e.g. [23, 10, 24] present in CR environments. If the phenomenon

causing the impulsive behavior affects the receive antennas independently, the GMN is spatially

i.i.d. [25] and the pdf of nk,l is given by [10]

pn(nk,l) =

I
∑

i=1

ci

πσ2
i

exp

(

−|nk,l|2
σ2

i

)

, (7)

where ci > 0 and σ2
i > 0 are parameters, and

∑I
i=1 ci σ

2
i = 1. Two popular special cases of Gaussian

mixture noise are Middleton’s Class–A noise [10] and ǫ–mixture noise. For ǫ–mixture noise I = 2,

c1 = 1 − ǫ, c2 = ǫ, σ2
1 = σ2

g , and σ2
2 = κσ2

g , where ǫ is the fraction of time when the impulsive noise

is present, κ is the ratio of the variances of the Gaussian background noise and the impulsive noise,

and σ2
g = 1/(1 − ǫ + κǫ) = 1.
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2.4 Noise Models for CR–BO

For CR–BO systems, we consider two practically relevant frequency–domain (FD) noise models, i.e.,

narrowband interference (NBI) and FD–GMN.

NBI: We consider a CR system with coding over B different hopping frequencies. At hopping

frequency µ, 1 ≤ µ ≤ B, the received frequency–domain signal is impaired by AWGN ñk,µ and Iµ

Rayleigh faded PSK NBI signals. The corresponding frequency–domain noise model is

nk,l,µ =

Iµ
∑

i=1

gk,µ[i]bµ[i]h̃k,l,µ[i] + ñk,l,µ, (8)

where h̃k,l,µ[i] are temporally i.i.d. Gaussian random variables which model the Ricean interference

channel gains with Ricean factor Kµ,i. Furthermore, bµ[i] is the PSK symbol of the ith interferer at

the µth hopping frequency affecting the set Nµ,i of sub–carriers via gk,µ[i] , exp[−jπ(N − 1)(k +

fµ,i/∆fs)/N + φµ,i] sin[π(k + fµ,i/∆fs)]/ sin[π(k + fµ,i/∆fs)/N ] [26]. Here, fµ,i and φµ,i denote

the frequency and phase of the ith interferer at hopping frequency µ relative to the user, respectively,

and ∆fs is the OFDM sub–carrier spacing. For fµ,i = υ∆f , the NBI affects only sub–carrier υ, i.e.,

Nµ,i = υ, while, in theory, for fµ,i 6= υ∆f the NBI affects all sub–carriers. However, gk,µ[i] decays

quickly and we limit Nµ,i such that |gk,µ[i]| ≈ 0 for k 6∈ Nµ,i. Finally, we assume that no sub–carrier

is affected by two narrowband interferers at a given hopping frequency, i.e., Nµ,i1 ∩Nµ,i2 = ∅, i1 6= i2.

For future reference, we denote the ratio of the total NBI variance and the AWGN variance by κ,

cf. Section 6. We note that for Kµ,i → ∞, the interference channel gains h̃k,µ,l[i] will be constant

values. The resulting noise will be referred to as unfaded NBI (UF–NBI) in the rest of this paper.

FD–GMN: FD–GMN can be used to model the combined effect of the frequency–domain Gaus-

sian background noise and the interference caused by a Rayleigh faded NBI that employs frequency

hopping technique. Denoting the by ǫ the probability that the interferer hops into the band used by

the CR system, we can express the pdf of the corresponding frequency–domain noise as

pn(nk,l) =
(1 − ǫ)

πσ2
g

exp

(

−|nk,l|2
σ2

g

)

+
ǫ

πκσ2
g

exp

(

−|nk,l|2
κσ2

g

)

, (9)

where σg is variance of the frequency–domain background noise and κ is the ratio of the variances

of the background noise and the interference.
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3 Approximate Upper Bound for BER

In this section, we provide an approximate upper bound on the BER performance of the considered

CR system in non–Gaussian noise environments based on the expurgated union bound of [15].3 The

results obtained in this section are based on the unified system model presented in Section 2 and

therefore they are applicable to both CR–BS and CR–BO systems. Furthermore, the BER bounds are

obtained as a function of the metric parameters q and p, and consequently can be used for optimizing

these parameters.

For a CR system employing convolutional code of rate Rc = kc/nc (kc and nc are integers) the

union bound for the BER is given by [15]

Pb ≤
1

kc

∞
∑

d = df

wc(d) P (c, ĉ), (10)

where c and ĉ are two distinct code sequences with Hamming distance d that differ only in l ≥ 1

consecutive trellis states, wc(d) denotes the total input weight of error events at Hamming distance

d, and df is the free distance of the code. P (c, ĉ) is the pairwise error probability (PEP), i.e., the

probability that the decoder chooses code sequence ĉ when code sequence c 6= ĉ is transmitted.

Invoking the expurgated bound from [15], the PEP can be expressed as

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

d
∏

k=1

Ψk(s)
ds

s
, (11)

with

Ψk(s) ,
1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(xk,zk)(s) (12)

where c is a small positive constant that lies in the region of convergence of the integrand. Further-

more, Φ∆(xk ,zk)(s) , Ehk,nk
{e−s ∆(xk,zk)} is the MGF of the following metric different conditional on

the transmission of symbol xk at the transmitter

∆(xk, zk) , fM(rk −
√

γ hk zk) − fM(rk −
√

γ hk xk)

=

Nr
∑

l=1

ql |rk,l −
√

γ hk,l zk|pl −
Nr
∑

l=1

ql |rk,l −
√

γ hk,l xk|pl (13)

3As pointed out in [27, 28], the expurgated union bound found in [15] is not a true upper bound and constitutes

only an approximation to the BER performance. However, numerical evidence [21] has taught us that for Gray

labeling this bound is very accurate for the BER range of practical interest even in non–Gaussian environments

(also cf. Section 6).
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where zk is the nearest neighbor of xk in X i
b̄

with b̄ being the bit complement of b. Taking to account

the fact that conditional on the transmission of xk we have rk,l =
√

γ hk,l xk + nk,l, 1 ≤ l ≤ Nr, we

can write the above equation as

∆(xk, zk) =
Nr
∑

l=1

ql |
√

γ hk,l ek + nk,l|pl −
Nr
∑

l=1

ql |nk,l|pl (14)

where we have defined xk − zk , dxze
jΘd with ED dxz > 0.The MGF Φ∆(xk,zk)(s) can therefore be

obtained as

Φ∆(xk,zk)(s) = Ehk,nk

{

Nr
∏

l=1

e−s(ql |
√

γ hk,l ek+nk,l|pl−ql |nk,l|pl)

}

(15)

The MGF Φ∆(xk ,zk)(s) obtained in the above equation can be used in (11) to calculate the PEP.

To evaluate the complex integral in (11) efficiently, we use the saddlepoint approximation technique

advocated in [27, 29]. This leads to

P (c, ĉ) ≈ (Ψk(ŝ))
(d+1/2)

ŝ
√

2πdΨ
′′

k(ŝ)
(16)

where Ψ
′′

k(s) is the second derivative of Ψk(s) and the saddlepoint ŝ is defined as the value for which

Ψ
′

k(ŝ) = 0 is valid.

Once the PEP is obtained, it can be used along with (10) to obtain an approximate upper bound

on the BER. We note that although the saddlepoint technique provides for an efficient means of

calculating the PEP, evaluation of the PEP and therefore the BER bound according to (10) involves

several integrations which have to be evaluated numerically. Therefore the provided bound is only

suitable for offline metric optimization where computational complexity is not a concern. In order to

obtain analytical expressions suitable for online metric optimization, in the next section we provide

an asymptotic analysis which results in simple–to–evaluate expressions for the BER.

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of the BER bound in (10) for γ → ∞, i.e., for

asymptotically high SNR’s. For this purpose, it is convenient to first consider the PEP

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

Enk
{Φ(s|nk)}

ds

s
, (17)
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with

Φ(s|nk) =

d
∏

k=1





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(xk ,zk)(s|nk)



 , (18)

where

Φ∆(xk,zk)(s|nk) = E{e−s∆(xk,zk)} = e−s
∑Nr

l=1
ql|nk,l|pl

Nr
∏

l=1

Φyk,l
(ql s). (19)

In obtaining the last equality, we have used (15), and defined yk,l , |√γ hk,l ek+nk,l|pl and Φyk,l
(s) ,

E{e−syk,l}. The pdf fy(yk,l) of yk,l has been calculated in Appendix A (cf. Eq. (53)). Therefore, the

MGF Φyk,l
(s) can be found by calculating the Laplace transform of fy(yk,l) as

Φyk,l
(s) ≈ 2A

pl (γd2
xz)

ν

ν̄
∑

i=0

ξi,l |nk,l|2i s−2(ν−i)/pl + o
(

γ−ν
)

(20)

where ξi,l ,
Γ(2(ν−i)/pl) Pi

Γ(ν−i)
. Substituting (20) in (19) yields

Φ∆(xk ,zk)(s|nk) ≈
2NrANr e−s

∑Nr
l=1

ql|nk,l|pl

(γd2
xz)

Nrν

Nr
∏

l=1

(

ν̄
∑

i=0

ξi,l |nk,l|2i p−1
l q

−2(ν−i)/pl

l s−2(ν−i)/pl

)

+o
(

γ−Nrν
)

.

(21)

We can now obtain Φ(s|nk) by using (21) in (18) as

Φ(s|nk) ≈ Xm(ν, Nr, d) (2A)dNrγ−dNrν e−s
∑d

k=1

∑Nr
l=1

ql|nk,l|pl

d
∏

k=1

Nr
∏

l=1
(

ν̄
∑

i=0

ξi,l |nk,l|2i p−1
l q

−2(ν−i)/pl

l s−2(ν−i)/pl

)

+ o
(

γ−dNrν
)

(22)

where

Xm(ν, Nr, d) ,





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

1

(d2
xz)

Nrν





d

. (23)

After some manipulations Φ(s|nk) can be written as

Φ(s|nk) ≈ Xm(ν, Nr, d) (2A)dNrγ−dNrν e−s
∑d

k=1

∑Nr
l=1

ql|nk,l|pl

dNr ν̄
∑

K=0

∑

i1+···+iNr =K

s−2
∑Nr

l=1
(dν−il)/pl

Nr
∏

l=1

∑

j1+···+jd=il

p−d
l ξj1,l |n1,l|2j1 q

−2(ν−j1)/pl

l . . . ξjd,l |nd,l|2jd q
−2(ν−jd)/pl

l + o
(

γ−dNrν
)

(24)
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where we have 0 ≤ jk ≤ ν̄ for 1 ≤ k ≤ d, and 0 ≤ il ≤ K for 1 ≤ l ≤ Nr. The PEP can be

calculated from (24) and (17) as

P (c, ĉ |nk) ≈ Xm(ν, Nr, d) (2A)dNrγ−dNrν
dNr ν̄
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
) (25)

where we have defined the generalized noise moments Mn(i1, . . . , iNr
) as

Mn(i1, . . . , iNr
) , Enk

{

(
∑d

k=1

∑Nr

l=1 ql|nk,l|pl)2
∑Nr

l=1
(dν−il)/pl

Γ(2
∑Nr

l=1(dν − il)/pl + 1)
∏Nr

l=1 pd
l q

2(dν−il)/pl

l

Nr
∏

l=1

∑

j1+···+jd=il

d
∏

k=1

ξjk,l |nk,l|2jk

}

.

(26)

Based on (25) and (10) a closed–form approximation for the asymptotic BER can be obtained as

Pb ⊜
wc(df)

kc
Xm(ν, Nr, df) (2A)dfNrγ−df Nrν

df Nr ν̄
∑

K=0

∑

i1+···+iNr =K

Mn(i1, . . . , iNr
) (27)

In deriving the above equation we have used the fact that the BER bound in (10) is tight for high

SNR’s (cf. Section 6). Furthermore, we have taken into account the fact that the first term in (10) for

which d = df is asymptotically dominant. We note that for non–integer ν, due to the approximation

made in Appendix A the asymptotic BER given in (27) constitutes an approximation to the behavior

of the BER bound for γ → ∞. However, as will be shown in Section 6 the incurred approximation

error is negligible for all practical purposes and therefore the obtained asymptotic BER is still a valid

criterion for metric optimization.

The asymptotic expression for BER given in (27) is very general since it is applicable to different

types of fading channels, a large class of noise and different code rates used in the CR system.

Furthermore, (27) reveals the dependance of the asymptotic BER on the metric parameters q and

p, and therefore can be used for metric optimization. Although (27) is simple enough to be directly

used for online metric optimization (cf. Section 5), in several practically relevant special cases less

general, yet simpler expressions can be obtain for the asymptotic performance that can facilitate the

task of online metric optimization. In the following, we consider important especial cases where such

simplifications are possible in (27). Since the main difficulty in obtaining the BER performance arises

from the calculation of generalized noise moments Mn(i1, . . . , iNr
), we will mainly focus on obtaining

simplified expressions for these noise moments.
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4.1 Case 1, Fading Channels with ν = 1:

If ν = 1 is valid for the fading channel (e.g. (possibly spatially correlated) Rayleigh, Ricean, and

Nakagami–q fading), (26) can be significantly simplified. In this case we have ν̄ = ⌈ν⌉−1 = 0 which

results in il = 0, 1 ≤ l ≤ Nr and jk = 0, 1 ≤ k ≤ df . Therefore, (26) simplifies to

Mn(0, . . . , 0) =

∏Nr

l=1(Γ(2/pl))
df p

−df

l q
−2df /pl

l

Γ(
∑Nr

l=1 2df/pl + 1)
Enk







(

df
∑

k=1

Nr
∑

l=1

ql|nk,l|pl)
∑Nr

l=1
2df /pl







. (28)

and the asymptotic BER is therefore given by

Pb ⊜
wc(df)

kc
Xm(1, Nr, df) (2A)dfNrγ−df NrMn(0, . . . , 0) (29)

Based on (29) it is possible to obtain the asymptotic BER performance for uncoded transmission

with maximum–ratio combining (MRC) at the receiver by allowing df = 1, kc = 1, and wc(1) = 1.

This results in

Pb ⊜ Xm(1, Nr, 1) (2A)Nrγ−Nr

∏Nr

l=1 Γ(2/pl)p
−1
l q

−2/pl

l

Γ(
∑Nr

l=1 2/pl + 1)
Enk

{

(

Nr
∑

l=1

ql|nk,l|pl)
∑Nr

l=1
2/pl

}

(30)

It is easy to see that (30) is in agreement with [30, Eq. (13)] which is obtained assuming Rayleigh

and Rician fading channels. Eq. (30) is however more general than the results obtained in [30] as it

is not limited to Rayleigh and Rician fading channels and is also applicable to all other fading types

with ν = 1 such as Nagakami–q fading.

4.2 Case 2, Spatially i.i.d. Noise:

In many practical scenarios the elements of nk are i.i.d. (e.g. due to sufficiently large antenna spacing

at the receiver). When the noise is specially i.i.d. without loss of optimality we can set ql = 1 and

pl = p, 1 ≤ l ≤ Nr. Thus, (26) can be written as

Mn(i1, . . . , iNr
) = Enk







(
∑df

k=1

∑Nr

l=1 |nk,l|p)2(df νNr−K)/p

Γ(2(dfνNr − K)/p + 1)pdf Nr

Nr
∏

l=1

∑

j1+···+jdf
=il

d
∏

k=1

ξjk,l
|nk,l|2jk







. (31)

Evidently, the number of metric parameters to be optimized reduces to one in this case and therefore

the task of metric optimization is greatly simplified. In the following we consider two cases where

even more simplifications are possible.
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4.2.1 Case of dfNr ≫ 1:

For dfNr ≫ 1 and spatially i.i.d. noise we can invoke the strong low of large numbers to approximate

the term
∑df

k=1

∑Nr

l=1 |nk,l|p as
df
∑

k=1

Nr
∑

l=1

|nk,l|p ≈ Nrdf mn(p) (32)

where mn(p) , E{|nk,l|p} are the scalar moment of the noise. Using (32) in (26) leads to

Mn(i1, . . . , iNr
) ≈ (Nrdf mn(p))2(df νNr−K)/p

Γ(2(dfνNr − K)/p + 1) pdfNr

Nr
∏

l=1

∑

j1+···+jdf
=il

df
∏

k=1

ξjk,l mn(2jk). (33)

4.2.2 Case of L2–Norm Branch Metric:

The joint noise moments in this case can be found by allowing p = 2 in (31). Furthermore, the

asymptotic BER performance can be obtained from (27) as

Pb ⊜
wc(df)

kc

Xm(ν, Nr, df) (2A)dfNrγ−df Nrν

df Nr ν̄
∑

K=0

∑

i1+···+iNr=K

Mn(i1, . . . , iNr
). (34)

It can be shown that (34) is in complete agreement with the results reported in [21] which are obtained

for BICM–based systems employing L2–norm branch metric in non–Gaussian noise environments.

4.3 Diversity Gain and Coding Gain

For completeness, in this subsection we calculate the diversity gain Gd (i.e., the asymptotic slope

of the asymptotic BER curve on a log–log scale) and the coding gain Gc (i.e., a relative horizontal

shift of the asymptotic BER curve). Thereby, the diversity gain and the coding gain can be obtain

by comparing the general asymptotic results in (27) with Pb ⊜ (Gcγ)−Gd [31] as

Gd =dfNrν (35)

Gc [dB] = − 10

Gd

log10

(

wc(df)Xm(ν, Nr, d) (2A)dNr

kc

)

− 10

Gd

log10

dNr ν̄
∑

K=0

∑

i1+···+iNr=K

Mn(i1, . . . , iNr
)

(36)

From (35) we observe that the diversity gain is independent of the metric parameters q and p and is

also independent of type of noise. Therefore the asymptotic BER curves for all noise types are parallel
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for different choices of q and p. Eq. (36) reveals that the coding gain consists of two terms. The

first term depends on the types of convolutional code, signal constellation and the fading channel

but is independent of the metric parameters q and p and the statistics of the noise. The second

term is a function of q and p, as well as the properties of the noise via the generalized moments

Mn(i1, . . . , iNr
) of the noise. Eqs. (35) and (36) show that minimum BER can be achieved for a

given SNR by optimizing the Lp–norm metric parameters, which results in shifting the asymptotic

BER curves to the left as far as possible in a log–log scale.

5 Metric Optimization

In this section, we use the analytical results obtained in Sections 3 and 4 to optimize the parameters

of the Lp–norm metric employed in the CR system. We consider both offline and online metric

optimization depending on the availability of the noise statistics at the CR receiver.

5.1 Offline Metric Optimization

In scenarios where the noise statistics are known a priori, the task of metric optimization can be

performed offline. Since in such cases computational complexity is not a major concern, we use the

analytical BER bound obtained in (10) for metric optimization. We illustrate in Fig. 1 how this BER

bound can be used for offline metric optimization. To simplify the exposition, in this figure we have

assumed spatially i.i.d. noise for which only a single metric parameter p has to be optimized. Thereby,

in Fig. 1 we have shown the BER bound for different types noise defined in Subsection 2.3 vs. p. For

comparison, we have also shown the BER obtained via Monte–Carlo simulation and the asymptotic

BER obtained in (27). The observed differences between the BER bound, simulation and asymptotic

results are due to assuming a finite value for SNR (15 dB) in this figure. Nevertheless, Figure 1 shows

that for each type of noise the minimum BER happens at approximately the same value of p for all

the three curves.

5.2 Online Metric Optimization

Online metric optimization becomes necessary when the noise statistics are not known at the receiver

or vary quickly with time. In such scenarios, a cost function simple enough to be evaluated in real–
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time is needed to enable online and adaptive optimization of the metric parameters. We therefore

base our online metric optimization on the simple–to–evaluate asymptotic BER results obtained in

Section 4. In particular, in this subsection, we consider online metric optimization based on the

asymptotic results obtained in (27) and (26), and provide adaptive algorithms that can be use to

perform the optimization effectively. Due to random nature of the optimization problem, we propose

an stochastic optimization algorithm to perform the online optimization efficiently. Although several

types of stochastic optimization algorithms are available in the literature [32], numerical evidence has

taught us that among them the finite–difference (FD) stochastic approximation (SA) algorithm is the

most suitable for the problem at hand.

The cost function for FDSA algorithm can be obtained from (27) and (26) as

Lk(θ) =

df Nr ν̄
∑

K=0

∑

i1+···+iNr =K

Mnk
(i1, . . . , iNr

; θ) (37)

with

Mnk
(i1, . . . , iNr

; θ) ,
(
∑d

k=1

∑Nr

l=1 ql|nk,l|pl)2
∑Nr

l=1
(dν−il)/pl

Γ(2
∑Nr

l=1(dν − il)/pl + 1)
∏Nr

l=1 pd
l q

2(dν−il)/pl

l

Nr
∏

l=1

∑

j1+···+jd=il

d
∏

k=1

ξjk,l |nk,l|2jk

(38)

where Mnk
(i1, . . . , iNr

; θ) is the instantaneous estimate for the generalized noise moments, and we

have omitted terms and parameters that do not effect the optimization. Furthermore, θ is a vector

containing all the metric parameters to be optimized, i.e., we have defined θ , [q2, . . . , qNr
, p1, . . . , pNr

]T

where without loss on optimality we have assumed q1 = 1. We note that simplified cost functions

can be obtained in the special cases described in Subsections 4.1 and 4.2.

The proposed FDSA algorithm employed to minimize the cost function in (37) can be explained as

follows: The algorithm recursively updates the estimate θk of the optimal θ, i.e., in the kth iteration,

the the estimate θk+1 is obtained as [32]

θk+1 = θk + akĝ(θk) (39)

ĝ(θk) =

[

Lk(θk + cke1) − Lk(θk − cke1)

2ck
. . .

Lk(θk + cke2Nr−1) − Lk(θk − cke2Nr−1)

2ck

]

(40)

where ak > 0 and ck > 0 are the gain sequences of the FDSA algorithm, and ei denotes a vector

with a 1 in the ith place and 0’s elsewhere. The convergence theory for the FDSA algorithm [32]

states that if the standard conditions ak → 0, ck → 0,
∑∞

k=0 ak = ∞, and
∑∞

k=0 a2
k/c

2
k < ∞ on the

gain sequences are met, the algorithm converges to a local or global minimum of BER.
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6 Numerical and Simulation Results

7 Conclusions

A The pdf fy(yk,l) of yk,l

To obtained fy(yk,l), we first obtain the pdf fX(Xk,l) of Xk,l , |√γhk,lek +nk,l|2 and then calculate

the pdf fy(yk,l) of yk,l = X
pl/2
k,l using

fy(yk,l) = 2/pl fX(y
2/pl

k,l ) y
2/pl−1
k,l . (41)

We start the calculation of fX(Xk,l) by performing the following reformulations

Xk,l = |√γhk,le + nk,l|2 = |√γak,le + n̂k,l|2

= γa2
k,ld

2
xz + 2

√
γdxzak,lℜ{n̂k,l} + |nk,l|2, (42)

where we have defined n̂k,l , nk,le
−jΘk,l and e , |dxz|, and used the fact that hk,l = ak,le

jΘk,l (cf.

Section 2). The MGF of Xk,l can now be obtained as

ΦXk,l
(s) , Eak,l,Θk,l

{e−sXk,l} = e−s|nk,l|2Eak,l,Θk,l
{e−sγak,ld

2
xz e−s2

√
γdxzak,lℜ{n̂k,l}} (43)

Using the Taylor series expansion ex =
∑∞

i=0 xi/i! in the above equation we arrive at

ΦXk,l
(s) = e−s|nk,l|2Eak,l,Θk,l

{

e−s γ a2

k,l
d2

xz

∞
∑

i=0

(

−2
√

γ d ak,l ℜ{n̂k,l}s
)i

i!

}

. (44)

For γ → ∞, (5) can be used along with the integral
∫∞
0

xµ−1e−px2

dx = pµ/2Γ(µ/2) [33, 3.462] to

rewrite the above equation as

ΦXk,l
(s) =

A e−s|nk,l|2

(γd2
xzs)

ν

∞
∑

i=0

2iΓ(ν + i/2)EΘk,l
{ℜ{n̂k,l}i}si/2 + o

(

γ−ν
)

(45)

=
A e−s|nk,l|2

(γd2
xzs)

ν

∞
∑

i=0

βi|nk,l|2isi + o
(

γ−ν
)

. (46)

where βi ,
Γ(ν+i)
(i!)2

. In deriving (46) we have used

EΘk,l
{ℜ{n̂k,l}i} =







i/2+1/2√
πΓ(i/2+1)

|nk,l|i i even

0 i odd.
(47)
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Using the Taylor series expansion e−s|nk,l|2 =
∑∞

i=0(−1)i|nk,l|2isi/i! in (46) yields

ΦXk,l
(s) =

A

(γd2
xzs)

ν

∞
∑

i=0

Pi |nk,l|2i si + o
(

γ−ν
)

. (48)

where

Pi , {(−1)i/i!}∞i=0 ⊗ {Γ(ν + i)/(i!)2}∞i=0 =
i
∑

λ=0

(−1)(i−λ) Γ(ν + λ)

(λ!)2 (i − λ)!
. (49)

If ν is an integer it can be shown that

Pi =







(

ν−1
i

)2
(ν − i − 1)! 0 ≤ i ≤ ν − 1

0 ν − 1 < i
(50)

Therefore for integer ν, ΦXk,l
(s) is given by a finite power series in s. For non–integer ν however,

ΦXk,l
(s) is given by a infinite power series as shown in (48). It can be shown that truncating this power

series after ν̄ = ⌈ν⌉ − 1 terms will result in a close approximation for ΦXk,l
(s). This approximation

can therefore be written as

ΦXk,l
(s) ≈ A

(γd2
xzs)

ν

ν̄
∑

i=0

Pi |nk,l|2i si + o
(

γ−ν
)

. (51)

The pdf fX(Xk,l) of Xk,l can now be calculated by obtaining the inverse Laplace transform of ΦXk,l
(s)

as

fX(Xk,l) ≈
A

(γd2
xz)

ν

ν̄
∑

i=0

Pi

Γ(ν − i)
|nk,l|2i Xν−i−1

k,l + o
(

γ−ν
)

. (52)

Finally, the pdf fy(yk,l) of yk,l can be found based on (52) and (41) as

fy(yk,l) ≈
2A

pl(γd2
xz)

ν

ν̄
∑

i=0

Pi

Γ(ν − i)
|nk,l|2i y

2(ν−i)/pl−1
k,l + o

(

γ−ν
)

. (53)

The above equation gives the exact pdf fy(yk,l) for integer ν, but involves an approximation to this

pdf for non–integer ν. This approbation has been found to be reasonably accurate for the purpose

of metric optimization (cf. Section 6).
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Tables and Figures:

Table 1: Pdf pa(a) of fading amplitude a for popular fading models and corresponding values
for αc and αd. We have omitted subscript l for convenience. The parameters for Rayleigh
(Chh), Ricean (µh, Chh), and Nakagami–m (m, Caa) fading are defined in Appendix ??. The
parameters for Nakagami–q (q, b) and Weibull (c) fading are defined as in [18].

Channel type pa(a) of the fading amplitude a αc αd

Rayleigh 2 a e−a2

det(Chh)
−1/NR 1

Ricean 2(K + 1) a e−K−(1+K)a2

I0

(

2a
√

K(K + 1)
)

(

exp
(

−µH
h C−1

hhµh

)

det(Chh)

)1/NR

1

Nakagami–m 2
Γ(m)

mm a2m−1 e−ma2 mm

Γ(m)
det(Caa)

−m/NR m

Nakagami–q 2a√
1−b2

exp
(

− a2

(1−b2)

)

I0

(

ba2

(1−b2)

)

1+q2

2q
1

Weibull c
(

Γ(1 + 2
c
)
)

c
2 ac−1 exp

(

−
(

a2Γ(1 + 2
c
)
)

c
2

)

c
2
(Γ(1 + 2

c
))

c
2

c
2
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Figure 1: BER of BICM–SC and BICM–OFDM impaired by GMN (ǫ–mixture noise,

ǫ = 0.1, κ = 100) and NBI, respectively, vs. SNR γ. Rc = 3/4, Rayleigh fading,

4–PSK, and NR = 1. BICM–SC: Frequency–flat time–selective fading, N = 972, and

BfT = 0.007. BICM–OFDM (N = 64): Frequency–selective Rayleigh fading with

L = 10 and B equal power, sub–carrier centered NBI signals with Iµ = 1, 1 ≤ µ ≤ B,

κ = 7. BICM–OFDM (N = 128): Frequency–selective Rayleigh fading with L = 20

and B equal power, sub–carrier centered NBI signals with Iµ = 1, 1 ≤ µ ≤ B, κ = 2.

Solid lines with markers: Simulated BER. Solid lines without markers: BER bound

(??). Dashed lines: Asymptotic BER (??).
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Figure 2: BER of BICM–SC and BICM–OFDM impaired by various types of noise

vs. SNR γ. Rayleigh fading, Rc = 3/4, 4–PSK, and NR = 1. BICM–SC: N = 972 and

BfT = 0.007. BICM–OFDM: N = 64 and L = 10. GMN I: ǫ–mixture noise, ǫ = 0.01,

κ = 100. GMN II: ǫ–mixture noise, ǫ = 0.1, κ = 100. Asynchronous CCI: Two

asynchronous equal power 4–PSK CCI signals, Iµ = 1, µ ∈ {1, 2}, Iµ = 0, 3 ≤ µ ≤ 10,

raised cosine pulses g1,µ(t), µ ∈ {1, 2}, with roll–off factor 0.3, τ1,µ = 0.3T , µ ∈ {1, 2},
κ = 2. NBI: One sub–carrier–centered NBI signal, I1 = 1, I2 = I3 = I4 = I5 = 0,

κ = 9. Solid lines with markers: Simulated BER. Solid lines without markers: BER

bound (??). Dashed lines: Asymptotic BER (??).
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Figure 3: BER of BICM–OFDM impaired by NBI (3 equal power, sub–carrier–centered

NBI signals, I1 = I2 = I3 = 1, κ = 10) vs. SNR γ. I.i.d. Rayleigh fading, 64–QAM,

N = 128, B = 3, and NR = 1. Solid lines with markers: Simulated BER. Solid lines

without markers: BER bound (??). Dashed lines: Asymptotic BER (??).



Nasri et al.: Robust Lp–Norm Metric for Cognitive Radio Systems 25

0 5 10 15 20 25 30 35 40 45 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
Upper bound (GMN)
Asymptotic BER (GMN)
Simulated BER (GMN)
Asymptotic BER (AWGN)

B
E

R

SNR [dB]

Nakagami-m (m = 2)

Rayleigh

Weibull (c = 4/3)

Nakagami-q (q = 10)

Ricean (K = 2)

Figure 4: BER of BICM–SC impaired by GMN (ǫ–mixture noise, ǫ = 0.25, κ = 10) and

AWGN, respectively, vs. SNR γ. Ideal i.i.d. fading, Rc = 7/8, 16–QAM, and NR = 1.
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Figure 5: BER of uncoded SC transmission impaired by SD- and SI–GMN (ǫ–mixture

noise, ǫ = 0.1, κ = 10), respectively, vs. SNR γ. NR = 2, Nakagami–m fading spatial

correlation ρa = 0.9, and 4–PSK.
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Figure 6: BER of BICM–SC impaired by AWGN/ACGN vs. SNR γ. Spatially

i.i.d./spatially correlated, temporally i.i.d. Rayleigh fading, Rc = 7/8, 4–PSK, and

NR = 2. Solid lines with markers: Simulated BER. Solid lines without markers: BER

bound (??). Dashed lines: Asymptotic BER (??).
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Figure 7: BER of BICM–OFDM system with sub–carrier spacing ∆fs impaired by

IR–UWB [34] (Nb = 8 bursts per symbol and Lc chips per burst) and MB–OFDM

UWB [35], respectively, vs. SNR γ. Ideal i.i.d. Rayleigh fading, Rc = 5/6, 4–PSK, and

NR = 1. Solid lines with markers: Simulated BER. Solid lines without markers: BER

bound (??). Dashed lines: Asymptotic BER (??). For comparison the bound and the

asymptotic BER for AWGN are also shown.


