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Abstract— In this paper, we study the asymptotic behavior of
the bit–error probability (BEP) and symbol–error probability
(SEP) of differential M–ary phase–shift keying with differential
equal gain combining (DEGC) in correlated Ricean fading
and non–Gaussian noise, which in our definition also includes
interference. We derive simple and easy–to–evaluate asymptotic
BEP and SEP expressions which show that at high signal–
to–noise ratios (SNRs) the performance of DEGC depends on
certain moments of the noise and interference impairing the
transmission. We provide closed–form expressions for these
moments for practically important types of noise such as Gaus-
sian noise, Gaussian mixture noise, and correlated co–channel
interference. In addition, we show that the performance loss of
DEGC compared to coherent maximum ratio combining (MRC)
is always 3 dB independent of the type of noise if only one
diversity branch is available but strongly depends on the type of
noise if multiple diversity branches are combined.

I. INTRODUCTION

In recent years the performance analysis of wireless com-
munication systems impaired by fading and noise has received
considerable attention, cf. e.g. [1] and references therein. In
particular, for fading channels impaired by additive white
Gaussian noise (AWGN), simple closed–form expressions for
the symbol error probability (SEP) at high signal–to–noise
ratios (SNRs) have been developed, cf. [2]–[5]. These asymp-
totic expressions are very useful for communication system
design as they reveal the effects of the modulation scheme,
the diversity combining scheme, and the channel parameters
on system performance.

In practice, wireless communication systems are often not
only impaired by AWGN, but also by non–Gaussian noise and
interference1. Examples of non–Gaussian noise include co–
channel and adjacent channel interference [6], impulsive noise
[7], and ultra–wideband (UWB) interference. Recently, the
authors have provided asymptotic SEP results for linear mod-
ulation schemes impaired by fading and general non–Gaussian
noise assuming coherent equal gain combining (EGC) [8],
coherent selection combining (SC) [8], and coherent maximum
ratio combining (MRC) [9] at the receiver. Unfortunately,
the asymptotic analysis in [8] and [9] is not applicable to
differential M–ary phase–shift keying (M–PSK) with dif-
ferential EGC (DEGC) which is often preferred in practice
over coherent combining schemes since it does not require
channel estimation and phase tracking [1], [2]. We note that
unlike coherent combining [4], for DEGC even for impairment

1To simplify our notation, in the following, “noise” refers to any additive
impairment of the received signal, i.e., our definition of noise also includes
what is commonly referred to as “interference”.

by AWGN a general asymptotic performance analysis for
correlated fading channels is not available in the literature.
Only results for the special case of independent diversity
branches can be found in [2], [10].

In this paper, we develop a novel powerful framework
for analyzing the bit–error probability (BEP) and SEP of
differential M–PSK with DEGC in the high SNR regime when
the received signal is impaired by correlated Ricean fading and
general non–Gaussian noise. In our analysis, the only assump-
tion that is made on the noise is that all of its moments exist.
Thus, our results are applicable to a large number of practically
relevant scenarios including impairment by AWGN, Gaussian
mixture noise, and correlated co–channel interference. The
resulting asymptotic BEP and SEP expressions are surprisingly
simple and easy to evaluate and only require the calculation
of certain noise moments.

The remainder of this paper is organized as follows. In
Section II, some definitions and the considered signal model
are introduced. In Section III, general expressions for the
asymptotic BEP and SEP of differential M–PSK with DEGC
are derived. The moments required for evaluation of these
asymptotic expressions are calculated for several relevant types
of noise in Section IV. In Section V, the obtained analytical
results are confirmed by simulations, and conclusions are
drawn in Section VI.

II. PRELIMINARIES

In this section, we introduce some definitions and notations,
present the considered signal and channel model, and briefly
review the DEGC decision rule.

A. Some Definitions and Notations

Notation: In this paper, bold lower case letters x and bold
upper case letters X denote vectors and matrices, respectively.
Furthermore, E{·}, Pr{A}, [·]T , (·)∗, [·]H , || · ||, and det(·)
denote statistical expectation, the probability of event A,
transposition, complex conjugation, Hermitian transposition,
the L2–norm of a vector, and the determinant of a matrix, re-
spectively. In addition, A

.= B means that A is asymptotically
(for high SNR) equal to B, (2N − 1)!! , 1 · 3 · . . . · (2N − 1),
and (2N)!! , 2 · 4 · . . . · 2N . Finally, Φ(s) = L{p(x)} ,∫∞
−∞ p(x)e−sx dx denotes the Laplace transform of p(x), and

IX and 0X are the X × X identity matrix and the X
dimensional all–zeros column vector, respectively.

Moments: We define the N th moment of the real random
variable (RV) |x|2 as Mx(N) , E{|x|2N}, where x is a



complex RV. Similarly, for a complex random vector variable
(RVV) x we define the N th moment of ||x||2 as Mx(N) ,
E{||x||2N}. We note that Mx(0) = 1 and Mx(1) is the sum
of the powers of the elements of x.

Combining gain and diversity gain: For high SNRs, the SEP
in flat fading channels can be approximated by [2], [4]

SEP .= (Gc γ̄)−Gd , (1)

where γ̄ denotes the average SNR, and Gc and Gd are referred
to as the combining gain2 and the diversity gain, respectively.

B. Signal Model

We assume that the received signal rl[k] in the lth diversity
branch in the kth symbol interval can be modeled in equivalent
complex baseband representation as

rl[k] =
√

γ̄ hl[k] b[k] + nl[k], 1 ≤ l ≤ L, (2)

where L, hl[k], b[k], and nl[k] denote the number of diversity
branches, the fading gain of the lth branch, the transmitted
symbol, and the noise in the lth diversity branch, respectively.
The M–PSK symbol b[k] is obtained by differential encoding
b[k] = a[k]b[k − 1] from the information bearing differential
symbol a[k]. Both b[k] and a[k] belong to the same M–
PSK constellation A. We assume that the transmitted symbols
b[k] ∈ A are normalized to E{|b[k]|2} = 1. Since the main
goal of this paper is to investigate the dependence of the
performance of DEGC on the type of noise, we assume that
the fading is approximately constant in two successive symbol
intervals, i.e., hl[k] = hl[k − 1] = hl, 1 ≤ l ≤ L. This
assumption is valid if the coherence time of the channel is
much larger than the symbol duration, which is true for most
practical systems.

Using vector notation, (2) can be rewritten as

r[k] =
√

γ̄ h b[k] + n[k], (3)

where r[k] , [r1[k] r2[k] . . . rL[k]]T , h , [h1 h2 . . . hL]T ,
and n[k] , [n1[k] n2[k] . . . nL[k]]T . The channel vector h is
assumed to be Gaussian distributed with mean µh , E{h}
and covariance matrix Chh , E{(h − µh)(h − µh)H}.
Furthermore, we assume that Chh has full rank L and define
the Ricean factor of the lth branch as Kl , |µl|2/σ2

l , where µl

and σ2
l denote the lth element of µh and the lth main diagonal

element of Chh, respectively. For convenience we apply the
normalization Mh(1) = L, and we note that for Rayleigh and
Ricean fading µh = 0L and µh 6= 0L, respectively.

The noise vector n[k] is independent of h and normalized
to Mn(1) = L. We note that the elements of n[k] may be
statistically dependent, non–circular, and non–Gaussian. The
only condition that we impose on n[k] is that certain noise
moments exist, cf. Section III-A.

2The combining gain is also often referred to as “coding gain” in the
literature, e.g. [4]. We prefer the term “combining gain” as channel coding is
not applied here.

C. Differential Equal Gain Combining (DEGC)

The DEGC3 decision rule can be expressed as [1]

â[k] = argmin
ã[k]∈A

{||r[k]− ã[k]r[k − 1]||2}, (4)

where â[k] and ã[k] are the estimated symbol and a hypo-
thetical symbol, respectively. We note that the decision rule
in (4) may be suboptimum in non–Gaussian noise. However,
optimizing the DEGC decision rule for the underlying type
of noise is difficult in practice, since the noise statistics are
typically not known at the receiver and may change with time.
Estimating and tracking these statistics is computationally
expensive. Therefore, (4) is usually used regardless of the type
of noise that impairs the received signal.

III. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we develop asymptotic expressions for the
BEP and SEP of DEGC, investigate the diversity and com-
bining gains of DEGC in non–Gaussian noise, and compare
the results for DEGC with those obtained in [9] for MRC.
However, first we derive an asymptotic result for the pairwise
error probability (PEP).

A. Asymptotic Pairwise Error Probability (PEP)

The PEP is defined as the probability of detecting ā[k] while
a[k] is transmitted, where a[k], ā[k] ∈ A and a[k] 6= ā[k].
Using the signal model and the decision rule described in the
previous section, the PEP can be expressed as

Pe(d) = Pr{||√γ̄ h e + n̄||2 < ||ñ||2}, (5)

where

n̄ , n[k]− ā[k]n[k − 1], (6)
ñ , n[k]− a[k]n[k − 1], (7)

denote two noise vectors and e , (a[k] − ā[k])b[k − 1] is
a complex scalar with d2 , |e|2. Note that if the marginal
probability density functions (pdfs) pnl

(nl), 1 ≤ l ≤ L, of
all components of n[k − 1] are circular [11], i.e., pnl

(nl) =
pnl

(ejϕnl) for all ϕ ∈ [−π, π), and n[k] and n[k − 1]
are statistically independent, a[k] has no influence on the
distribution of ñ and ñ , n[k]−n[k−1] may be used instead
of the definition in (7). A similar statement applies to n̄.

Based on (5) we can express the conditional PEP as

Pe(d|n̄, ñ) =

||ñ||2∫

0

p∆(x) dx, (8)

where p∆(x) denotes the pdf of ∆ , ||u||2 with u , √
γ̄ h e+

n̄. Conditioned on n̄, u is a Gaussian random vector with
mean µu , E{u|n̄} =

√
γ̄ e µh + n̄ and covariance matrix

Cuu , E{uuH |n̄} = γ̄|e|2Chh. Therefore, the Laplace

3DEGC is also referred to as “differentially coherent” EGC and “post–
detection” EGC in the literature, cf. e.g. [1].



transform Φ∆(s) , E{e−s∆} of p∆(x) can be expressed as
[12]

Φ∆(s) =
exp

(−sµH
u (IL + sCuu)−1µu

)

det(IL + sCuu)
. (9)

For full rank fading correlation matrices Chh and γ̄ → ∞,
(9) can be simplified to

Φ∆(s) .=
exp

(
−

[
µh + n̄

e
√

γ̄

]H

C−1
hh

[
µh + n̄

e
√

γ̄

])

det(Chh) d2L γ̄L sL
. (10)

An asymptotic expression for p∆(x) can now be easily ob-
tained by applying the inverse Laplace transform to (10).
This result can then be used in (8) to obtain the asymptotic
conditional PEP

Pe(d|n̄, ñ) .=

exp
(
−

[
µh + n̄

e
√

γ̄

]H

C−1
hh

[
µh + n̄

e
√

γ̄

])

L! det(Chh) d2L γ̄L
||ñ||2L.(11)

Using the expansion exp(x) =
∑∞

k=0 xk/k!, we can rewrite
the exponential function in (11) as

exp
(−[µh + n̄/(e

√
γ̄)]HC−1

hh [µh + n̄/(e
√

γ̄)]
)

=

exp
(−µH

h C−1
hhµh

)
(1 + f(n̄)/γ̄) , (12)

where f(n̄) is implicitly defined in (12). Furthermore,
f(n̄) can be written as a sum of products of the form
Cκ1,ν1,··· ,κL,νL

n̄κ1
1 (n̄∗1)

ν1 n̄κ2
2 (n̄∗2)

ν2 · · · n̄κL

L (n̄∗L)νL , where
Cκ1,ν1,··· ,κL,νL

are coefficients that are non–increasing in
γ̄, n̄l, 1 ≤ l ≤ L, denote the elements of n̄, and κl ≥ 0
and νl ≥ 0 are integers. Assuming now that all individual
and joint moments of the elements of n̄ and ñ exist (i.e.,
E{n̄κ1,1

1 (n̄∗1)
ν1,1 ñ

κ2,1
1 (ñ∗1)

ν2,1 · · · n̄κ1,L

L (n̄∗L)ν1,L ñ
κ2,L

L (ñ∗L)ν2,L}
< ∞, where ñl are the elements of ñ, and ν1,l ≥ 0, ν2,l ≥ 0,
κ1,l ≥ 0, and κ2,l ≥ 0, 1 ≤ l ≤ L), when γ̄ →∞, from (11)
and (12) we obtain for the (unconditional) PEP the simple
asymptotic expression

Pe(d) = E{Pe(d|n̄, ñ)} .=
ph Mñ(L)

L! d2L
γ̄−L (13)

with

ph ,
exp

(−µH
h C−1

hhµh

)

det(Chh)
. (14)

From (13) we observe that n̄ has no influence on the asymp-
totic PEP. Furthermore, ñ affects the PEP via Mñ(L), i.e.,
only the number of diversity branches L determines which
moment of ||ñ||2 is relevant for the PEP, but the mean µh

and the correlation matrix Chh of h have no influence in this
regard.

B. Asymptotic SEP and BEP

At high SNRs, the SEP will be dominated by the PEP of
the nearest–neighbor signal points of A. Thus, from (13) we
obtain

SEP .=
βM ph Mñ(L)

L! d2L
M

γ̄−L, (15)

where dM = 2 sin (π/M) denotes the minimum Euclidean
distance of A and βM is the average number of minimum–
distance neighbors (βM = 1 for M = 2 (BPSK) and βM = 2
for M ≥ 4). Assuming that Gray mapping is used for non-
binary modulations, the asymptotic BEP can be obtained from
the corresponding SEP as [2]

BEP .=
SEP

log2(M)
. (16)

From (15) and (16) the SEP and BEP of differential M–
PSK with DEGC can be easily calculated as long as closed–
form expressions for the moments Mñ(L) are available. The
calculation of these moments for practically relevant types of
noise and interference is addressed in Section IV.

C. Diversity and Combining Gain
A comparison of (15) with (1) shows immediately that the

diversity gain of DEGC is Gd = L, independent of the type
of noise. Furthermore, on a logarithmic scale, the combining
gain can be expressed as

Gc =
10
L

log10(L!) +
10
L

log10

(
d2L

M

βM

)

−10
L

log10(ph)− 10
L

log10(Mñ(L)). (17)

The second, the third, and the fourth term of (17) show the
dependence of Gc on the modulation scheme, the channel
statistics, and the noise statistics, respectively. Eq. (17) reveals
that for a given L, the modulation scheme, the channel
statistics, and the noise statistics independently contribute to
the combining gain.

Furthermore, an important result is drawn from (17) for the
special case of L = 1. In this case, Mñ(1) = E{||n[k] −
a[k]n[k − 1]||2} = 2Mn(1) − 2<{E{a∗[k]}E{n[k]n∗[k −
1]}} = 2 holds for all types of noise because E{a∗[k]} = 0 for
M–PSK. Therefore, (17) shows that for L = 1 the asymptotic
error rate performance of DEGC is independent of the type of
noise.

D. Comparison with MRC
A comparison of (15) with the results in [9] shows that (15)

is also valid for M–PSK (without differential encoding) with
coherent MRC if Mñ(L) is replaced by Mn(L). This shows
that DEGC and MRC have the same diversity gain Gd = L.
However, DEGC suffers from a combining gain loss compared
to coherent MRC. This loss is given by

∆Gc =
10
L

log10

(
Mñ(L)
Mn(L)

)
. (18)

Eq. (18) shows that the combining gain loss of DEGC com-
pared to coherent MRC depends on the number of diversity
branches L and the noise statistics. However, it is independent
of the fading statistics µh and Chh.

For the special case of L = 1, Mn(1) = 1 is always valid.
Thus, since it was shown in the previous section that Mñ(1) =
2, we obtain ∆Gc = 3 dB for L = 1 independent of the type
of noise. It will be shown in Section IV that ∆Gc does depend
on the type of noise for L > 1.



IV. CALCULATION OF NOISE MOMENTS

In this section, we derive closed–form expressions for
Mñ(L) for AWGN, spatially independent noise, spatially
dependent Gaussian mixture noise, and correlated co–channel
interference. To facilitate the exposition in this section, we
have collected the moments of a few relevant scalar RVs and
RVVs in Table I.

A. I.I.D. Gaussian Noise (AWGN)

Since impairment by independent identically distributed
(i.i.d.) Gaussian noise is often assumed in the literature, it
is instructive to consider this case also for our asymptotic
analysis of DEGC. Here, ||n[k]||2 and ||ñ||2 are both chi–
square distributed RVs with 2L degrees of freedom and it is
straightforward to show that Mñ(L) can be expressed as

Mñ(L) = 2LMn(L), (19)

where Mn(L) is given in Table I (i.i.d. Gaussian RVV). There-
fore, according to (18), for AWGN the asymptotic performance
loss of DEGC compared to coherent MRC is ∆Gc = 3 dB,
independent of the number of diversity branches and indepen-
dent of µh and Chh. This 3 dB loss is a well–known result
for the special case of BPSK transmission over i.i.d. Rayleigh
fading channels, cf. [2, Section 14.4.1], but seems to be new
for general (correlated) Ricean fading channels. For BPSK
modulation, i.i.d. Rayleigh fading, and AWGN it can also be
verified that (15) is equivalent to [2, Eq. (14.4-28)].

B. Spatially Independent Noise

For many practically relevant scenarios, the noise compo-
nents in different diversity branches are mutually independent.
In this case, we can use the multinomial expansion [13] to
calculate Mn(L) as

Mn(L) =
∑

k1+...+kL=L

(
L

k1, . . . , kL

)
Mn1(k1) · . . . ·MnL

(kL),

(20)
where the Mnl

(kl) denote the moments of the components
nl[k], 1 ≤ l ≤ L, of n[k]. The moment Mñ(L) of ñ can also
be obtained from (20) by replacing Mnl

(kl) with Mñl
(kl),

1 ≤ l ≤ L. If we assume furthermore that nl[k] is circular
(cf. Section III-A) and temporally independent (i.e., v , nl[k]
and w , nl[k − 1] are independent), the scalar moments
Mñl

(N) can be calculated as

Mñl
(N) =

∑

k1+2k2+k3=N

N !
k1!(k2!)2k3!

Mv(k1 + k2)Mw(k2 + k3).

(21)
To illustrate the application of (20) and (21), we consider

spatially independent Gaussian mixture noise. Gaussian mix-
ture RVs are used to model the combined effect of Gaussian
background noise and man–made, impulsive noise [7]. The
pdf of scalar Gaussian mixture noise with I terms is given
by

pn(n) =
I∑

k=1

ck

πσ2
k

exp
(
−|n|

2

σ2
k

)
, (22)

where ck > 0,
∑I

k=1 ck = 1, and σ2
k, 1 ≤ k ≤ I , are

constants. Special cases of Gaussian mixture noise include
Middelton’s Class-A noise (I →∞) [14] and ε–mixture noise
(I = 2). Specifically, ε–mixture noise with variance σ2

n is
characterized by c1 = 1 − ε, c2 = ε, σ2

1 = σ2
n/(1 − ε + κε),

σ2
2 = κσ2

n/(1− ε + κε), 0 ≤ ε < 1, and κ > 1. The moments
Mn(N) of scalar Gaussian mixture RVs are given in Table I.

Assuming that all diversity branches are affected by spa-
tially (and temporally) independent Gaussian mixture noise4,
Mñ(L) can be easily calculated using (20), (21), and Mn(N)
from Table I. For example, for L = 2 and temporally i.i.d.
ε–mixture noise, we obtain from (18)

∆Gc = 3 dB + 5 log10

(
(1− ε + εκ2) + 2(1− ε + εκ)2

2(1− ε + εκ2) + (1− ε + εκ)2

)

(23)
which yields ∆Gc = 3 dB for ε = 0 (as expected for AWGN)
and ∆Gc < 3 dB for ε > 0 (impulsive noise). For example, for
ε = 0.25 (23) yields ∆Gc = 2.4 dB and 2.2 dB for κ = 10 and
κ = 50, respectively. Therefore, (23) clearly shows the noise
dependence of the combining gain loss of DEGC compared
to MRC.

C. Spatially Dependent Gaussian Mixture Noise

The pdf of spatially dependent Gaussian mixture (vector)
noise (“Model I” in [7]) is given by

pn(n) =
I∑

k=1

ck

πLσ2L
k

exp
(
−||n||

2

σ2
k

)
, (24)

where ck > 0,
∑I

k=1 ck = 1, and σ2
k, 1 ≤ k ≤ I , are

constants. This is an appropriate model for impulsive noise
if the physical process causing the impulsive behavior affects
all antennas simultaneously [7]. The corresponding moment
Mn(L) is given in Table I.

Assuming temporally independent, spatially dependent
Gaussian mixture noise, it is easy to show that ñ is also
a Gaussian mixture RVV whose pdf can be obtained from
(24) by replacing I , ck, and σ2

k with Ĩ , I(I + 1)/2, c̃k,
and σ̃2

k, respectively. The latter two parameters are defined as
c̃k , c2

k and σ̃2
k , 2σ2

k for 1 ≤ k ≤ I , and c̃k , 2cicj and
σ̃2

k , σ2
i +σ2

j for I +1 ≤ k ≤ Ĩ , 1 ≤ i ≤ I , 1 ≤ j ≤ I , i 6= j.
With these definitions, Mñ(L) can also be easily obtained
from Table I and the combining gain loss of DEGC compared
to coherent MRC can be expressed as

∆Gc =
10
L

log10

(∑Ĩ
k=1 c̃kσ̃2L

k∑I
k=1 ckσ2L

k

)
, (25)

which for ε–mixture noise can be simplified to

∆Gc =
10
L

log10

(
(1− ε)22L + 2ε(1− ε)(κ + 1)L + ε2(2κ)L

1− ε + εκL

)
(26)

4This noise model is referred to as “Model II” in [7]. It is an appropriate
model for impulsive noise if the phenomenon causing the impulsive behavior
affects the antennas independently, see [7] for a detailed discussion.



TABLE I
MOMENTS OF BASIC RVS n AND RVVS n INTRODUCED IN SECTION IV.

Noise Model Moments

Gaussian Mixture RV Mn(N) = N !
∑I

k=1 ck σ2N
k

Mi–ary Interference Mn(N) = 1

M
ku−kl+1
i

∑
n0∈S |n0|2N

I.I.D. Gaussian RVV Mn(L) =
(2L−1)!
(L−1)!

σ2L
n

Correlated
Gaussian RVV Mn(L) = L!

∑
k1+...+kL=L

λk1
1 · . . . · λkL

L

Spatially Dependent
Gaussian Mixture RVV Mn(L) =

(2L−1)!
(L−1)!

∑I
k=1 ck σ2L

k

Again for ε = 0 (Gaussian case), (26) yields ∆Gc = 3 dB
as expected. However, for ε > 0 and κ > 1 it can be shown
that ∆Gc < 3 dB. For example, for ε = 0.25 and κ = 10
we obtain from (26) ∆Gc = 3 dB, 2.25 dB, and 2.0 dB for
L = 1, 2, and 3, respectively.

D. Asynchronous Co–channel Interference

A single Rayleigh faded asynchronous co–channel interferer
can be modeled as

n[k] = g · z[k], (27)

where g is a correlated zero–mean Gaussian RVV with co-
variance matrix Cgg and

z[k] =
ku∑

κ=kl

p(κT + τ)i[k − κ], (28)

where kl, ku, T , τ , p(t), and i[k] denote the lower limit, the
upper limit, the symbol duration, the delay of the interferer
compared to the desired user, the overall interference pulse
shape, and the Mi–ary symbols transmitted by the interferer,
respectively. kl and ku are appropriately chosen to ensue
p(κT + τ) ≈ 0 for κ < kl and κ > ku. Since g and z[k] are
statistically independent, the moments of n can be calculated
as

Mn(L) , E{||g z[k]||2L} = Mg(L)Mz(L), (29)

The moment Mz(L) is given in Table I (Mi–ary interference),
where S includes all values of z[k] for the Mku−kl+1

i possible
combinations of i[k−κ], kl ≤ κ ≤ ku. Mg(L) is also given in
Table I (correlated Gaussian RVV) in terms of the eigenvalues
λi, 1 ≤ i ≤ L, of Cgg .

The relevant noise term for DEGC is given by ñ = g z̃,
where z̃ , z[k] − a[k]z[k − 1] can be modeled as in (28)
if p(κT + τ) and i[k] are replaced with appropriately defined
effective coefficients p̃(κT +τ) and effective interference sym-
bols ĩ[k], respectively. Therefore, Mñ(L) = Mg(L)Mz̃(L)
can also be easily obtained using the results in Table I.

As an example, we consider the special case of a single
synchronous co–channel interferer, where z̃ can be simplified
to z̃ = i[k]− a[k]i[k− 1]. Assuming that the desired user and
the interferer use the same M–PSK constellation, i.e., Mi =
M , Mz̃(L) can be equivalently calculated from z̃ = i[k]−i[k−
1], which yields Mz̃(L) = 1

M 2L
∑M−1

m=0 [1− cos(2πm/M)]L.

Therefore, since Mz(L) = 1 for M–PSK, the performance
loss of DEGC compared to MRC is given by

∆Gc = 3 dB +
10
L

log10

(
1
M

M−1∑
m=0

[
1− cos

(
2π

M
m

)]L
)

.

(30)
Eq. (30) reveals that the performance loss suffered by DEGC
in correlated co–channel interference depends only on L and
the adopted M–PSK constellation. For example, for BPSK
∆Gc = 3(2L − 1)/L dB, whereas for 4–PSK ∆Gc = 3(1 −
1/L) dB + 10 log( L

√
2L−1 + 1). For both BPSK and 4–PSK,

we obtain ∆Gc = 3 dB for L = 1 and ∆Gc = 6 dB for
L À 1. For M À 1 the sum in (30) can be approximated by
an integral. This leads to

∆Gc = 6dB− 10 log10

(
L

√
(2L)!!

(2L− 1)!!

)
, (31)

which yields ∆Gc = 3 dB, 3.9 dB, and 4.3 dB for L = 1,
2, and 3, respectively, and approaches 6 dB as L increases.
From these considerations we conjecture that for a single syn-
chronous M–PSK co–channel interferer and any constellation
size M the asymptotic performance loss of DEGC compared
to MRC is between 3 dB and 6 dB, where the higher value is
approached as L increases.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we verify the derived analytical expressions
for the asymptotic BEP and SEP of differential M–PSK with
DEGC for several practically relevant cases with computer
simulations 5. For comparison we also include the BEPs and
SEPs of M–PSK with coherent MRC [9].

Fig. 1 shows the SEP of 4–PSK for DEGC and MRC in
i.i.d. Rayleigh fading (L = 2) and impairment by, respectively,
i.i.d. Gaussian noise (AWGN) and i.i.d. spatially independent
ε–mixture noise with ε = 0.25 and κ = 10, 50. The simulation
results nicely confirm the derived analytical asymptotic results.
Furthermore, we observe that the asymptotic performance loss
of DEGC compared to MRC is ∆Gc = 3 dB for AWGN, and
∆Gc = 2.4 dB and 2.2 dB for ε–mixture noise with κ = 10
and κ = 50, respectively. This is in perfect agreement with
(23).

In Fig. 2, we consider the BEP of 8–PSK with DEGC and
MRC for L = 1, 2, and 3 over an i.i.d. Ricean fading channel
(K = 3 dB) impaired by spatially dependent ε–mixture noise
(ε = 0.25, κ = 10). Again, the simulation results nicely
confirm our asymptotic analysis. Furthermore, Fig. 2 shows
that the asymptotic performance loss of DEGC compared to
MRC is, respectively, 3 dB, 2.3 dB, and 2 dB for L = 1, 2,
and 3, which is in perfect agreement with the results obtained
from (26).

In Fig. 3, we show the SEP of 16–PSK with DEGC and
MRC for correlated Ricean fading (K = 3 dB) and impairment

5Since, in this paper, we refer to any additive impairment as “noise”, we
use the term “SNR” even if the received signal is only impaired by what is
traditionally referred to as “interference”.
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Fig. 1. SEP of 4–PSK vs. symbol SNR per branch for DEGC and MRC
over an i.i.d. Rayleigh fading channel (L = 2) impaired by AWGN, and
i.i.d. spatially independent ε–mixture noise with ε = 0.25 and κ = 10 and
κ = 50, respectively. Markers: Simulated SEP. Lines: Asymptotic SEP.
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Fig. 2. BEP of 8–PSK vs. bit SNR per branch for DEGC and MRC over
an i.i.d. Ricean fading channel with Ricean factor K = 3 dB and spatially
dependent ε–mixture noise (ε = 0.25, κ = 10). Markers: Simulated BEP.
Lines: Asymptotic BEP.

by a correlated Rayleigh faded synchronous 16–PSK co–
channel interferer. For L = 3 the correlation matrices Chh

and Cgg of the desired user and the interferer are respectively,
Toeplitz matrices with [1 α α2] and [1 ρ ρ2] as the first row,
where α = ρ = 0.6. For L = 2 Toeplitz matrices with first
rows [1 α] and [1 ρ] and the same values for α and ρ were
used. We observe from Fig. 3 that for the considered type of
interference, the performance loss of DEGC compared to MRC
is 3 dB, 3.9 dB, and 4.3 dB for L = 1, 2, and 3, respectively,
which is in perfect agreement with the values obtained from
(31).

VI. CONCLUSION

In this paper, we have presented simple and insightful
asymptotic BEP and SEP expressions for differential M–PSK
with DEGC in correlated Ricean fading and non–Gaussian
noise and interference. These asymptotic expressions are easy
to evaluate and only require the calculation of certain noise
moments. From our asymptotic analysis we draw the following
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Fig. 3. SEP of 16–PSK vs. symbol SNR per branch for DEGC and MRC
over correlated Ricean fading channels (K = 3 dB, α = 0.6) with correlated
Rayleigh faded co–channel interference (ρ = 0.6). Markers: Simulated SEP.
Lines: Asymptotic SEP.

conclusions: (1) For L = 1 diversity branch the asymptotic
performance loss ∆Gc of DEGC compared to MRC is 3
dB independent of the type of noise. (2) For impairment by
AWGN ∆Gc is equal to 3 dB for all L. (3) For non–Gaussian
noise and interference and L > 1 the loss ∆Gc is in general
different from 3 dB. In particular, for both spatially dependent
and independent ε–mixture noise ∆Gc ≤ 3 dB, whereas for
for correlated synchronous M–PSK co–channel interference
∆Gc ≥ 3 dB.
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