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Abstract— Cognitive radio (CR) system are capable of using
the frequency spectrum more effectively by utilizing unoccupied
or under–utilized frequency bands. The frequency bands used
by CR systems however, are expected to suffer from various
forms of noise and interference with non–Gaussian distribution
such as the co–channel interference caused by the primary user
and other cognitive radios, ultra–wideband (UWB) interference
and man–made impulsive noise. To mitigate the harmful effect
of non–Gaussian noise and interference, we propose a robust
Lp–norm metric for CR systems that employ the popular
combination of bit–interleaved coded modulation (BICM) and
orthogonal frequency division multiplexing (OFDM). We propose
two approaches for metric optimization based on BER perfor-
mance analysis and Maximum–Likelihood parameter estimation
principal, respectively. In both cases we provide effcientadaptive
algorithms that can be used for online metric optimization.
We show that the proposed adaptive algorithm can effectively
mitigate the adverse effects of non–Gaussian noise in practical
scenarios where noise statistics vary with time.

I. I NTRODUCTION

The ever–increasing demand for high speed wireless access
and inflexible methods of spectrum allocation have made
the radio spectrum an increasingly scarce resource. At the
same time, recent studies have indicated that large portions
of the frequency spectrum are rarely used in both space and
time [1], [2] . This observation has spurred the development
of secondary cognitive radio (CR) [3] and ultra–wideband
(UWB) [4] systems which are overlaid and underlaid on exist-
ing licensed (primary) systems, respectively. The idea behind
both CR and UWB is to give secondary users opportunistic
spectrum access as long as they do not cause noticeable
interference to primary users. In the following, we will refer
to CR and UWB systems collectively assecondarysystems.

While most proposed secondary systems employ traditional
methods of signal detection designed for additive white Gaus-
sian noise (AWGN), various forms of non–Gaussian noise and
interference can be present in practice. Examples include the
narrowband and co–channel interference caused by the pri-
mary user and other secondary systems [5], [6], respectively,
and man–made impulsive noise [7]. Therefore, the use of the
L2–norm metric (also referred to as the Euclidean distance
metric) for signal detection, which is optimal for AWGN,
can result in significant performance losses in secondary user
environments where non–Gaussian noise1 is dominant. This
motivates the use of robust metrics that perform well for a
large class of noises with (possibly) non–Gaussian distribution.
These metrics may also have tunable parameters that can be
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1To simplify our notation, in this paper, “noise” refers to any additive
impairment of the received signal, i.e., our definition of noise also includes
what is commonly referred to as “interference”.

adjusted to the possibly time–variant noise statistics. Important
examples of such robust metrics in the literature include
Huber’s M–metric [8], Myriad and Meridian metrics [9],
the generalized Cauchy metric [10], and theLp–norm metric
[11]. Among these metrics, theLp–norm metric is particularly
interesting due to its low complexity and the ability to perform
well in both heavy–tailed and short–tailed noise provided that
the metric parameterp is adjusted accordingly.

In this paper, we consider secondary systems employing
bit–interleaved coded modulation (BICM) [12] in combina-
tion with orthogonal frequency division multiplexing (OFDM)
modulation. The motivation for considering BICM–OFDM
systems is twofold. Firstly, BICM–OFDM is very efficient in
exploiting the frequency diversity of wireless fading channels.
Secondly, this technique has been adopted in a number of
recent standards [13], such as the ECMA multi–band OFDM
(MB–OFDM) UWB system [14], and are also prime candi-
dates for the air interface of future CR and UWB systems
[15]. Here, we propose a robustLp–norm decoding metric
for secondary BICM–OFDM systems to mitigate the harmful
effects of non–Gaussian impairments. TheLp–norm metric
has a tunable paramterp and therefore can be optimized by
properly adjusting this parameter. For metric optimization we
propose two approaches. In the first approach, we develop
a general mathematical framework for bit–error rate (BER)
performance analysis of the secondary systemsthat allows us
to obtain an accurate approximate upper bound for the BER as
well as a closed–form expression for the asymptotic BER. The
aforementioned performance measures are both obtained as a
function of the metric parameterp and thus can be employed
for metric optimization. In the second approach we develop a
maximum–likelihood (ML) estimator for the metric parameter
p based on the noise samples observed at the receiver. In
both cases we provide effcient adaptive algorithms that enable
online metric optimization. Using numerical and simulation re-
sults, we show that the optimizedLp–norm metric can achieve
significant performance gains compared to the conventional
L2–norm metric in secondary user environments with non–
Gaussian noise. Furthermore, we study the performance of the
proposed adaptive agroithms in a practical scenario with time–
varying noise statistics and show that these algorithms arevery
effective in dealing with the harmful effects of non–Gaussian
noise.

The rest of this paper is organized as follows. In Section II,
the system model for the considered secondary communica-
tion systems is introduced. The BER analysis framework is
provided in Section III, and the metric parametere estimation
is developed in Section IV. In Section V, the adaptive met-
ric optimization is considered, and analytical and simulation
results are presented in Section VI. Finally, some conclusions



are drawn in Section VII.

II. SYSTEM MODEL

In this section, we consider BICM–OFDM secondary sys-
tems employingLp–norm decoding and describe the corre-
sponding signal model and theLp–norm metric. We also
present the models for practically relevant types of noise
affecting secondary user systems. For convenience, in this
paper, all signals and systems are represented by their complex
baseband equivalents.

A. Signal Model

The transmitter for the considered secondary system con-
sists of a BICM encoder and an OFDM modulator withN
sub–carriers. The BICM encoder comprises a convolutional
encoder of rateRc, an interleaver, and a memoryless mapper
[12]. The codewordc , [c1, c2, . . . , cmcKc

] of lengthmcKc is
generated by the convolutional encoder and is interleaved by
the interleaver. The interleaved bits are broken up into blocks
of mc bits, which are subsequently mapped to symbolsxk

from a constellationX of size |X | , M = 2mc to form
the transmit framex , [x1, x2, . . . , xKc

] of lengthKc. We
assume that one codeword spansB OFDM symbols, i.e.,Kc =
BN , and that the length of the OFDM cyclic prefix exceeds
the length of the channel impulse response. Furthermore, we
assume that the channel changes independently from OFDM
symbol to OFDM symbol, which can be achieved by frequency
hopping. For example, the ECMA multi–band OFDM (MB–
OFDM) ultra–wideband (UWB) system employs interleaving
and coding overB = 3 (future versions of the standard may
use up toB = 15) frequency–hopped OFDM symbols [14].
Assuming perfect synchronization and OFDM demodulation,
the received signal can be written as

rk =
√
γ hk xk + nk, 1 ≤ k ≤ Kc, (1)

where hk and nk with E{|hk|2} = E{|nk|2} = 1 are
the fading gains and the noise variables, respectively, and
γ denotes the SNR.2 In this paper, we consider Rayleigh
fading which implies thathk is a zero–mean complex Gaussian
random variable (RV). Therefore, the fading gainshk can be
expressed ashk , ake

jΘk , whereak andΘk are independent
RVs. Specifically,Θk is uniformly distributed in[−π, π) and
ak is a positive real RV that follows a Rayleigh distibution.
As customary in the literature, cf. e.g. [12], [16], [17], for
our performance analysis we assume perfect interleaving,
which means thathk andnk can be modeled as independent,
identically distributed (i.i.d.) RVs and only their first order
probability density functions (pdfs) are relevant. The i.i.d. as-
sumption is justified for severely frequency selective channels
and/or sufficiently largeB.

2In this paper,Ex{·} denotes statistical expectation with respect tox.
Furthermore, we use the notationu ⊜ v to indicate thatu andv are asymptot-
ically equivalent, and a functionf(x) is o(g(x)) if limx→0 f(x)/g(x) = 0.

B. Lp–Norm Branch Metric

In this paper, we assume the secondary user employs an
Lp–norm branch metric for Viterbi decoding. The employed
branch metric for decoding biti, 1 ≤ i ≤ mc, of symbolxk

is given by
λi(rk, b) , min

xk∈X i
b

{fm(uk)} (2)

where uk , |rk − √
γ hk xk|, and X i

b is the subset of all
symbols in constellationX whose label has valueb ∈ {0, 1} in
positioni, andfm(·) is a suitably chosen function that depends
on the considered metric. ForLp–norm metric considered in
this paperfm(u) = up is valid. To achieve high performance
the parameterp should be adapted to the underlying type of
noise. We note that for the special casep = 2, (2) is the
well–knownL2–norm branch metric which is typically used
in AWGN channels [12].

C. Noise Model

The analysis and adaptive metric optimization presented in
this paper are applicable to a large class of noises. The only
restriction that we impose is that all joint moments of the
elements ofnk exist. This condition is fulfilled by most noises
of practical interest. An exception isα–stable noise, which is
sometimes used to model impulsive phenomena [18]. How-
ever, other types of impulsive noise such as Gaussian mixture
noise are included in our analysis. To illustrate the generality
of our analysis and for future reference, we present in the
sequel practically relevant noise models that are frequency
encountered in secondary user environments. In particular,
we consider narrowband interference (NBI) and frequency–
domain Gaussian mixture noise (GMN). These noise models
are used in Section V for performance valuation of the
proposedLp–norm metric.

1) NBI: We consider a secondary BICM–OFDM system
with coding overB different hopping frequencies. At hopping
frequencyµ, 1 ≤ µ ≤ B, the received frequency–domain sig-
nal is impaired by AWGÑnk,ν,µ andIµ Rayleigh faded NBI
signals. The corresponding frequency–domain noise model is

nk,µ =

Iµ
∑

i=1

gk,µ[i]bµ[i]h̃k,µ[i] + ñk,µ, (3)

where h̃k,µ[i] are temporally i.i.d. Gaussian random vari-
ables which model the Ricean interference channel gains
with Ricean factorKi. Furthermore,bµ[i] are the sym-
bols of the ith interferer at theµth hopping frequency and
gk,µ[i] , exp[−jπ(N−1)(k+fµ,i/∆fs)/N+φµ,i] sin[π(k+
fµ,i/∆fs)]/ sin[π(k+fµ,i/∆fs)/N ] [19]. Here,fµ,i andφµ,i

denote the frequency and phase of theith interferer at hopping
frequencyµ relative to the user, respectively, and∆fs is the
OFDM sub–carrier spacing. For future reference, we denote
the ratio of the total NBI variance and the AWGN variance by
κ, cf. Section VI. We note that forKi → ∞, the interference
channel gains̃hk,µ[i] are constant values. The resulting noise
will be referred to as unfaded NBI (UF–NBI) in the rest of
this paper.



2) GMN: GMN can be used to model the combined
effects of frequency–domain Gaussian background noise and
impulsive phenomena that only affect a small number of sub–
carriers. For example, it can be used to model the effect of a
Rayleigh faded NBI interferer or a tone interferer in a BICM–
OFDM UWB system. For GMN noise the pdf ofnk is given
by [7]

pn(nk) =

I
∑

i=1

ci
πσ2

i

exp

(

−|nk|2
σ2

i

)

, (4)

whereci > 0 andσ2
i > 0 are parameters. Two popular special

cases of both spatially independent and spatially dependent
TD–GMN are Middleton’s Class–A noise [7] andǫ–mixture
noise. Forǫ–mixture noiseI = 2, c1 = 1 − ǫ, c2 = ǫ, and
σ2

2 = κσ2
1 , whereǫ denotes the fraction of subcarriers affected

by the impulsive noise andκ is the ratio of the variances of
the Gaussian background noise and the impulsive noise.

III. BER A NALYSIS

In this section, we analyze the BER performance of sec-
ondary BICM–OFDM systems employingLp–norm decoding
in non–Gaussian noise environments. We first provide an
approximate upper bound for the BER based on the expurgated
union–bound. We then analyze the behavior of the obtain BER
bound for high SNR’s to arive at a closed–form expression for
the asymptotic BER. The BER bound and asymptotic BER
are both derived as a function ofp and therefore can serve as
objective functions for metric optimization.

A. Approximate Upper Bound for BER

Here, we provide an approximate upper bound for the
BER performance of the cosidered secondary BICM–OFDM
systems. We note that our derivation is based on the expurgated
union bound in [12], and therefore we cannot prove that the
obtained bound is a true upper bound (see discussion in [20],
[21]). However, numerical evidence in e.g. [21], [22] suggests
that the expurgated union bound does result in tight upper
bounds if Gray labeling is applied. Our own results in Section
VI confirm this conjecture.

Assuming a secondary BICM system with code rateRc =
kc/nc (kc andnc are integers) the union bound for the BER
is given by [12]

Pb ≤ 1

kc

∞
∑

d = df

wc(d)P (c, ĉ), (5)

wherec andĉ are two distinct code sequences with Hamming
distance d that differ only in l ≥ 1 consecutive trellis
states,wc(d) denotes the total input weight of error events
at Hamming distanced, and df is the free distance of the
code.P (c, ĉ) is the pairwise error probability (PEP), i.e., the
probability that the decoder chooses code sequenceĉ when
code sequencec 6= ĉ is transmitted. Adopting the expurgated

bound from [12], the PEP can be expressed as

P (c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

d
∏

k=1





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(s)





ds

s
,

(6)
where c is a small positive constant that lies in the region
of convergence of the integrand. Furthermore,Φ∆(s) ,

Ehk,nk
{e−s ∆(xk,zk)} is the moment generating function

(MGF) of the metric difference

∆(xk, zk) , |rk −√
γ hk zk|p − |rk −√

γ hk xk|p (7)

conditional on the transmission ofxk ∈ X i
b . Here,zk is the

nearest neighbor ofxk in X i
b̄

with b̄ being the bit complement
of b. Since conditional on the transmission ofxk, we have
rk =

√
γ hk xk + nk, we can rewrite (7) as

∆(xk, zk) = yk − |nk|p (8)

whereyk , |√γ hk xk + nk|p and ek , xk − zk. Based on
the MGF Φ∆(s) = Ehk,nk

{e−s ∆(xk,zk)} can be evaluated
efficiently 8 using e.g. a Gauss–Chebyshev quadrature rule,
cf. [14]. The result can subsequently be used along with (5)
and (6) to calculate the approximate upper bound.

We note that although the method described above provides
for an efficient means of calculating the approximation upper
bound, the calculation ofΦ∆(s) required for the BER bound
still involves numerical averaging over both fading and noise.
Therefore the provided bound is only suitable for offline
metric optimization where computational complexity is not
a concern. In order to obtain analytical expressions suitable
for online metric optimization, in the following subsection
we provide an asymptotic analysis that results in simple–to–
evaluate expressions for the BER.

B. Asymptotic BER

In this subsection we analyze the asymptotic behavior of the
approximate upper bound in (5) forγ → ∞. For this purpose,
it is convenient to first rewrite the PEP as

Pe(c, ĉ) =
1

2πj

c+j∞
∫

c−j∞

Enk
{Φ(s|nk)} ds

s
, (9)

with

Φ(s|nk) =

d
∏

k=1





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

Φ∆(s|nk)



 , (10)

where

Φ∆(s|nk) , E{e−s∆(xk,zk)|nk} = e−s|nk|
p

Φy(s), (11)

For the last equality we have used (??) and the definition
Φy(s) , E{e−syk}. For γ → ∞, the pdffy(yk) of yk can be
expressed as [?]

fy(yk) =
2

p(γd2
xz)

y
2

p
−1

k + o
(

γ−1
)

. (12)



Therefore, the asymptotic MGFΦyk
(s) can be obtained as the

Laplace transform offy(yk) as

Φy(s) =
2

p (γd2
xz)

Γ(2/p) s−
2

p + o
(

γ−1
)

. (13)

Applying (13) in (11) yields

Φ∆(s|nk) =
2 e−s|nk|

p

(γd2
xz)

Γ(2/p) s−
2

p + o
(

γ−1
)

. (14)

We can now obtainΦ(s|nk) from (10) in (14) as

Φ(s|nk) = 2dX(d) γ−d e−s
Pd

k=1
|nk|

p

(Γ(2/p))d s−2d/p

+ o
(

γ−d
)

, (15)

where

X(d) ,





1

mc2mc

mc
∑

i=1

1
∑

b=0

∑

xk∈X i
b

1

d2
xz





d

. (16)

The PEP can be calculated from (15) and (9) as

Pe(c, ĉ |nk) = 2dX(d) γ−d (Γ(2/p))d

pd Γ(2d/p+ 1)
Mn(d, p), (17)

where thegeneralizednoise momentsMn(d, p) are defined
as

Mn(d, p) , Enk







(

d
∑

k=1

|nk|p
)2d/p







. (18)

The generalized noise momentsMn(d, p) can be obtained in
closed–form using a similar approach as in [23] or can be
efficiently calculated using Monte–Carlo simulation.

Based on (17) and (5) a closed–form approximation for the
asymptotic BERPb ⊜

wc(df )
kc

Pe(c, ĉ) can be obtained as

Pb ⊜
wc(df )X(df ) 2df (Γ(2/p))df

kc pdf Γ(2df/p+ 1)
Mn(df , p) γ

−df (19)

wheredf denotes the minimum free distance of the convolu-
tional code. In deriving (19), besides the assumption that all
joint noise moments exist, we also have assumed that (a) the
approximate BER bound in (5) is tight for high SNRs and (b)
the first term withd = df in (5) is dominant. Assumption (a)
is confirmed by simulations in Section VI and assumption (b)
is justified for high SNR.

C. BER Minimization

Here, we study the depence of the BER bound and asymp-
totic BER on p and show how these performance measures
can be employed for minizing the BER and thus for metric
optimization. We consider a scenario where the noise statistics
are knowna priori, and therefore it is possible to perform the
task of metric optimization offline. We postpone the discuss
of online metric optimization until Section VI.

The offline optimization of the metric parameterp using the
BER bound and the asymptotic BER is illustrated in Fig. 1.
In this figure we have shown these performance measures
vs. p for NBI, UF–NBI and GMN defined in Subsection II-
C. The BER bound and the asymptotic BER obtained using
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Fig. 1. BER of BICM–OFDM CR system withB = 5 and N = 128
impaired by NBI (5 equal power, sub–carrier–centered NBI signals,Iµ = 1,
1 ≤ µ ≤ 5, κ = 40) vs. SNRγ.

(19) and (19), respectively. This value ofp at with the BER
bound is minimized denoted withpopt and the corresponding
point in the BER bound curve is marked using “X” markers.
For comparison and to confirm our analysis, we have also
shown the BER obtained via Monte–Carlo simulation. As
seen, the BER bound and asymptotic BER are generally in
good agreement with the simulation results. The observed
small differences between the BER bound, simulation and
asymptotic results are due to assuming a finite value for SNR
(SNR = 15 dB) in this figure. Nevertheless, Fig. 1 shows that
for each type of noise the minimum BER happens at virtually
the same value ofp for all the three curves. Fig. 1 further
shows that the BER of the considered secondary sysmtems
strongly depends on the metric parameterp and as a result,
large performance improvements can be obtained using metric
optimization.

IV. M ETRIC PARAMETER ESTIMATION

In this section, we derive a Maximum Likelihood (ML)
paramter estimtor for the metric parameterp based on the noise
samples observed at the receiver. For this purpose we first
introduce a family of densities called the generalized Gaussian
density (GGD) family which is parameterized by the parameter
p. We then aim at finding the best estimate forp for which
the GGD most accurately approximates the distribution of the
underlying noise in an ML sense [24], [25]. This estimate
is then used as metric paramter for theLp–norm metric. We
note that this approach is suboptimal i.e. the metric paramter
estimate obtained using this approach will not necessarily
minimize the BER. However, the computatinal compelexity
of this appraoch is lower than the one presented in Section
III as it leads to simpler expressions for the objective function
used for metric optimization. We note that this approach is
also amenable to both offline and online metric optimization.



A. GGD Family

The GGD family encompasses a wide range of distributions
and is also a popular model for non–Gaussian noise. The
corresponding pdf for GGD family is give as [25]

pGG(z; p, σ) =
c(p)

σ2
exp

(

−b(p)
( |z|
c(p)

)p)

, (20)

where we have definedb(p) ,

(

Γ(4/p)
Γ(2/p)

)p/2

and c(p) ,

p
2π

Γ(4/p)
Γ(2/p)2 . Furthermore,σ andp, 0 < p <∞, denote the stan-

dard deviation and the shape parameter, respectively. Smaller
values of the shape parameterp (0 ≤ p < 2) correspond to
heavier–tailed and thus more implusive distributions, whereas
larger values ofp (p > 2) result in shorter–tailed distributions.
Well-known special cases of this family are Laplacian (p = 1)
and Gaussian noise (p = 2).

The motivation behind considering the GGD family for
parameter estimation is two fold. Firstly, the GGD is very
felexible and therefore can be succusfully used to approximate
a wide range of distributions. Secondly, theLp–norm metric
employed in this paper is closely related to the GGD family.
In fact, it is easy to see that an optimizedLp–norm metric
can achieve ML performance in the presence a non–Gassian
impairment with GGD.

B. ML Parameter Estimation

Here, we first assume that the standard deviationσ is known
for the moment. The GGD family given in (20) can therefore
be parametrized using parameterp leading to following for-
mulation for the ML parameter estimation problem. For i.i.d.
noise samplesnk, 1 ≤ k ≤ Ke

3, generated based on the pdf
pn(nk), we wish to find the parameter estimatep̂ for which the
GGD best approximatespn(nk). The solution to this problem
in an ML sense is the the estimatêp given by

p̂ = argmax
p

{L(n; p)} (21)

wheren = [n1, . . . nk]T and the log–likelihood function (LLF)
L(n; p) is defined as

L(n; p) ,
1

Ke
log

{

Kc
∏

k=1

pGG(nk; p, σ)

}

(22)

Using (20) in (22) yealds

L(n; p) = log(c(p)) − 2 log(σ) − b(p)

(c(p))pT (p) (23)

with T (p) , 1
Ke

∑Kc
k=1 |nk|p. For large enough values ofKe,

the strong law of large number can be invoked to accurately ap-
proximateT (p) asT (p) ≈ mn(p) wheremn(p) , E{|nk|p}
is the pth moment of the underlying noise. Therefore, from
(23) it follows that

L(n; p) ≈ log(c(p)) − 2 log(σ) − b(p)

(c(p))
pmn(p) (24)

3Assuming a frame length ofKc, theseKe noise samples are taken from
⌈Ke/Kc⌉ frames (cf. Eq. (1)).
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Fig. 2. BER of BICM–OFDM CR system withB = 5 and N = 128
impaired by NBI (5 equal power, sub–carrier–centered NBI signals,Iµ = 1,
1 ≤ µ ≤ 5, κ = 40) vs. SNRγ.

Close–form expressions for the noise mementsmn(p) have
been provided in [22] for different types of noise defined in
Section II. The corresponding noise moments can be used in
(24) to arrive at a close–form and accurate approximation for
the LLF.

In the end, we note that if the standard deviationσ happens
to be unknown, we first obtain the following ML estimate
σ̂ = b(p)(p/2T (p))1/p assumingp is known. We then usêσ
is Eqs. (22) and (21) to obtain the ML estimatep̂.

C. LLF Maximization

In this subsection, assumingσ = 1, we study the depence of
the LLF onp for different types of noise and find the estimate
p̂ that miximizes the LLF. Considering offline optimization
for a scenario with known noise statistics, we postpone the
discussion of online parameter estimation until Section VI.

The offline paremter estimation is illustrated in Fig. 2 for the
same noise types as in Fig. 1. In this figure we have shown
LLF obtained using (19) for the considered noise types vs.
p. For each type of noise we have marked the estimatep̂
that maximizes the LLF by “X” markers. Comparing Fig. 2
with Fig. 1 reveals that although parameter estimation is a
suboptimal approach, the parameter estimatep̂ is generally
very close topopt and the incurred performance loss due to
using p̂ instead ofpopt is minimal.

V. A DAPTIVE METRIC OPTIMIZATION

In practice, the type of noise impairing a secondary user
system is usually not knowna priori and changes with
time. Therefore, in this section, we present efficient adaptive
algorithms for optimization of the metric parameterp. We first
develop an adaptive algorithm for BER minimization based on
the general BER analysis framework described in Section III.
Then we propose an adaptive parameter estimation algorithm



∂L(n; p)

∂p
=

1

p
− 4

p2
ψ(4/p) +

4

p2
ψ(2/p) − 1

Ke

Ke
∑

k=1

|nk|p
Ap

(

log

( |nk|
A

)

+
1

2p
[2ψ(2/p)− 4ψ(4/p)]

)

(25)

∂2L(n; p)

∂p2
= − 1

p2
+

8

p3
ψ(4/p) − 8

p3
ψ(2/p) +

16

p4
ψ′(4/p) − 1

Ke

Ke
∑

k=1

|nk|p
Ap

(

log

( |nk|
A

)

+
1

2p
[2ψ(2/p)− 4ψ(4/p)]

)2

− 8

p4
ψ′(2/p) −

Ke
∑

k=1

|nk|p
Ap

(

1

2p2
[2ψ(2/p)− 4ψ(4/p)]− 2

p3
ψ′(2/p) +

8

p3
ψ′(4/p) − 1

2p2
[2ψ(2/p)− 4ψ(4/p)]

)

(26)

based on the parameter estimation techniques developed in
Section V.

A. Adaptive BER Minimization

Since the approximate upper bound derived in Section III-A
is too cumbersome for real–time optimization, here we propose
an adaptive algorithm based on the asymptotic BER results
obtained in Section III-B. Due to the random nature of the
optimization problem, a stochastic optimization algorithm has
to be used. Although several types of stochastic optimization
methods are available in the literature, our experience has
shown that the Kiefer–Wolfowitz (KW) algorithm [26] is the
most suitable for the problem at hand.

Based on (18) and (19) the cost function for the KW
algorithm is given by

Lk(p) =
wc(df )X(df ) 2df (Γ(2/p))df

kc pdf Γ(2df/p+ 1)
Mnk

(df , p) (27)

where

M̂n(d, p) ,

(

d
∑

k=1

|nk|p
)2d/p

. (28)

where M̂n(d, p) is the instantaneous estimate for the gen-
eralized noise moment, and we have omitted all terms that
do not affect the optimization. The proposed KW algorithm
recursively updates the estimates of the optimalp, i.e., it
generates the parameter estimatepk at the kth iteration as
[26]:

pk+1 = pk + δk
Lk(pk + ζk) − Lk(pk − ζk)

2ζk
(29)

where δk > 0 and ζk > 0 are the gain sequences of the
KW algorithm. The convergence theory for the KW algorithm
[26] states that if the gain sequence fulfillsδk → 0, ζk → 0,
∑∞

k=0 δk = ∞, and
∑∞

k=0 δ
2
k/ζ

2
k < ∞, under some mild

conditions on the cost function, the algorithm is guaranteed to
converge to a local minimum. However, in practice, it may be
better to adoptδk = δ and ζk = ζ, whereδ and ζ are small
constants, to give the algorithm some tracking capability.

B. Adaptive Parameter Estimation

In this subsection, we provide an adaptive algorithm that
allows us to obtain an ML estimate forp by online maximiza-
tion of LLF given in (23). For this porpose we use a Newton–
Raphson (NR) based iterative algorithm that is widely used
in the literature for adaptive parameter estimation [27]. We
however note that a KW algorithm can also be constructed
based on the approximate LLF in (24). We only present the
NR based algorithm since this algorithm is more widely used
in the litrature for parameter estimation. The proposed NR
based iterative algorithm can be formulated as follows. At the
kth iteration the algorithm generates the new estimatepk+1 as
[27]

pk+1 = pk −
[

∂2L(n; p)

∂p2

]−1
∂L(n; p)

∂p
|p=pk

(30)

The partial derivatives used in the above equation are obtained

in (25) and (26) where we have definedA ,

√

Γ(2/p)
Γ(4/p) , and

ψ(·) andψ′(·) denote the digamma and trigamma functions,
respectively, for which efficient algorithms exist for numerical
evaluation []. The convergence depends on the intial guess and
the algorithm normally converges to a local minimum provided
that the initial guess is not too far from the that minimum.
The convergence rate is generally quadratice, i.e., the error is
squared at each iteration.

C. Example

We now present an practical example where the noise
statistics vary with time. For this example we illustrate the
versatiliy of the proposed adaptive algorithms in solving the
metric optimization problem and compare their performances.

In Fig. 3

VI. N UMERICAL AND SIMULATION RESULTS

In this section, we verify the analytical results presentedin
Sections III and IV with computer simulations and compare
the adaptiveLp–norm metric with several other popular robust
metrics. We also demonstrate how the off–line and on–line
optimization techniques described in Section V can be used
to optimize theLp–norm metric parameterp. For all results
shown we consider a BICM–OFDM secondary system with
N = 64 or N = 128, 4–PSK, and a code with rate
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Fig. 3. BER of BICM–OFDM CR system withB = 5 and N = 128
impaired by NBI (5 equal power, sub–carrier–centered NBI signals,Iµ = 1,
1 ≤ µ ≤ 5, κ = 40) vs. SNRγ.
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Fig. 4. BER of BICM–OFDM CR system withB = 5 and N = 128
impaired by NBI (5 equal power, sub–carrier–centered NBI signals,Iµ = 1,
1 ≤ µ ≤ 5, κ = 40) vs. SNRγ.

Rc = 3/4 obtained through puncturing of the standard rate–
1/2 convolutional code with generator polynomials[133, 171]
(octal representation). The parameters for the consideredtypes
of noise are specified in the captions of the figures.

In Fig. 4, we compare the performance of the proposedLp–
norm metric with that of the conventionalL2–norm metric
and several other popular robust metrics forǫ–mixture noise.
We consider the Huber metricfm(u) = u2/2 if u ≤ δ, and
fm(u) = δu − δ2/2 if u > δ [8], and the Cauchy metric
fm(u) = log(u2 + δ2) [?]. For the robust metricsδ was
optimized by simulation for SNR = 18 dB. In contrast, the
Lp–norm metric was optimized with the KW algorithm. The
BER bound and aysmptotic BER are shown forLp–norm

metric and theL2–norm metric using solid and dashed lines,
respectively. Also shown are the simulation results for all
considered metrics using solid lines with markers. The great
agreements between the simulation results, the BER bound and
asymptotic BER for theLp–norm and theL2–norm metrics
again corroborate our analysis. Fig. 4 further shows that for
theǫ–mixture noise theLp–norm metric outperforms the other
robust metrics and the gap to the optimum ML–metric is less
than 1 dB. Finally, Fig. 4 suggests that although theLp–
norm metric was optimized based on the presented asymptotic
analysis for high SNR, it also performs well for small SNRs.

VII. C ONCLUSIONS

In this paper, we have proposed anLp–norm metric for
BICM–OFDM secondary systems operating in the presence
of non– Gaussian noise. We have derived an approximate
upper bound and an accurate asymptotic approximation for
the BER of the considered secondary system. These analytical
results can be used for optimization of the metric parameterp.
Simulation results have confirmed the validity of the provided
analytical results and have shown the effectiveness of the
proposedLp–norm metric in mitigating the harmful effects
of non–Gaussian noise in secondary systems.
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