Performance of BICM-SC and BICM—-OFDM Systems
with Diversity Reception in Non—Gaussian Noise and

Interference

1 Amir Nasri and Robert Schober

Department of Electrical and Computer Engineering
The University of British Columbia
2356 Main Mall, Vancouver, BC, V6T 174, Canada
Phone: +604 - 822 - 3515
Fax: 4604 - 822 - 5949

E-mail: {amirn, rschober}®@ece.ubc.ca

In this paper, we present a general mathematical framework for performance analysis of single—
carrier (SC) and orthogonal frequency division multiplexing (OFDM) systems employing popular bit—
interleaved coded modulation (BICM) and multiple receive antennas. The proposed analysis is appli-
cable to BICM systems impaired by general types of fading (including Rayleigh, Ricean, Nakagami—m,
Nakagami—q, and Weibull fading) and general types of noise and interference with finite moments
such as additive white Gaussian noise (AWGN), additive correlated Gaussian noise, Gaussian mixture
noise, co—channel interference, narrowband interference, and ultra—wideband interference. We present
an asymptotically tight upper bound for the bit error rate (BER) and a closed—form expression for
the asymptotic BER at high signal-to—noise ratios. We show that the diversity gain of BICM systems
only depends on the free distance of the code, the type of fading, and the number of receive antennas
but not on the type of noise. In contrast their coding gain strongly depends on the noise moments.
Our analysis shows that, if the popular Euclidean distance metric is used for Viterbi decoding, BICM
systems optimized for AWGN are also optimum for any other type of noise and interference with finite

moments.
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1 Introduction

Bit—interleaved coded modulation (BICM) is an efficient technique to extract time diversity in systems
with single—carrier (SC) modulation [1] and frequency diversity in systems employing orthogonal
frequency division multiplexing (OFDM), and has been adopted by a number of recent standards and
is also expected to play a major role in future wireless systems [2].

While wireless systems are usually optimized for additive white Gaussian noise (AWGN), in practice,
they are also subject to a multitude of other impairments such as narrowband interference (NBI) [3],
co—channel interference (CCI) [4], correlated Gaussian noise and interference [5], man—made impulsive
noise [6, 7], and ultra—wideband (UWB) interference [8, 9, 10]. Therefore, it is of both theoretical
and practical interest to investigate how the performance of BICM-SC and BICM-OFDM systems

2 We note that almost all

designed for AWGN environments is affected by non—Gaussian noise.
existing performance studies of BICM are limited to AWGN. For example, union bounds for the bit
error rate (BER) of BICM—-SC were provided in [1, 11] and similar expressions for BICM—OFDM can
be found in [12]. The combination of BICM—OFDM and spatial diversity techniques was analyzed
in [12, 13, 14]. In contrast, only few analytical results are available for non—~AWGN types of noise.
Namely, the performance of BICM-SC in Middleton’s Class A impulsive noise and of BICM—-OFDM
in UWB interference was analyzed in [15] and [10], respectively.

Motivated by the lack of general performance results, in this paper, we provide a mathematical
framework for performance analysis of BICM-SC and BICM-OFDM systems with multiple receive
antennas in fully interleaved fading and non—AWGN environments. This framework is very general
and applicable to arbitrary linear modulation formats, all commonly used fading models, and all
practically relevant types of noise with finite moments. We first develop a general upper bound
on the BER of BICM systems, which is easy to compute but offers little insight since it requires
numerical integration. To overcome this problem, we derive closed—form asymptotic BER expressions
for BICM-SC and BICM-OFDM systems which provide significant insight into the impact of system
parameters such as the modulation format, the free distance of the code, the type of fading, and the
type of noise on performance. In particular, we show that while the diversity gain of BICM systems

is not affected by the type of noise, the coding gain depends on certain noise moments. We note

2Tn the rest of this paper, the term “noise” refers to any additive impairment of the received signal, and also

includes what is commonly referred to as “interference”.
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that the asymptotic performance of uncoded SC modulation has been studied in AWGN [16, 17]
and non—AWGN [18, 19] channels before. However, both the analysis techniques and the results in
[16]-[19] are not applicable to BICM.

The rest of this paper is organized as follows. In Section 2, the considered BICM-SC and BICM-
OFDM system models are introduced. The proposed upper bound and asymptotic approximation for
the BER are presented in Sections 3 and 4, respectively. Various practically relevant noise models are
discussed in Section 5. The presented analysis is verified via computer simulations in Section 6, and

conclusions are drawn in Section 7.

2 System Model

We consider BICM-SC and BICM-OFDM systems with Ny receive antennas. For convenience, in

this paper, all signals and systems are represented by their complex baseband equivalents.

2.1 System Model

The BICM transmitter consists of a convolutional encoder of rate R, an interleaver, and a memoryless
mapper [1]. Specifically, the codeword ¢ = [ci,co, ..., Cm.k,] O length m K. is generated by a
convolutional encoder and interleaved. The interleaved bits are broken up into blocks of m, bits
each, which are subsequently mapped to symbols x;, from a constellation X' of size |X| £ M = 27«
to form the transmit sequence & £ |11, 7y, ..., 2x.] of length K. Assuming perfect synchronization
and demodulation, for both BICM-SC and BICM-OFDM the signal observed at the Np receive

antennas can be modeled as
rk:ﬂhkxk+nk, 1§k3§KC, (1)

where hk £ [th ce thVR]T with 5{||hk||2} = NR and ng £ [Tka ce TL&NR]T with E{an‘P} =
N, contain the fading gains h;; and the noise variables n;,;, 1 <1 < Ng, respectively, and v denotes

the signal-to—noise ratio (SNR) per receive antenna.? As customary in the literature, cf. e.g. [1, 11,

3In this paper, []7, (), R{-}, || ||, det(), and &,{-} denote transposition, Hermitian transposition, the real
part of a complex number, the Lo—norm of a vector, the determinant of a matrix, and statistical expectation with
respect to x, respectively. Moreover, I, and 0y are the M x M identity matrix and the all-zero column vector
of length M, respectively. Furthermore, we use the notation v = v to indicate that u and v are asymptotically

equivalent, and a function f(z) is o(g(x)) if limg_¢ f(z)/g(x) = 0.
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13], for our performance analysis we assume perfect interleaving, which means that hj and ny can
be modeled as independent, identically distributed (i.i.d.) random vectors and only their first order
probability density functions (pdfs) are relevant. In the following, we will discuss the assumptions
necessary for the validity of this model more in detail.

BICM-SC: For BICM-SC we assume transmission over a flat fading channel and coding over
B frames of N data symbols, i.e., K. = NB. The channel is time—variant within one frame and
changes independently from frame to frame (e.g. due to frequency hopping). For sufficiently large N
and/or B assuming that the time-domain fading vectors hy, are i.i.d. is justified [1].

BICM-OFDM: We consider a BICM-OFDM system with N sub—carriers where one codeword
spans B OFDM symbols, i.e., K. = BN. We assume that the length of the OFDM cyclic prefix
exceeds the length of the channel impulse response and that the channel changes independently
from OFDM symbol to OFDM symbol. Thus, modeling the frequency—domain channel gains h; as
i.i.d. vectors implies that the channel is severely frequency selective and/or B is sufficiently large.

Practical BICM-SC and BICM-OFDM systems that employ interleaving and coding over B > 1
frequency—hopped frames include the GSM/EDGE mobile communication system (N = 116/N =
348, B = 8) and the ECMA multi-band OFDM (MB-OFDM) UWB system (N = 128, B = 3;

future versions of the standard may use up to B = 15) [8], respectively.

2.2 Fading and Noise Model

Fading Model: The fading gains can be expressed as hy = ay, €91, where ay; and Oy, are
mutually independent random variables (RVs). Specifically, ©y; is uniformly distributed in [—m, )
and ay is a positive real RV characterized by its distribution p,;(ax,;) or equivalently by its moment
generating function (MGF) ®,,(s) = E{e~*®*t}. Correlated fading can be modeled via the joint
pdf pa(ai) or the joint MGF ®4(s) = S{e_ElN:}}SlakJ}, s = [s1 ... sn,|T, of the elements of
a, £ lary . apng)T, cf. e.g. [20, 21, 22]. For the asymptotic analysis in Section 4, we require the
fading channel to be asymptotically spatially i.i.d., i.e., for a; — Oy, the joint pdf can be expressed

palar) = [ [ palany), (2)

where

pa(a) = 206> 4 o(a®*™ 1) (3)
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with fading distribution dependent constants .. and ay. Eq. (2) is obvious for i.i.d. and independent,
non—identically distributed (i.n.d.) fading [16]-[18], and we prove its validity for the most popular
correlated fading models (Rayleigh, Ricean, and Nakagami—m) in Appendix A. For these correlated
fading models and for independent Nakagami—¢ and Weibull fading, the fading pdf p,;(ax;) and
parameters «, and oy are specified in Table 1.

Noise Model: The proposed analysis is very general and applicable to all types of noise for which
all joint moments of the elements of n, exist. This is a mild condition which is met by most practically
relevant types of noise and interference, see Section 5 for several examples. An exception is a—stable
noise, which is sometimes used to model impulsive noise [23], as the higher order moments of a—
stable noise do not exist. Note that our analysis is applicable to other types of impulsive noise such

as Middleton's Class—A model and e—mixture noise.

3 Upper Bound for BER

In this section, we present an upper bound for the BER of BICM systems operating in non—-AWGN

environments.

3.1 MGPF of Metric Difference

We assume standard Viterbi decoding with Euclidean (ED) branch metric [1]

IkEXb

for bit i, 1 < i < m,, of symbol x;. Here, X} denotes the subset of all symbols in constellation
X whose label has value b € {0,1} in position 7. Although the ED metric is not optimum for non—
Gaussian noise, it is employed in most practical systems since the pdf of the noise, which is necessary
for optimum maximum-likelihood (ML) decoding, is usually not known at the receiver. For derivation

of the proposed upper bound it is convenient to first calculate the MGF of the metric difference

A, 21) = (e = A b2l P = e = /7 by a2 = @2 K] [Pl [P = 2 dos K]/ R{BE 7}, (5)

where x; denotes the transmitted symbol and z; is the nearest neighbor of z; in Xg with b being

the bit complement of b, and z, — 2, £ d,.[k]e’®* with ED d,.[k] > 0. Since we assume the
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phases Oy ; of hy; to be uniformly distributed, in (5), we have absorbed 9kl in R, without loss of

generality. Based on (5) the MGF @4y, -,)(5) of A(z, 2;) can be expressed as

Paa(s) 2 Enme{e AW} = &, fo DI g o2 TROL el

= Eak{e_dw k]’yHakH2s (bﬁ(—2 dxz[k]ﬁaks)} (6)

where 7, 2 [e77%% 10, ... eI Neny v 1T and Pp(s) £ Eﬁk{e_ST ®{ml is the MGF of 7. If the
phases of the noise components n;, 1 <! < Np, are mutually independent and uniformly distributed
in [—7, ©), Pp(s) = p(s) 2 Ep {e* *™}Y is valid and @ (s) in (6) can be replaced by ®,(s).
Further simplifications are possible if both the phases and the amplitudes of n;;, 1 <1 < Ng, are

mutually independent. In this case, we can express ®;(s) as

= [ @ (siR{nea}). (7)

where only the scalar MGFs ®;,(s) & &, {e ™™} of the elements 7y, = e 7©kiny, of ny, are

required. If the phases of the n;;, 1 < [ < Ng, are uniformly distributed in [, 7), @5, (s) =
Dy, (s) £ &, {e* M1} s valid, i.e., only the scalar MGFs of the noise components are required.

The scalar MGFs @, (s) of several practically relevant types of noise are collected in Table 2,
cf. Section 5. If ®4(s) cannot be calculated in closed form, it can be computed by numerical
integration. However, even if closed—form expressions for the MGF are available, calculation of

DA (2y,,2,) (8) in closed form is usually not possible, and evaluation of (6) entails Nz numerical integrals.

3.2 Upper Bound

Assuming a convolutional code of rate R, = k./n. (k. and n. are integers) the union bound for the
BER of BICM is given by [1] N
P Y ) Ple—a), 0
d=d;
where ¢ and ¢ are two distinct code sequences with Hamming distance d that differ only in [ > 1
consecutive trellis states, w.(d) denotes the total input weight of error events at Hamming distance
d, and d; is the free distance of the code. P(c — ¢) is the pairwise error probability (PEP), i.e

the probability that the decoder chooses code sequence ¢ when code sequence ¢ # ¢ is transmitted.
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Invoking the expurgated bound from [1], the PEP can be expressed as

c+joo d

m, 1
. 1 1 - ds
Plc—¢)= o / o 2.0 2 W) s ©)

i=1 b=0 o, ex]

c—joo
where ¢ is a small positive constant that lies in the region of convergence of the integrand. The
integral in (9) can be efficiently evaluated numerically using a Gauss—Chebyshev quadrature rule,
cf. [24]. As will be shown in Section 6, (8) and (9) constitute an asymptotically tight upper bound
on the true BER. This bound is a generalization of similar bounds in [1, 13] for AWGN to arbitrary
types of noise (and interference). Unfortunately, the integrals in (6) and (9) obscure the impact of
system and channel parameters on performance. This motivates the asymptotic analysis in the next

section, which leads to closed—form results.

4 Asymptotic Analysis

In this section, we analyze the asymptotic behavior of the upper bound in (8) for high SNR, i.e.,
v — o0. For this purpose, it is convenient to consider the conditional PEP

c+joo

. 1 ds
Ple—eln) =5 [ alm) (10)
c—joo

where n = [nf ... nl ],

d

Me 1
Bsfn) = |~ 33 3 Paalelm) | (1)

i=1 b=0 xke)(g'

and Pz, ) (S|1k) = Eap @, {e*2@*)} with channel phase vector ©), = (O ... O n,]7. The
conditional PEP in (10) is given by the sum of the residues of ®(s|n)/s at poles lying in the left
hand side (LHS) of the complex s—plain (including the imaginary axis) [24]. In order to investigate
the singularities of ®(s|n)/s, we derive the Laurent series representation of ®(s|n) around s = 0 for

the asymptotic case of 7 — oo in the following subsection.
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4.1 Laurent Series Expansion of ®(s|n)

Exploiting the fact that the elements of a, and ©, are asymptotically i.i.d., cf. Section 2.2, for

¥ — 0o we can rewrite Py, -,)(5|12) as

DA (g0 (8[T08) = H@Awk s|nw), (12)

where @, o) (8111) 2 Eap o, { €7 Blanil® ¢2vdecBla®inik s} Using the Taylor series
expansion ¢* = S xi/il, the integral [at~le P dx = p2I(n/2) [25, 3.462], and (3),

DA (2y,2) (5]7k,1) can be expressed as

(bA((Ek,Zk)(S‘nk,l) = gak_’l,@k_’l { e—S’ngz[k} Iak,l|2 2(2 ﬁdxz []{,’:I ak’l%{ﬁk’l} S)Z/Zl}

=0

Q.
IRCTAGDER: Z? D(ag +3/2)€0, (R{n) 17 +0 (7). (13)

Using Eo, AR{7r,}'} = ff(j/lz/il [ng,|', @ even, and Eo, {R{n4}'} =0, i odd, in (13) leads to
DA (wy,2) (S|M00y) = (d27 Zﬁzmk I|%'s" + o ( d) ; (14)

where [3; is defined as 4
22%T(og + )T (i4+1/2)  T(ag—+1i)

2 _ 15
& (200 + 1) (i!)? (15)
The asymptotic Laurent series expansion of ®(s|n) is obtained from (11), (12), and (14) as
Ng d
®(s|n) = X(a, Ng,d) aYrd (ys)~alNrd <H zk,l(s)> + 0 (y~aNnd) (16)
I=1

with z;,,(s) = Y7, Bi|ny|*s' and modulation dependent constant

d

M 2mc ZZ Z adNR ’ (17)

i=1 b= Omke)ﬂ :C

X(Oéd, NR7

In the next subsection, we will use (16) to calculate a closed—form expression for the asymptotic BER.

4.2 Asymptotic BER

As mentioned before, the conditional PEP (10) is given by the sum of the residues of ®(s|n)/s in the

LHS of the complex s—plain. Using d'Alembert’s convergence test [25, 0.222] it is easy to show that
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2k,,1(s) is convergent for all s. Thus, (Hf\iﬁi 21.1(s))? is also convergent for all s. Consequently, the first
term on the right hand side (RHS) of (16), which dominates for high SNR, is convergent for s # 0,
i.e., for high SNR the only singularity of ®(s|n)/s is at s = 0. Thus, the asymptotic conditional
PEP is given by the residue of ®(s|n)/s at s = 0 or equivalently by the coefficient associated with
s% in the series expansion of the first term on the RHS of (16). Assuming ayNgd is an integer this

leads to

d
P(C — é‘ n) = ){(O{d7 NR> d) O[éVRd’y_adNRd Z H Z ﬂ]l ‘nk,1|2j1 e ﬁjNR |nk,NR‘2jNR'

i1+ tig=agNpd k=1 j1++jiNg =ik
+o (y~ealNrd) "

Based on (8) and (18) a closed—form expression for the asymptotic unconditional BER P, = wclgff)

E{P(c — ¢|n)} can be obtained as

(d
P, = % ae ™ X (g, N, dy) M(ag, Ng, dg)~~Nrds (19)

where

d
M(adaNR7d> = Z H Z ﬁjl"'ﬂjNR Mn(jlv"'7jNR>7 (20)

i14-+ig=agNrd k=1 j1+"'+jNR:ik

with the joint noise moments

Mn(jla cee >jNR) = gﬂ-k {|nk’,1‘2jl s ‘nk7NR|2jNR} : (21)

In arriving at (19)—(21) we have used the assumptions that (a) the first term in the summation in
(8) is asymptotically dominant, (b) the union bound is asymptotically tight, (c) the noise vectors 1
are i.i.d., and (d) all joint moments of the elements of n;, exist. Assumption (d) is necessary since
the terms absorbed in o(y~®"r4) in (18), contain sums of products of elements of ny, cf. (13),
which have been neglected in (19). Eq. (19) is a generalization of similar asymptotic expressions
for AWGN in [1, 13] to non—AWGN channels. Depending on the properties of the noise, evalua-
tion of M, (j1,...,jn,) may be cumbersome. However, for two important special cases significant
simplifications are possible.
Case 1 (spatially i.i.d. noise): If the components of 1 are independent, (20) simplifies to

M(acb Nk, d) = Z ﬁth(jl) s 6jNRd Mn(jNRd) (22)

Jit++iNgd=aaNrd

with scalar noise moments M,,(j) £ £{|nx;|*}, which are independent of k and I.
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Case 2 (ag = 1): If ag = 1, which is true for example for (possibly spatially correlated) Rayleigh,

Ricean, and Nakagami—¢ fading, (20) simplifies to

1 Ngd . :

with vector noise moments M, (i) = £{||n||*}.
Closed—form expressions for the moments M,,(j) and M, (i) of several important types of noise

are provided in Tables 2 and 3, respectively, cf. Section 5.

4.3 Diversity Gain, Coding Gain, and Design Guidelines

To get more insight, it is convenient to express the asymptotic BER as P, = (G.y) % [17], where G
and G, denote the diversity gain (i.e., the asymptotic slope of the BER curve on a double logarithmic
scale) and the coding gain (i.e., a relative horizontal shift of the BER curve), respectively. Considering

(19), we obtain

Gd == OédNRdf (24)
10 10 (df) X (ag, Ng, d 10

G.[dB] = ——log,y ac — — logy, we(dy) X(aa, N, dy) ——logyy M(ag, Ng,ds) (25)
(6% Gd kc Gd

From (24) we observe that the diversity gain of BICM is independent of the type of noise. The coding
gain in (25) consists of three terms, where the first, the second, and the third term depend on the
fading channel, the modulation scheme and the code, and the type of noise, respectively. The primary
goal of BICM design is to maximize d; for a given decoding complexity in order to maximize G4 (and
to minimize the asymptotic BER). Gray labelings (yielding smaller X (a4, Ng, df) than non—Gray
labelings) and codes with small w.(dy) are advantageous for maximizing the second, modulation and
coding dependent term in (25). Once d; is fixed, the last term in (25) cannot be further influenced
through system design making the BICM design guidelines effectively indepenent of the type of noise
in the system. Thus, our results show that BICM systems optimized based on the guidelines provided
in [1] for systems operating in fading and AWGN are also optimum for non—AWGN environments as

long as the ED metric is used for Viterbi decoding.

4.4 Uncoded Transmission

While BICM is the main focus of this paper, based on (19) it is also possible to compute the asymptotic

BER of uncoded transmission with maximum-ratio combining (MRC) at the receiver. In this case,
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df =1, k. =1, and w.(1) = 1 are valid. Furthermore, assuming a regular signal constellation such
as M—ary quadrature amplitude modulation (M—-QAM) or M-ary phase shift keying (M—-PSK), it is
easy to see that X (g, Ng,1) = Nmin/(mcdff{ﬁNR), where N, and d,;, are the average number of
minimum distance neighbors and the minimum distance of X, respectively. Therefore, the asymptotic

BER of uncoded transmission with MRC can be expressed as

o NminaévR —a
Pb = dQOthR M(ad7 NR7 1) ’y dNR? (26)
me

where M(ag, Ng,1) = Zj1+“‘+jNR:adNR Bjy - - -ﬁjNR M, (j1,...,Jng), which can be further sim-
plified for oy = 1 and spatially i.i.d. noise, cf. Section 4.2. In particular, for ay = 1 we obtain
M(1,Ng,1) = M,(Ng)/Ng!, cf. (23), and it can be shown that for Rayleigh and Ricean fading (for
both of which oz = 1 holds) (26) is identical to [19, Egs. (12), (16)]. However, (26) is more general

than the results in [19] since it is not limited to Rayleigh and Ricean fading and is also applicable to

e.g. Nakagami—m, Nakagami—q, and Weibull fading.

5 Calculation of the Noise Moments and MGF's

In this section, we discuss several practically relevant types of noise and compute the corresponding
MGFs ®(s) and moments My, (j1, . .., jny) required for evaluation of the upper bound in Section 3
and the asymptotic BER in Section 4, respectively. In the following, we add superscripts “t" and “f"
to the noise variables n;, and n;; to distinguish between time-domain and frequency—domain noise,

respectively.

5.1 Spatially I.I.D. Noise

For spatially i.i.d. noise only the scalar MGFs ®;(s) and the scalar moments M, (i) have to be
computed for evaluation of the upper bound and the asymptotic BER, respectively, cf. (7), (22),

Table 2. In the following, we will consider two relevant examples for spatially i.i.d. noise.

5.1.1 AWGN

Although the main focus of this paper is non—AWGN, the presented results are also valid for AWGN.

Since the discrete Fourier transform (DFT) does not affect the statistical properties of AWGN, the
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results in this subsection are valid for both BICM-SC and BICM-OFDM. We note that although the
AWGN case was covered extensively in the literature, e.g. [1, 11, 13], our results are still more general
than existing results as they allow for spatially correlated fading and more general fading models.
For example, for Ricean fading (g = 1) we obtain from (22) with the help of (15) and Table 2
M(1, Ng,d) = (QNRdf_l). Thus, with (19) and Table 1 we get

Npdy

b= <2NRdf - 1) <w0(df) €xp (_Ufcftfiuﬁ

df
X(1, Np,dg)~ Nrds 2
Npdy k. det(Chp) ) (1, N, dg) =, (27)

which is a new result. For Np = 1, we may rewrite (27) as P, = (Qdé‘;l)%ff)[(l + K)e K4 X (1,
1,ds)y~% with Ricean factor K = |u|?/02, where p1;, and o2 denote the mean and the variance
of hg 1. In contrast, for Ricean fading with Nz = 1 the Chernoff bound was used in [1] and [13] to
investigate the asymptotic behavior of BICM-SC and BICM-OFDM, respectively, since “a closed—
form expression for the PEP for arbitrary K is missing” [1]. Comparing our result with the asymptotic
Chernoff bound [1, Eq. (62)] shows that the Chernoff bound is by a factor of 4df/(2d£;1) > 1 larger
than the asymptotic BER, i.e., for d; = 3 and d; = 6 the Chernoff bound is horizontally shifted by

2.7 dB and 1.6 dB compared to the asymptotic BER, respectively.

5.1.2 Spatially Independent Gaussian-Mixture Noise (SI-GMN)

GMN is often used to model the combined effect of Gaussian background noise and man—-made or
impulsive noise, cf. e.g. [6, 7, 15]. If the phenomenon causing the impulsive behavior affects the
antennas independently, the GMN is spatially i.i.d. [26]. In the following, we will discuss the impact
of SI-GMN on BICM-SC and BICM-OFDM separately.

BICM-SC: The GMN model is a time—domain model, i.e., the time domain noise "271 is distributed

according to

I t |12
C; |n ‘
palnl) =3 zexp(— i ) 1 <1< Np, (28)

— 70, o;

where ¢; > 0 and 02 > 0 are parameters, and Zle c;02 = 1. Two popular special cases of Gaussian
mixture noise are Middleton's Class—A noise [7] and e-mixture noise. For e—mixture noise I = 2,
co=1—¢cy=¢ 0= ;, and 0% = /mg, where ¢ is the fraction of time when the impulsive noise
is present, k is the ratio of the variances of the Gaussian background noise and the impulsive noise,

and 07 = 1/(1 — e+ re) = 1.
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BICM-OFDM: Taking into account the fact that GMN is rotationally symmetric, it can be shown
that if the pdf of nj,; follows (28), the pdf of ”£7l is given by

f 2
Chy 7,4
pa(nl) = > r’f; M exp (—02’” ) 1 <1< Ng, (29)

ki+-dk=N k1,...kr

N k1 k1 2 A
k17...7k1)cl ¢/ and o g =

which is again an SI-GMN model with parameters ci,.  x, = (
(kyo? + -+ + kjo?)/N. We note that the spectral i.i.d. asumption for "g,z is justified only if the
interleaver spans several OFDM symbols, i.e., B > 1, since the noise after DFT in one OFDM

symbol will be spectrally dependent.

5.2 Spatially Dependent Noise

For most practically relevant types of spatially dependent noise the phases of the elements of n,;, are
not independent. In these cases it is difficult to find closed—form expressions for the joint MGF ®,,(s)
and the joint moments M,,(j1,...,jan). Therefore, unless stated otherwise, we will concentrate in
the following examples on the important special cases oy = 1 (with arbitrary Ng) and Ng = 1 (with
arbitrary o), where only the vector moments M, (i) and the scalar moments M,,(i) of the noise are

required, respectively.

5.2.1 Additive Correlated Gaussian Noise (ACGN) in BICM-SC Systems

In BICM-SC systems, correlated Gaussian noise nf may be caused by narrowly spaced receive an-
tennas [5]. Correlated Gaussian interference n} = by, + n}, is caused by a synchronous co—channel
interferer transmitting i.i.d. PSK symbols b, over a spatially correlated Rayleigh fading channel
with gains hj, and AWGN 7). In both cases n! is fully characterized by its covariance matrix
C.. = E{nt(nt)"}, and the corresponding vector moments M, (i) are given in Table 3, where \;,

1 <1 < Npg, denotes the eigenvalues of C,,,,.

5.2.2 Asynchronous Co—Channel Interference (CCI) in BICM-SC Systems

Another common type of non—AWGN impairment in BICM-SC systems is asynchronous CCl. We
consider coding over B different hopping frequencies and assume that at hopping frequency g,

1 < < B, in addition to AWGN ﬁzw there are I, Rayleigh faded asynchronous CCl signals leading
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to time—domain noise

Iy ku
ng, =Y ki)Y ginlbiulk — 1 +7f,, 1<k<N, (30)
=1 =k,

where hy, ,[i] and b; [l] € M, ( M, ,.: M; ,~ary symbol alphabet) denote the temporally i.i.d. zero—
mean Gaussian random channel vector and the i.i.d. symbols of the ith interferer at the uth hopping
frequency, respectively. Furthermore, g;,[l] = ¢:,(IT + 7,), where g; ,(t), T, and 7, are the
effective pulse shape, the symbol duration, and the time offset of the ith interferer at the uth
hopping frequency, respectively. We assume that g; ,(I7 + 7;,,) ~ 0 for i < k; and i > k,,, denote
the set of all possible values of &, & S oy GiulDbi u[l] by S, and define S, £ Sy % ... X Sy,
If I, = 0, we formally set S, = {0} with |S,| = 1. With these definitions, the pdf of nj , can be

expressed as
B
= C“# . INH ~—1
N ; ; Nk det(Cs, ) eXp < (1) Csunk> y (31)

where ¢, 5, 2 1/(|S,|B) and Cs, 2 31, |§z‘,u|25{l~lk7“[i]l~lkH,u[i]}—|—U?LINR (02: variance of elements

1

n

of ﬁzﬂ) Eq. (31) shows that CCl in BICM-SC systems can be interpreted as correlated Gaussian
mixture noise. For future reference we denote the ratio of the total CCl variance and the total AWGN
variance by s, cf. Section 6. The scalar moments M, (i) (valid for N = 1) and vector moments
M, (i) of asynchronous CCl are given in Tables 2 and 3, respectively, where we have replaced Cs,

by 0‘29# for Np = 1in Table 2, and in Table 3, \;s,, 1 <1 < Ng, are the eigenvalues of Cs,.

5.2.3 Narrowband Interference (NBI) in BICM-OFDM Systems

We consider a BICM-OFDM system with coding over B different hopping frequencies. At hopping
frequency p, 1 < u < B, the received frequency—domain signal is impaired by AWGN nku and [,
Rayleigh faded PSK NBI signals. The corresponding frequency—domain noise model is

nl, = gealilbulilhu,lil + 0L, 1<k<N, (32)

where b,,[i] is the PSK symbol of the ith interferer at the pth hopping frequency affecting the set NV, ;
of sub—carriers via gi, ,[i] £ exp[—jim(N —1)(k+ fui/Afs)/N+ ¢, sin[r(k+ f.../Afs)]/ sin[r(k+
fui/Afs)/N] [3]. Here, f,; and ¢,,; denote the frequency and phase of the ith interferer at hopping

frequency p relative to the user, respectively, and Afs is the OFDM sub—carrier spacing. Since
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we consider NBI, the same interference fading vector fz;w[i] (modeled as spatially correlated zero—
mean Gaussian random vector) affects all sub—carriers in NV, ;. For f,;, = vAf, the NBI affects
only sub—carrier v, i.e., Nw’ = v, while, in theory, for f,; # vAf the NBI affects all sub—carriers.
However, gy ,[i] decays quickly and we limit V,,; such that |gy ,[i]| = O for k& & N, ;. Finally, we
assume that no sub—carrier is affected by two narrowband interferers at a given hopping frequency,

i.e., Nuiy N Ni, =0, iy # iy. The pdf for this general interference scenario is given by

INHe-1 o f €1 In
Z Z Z TNr det ) exXp <_(”k) Cu,i,knk> + W exp <— >

H= 1 i= 1keNy,7,

(33)
where o2 denotes the variance of the elements of the AWGN nf, ¢y £ 1/(BN), ¢, 2 1 —
Yt S il / (BN, Cruie 2 i ulilPC it 02 I ny, and Cuy & E{ by [i] (i,uli))™}. Eq. (33)
shows that, similar to CCl in BICM-SC systems, NBI in BICM-OFDM systems can be interpreted
as correlated Gaussian mixture noise. We denote the ratio of the total NBI variance and the AWGN
variance by &, cf. Section 6. The corresponding moments M, (i) and M,(i) are provided in Tables

2 and 3, respectively, where we have replaced C,; ,, by o2 .. for Np =1 in Table 2, and in Table 3,

i,k
Aipiger 1 < 1 < N, are the eigenvalues of C,; 1.

5.2.4 Spatially Dependent (SD) GMN

SD—-GMN is an appropriate model for impulsive noise if all antennas are affected simultaneously by
the phenomenon causing the impulsive behavior [26].

BICM-SC: The joint pdf for SD-GMN n' is given by

I
( o Ci _HnZW 34
Pn nk) - § ZNR eXp 0_2 ) ( )

where ¢; and o? are defined similarly as for SI-GMN is Section 5.1.2. Since the phases of the
elements of n! are independent random variables, the joint MGF ®,,(s) can be calculated to ®5(s) =
S ciexp(o2 SONE 52/4). Furthermore, in this particular case, even a closed—form expression for

the joint moment My, (j1,- .., jny), cf. (21), can be found as

. . . 2 +-t
MGt jing) = 1! ]NR'Z 20rktivg) (35)
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BICM—-OFDM: The DFT operation at the receiver transforms the noise pdf (34) into

f Cky,...kr Hn£||2
pn(nk) = Z “N. 2Ng  SXP | T3 ) (36)
kg

where the same definition is used for cy, ..x, and o} _, as for SI-=GMN, cf. (29). In this case,

the joint MGF can be obtained as ®;(s) = >, . L _n Chyooks XP(0F, 4, le\fl s?/4). The

corresponding joint moment is given by

. ) . ) 201445
Mn(j1, - dvg) = gl dng! Y Ckl,---vszfkg.l..,m e, (37)
kit k=N

5.3 Monte—Carlo Method

For complicated types of noise such as UWB interference, it may be difficult to calculate the moments
M, (i), My(i), and My (j1, ..., jng) in closed form. In this case, these moments may be obtained by
Monte—Carlo simulation of (21), (22), or (23) and subsequently be used in (19) for calculation of the
asymptotic BER. We note that this semi—analytical approach is much faster than a full simulation

since the moments are independent from the SNR ~ and have to be computed only once.

6 Numerical and Simulation Results

In this section, we verify our derivations in Sections 3-5 with computer simulations and employ the
presented theoretical framework to study the performance of BICM in non—AWGN environments.
For the simulations, we consider both idealized channels with temporally i.i.d. channel and noise
vectors, and non—ideal channels generated based on the models presented in Sections 2.1 and 5.
In the non—ideal case, for BICM-SC we assume a frame size of N = 972 and a normalized fading
bandwidth BT of 0.007, which are typical values for the DAMPS mobile communication system
[4]. For BICM—OFDM we consider systems with N = 64 and N = 128 sub—carriers transmitting
over channels with . = 10 and L = 20 i.i.d. impulse response coefficients. For all simulations
shown, a pseudo—random interleaver was employed. Throughout this section we adopt the standard
convolutional code with rate R, = 1/2 and generator polynomials [133, 171] (octal representation).
Higher code rates are obtained via puncturing and, unless specified otherwise, 4-PSK modulation
and Ny = 1 receive antennas are used. The parameters of the adopted noise models are specified in

the respective captions of Figs. 1-7.
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In Fig. 1, we show simulation results for BICM-SC and BICM-OFDM impaired by GMN and NBI,
respectively. In both cases, coding (R. = 3/4) and interleaving is performed over different numbers
of frames B. Besides the simulation results we also show the upper bound and the asymptotic BER
derived in Sections 3 and 4, respectively. For high enough SNR and BICM-OFDM with N = 128 and
the severely frequency—selective channel with L = 20 the analytical results are accurate even for B =
3. In contrast, for BICM-SC and BICM-OFDM with N = 64 and L = 10 the interleaver is not able
to generate i.i.d. channels for small B which leads to performance degradation and the corresponding
simulated BER exceeds the upper bound (which was derived assuming i.i.d. channels). However, as
B increases, the simulation results approach the upper bound and the asymptotic BER also in these
cases for high SNR. Note that for non—delay critical applications, such as data transmission, large B
can be afforded.

In Fig. 2, we show the BER of BICM-SC and BICM-OFDM (N = 64) for Rayleigh fading and
various different noise and interference scenarios. Fig. 2 shows that the simulated BERs (solid lines
with markers), which were generated with non—ideal channels and for different B, approach the
upper bound (solid lines without markers) and the asymptotic BER (dashed lines) for high SNR. In
particular, for the BER region of BER < 10~°, which is difficult to simulate, the proposed analytical
results are accurate approximations for the true BER. The upper bound is again not a true upper
bound for the simulated BER because of the non—ideal channel. In accordance with our findings in
Section 4.3, Fig. 2 shows that for high SNR all BER curves are parallel, i.e., all considered types of
noise lead to the same diversity gain of G4y = dy = 5. Nevertheless, there are large performance
differences between different types of noise because of the different coding gains G.. Fig. 2 confirms
that OFDM is far more robust to GMN than SC if BICM is used in both cases. For GMN Il BICM—-
OFDM outperforms BICM-SC by 5 dB at high SNR and approaches the performance in AWGN. This
is an interesting result, since a previous comparison in [15] had shown that BICM-SC is more robust
to GMN than uncoded OFDM. Note, however, that for BICM—-OFDM a relative large B is necessary
to make the GMN approximately spectrally independent, whereas for BICM-SC GMN is temporally
independent even for B = 1, cf. Section 5.1.2.

In Fig. 3, we investigate the effect of the code rate R. on the performance of BICM-OFDM
(N = 128) in NBI for a non—ideal Rayleigh fading channel with L = 20 and B = 3. Fig. 3
shows that as the code rate increases, the diversity gain increases since the free distance of the code

increases, cf. (24). While the upper bound (solid line without markers) approaches the simulation
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results (solid lines with markers) for BER < 1079 in all cases, the convergence of the upper bound to
the asymptotic BER (dashed lines) is slower for small (R, = 1/2) and large (R. = 7/8) code rates.
For R. = 1/2, dy is large making the asymptotic BER curve very steep, which leads to an over—
estimation of the BER at low SNRs. For R. = 7/8, the slow convergence can be explained by the
large relative weight of terms neglected in asymptotic BER expressions (e.g. w(d; +1)/w(d;) = 56).
For comparison, R. = 3/4 shows a much faster convergence since w(ds + 1)/w(dy) = 5.

In Fig. 4, we consider the impact of the type of fading on BER for GMN and AWGN. Note that
idealized channels with i.i.d. coefficients have been used to obtain the simulations shown in Fig. 4
and, in contrast to the other figures in this paper, 16-QAM was employed instead of 4—-PSK. Since
the type of fading affects the diversity gain Gy = aqdy, the asymptotic slopes of the BER curves
for Nakagami-m (ag = m = 2) and Weibull (aq = ¢/2 = 2/3) fading differ from the asymptotic
slopes of the BER curves for Rayleigh, Ricean, and Nakagami—g fading, since for the latter three
ag = 1 holds. It can also be observed that the performance loss caused by GMN compared to AWGN
decreases with decreasing diversity order.

In Fig. 5, we show the BERs of uncoded SC transmission over correlated Nakagami—m channels
with Nr = 2 receive antennas and impairment by SD- and SI-GMN (both cases: e-mixture noise
with € = 0.1, K = 10). The spatial fading correlation coefficient is p, = 0.9. Note that for uncoded
transmission the temporal i.i.d. asumption for fading and noise is not required. Fig. 5 shows that
for uncoded transmission the derived upper bound is very tight even at low SNR and approaches the
asymptotic BER at high SNR. Thereby, the asymptotic BER converges faster to the upper bound for
channels with smaller diversity gain. Furthermore, Fig. 5 confirms that spatial noise dependencies
lead to significant performance degradations.

In Fig. 6, we consider the BER of BICM-SC impaired by temporally i.i.d., spatially uncorre-
lated/correlated (fading correlation p;, = 0.9) Rayleigh fading and AWGN/ACGN (noise correlation
pn = 0.9) for Ng = 2. Fig. 6 shows that, while noise correlation has also adverse effects on perfor-
mance, fading correlation is more harmful. Furthermore, the convergence of the asymptotic BER to
the union bound is negatively affected by the spatial fading correlation.

Finally, in Fig. 7, we consider the BER of BICM-OFDM impaired by UWB interference and tempo-
rally i.i.d. Rayleigh fading. We consider MB-OFDM and impulse-radio UWB (IR-UWB) interference
following the EMCA [8] and the IEEE 802.15.4a [9] standards, respectively. Specifically, for IR-UWB
we assume NN, = 32 bursts per symbol and L, chips per burst [9]. The MGF required for the upper
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bound (8) was obtained using the methods proposed in [10]. Since, due to the complicated nature
of the interference signal, closed—form expressions for the moments are difficult to obtain, we used
the Monte—Carlo approach discussed in Section 5.3 for calculation of the moments for evaluation of
the asymptotic BER (19). Fig. 7 nicely illustrates that the coding gain in UWB interference strongly
depends on the sub—carrier spacing of the victim BICM-OFDM system and the format of the UWB

interference.

7 Conclusions

In this paper, we have presented a framework for performance analysis of BICM-SC and BICM-
OFDM systems impaired by fading and non—Gaussian noise and interference. The proposed analysis
is very general and applicable to all popular fading models (including Rayleigh, Ricean, Nakagami—
m, Nakagami—¢q, and Weibull fading) and all types of noise with finite moments (including AWGN,
ACGN, GMN, CCI, NBI, and UWB interference). In particular, we have derived an asymptotically
tight upper bound for the BER which allows for efficient numerical evaluation and a simple closed—
form expression for the asymptotic BER. Our analysis reveals that while the coding gain is strongly
noise dependent, the diversity gain of the overall system is not affected by the type of noise. This
result is important from a practical point of view since it shows that at high SNRs the BER curves
of BICM systems optimized for AWGN will only suffer from a parallel shift if the impairment in a

real-world environment is non—Gaussian.

A Spatially Correlated Fading Channels

In this appendix, we prove (2) for correlated Rayleigh, Ricean, and Nakagami—m fading. For simplicity
of notation, we drop subscript k in this appendix.
Ricean Fading: For Ricean fading the pdf of the channel vector h is given by

1

m €Xp [_(h - “h)HC;}}(h - ”’h)] ? (38>

pr(h) =

where p, = £{h} and C};, = £{(h — ;) (h— ;)" } are the channel mean and channel covariance

matrix, respectively. For h — Oy, we can rewrite (38) as

pn(h) = exp (—HhHCﬁ;Nh)
h R det(C’hh)

+o(1). (39)
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Based on (39) and the relation || = a? it can be shown that (2) and (3) hold for correlated
Rayleigh (), = On,,) and Ricean (p;, # Oy,,) fading with o, and oy as specified in Table 1.

Nakagami-m Fading: For Nakagami—m fading the joint MGF of a?, 1 < I < Npg, is given by
[20]

Pp2(s) = & {exp <— i a; sl> } =det(Iy, + SCu/m)™™, (40)

where S £ diag{s}, and C,, and m denote the channel correlation matrix and the fading parameter,
respectively. The behavior of the joint pdf p,2(ai, ..., a3,) of af, 1 <1 < Ng, for @ — Oy, can

be deduced from the behavior of ®,2(s) for s; — o0, 1 <1 < Ng, which is given by

Nr Nr
Dg2(8) = mNEm det(Ch)™ H s;™+o (H sl_m> : (41)
=1

=1

Consequently, we obtain

2 2 N = a?(m_l) 1 2(m—1)
paz(ai, ..., a%, ) =m " det(Coa)™™ H ) +o0 1 a , (42)

=1
which clearly shows that the a;, 1 <1 < Ng, are asymptotically i.i.d., i.e., (2) and (3) are valid. The

corresponding parameters a,. and «gy are provided in Table 1 and can be obtained by exploiting the

relation between pg2(ai, ..., %) and pa(a).
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Table 1: Pdf p,(a) of fading amplitude a for popular fading models and corresponding values

for a. and «oy.

We have omitted the subscripts k and [ for convenience. The parameters for

Rayleigh (C}y), Ricean (pu,, Chy), and Nakagami-m (m, C,,) fading are defined in Appendix
A. The parameters for Nakagami—q (g, b) and Weibull (¢) fading are defined as in [20].

‘ Channel type ‘ pa(a) of the fading amplitude a ‘ Q. ‘ g ‘
Rayleigh 2ae " det(Cpy) Y Nr 1
exp (—pf O\
Ricean 2K +1)ae K-(1+Ke? [y <2a\/K(K + 1)) DA = hn B 1
det(Chh)
Nakagami-m % m™ g2l emme’ F(m det(C,q) "™/ Nr m
. a 2
Nakagami—q 12_b2 exp( = b2)> Iy <(1 b2)> 1;;1 1
Weibull | ¢(T(1+2))* a* texp (— (2T(1+ 2))*) c(D(1+2))3 c

Table 2: MGF ®;(s) and scalar moments M, (i) of types of noise considered in Section 5. All
variables in this table are defined in Section 5. (SC) and (OFDM) means that the type of noise
is relevant for BICM-SC and BICM-OFDM, respectively.

| Noise type | Noise MGF ®;(s) Scalar moment M,,(7) |
AWGN exp(s?/4) i!
GMN (SC) ST exp(s2a,%/4) il S o '
GMN (OFDM) Zkl-i---g)-k]:N Chky,....k1 exp(s® Ukl ..... k1/4) il Zkl—i----]—gi-k,:N Cky,....k1 012?1 ks
CCI (SC) D et 2os, Cus, eXP(s°0f /4) il Zuzl s, CiSu a?sz
NBI (OFDM) | 3200, S0 Sen,, €0 exp(s07 4 /4) | (30,0, oo Zke/\/ T
+c exp(s 02/4) +c102)
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Table 3: Vector moments M, (i) of types of noise considered in Section 5. All variables in this
table are defined in Section 5. (SC) and (OFDM) means that the type of noise is relevant for
BICM-SC and BICM-OFDM, respectively.

| Noise type | Vector moment M, (i) |
: %
ACGN (SC) Dt =i M A
. B 1 k
CCI (SC) i! Zu:1 ZSu CuSp Zkl—i----—i-kNR:z‘ )‘]f7su T )‘ijfsu

. B I, k
NBI (OFDM) i! Zu:1 Zy:1 Zke/\/u , €o Zkl—i- Ak =i >\ll€71u7u,k o ')‘N];}?uw,k

+Cl (Z("‘NR 1)1)' 0_7212

GMN (SC) “Jé,?*f >t Ok OF
GMN (OFDM) ST ki ke Ch bt OF g
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Figure 1: BER of BICM-SC and BICM-OFDM impaired by GMN (e-mixture noise,
e = 0.1, kK = 100) and NBI, respectively, vs. SNR ~. R. = 3/4, Rayleigh fading, 4
PSK, and Np = 1. BICM-SC: Flat time-selective fading, N = 972, and B;T = 0.007.
BICM-OFDM (N = 64): Frequency-selective Rayleigh fading with L = 10 and B
equal power, sub—carrier centered NBI signals with I, = 1,1 < < B, k = 7. BICM~
OFDM (N = 128): Frequency-selective Rayleigh fading with L = 20 and B equal
power, sub-carrier centered NBI signals with [, = 1, 1 < u < B, k = 2. Solid lines
with markers: Simulated BER. Solid lines without markers: BER bound (8). Dashed
lines: Asymptotic BER (19).
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Figure 2: BER of BICM-SC and BICM-OFDM impaired by various types of noise
vs. SNR ~. Rayleigh fading, R. = 3/4, 4-PSK, and N = 1. BICM-SC: N = 972
and B;T" = 0.007. BICM-OFDM: N = 64 and L = 10. GMN I: e mixture noise,
e = 0.01, k = 100. GMN II: e-mixture noise, € = 0.1, k = 100. GMN III: e-mixture
noise, ¢ = 0.1, kK = 10. Asynchronous CCI: Two asynchronous equal power 4-PSK
CCI signals, I, = 1, p € {1, 2}, I, = 0, 3 < p < 10, raised cosine pulses g1,,(t),
p € {1, 2}, with roll-off factor 0.3, 7, = 037, p € {1,2}, K = 2. NBI I: One
sub—carrier—centered NBI signal, [y = 1, Iy = I3 = [, = I = 0, Kk = 9. NBI II: 2
equal power, sub—carrier—centered NBI signals, Iy = I, =1, I3 =1, =15 =0, Kk = 14.
Solid lines with markers: Simulated BER. Solid lines without markers: BER bound
(8). Dashed lines: Asymptotic BER (19).
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Figure 3: BER of BICM-OFDM impaired by NBI (3 equal power, sub—carrier—centered
NBI signals, Iy = I, = I3 = 1, K = 10) vs. SNR ~. Rayleigh fading, L = 20, 4-PSK,
N =128, B = 3, and Ng = 1. Solid lines with markers: Simulated BER. Solid lines
without markers: BER bound (8). Dashed lines: Asymptotic BER (19).

25



Nasri et al.: Performance of BICM-SC and BICM-OFDM Systems

10 T T T T T
— Upper bound (GMN)
= = Asymptotic BER (GMN)
—©— Simulated BER (GMN)
— - Asymptotic BER (AWGN)
-2
10 ; ]
10 -
Tme i DR V\?eibull (c=4/3)
\ A NS N .
v AR « ek Nakagami-¢ (¢ = 10
a7 ’ ~ BN AN
m \ W . N \\
Mmoo, A N R
10 " \ 2 DN
N D s
vy N N
\ N N
\,
107 Y -
\ N
S ~
v\. ) .
1072 w | Nakagami-m (0 =2) Npicean (K = 2N ) |
0 5 10 15 20 25 30 35 40 45 50

SNR [dB] —

Figure 4: BER of BICM-SC impaired by GMN (e-mixture noise, ¢ = 0.25, k = 10) and
AWGN, respectively, vs. SNR . Ideal i.i.d. fading, R. = 7/8, 16-QAM, and Ng = 1.
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Figure 5: BER of uncoded SC transmission impaired by SD- and SI-GMN (e-mixture
noise, € = 0.1, kK = 10), respectively, vs. SNR ~. Np = 2, Nakagami—m fading spatial
correlation p, = 0.9, and 4-PSK.
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Figure 6: BER of BICM-SC impaired by AWGN/ACGN vs. SNR . Spatially
i.i.d./spatially correlated, temporally i.i.d. Rayleigh fading, R. = 7/8, 4-PSK, and
Npr = 2. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (8). Dashed lines: Asymptotic BER (19).
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Figure 7: BER of BICM-OFDM system with sub—carrier spacing Af, impaired by
IR-UWB [9] (N, = 8 bursts per symbol and L. chips per burst) and MB-OFDM
UWRB [8], respectively, vs. SNR ~. Ideal i.i.d. Rayleigh fading, R. = 5/6, 4-PSK, and
Ngi = 1. Solid lines with markers: Simulated BER. Solid lines without markers: BER
bound (8). Dashed lines: Asymptotic BER (19). For comparison the bound and the
asymptotic BER for AWGN are also shown.
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