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Cognitive radio (CR) system are capable of using the frequency spectrum more effectively by utilizing
unoccupied or under—utilized frequency bands. The frequency bands used by CR systems however, are
expected to suffer from various forms of noise and interference with non—Gaussian distribution such
as the co—channel interference caused by the primary user and other cognitive radios, ultra—wideband
(UWB) interference and man—-made impulsive noise. To mitigate the harmful effect of non-Gaussian
noise and interference, we propose a robust L,—norm metric for CR systems that employ the popular
bit—interleaved coded modulation (BICM) scheme. For the considered CR system we provide an
approximate upper bound on the BER as well as simple and easy—to—evaluate analytical expressions
for the asymptotic BER. The BER bound and the asymptotic BER are both obtained as functions
of the metric parameters and therefore can be employed for metric optimization. While the BER
bound is used for offline metric optimization, an effective adaptive algorithm is provided for online
metric optimization based on the asymptotic BER results. Numerical and simulation results show
that using the optimized L,—norm metric significant performance gains can be achieved compared to

the conventional Ly—norm metric.
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Orleans, 2008.
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1 Introduction

While demand for high speed wireless access and inflexible methods of spectrum allocation have made
the spectral resources increasingly scarce, recent studies [1, 2] have indicated that wide spectral ranges
are rarely used in both space and time. This observation has motivated the new idea of Cognitive
Radios [3]. In a broad sense a cognitive radio is a smart radio capable of sensing the environment
in order to provide efficient utilization of spectrum bands that temporally or spatially unoccupied or
under—utilized by their licensed (primary) users. While primary users have priority in accessing the
spectrum, CR (secondary) users can use the available spectrum opportunistically without interfering
with the primary users. As a results, the spectrum is used more efficiently and the deployment of
new applications is simplified.

The aforementioned definition of CR implies that the CR users have to be able to maintain their
required quality—of—service (QoS) in the presence of the interference from the primary user. The CR
users also should be able to cope with the interference caused by other CR user who aim at exploiting
the same under-utilized frequency band [4]. Furthermore, other sources of interference such as UWB
interference and man—-made impulsive noise [5, 6] can be presence in CR environments.

While conventional CR systems are design for Gaussian noise, various forms of noise and interfer-
ence present in CR environments can have non—Gaussian distribution. In particular, the interference
caused by the primary user and other CR systems are forms of co—channel interference and therefore
can potentially be non—Gaussian distributed [7]. Furthermore, recent studies have shown that other
types of noise and interference present in CR environments such as UWB interference [8, 9] and
man—made impulsive noise [10] can have pronounced non—Gaussian characteristics. Therefore, the
use of an Ly—norm metric (also referred to as the Euclidean distance (ED) metric) for signal detection
which is only optimal in the case of Gaussian noise can result in significant performance losses in CR
environments where non—Gaussian noise? is present.

Fortunately, these harmful effects and be effectively reduced if the non—Gaussian behavior of the
noise is carefully taken into account. In particular, a maximum-likelihood (ML) metric with optimal
performance in the presence of non—Gaussian noise can be designed based on the noise statistics. We

note however that depending on the noise distribution the implementation of the ML metric at the

2Unless stated otherwise, in the rest of this thesis, by “noise” we refer to any additive impairment of the

received signal, i.e., our definition of noise also includes what is commonly referred to as “interference”.
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receiver may not be feasible due to high computational complexity. Furthermore, the design of ML
metric requires the knowledge of the noise statistics which may not be available in many practical
scenarios.

To overcome this problem, suboptimal robust metrics should be used that offer low complexity
and perform well in a large class of noise distributions. Since the noise statistics may be time variant
in practice, these metrics should also be able to adjust to variations in noise statistics. Important
examples of such robust metrics available in the literature include Huber metric [11], generalized
Cauchy metric [12], and L,—norm metric [13]. Among these metrics, the L,—norm metric is partic-
ularly interesting due to its low complexity and the ability to perform well in both heavy-tailed and
short—tailed noise provided that the metric parameters are adjusted accordingly [13].

In this paper, we propose a robust CR system that exploits an L,—norm metric to mitigate the
harmful effects of non—Gaussian noise present in CR environments. The considered CR system employs
a combination of bit—interleaved coded modulation (BICM) with single—carrier (SC) modulation or
orthogonal frequency division multiplexing (OFDM). Furthermore, the receiver of the considered CR
system is equipped with multiple receiver antennas. The motivation behind considering BICM-SC
and BICM-OFDM is two fold. Firstly, it is well known that BICM-SC and BICM-OFDM are very
efficient in exploiting time diversity and frequency diversity in wireless fading channels, respectively.
The inclusion of the multiple receiver antennas allows the CR system to exploit the space diversity
as well and therefore achieve more robustness against fading. Secondly, these techniques have been
adopted by a number of recent standards [14] and are also expected to play a major role in future
wireless standards.

For the considered CR system we provide a general mathematical framework for analyzing the
BER performance in non—Gaussian environments. This framework is very general and applicable to
arbitrary linear modulation formats, all commonly used fading models, and all practically relevant
types of noise. Based on the developed framework we provide an approximate upper bound on
the bit error rate (BER) performance based on the expurgated union bound of [15]. This bound
is obtained as a function of the metric parameters and therefore can be used for the purpose of
metric optimization. Furthermore, the obtained bound is very accurate in the BER range of practical
interest (i.e. BER < 107°) and computationally much more efficient compared to direct Monte—Carlo
simulation of the communication system. However, since this bound is not obtained in closed—form,

its computational complexity makes it unsuitable for scenarios where the noise statistics vary with time
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and therefore online optimization is required. As a result, we use the approximate upper bound only in
scenarios where the noise statistics are known a priori and the optimization can be performed offline.
For online optimization we provide closed—formed asymptotic expressions by analyzing the asymptotic
behavior of the BER bound for high signal-to—noise ratios (SNR's). Based on the obtained asymptotic
results we develop an efficient adaptive multivariate finite difference stochastic approximation (FDSA)
algorithm for online metric optimization. Simulation results confirm the validity of our analysis and
show that the proposed L,—norm metric is very effective in dealing with the harmful effects of
nonGaussian noise.

The rest of this paper is organized as follows. In Section 2, the system model for the considered
CR system is introduced. The approximate upper bound for the BER is derived in Section 3 and
asymptotic BER expressions are obtained in Section 4. In Section 5, off-line and on—line optimization
of the metric parameters are discussed and analytical and simulation results are presented in Section 6.
Finally conclusions are drawn in Section 7.

Notations: In this paper, [-]%, (), R{-}, ||-||, det(-), and &,{-} denote transposition, Hermitian
transposition, the real part of a complex number, the Lo—norm of a vector, the determinant of a
matrix, and statistical expectation with respect to x, respectively. Moreover, I,; and 0,; are the
M x M identity matrix and the all-zero column vector of length M, respectively. Furthermore, we

use the notation u = v to indicate that v and v are asymptotically equivalent, and a function f(z)

is o(g(x)) if limy—o f(z)/g(x) = 0.

2 System Model

We consider a CR system employing one of the popular BICM-SC or BICM-OFDM schemes combined
with N, receive antennas. In the rest of this paper, we refer to the aforementioned CR systems as
CR-BS and CR-BO, respectively. In the following we provide unified signal and fading models that
are applicable to both CR-BS and CR-BO systems. We also present several practically relevant noise
models for the considered CR-BS and CR-BO systems. For convenience, in this paper, all signals

and systems are represented by their complex baseband equivalents.
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2.1 Signal Model

The CR transmitter employs a BICM transmission scheme, i.e., it consists of a convolutional en-
coder of rate R, an interleaver, and a memoryless mapper [15]. Specifically, the codeword ¢ =
[c1,¢2, ..y Cm, ] Of length m K is generated by a convolutional encoder and interleaved. The in-
terleaved bits are broken up into blocks of m,. bits each, which are subsequently mapped to symbols x;,
from a constellation X" of size |X'| & M = 2™ to form the transmit sequence * = [x1, 75, ..., Tx.].
The K. transmit symbols are broken up into B frames of N symbols each implying K. = BN. In
CR-BS systems, all the IV symbols in a frame are transmitted over a single carrier. In contrast, these
symbols are modulated onto N OFDM sub—carriers in CR-BO systems.

Assuming perfect synchronization and demodulation, for both CR-BS and CR-BO systems the

observed signal at the NV, receive antennas for the Lth transmitted frame can be modeled as
T = /Y hi o1, + 1, (L-1)K.+1<k<LK,, (1)

where k denotes the time index in CR-BS systems and the frequency index in CR-BO systems,
respectively. Furthermore, in the above equation v denotes the SNR per receive antenna as we have
assumed without loss of generality £{||h||?} = N, and £{||nt||>} = N,. In (1) we have also defined
hy & [hry - hen )" and my = [ngy ... ngn, |7 where by and ngy, 1 < 1 < N, denote the
fading gains and the noise variables, respectively.

As customary in the literature, cf. e.g. [15, 16, 17], for our performance analysis we assume perfect
interleaving, which means that h, and m; can be modeled as independent, identically distributed

(i.i.d.) random vectors and only their first order probability density functions (pdfs) are relevant.

2.1.1 The L,~Norm Branch Metric

Traditional BICM—based system employ an Ly—norm branch metric for Viterbi decoding at the re-
ceiver. In this paper, we assume that the Viterbi decoder at the CR system receiver employs an
L,—norm branch metric that allows it to adapt to the ambient noise and interference by adjusting
the metric parameters. The employed branch metric for decoding bit 7, 1 < i < m,, of symbol z; is

given as

)\i(’l"k, b) é HHH {fM('r'k — ﬁhk {L'k)} (2)

IkEle

where X} is the subset of all symbols in constellation X whose label has value b € {0,1} in position

i. Furthermore, fy/(.) denotes a non—linearity that depends on the adopted branch metric for Viterbi
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decoding. For the L,—norm branch metric assumed in this paper we have

Ny
Py =3 alnl, (3)
=1

where ¥ = [ry, ..., rx.]7, and ¢ £ [q1,...,qn.]" and p = [p1,...,pn,|" are the adjustable metric

parameters.

2.2 Fading Model

We assume that the fading gains can be expressed as hy = ahlej@ki, where a;; and Oy, are
independent random variables (RVs). Specifically, ©; is uniformly distributed in [—m, 7) and ay; is
a positive real RV that follows the distribution p,, ,(ax,:). In this paper, we consider spatially i.i.d.
as well as spatially correlated fading channels. For spatially i.i.d. fading the first order pdf p,(a,) is
sufficient to describe the properties of the RV a;;, while for spatially correlated fading the joint pdf
Pa, (@) of the elements of a; = [a; ... an,|” (cf. e.g. [18]-[20]) is also required. However, as shown
in [21], for asymptotically high SNR’s spatially correlated fading can be regarded as asymptotically

spatially i.i.d. fading. Therefore for v — oo the joint pdf can be expressed as

parlar) = [ palans). (1)

where

palary) = 2A az’,’l_l + O(azl”l_l) (5)

with fading distribution dependent constants A and v. The fading pdf p,(ax;) and the parameters
A and v are specified in Table 1 for correlated Rayleigh, Ricean and Nakagami-m fading as well as

for spatially independent Nakagami—g and Weibull fading channels.

2.3 Noise Model

In this subsection, we present several practically relevant noise models that are frequency encountered
in CR environments. We use these noise models in Section 5 to show the ability of our proposed CR
system to mitigate the harmful non—Gaussian noise effects, and to adjust to changes in the statistics
of the ambient noise. Since the receivers of CR-BS and CR-BO systems effect the noise differently,

in the following we discuss the noise models for these two systems separately.
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2.3.1 Noise Models for CR—BS

Here, we consider two important time—domain noise models for CR-BS systems. In particular, we
consider asynchronous CCl (ACCI) ad time-domain Gaussian—mixture noise (TD-GMN).

ACCI: In CR-BS systems, ACCI [22, 7] can be used to model the CCl caused by the primary user
and other CR systems. To describe this noise model, we consider a CR-BS system with B different
hopping frequencies and assume that at hopping frequency p, 1 < p < B, in addition to AWGN

N1, there are 1), Ricean faded asynchronous CCl signals leading to time—domain noise

IM Uy
Wetn = O Peruli] D guilv]builv] + Ay (6)
=1 v=u;

where ﬁklu[z] are temporally i.i.d. Gaussian random variables which model the Ricean interference
channel gains with Ricean factor K,,; and b,;[v] € M, ( M, ;: M, ;~ary symbol alphabet) are
the i.i.d. symbols of the ith interferer at the uth hopping frequency, respectively. Furthermore,
GpilV] = Gui(VT +1,;), where g, ;(t), T', and 7,,; are the effective pulse shape, the symbol duration,
and the time offset of the sth interferer at the uth hopping frequency, respectively, and we assume
that g, ;,(vT' + 7,,) = 0 for v < v; and v > v,. In addition, for future reference we denote the set
of all possible values of &,; = 30" g,i[v]bui[v] by Sy, define S, £ 8,1 % ... xS, (if [, =0,
we formally set S, = {0} with |S,| = 1) and denote the ratio of the total CCI variance and the total
AWGN variance by &, cf. Section 6. Finally, we note that for K,; — oo, the interference channel
gains hy ;. [i] will be constant values. The refer to the resulting noise as unfaded ACCI (UF-ACCI).

TD-GMN: TD-GMN can be used to model the combined effect of Gaussian background noise
and man—made or impulsive noise, cf. e.g. [23, 10, 24] present in CR environments. If the phenomenon
causing the impulsive behavior affects the receive antennas independently, the GMN is spatially

i.i.d. [25] and the pdf of ny is given by [10]

~ [
; k)l
i) = 30 2 e (1240, )

i

where ¢; > 0 and 0? > ( are parameters, and 22‘1:1 c;0? = 1. Two popular special cases of Gaussian
mixture noise are Middleton's Class—A noise [10] and e-mixture noise. For e-mixture noise I = 2,
¢ =1—¢ ¢, =¢ 0f =0, and 03 = ko, where ¢ is the fraction of time when the impulsive noise
is present, k is the ratio of the variances of the Gaussian background noise and the impulsive noise,

and 07 = 1/(1 — € + re) = 1.
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2.4 Noise Models for CR—-BO

For CR-BO systems, we consider two practically relevant frequency—domain (FD) noise models, i.e.,
narrowband interference (NBI) and FD-GMN.

NBI: We consider a CR system with coding over B different hopping frequencies. At hopping
frequency i, 1 < o < B, the received frequency—domain signal is impaired by AWGN 7, ,, and I,
Rayleigh faded PSK NBI signals. The corresponding frequency—domain noise model is

Iy
ety = Y G110 [P [1] + Tkt (8)
=1

where fii.;,,[i] are temporally i.i.d. Gaussian random variables which model the Ricean interference
channel gains with Ricean factor K, ;. Furthermore, b,[i] is the PSK symbol of the ith interferer at
the uth hopping frequency affecting the set AV, ; of sub—carriers via gy ,[i] £ exp[—jm(N — 1)(k +
Fui/ Afs)/N + ¢l sin[m(k + fui/Afs)]/sinfn(k + f../Afs)/N] [26]. Here, f,; and ¢, ,; denote
the frequency and phase of the ith interferer at hopping frequency p relative to the user, respectively,
and Af; is the OFDM sub—carrier spacing. For f,; = vAf, the NBI affects only sub—carrier v, i.e.,
N,.i; = v, while, in theory, for f,; # vAf the NBI affects all sub—carriers. However, g ,[i] decays
quickly and we limit \V,,; such that |gy, ,[¢]| = 0 for k ¢ N, ;. Finally, we assume that no sub—carrier
is affected by two narrowband interferers at a given hopping frequency, i.e., N, ;;, "N, = 0, iy # ia.
For future reference, we denote the ratio of the total NBI variance and the AWGN variance by &,
cf. Section 6. We note that for K,; — oo, the interference channel gains hy.,;[i] will be constant
values. The resulting noise will be referred to as unfaded NBI (UF-NBI) in the rest of this paper.

FD-GMN: FD-GMN can be used to model the combined effect of the frequency—domain Gaus-
sian background noise and the interference caused by a Rayleigh faded NBI that employs frequency
hopping technique. Denoting the by € the probability that the interferer hops into the band used by
the CR system, we can express the pdf of the corresponding frequency—domain noise as

1—¢ Nkl 2 € U 2
pn(nk,l) - ( 2 ) exp <_| 2| + 2 €xp _| 2| ) (9)
ivea g 7T/{0'g /iO‘g

g g

where o, is variance of the frequency—domain background noise and « is the ratio of the variances

of the background noise and the interference.
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3 Approximate Upper Bound for BER

In this section, we provide an approximate upper bound on the BER performance of the considered
CR system in non—Gaussian noise environments based on the expurgated union bound of [15].* The
results obtained in this section are based on the unified system model presented in Section 2 and
therefore they are applicable to both CR-BS and CR-BO systems. Furthermore, the BER bounds are
obtained as a function of the metric parameters g and p, and consequently can be used for optimizing
these parameters.

For a CR system employing convolutional code of rate R. = k./n. (k. and n. are integers) the

union bound for the BER is given by [15]
1 [ee]
P< =Y wd) Ple, &), (10)

where ¢ and ¢ are two distinct code sequences with Hamming distance d that differ only in [ > 1
consecutive trellis states, w.(d) denotes the total input weight of error events at Hamming distance
d, and dy is the free distance of the code. P(c, ¢) is the pairwise error probability (PEP), i.e., the
probability that the decoder chooses code sequence ¢ when code sequence ¢ # ¢ is transmitted.

Invoking the expurgated bound from [15], the PEP can be expressed as
c+joo d

R 1
P(C,C):%/

c—joo k=

ACES (1)

with

Wy (s) 2 m;mc S Y Gy a(s) (12)

where ¢ is a small positive constant that lies in the region of convergence of the integrand. Further-
more, Pa(zy ) (5) = Enymy {€7° 2%} is the MGF of the following metric different conditional on

the transmission of symbol z; at the transmitter
Alze,z) = fu(re — VY e z) — far(re — 7 b )

N, N
= Z(Jl 1T — /Y hieg 2" — ZQI 70 — /Y Py 2" (13)
=1 =1

3 As pointed out in [27, 28], the expurgated union bound found in [15] is not a true upper bound and constitutes
only an approximation to the BER performance. However, numerical evidence [21] has taught us that for Gray
labeling this bound is very accurate for the BER range of practical interest even in non—-Gaussian environments

(also cf. Section 6).
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where z;, is the nearest neighbor of x;, in Xz‘f with b being the bit complement of b. Taking to account
the fact that conditional on the transmission of x; we have ry; = /7 hiy o +ngg, 1 < T < N, we

can write the above equation as

N, Ny
Ay, z1) = ZQI VA g ex + mal™ — ZQI s (14)
=1 =1

where we have defined @y — 2; = d,.e/9¢ with ED d,, > 0.The MGF ® Ay, .,)(s) can therefore be

obtained as
N,

Paeg,) () = Enom {H eI ext e N)} (15)

=1
The MGF @4y, -,)(s) obtained in the above equation can be used in (11) to calculate the PEP.

To evaluate the complex integral in (11) efficiently, we use the saddlepoint approximation technique

advocated in [27, 29]. This leads to

(\Ifk(§))(d+1/2)
§\/2md W] (3)
where W) (s) is the second derivative of ¥}(s) and the saddlepoint § is defined as the value for which

W, (8) = 0 is valid.

Ple, &) ~ (16)

Once the PEP is obtained, it can be used along with (10) to obtain an approximate upper bound
on the BER. We note that although the saddlepoint technique provides for an efficient means of
calculating the PEP, evaluation of the PEP and therefore the BER bound according to (10) involves
several integrations which have to be evaluated numerically. Therefore the provided bound is only
suitable for offline metric optimization where computational complexity is not a concern. In order to
obtain analytical expressions suitable for online metric optimization, in the next section we provide

an asymptotic analysis which results in simple—to—evaluate expressions for the BER.

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of the BER bound in (10) for v — oo, i.e., for
asymptotically high SNR's. For this purpose, it is convenient to first consider the PEP

Ple,d) = 5 [ e tatsim) < (17)

c—joo
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with
d
oisii) = [T |5 o ZZ > Papa(sing | (18)
k=1 i=1 b=0 ZBkEXZ
where
N, Nr
(I)A(mk,zk)(s‘nk> = g{e—sA(rk,zk)} — s 2121 atlnkal” H (I)yk,z(QI s). (19)

=1
A

In obtaining the last equality, we have used (15), and defined y; =S |/ P e tng P and @y, (s) =
E{e ¥t} The pdf f,(yx) of yx,; has been calculated in Appendix A (cf. Eq. (53)). Therefore, the
MGF @, (s) can be found by calculating the Laplace transform of f,(yx,) as

24 <

> Gl s 40 (v7) (20)

o, (5)  ————
yk,L( ) pl <7d52(;2)y g

where &, = W Substituting (20) in (19) yields

2N7‘AN’I‘ e_s ZlN—Tl ql‘nk,l|pl N

(I)A(xk,zk)(S‘nk) ~ (7d2 )]\;TV H (Z é-zl ‘nkl‘m 1 —2 (v—1i)/m —2(1/ 2)/pl>+0 (,Y—Nru) )

(21)
We can now obtain ®(s|ny) by using (21) in (18) as
d N, d N
(I)(S"I'Lk) ~ Xm<l/, Nr; d) (2A)dNTfy_dNTV e_SZkzl 21;1 (Il|nk,l‘pl H H
k=11=1
(Z &1 || pl—1ql—2(u—i)/pz S—Z(V—i)/pl> +o (W—dNTV) (22)
=0
where
d

Xin(v, Ny, d) = 2mc ZZ Z NTV : (23)

=1 b= 0z, eXL x
After some manipulations ®(s|ny) can be written as

AN, D
®(s|ny) & Xpn(v, Ny, d) (2A)4Nry=dNw o8 Limr 20y arlnge [Pt Z Z 220 (dv—it) /py

K=0 i1+~~~+’iNT=K

Ny

H Z 5] l|n1l| g1 2('/ J1)/Pl L& l|ndl| jd 2('/ ja)/pi —I-O(’y_dN"V)
1, ds

=1 j1+-+ja=u

(24)
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where we have 0 < j,, < v forl1 <k <d,and 0 <4 < K for1 <[ < N,. The PEP can be

calculated from (24) and (17) as

dNyv
P(c, &|my) ~ Xpn(v, Ny, d) A)™Ny =N 3" N My(in, .. i) (25)

K=0i1++in,. =K

where we have defined the generalized noise moments M, (i1, ...,iy,) as

. . Qe PrY2 32N (dv—iy) /py
M’n(Zl» s 77’Nr') £ gnk { (Zk - Zl : | | ) 4 2(dv—i;)/p H Z Hgﬂkvl |nkl| o
P(QZ (d’/ —i)/pi+ 1) Hz 1014 I=1 j1+-+ja=i; k=1

(26)

Based on (25) and (10) a closed—form approximation for the asymptotic BER can be obtained as

dirﬂ

Pb = L Xm(I/7 N?"u df) (2A)dirry_diTV Z Z Mn(ih s 7iNr) (27)

K=0 i1++in. =K

In deriving the above equation we have used the fact that the BER bound in (10) is tight for high
SNR's (cf. Section 6). Furthermore, we have taken into account the fact that the first term in (10) for
which d = d; is asymptotically dominant. We note that for non—integer v, due to the approximation
made in Appendix A the asymptotic BER given in (27) constitutes an approximation to the behavior
of the BER bound for v — oo. However, as will be shown in Section 6 the incurred approximation
error is negligible for all practical purposes and therefore the obtained asymptotic BER is still a valid
criterion for metric optimization.

The asymptotic expression for BER given in (27) is very general since it is applicable to different
types of fading channels, a large class of noise and different code rates used in the CR system.
Furthermore, (27) reveals the dependance of the asymptotic BER on the metric parameters g and
p, and therefore can be used for metric optimization. Although (27) is simple enough to be directly
used for online metric optimization (cf. Section 5), in several practically relevant special cases less
general, yet simpler expressions can be obtain for the asymptotic performance that can facilitate the
task of online metric optimization. In the following, we consider important especial cases where such
simplifications are possible in (27). Since the main difficulty in obtaining the BER performance arises
from the calculation of generalized noise moments M, (i1, ..., 7y, ), we will mainly focus on obtaining

simplified expressions for these noise moments.

} |
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4.1 Case 1, Fading Channels with v = 1:

If v = 1 is valid for the fading channel (e.g. (possibly spatially correlated) Rayleigh, Ricean, and
Nakagami—q fading), (26) can be significantly simplified. In this case we have 7 = [] —1 = 0 which
results in iy =0, 1 <! < N, and j, =0, 1 <k <d;. Therefore, (26) simplifies to

N, ds —dy —2dy/p df N,
2 s r
Mn(O, 3 .,O) _ Hl:l( ( ]{ff?l)) Py q nk Q :} :ql|nk’l|pl)zlli12df/m ) (28)
L0 2ds/p+1) k=1 1=1

and the asymptotic BER is therefore given by
Py = —— X, (1, N, dy) (2A) 4Ny~ 4N (0, . 0) (29)

Based on (29) it is possible to obtain the asymptotic BER performance for uncoded transmission
with maximum-ratio combining (MRC) at the receiver by allowing d; = 1, k. = 1, and w.(1) = 1.

This results in

DO 2/ + 1) =1

It is easy to see that (30) is in agreement with [30, Eq. (13)] which is obtained assuming Rayleigh

. 2 1 — /pl Ny Ny
Py = Xn(1, N, 1) (M)%‘MHZ 1 L2/ppi g nk{<Zqz|nk,l|pl>zl—12/”} (30)

and Rician fading channels. Eq. (30) is however more general than the results obtained in [30] as it
is not limited to Rayleigh and Rician fading channels and is also applicable to all other fading types

with v = 1 such as Nagakami—q fading.

4.2 Case 2, Spatially i.i.d. Noise:

In many practical scenarios the elements of n, are i.i.d. (e.g. due to sufficiently large antenna spacing
at the receiver). When the noise is specially i.i.d. without loss of optimality we can set ¢, = 1 and

p=p, 1 <1< N,. Thus, (26) can be written as

. . Ny |P) 2V Ne=K) P N
Mn('Ll,...,ZNT,) :gnk (Z Zl ! | | H Z ngkl |nkl|23k . (31)

d ¢ Ny
L(2(dfvN, = K)/p +1)pY 1=1 ji+++ja, =i k=1

Evidently, the number of metric parameters to be optimized reduces to one in this case and therefore
the task of metric optimization is greatly simplified. In the following we consider two cases where

even more simplifications are possible.
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4.2.1 Case of dyN, > 1:

For dyN, > 1 and spatially i.i.d. noise we can invoke the strong low of large numbers to approximate

the term 3297 SN ngl? as

SO ol & Ny o) (3

k=1 [=1

where m,,(p) = E{|ny,|P} are the scalar moment of the noise. Using (32) in (26) leads to

. : (Nydy my (p))* -
Mn(zla s 7/Z/N’l‘> ~ F( (deN K /p_'_ 1 dir H Z ngklmn 2']k (33>
=1 jitetia, =i k=1

4.2.2 Case of L,—Norm Branch Metric:

The joint noise moments in this case can be found by allowing p = 2 in (31). Furthermore, the

asymptotic BER performance can be obtained from (27) as

dyNyv
. We(dy —deNow _ ,
2 ) 0, ) QA ST S Ml i) (39

K=0 i1+ +7/Nr =K

It can be shown that (34) is in complete agreement with the results reported in [21] which are obtained

for BICM—based systems employing Ly—norm branch metric in non—Gaussian noise environments.

4.3 Diversity Gain and Coding Gain

For completeness, in this subsection we calculate the diversity gain G (i.e., the asymptotic slope
of the asymptotic BER curve on a log—log scale) and the coding gain G, (i.e., a relative horizontal
shift of the asymptotic BER curve). Thereby, the diversity gain and the coding gain can be obtain
by comparing the general asymptotic results in (27) with P, = (G.y)~ % [31] as

Gq =dsN,v (35)
10 wo(df) X (v, Ny, d) (24)45 g . .
G.[dB] -~ logy, ( (dp)Xom W ) 24) ) log10 Z Z My (i1, ... iN,)

K=0 i1+ +7/Nr =K

(36)

From (35) we observe that the diversity gain is independent of the metric parameters q and p and is

also independent of type of noise. Therefore the asymptotic BER curves for all noise types are parallel
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for different choices of g and p. Eq. (36) reveals that the coding gain consists of two terms. The
first term depends on the types of convolutional code, signal constellation and the fading channel
but is independent of the metric parameters g and p and the statistics of the noise. The second
term is a function of g and p, as well as the properties of the noise via the generalized moments
Mp(iy, ..., iy,) of the noise. Egs. (35) and (36) show that minimum BER can be achieved for a
given SNR by optimizing the L,—norm metric parameters, which results in shifting the asymptotic

BER curves to the left as far as possible in a log—log scale.

5 Metric Optimization

In this section, we use the analytical results obtained in Sections 3 and 4 to optimize the parameters
of the L,—norm metric employed in the CR system. We consider both offline and online metric

optimization depending on the availability of the noise statistics at the CR receiver.

5.1 Offline Metric Optimization

In scenarios where the noise statistics are known a priori, the task of metric optimization can be
performed offline. Since in such cases computational complexity is not a major concern, we use the
analytical BER bound obtained in (10) for metric optimization. We illustrate in Fig. 1 how this BER
bound can be used for offline metric optimization. To simplify the exposition, in this figure we have
assumed spatially i.i.d. noise for which only a single metric parameter p has to be optimized. Thereby,
in Fig. 1 we have shown the BER bound for different types noise defined in Subsection 2.3 vs. p. For
comparison, we have also shown the BER obtained via Monte—Carlo simulation and the asymptotic
BER obtained in (27). The observed differences between the BER bound, simulation and asymptotic
results are due to assuming a finite value for SNR (15 dB) in this figure. Nevertheless, Figure 1 shows
that for each type of noise the minimum BER happens at approximately the same value of p for all

the three curves.

5.2 Online Metric Optimization

Online metric optimization becomes necessary when the noise statistics are not known at the receiver

or vary quickly with time. In such scenarios, a cost function simple enough to be evaluated in real—
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time is needed to enable online and adaptive optimization of the metric parameters. We therefore
base our online metric optimization on the simple—to—evaluate asymptotic BER results obtained in
Section 4. In particular, in this subsection, we consider online metric optimization based on the
asymptotic results obtained in (27) and (26), and provide adaptive algorithms that can be use to
perform the optimization effectively. Due to random nature of the optimization problem, we propose
an stochastic optimization algorithm to perform the online optimization efficiently. Although several
types of stochastic optimization algorithms are available in the literature [32], numerical evidence has
taught us that among them the finite—difference (FD) stochastic approximation (SA) algorithm is the
most suitable for the problem at hand.

The cost function for FDSA algorithm can be obtained from (27) and (26) as

dirﬂ

=Y Y Myl in;0) (37)

K=0 i1+ +in, =K
with

] ] q nk)lpl 22[ 1dl’ i1)/p1
Mnk(h,---,lNr;e)é (Zk 1Zl L @) H Z ngk” kl| Tk

2(dv—i
(QZl 1( v—1)/p+1) Hl 1pldql l/pll 1 j1+-tja=i; k=1

(38)
where M, (i1,...,in,;0) is the instantaneous estimate for the generalized noise moments, and we
have omitted terms and parameters that do not effect the optimization. Furthermore, 6 is a vector
containing all the metric parameters to be optimized, i.e., we have defined 8 = [gs, ..., qn., D1, .- ., DN, ]"
where without loss on optimality we have assumed ¢; = 1. We note that simplified cost functions
can be obtained in the special cases described in Subsections 4.1 and 4.2.

The proposed FDSA algorithm employed to minimize the cost function in (37) can be explained as

follows: The algorithm recursively updates the estimate 6, of the optimal 8, i.e., in the kth iteration,

the the estimate 6y, is obtained as [32]

01 = Ox+arg(6y) (39)
a o Ly(0r + crer) — Li(0y — cren) Ly (0 + crean, 1) — Li(0r — crean, 1)

40)

where a; > 0 and ¢; > 0 are the gain sequences of the FDSA algorithm, and e; denotes a vector
with a 1 in the ith place and 0's elsewhere. The convergence theory for the FDSA algorithm [32]
states that if the standard conditions a; — 0, ¢ — 0, D27 ar = 00, and >~ ai/ci < oo on the

gain sequences are met, the algorithm converges to a local or global minimum of BER.
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6 Numerical and Simulation Results

7 Conclusions

A The pdf f,(yi;) of yi,

To obtained f,(yx,), we first obtain the pdf fx(Xj,;) of X} £ |/ er +ng|* and then calculate
the pdf f,(yr1) of yr; = ngl/z using

2 2/p1—1
Folwwa) = 2/p Fx et v~ (41)
We start the calculation of fx (X} ;) by performing the following reformulations

XkJ = ‘ﬁhhle"‘nk,lez |\/’_Yak,l€+ﬂk,l‘2

= qap,dz, + 2v/Ydpaar R} + ||, (42)

. ~ A —q A 1
where we have defined 7;,; = ny e 7%t and e = |d,.|, and used the fact that hj; = ay e/t (cf.

Section 2). The MGF of X} ; can now be obtained as
_ _ 2 _ 2 voap RIA
(ka,z(s) £ gak,h@k,z{e SXk’l} =€ sl gak,zﬁk,z{e svak'ldzze S2ﬁduak'lm{nk’l}} (43)

Using the Taylor series expansion ¢ = Y >~ 2" /il in the above equation we arrive at

ool 2, i (=2v7d e R{igi}s) } _ (44)

7!

_ a—singl?
(I)Xk,l(s> =¢e Eak,h@k,l {

i=0
For v — o0, (5) can be used along with the integral [~ 2#~'e 7" dz = p/?T'(;1/2) [33, 3.462] to
rewrite the above equation as

A eslmal? &2

(I)Xk,z(s) = (’}/dz S)V ZTF(V + i/2)g®k,z{%{ﬁk,l}i}si/z +o (7_1/) (45)
xz =0
A eslnial? = .
_ ’ ) —v ) 4
Ay 2 el o 07 )

where 3; £ FE;;’) In deriving (46) we have used

22|, [f i even

Eop AR A} = ¢ Ve (47)
0 7 odd.
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Using the Taylor series expansion e~ = 5% (1), |?'s? /il in (46) yields

Dx,,(s) = Zp‘nkl‘zsz+0( Y). (48)

(vd

where

L ()N D(y
P2 {0z o 0+ /@) = Y (49)

If v is an integer it can be shown that
Y w—i-1) 0<i<v—1
P = (50)
0 v—1<u
Therefore for integer v, ®x, ,(s) is given by a finite power series in s. For non—integer v however,
dx, ,(s) is given by a infinite power series as shown in (48). It can be shown that truncating this power
series after 7 = [ — 1 terms will result in a close approximation for ®x, ,(s). This approximation

can therefore be written as

A - i1 —v
Py, ,(s) = sy ZPi I "+ o0 (7). (51)
2z%) =0

The pdf fx(Xp,) of Xz can now be calculated by obtaining the inverse Laplace transform of ®x, ,(s)

as

A z Pz 7 v—i— -V
fx(Xiy) =~ (a2} Z T —1) |nge|? X ro(v). (52)
2z)” 20

Finally, the pdf f, () of vk, can be found based on (52) and (41) as

2A D Pz i 2(v—1i —v
fy(yk,l) ~ pz(Wdz )V Z P(l/ — Z) |7’Lk71|2 yk(l Vo= ‘I’ 0 (7 ) . (53)
2z) 20

The above equation gives the exact pdf f,(yx,) for integer v, but involves an approximation to this
pdf for non—integer . This approbation has been found to be reasonably accurate for the purpose

of metric optimization (cf. Section 6).
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Tables and Figures:

21

Table 1: Pdf p,(a) of fading amplitude a for popular fading models and corresponding values
The parameters for Rayleigh
(Chp), Ricean (pu,, Chp), and Nakagami—m (m, C,,) fading are defined in Appendix ?7. The
parameters for Nakagami—¢ (¢, b) and Weibull (¢) fading are defined as in [18].

for a. and .

We have omitted subscript [ for convenience.

‘ Channel type ‘ pa(a) of the fading amplitude a ‘ Q. ‘ g ‘
Rayleigh 2ae " det(Cpy)~Y/Nr 1
H -1 L/NR
. e u exp (—p,' Co
Ricean UK +1)ae K-1+Ke® [y (2@ K(K + 1)) ( (det(}bhhh)h h)> 1
Nakagami*m % m" a2m—1 6—ma2 % det(Caa)_m/NR m
Nakagami—q \/% exp (— (1f21)2)> Iy ( ( 15’_“22)> 1;52 )
Weibull | ¢ (D(1+2))% aexp (= (2T(1+2))7) S(I(1+2))3




Nasri et al.: Robust L,~Norm Metric for Cognitive Radio Systems

— Upper bound (theory) N

| — — Asymptotic BER (theory) N\

-g|| ©— B =3 (simulation) \
H o~ B = 5 (simulation) SHETIEIETI RN STIEEIACe S S TIETR NCPETEE ) \EEFETEE PO AP EIT:

| = B = 10 (simulation) BICM-OFDM (N = 64)

r1 -8 B =15 (simulation)

10°° T ! ! |

0 5 10 15 20 25

SNR [dB] —*

Figure 1: BER of BICM-SC and BICM-OFDM impaired by GMN (e-mixture noise,
e = 0.1, kK = 100) and NBI, respectively, vs. SNR 7. R, = 3/4, Rayleigh fading,
4-PSK, and N = 1. BICM-SC: Frequency—flat time—selective fading, N = 972, and
BT = 0.007. BICM-OFDM (N = 64): Frequency-selective Rayleigh fading with
L =10 and B equal power, sub-carrier centered NBI signals with [, =1, 1 < u < B,
k = 7. BICM-OFDM (N = 128): Frequency—selective Rayleigh fading with L = 20
and B equal power, sub—carrier centered NBI signals with I, = 1,1 <y < B, k = 2.
Solid lines with markers: Simulated BER. Solid lines without markers: BER bound
(7?). Dashed lines: Asymptotic BER (?77).
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Figure 2: BER of BICM-SC and BICM-OFDM impaired by various types of noise
vs. SNR ~. Rayleigh fading, R, = 3/4, 4-PSK, and Nz = 1. BICM-SC: N = 972 and
B;T = 0.007. BICM-OFDM: N = 64 and L = 10. GMN I: e-mixture noise, € = 0.01,
k = 100. GMN II: e-mixture noise, ¢ = 0.1, k = 100. Asynchronous CCI: Two
asynchronous equal power 4-PSK CClI signals, I, =1, p € {1, 2}, [, =0, 3 < p < 10,
raised cosine pulses g1, (), p € {1, 2}, with roll-off factor 0.3, 7 , = 0.37", pn € {1, 2},
rk = 2. NBI: One sub—carrier—centered NBI signal, I = 1, Iy = I3 = [, = I5 = 0,
k= 9. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (??). Dashed lines: Asymptotic BER (77?).
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Figure 3: BER of BICM-OFDM impaired by NBI (3 equal power, sub—carrier—centered
NBI signals, I} = I, = I3 = 1, k = 10) vs. SNR 7. Li.d. Rayleigh fading, 64-QAM,
N =128, B = 3, and N = 1. Solid lines with markers: Simulated BER. Solid lines
without markers: BER bound (?7?). Dashed lines: Asymptotic BER (?77?).
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Figure 4: BER of BICM-SC impaired by GMN (e-mixture noise, ¢ = 0.25, k = 10) and
AWGN, respectively, vs. SNR ~. Ideal i.i.d. fading, R, = 7/8, 16-QAM, and Ny = 1.
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Figure 5: BER of uncoded SC transmission impaired by SD- and SI-GMN (e-mixture
noise, € = 0.1, Kk = 10), respectively, vs. SNR ~. Np = 2, Nakagami-m fading spatial
correlation p, = 0.9, and 4-PSK.
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Figure 6: BER of BICM-SC impaired by AWGN/ACGN vs. SNR ~. Spatially
i.i.d./spatially correlated, temporally i.i.d. Rayleigh fading, R. = 7/8, 4-PSK, and
Npr = 2. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (??). Dashed lines: Asymptotic BER (?77).
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Figure 7: BER of BICM-OFDM system with sub—carrier spacing Af, impaired by
IR-UWB [34] (N, = 8 bursts per symbol and L. chips per burst) and MB-OFDM
UWRB [35], respectively, vs. SNR ~. Ideal i.i.d. Rayleigh fading, R. = 5/6, 4-PSK, and
Ngi = 1. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (?7?). Dashed lines: Asymptotic BER (?7?). For comparison the bound and the

asymptotic BER for AWGN are also shown.
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