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Abstract

In this paper, we study the performance of two important $ype decode—and—forward (DF) relaying
schemes proposed for cooperative diversity (CD) systeras)ety, cooperative maximum-ratio combining
(C—MRC) and link adaptive regeneration (LAR). In particulae provide a unified framework for the error
rate performance analysis of C-MRC, LAR=s;, and LAR-«« DF schemes for multi-branch CD systems
consisting of a source, a destination, and multiple rel®ased on this framework, we provide accurate
expressions for the performance of the considered CD sgstemhigh signal-to—noise ratios and Rayleigh
fading. The developed asymptotic performance resultéitésiei a performance comparison with other relaying
schemes and reveal that while full diversity is achieved BYMBC and LAR-;,s;, LAR—« is, in general,

unable to collect full diversity.

I. INTRODUCTION

Cooperative diversity (CD) is a promising technique thaaldes high spatial diversity gains in
distributed wireless networks by allowing idle wirelessdas to relay signals emitted by a source
node to a destination node. This signal relaying can be pedd according to two important class
of relaying techniques, namely, decode—and—forward (DE)amplify—and—forward (AF). Compared
to AF relaying, DF relaying eliminates the need for analagnal storage and expensive RF chains
[1, 2], and as a result, is considered to have a greater patteéatbe employed in future wireless
standards.

The combining scheme used at the destination plays an edsene¢ in the performance of DF
cooperative diversity systems. It is well-known that cami@al maximum ratio combining (MRC)
does not offer full diversity in the presence of detectioroer at the relays [3]. To overcome this
problem, various combining schemes have been proposee iiiterature. In particular, a maximum-—
likelihood (ML) combiner was proposed in [3] assuming binaignaling. However, the complexity
of the ML metric becomes prohibitive specially for high ordggnal constellations. A piece—wise

linear approximation for the ML metric was advocated in [4jigh leads to a tractable performance



analysis, but is, in general, unable to collect full divirsio avoid the problems associated with the
ML combining, \A-MRC has been proposed in [3]. While this combining schenoeides a similar
performance as ML combining, it suffers from high computasil complexity as the optimal value for
the combining weight\ may not be obtained in closed form. To overcome this probleoperative
MRC (C-MRC), a variant o’\—MRC, was proposed in [1] which achieves a performance dose
that of ML combining but at a much lower complexity, regasdlef the size of the employed signal
constellation. Furthermore, two related DF schemes bagetth® link adaptive regeneration (LAR)
concept, namely LAR«;,,; and LAR—, were proposed in [5]. In LAR, variable gains are used at
the relays to adaptively adjusting the instantaneous mnénsower to variations in the source—relay
and relay—destination links. Due to their low implememtatcomplexity and desirable error rate
performance, C-MRC and LAR constitute two types of most iralty relevant DF schemes, and
therefore, a unified study of their performance is of bottote&cal and practical interest.

The diversity gain of C-MRC was analyzed in [1] while the dsiy gain achieved by LAR-
ainst and LAR-ex was studied in [5]. Furthermore, the asymptotic perforneaoicC—MRC has been
analyzed in [6] for the case of a single-relay CD system. Hewean accurate performance analysis
of C-MRC, LAR-;,,;, and LAR-« in a more practical scenario involving multiple relays ist no
available in the literature. Motivated by this, in this &ttwe provide a unified framework for the
performance analysis of multi-branch CD systems congjisifra source, a destination, and multiple
relays, where relaying is performed according to C-MRC, EAR,;, or LAR—. Based on this
framework, we develop accurate expressions for the peenoa of the considered CD system for high
signal-to—noise ratios (SNRs) and Rayleigh fading. Theeld@ed asymptotic performance results
are valid for arbitrary modulation formats and arbitranachel qualities and facilitate a performance
comparison with other relaying schemes. Furthermore ethesults reveal that C-MRC and LAR-
ainst achieve the maximum possible diversity gain equal to the barmof paths between the source
and the destination, whereas LAR-s, in general, unable to collect full diversity.

The remainder of this letter is organized as follows. In Bectl, the system model for the
considered CD system is introduced. In Section lll, asyiiptexpressions for the symbol error
rate (SER) and bit error rate (BER) as well as the diversiiy gae obtained for C-MRC, LAR-
ainst, and LAR-ev. Numerical and simulation results are presented in Se¢tipand conclusions are
drawn in Section V.

Notation: In this paper,-]%, (-)*, ®{-}, and&,{-} denote transposition, complex conjugation, the



real part of a complex number, and statistical expectatitin K@spect tor, respectively. Furthermore,

we use the notation = v to indicate that. andv are asymptotically equivalent, and a functiffx)
is o(g(x)) if lim,_o f(x)/g(x) = 0.

1. SYSTEM MODEL

The considered CD system consists of a soufca destination), and K cooperating relay$zy,
1 <k < K, and employs C-MRC [1], LAR=,,, or LAR— [5] for relaying (Fig. 2). Transmission
from the source to the destination is organized in two hapshé first hop, the source transmits and
the relays and the destination receive. The signals reteatvehe relays and the destination in the

first hop are given by

e = /Dshipx +ny, 1<k<K (1)
ro = +/Pshor + ng, (2)

respectively, where, is the average transmit symbol power of the source :ad@notes the symbol
transmitted by the source. We assume& X', where X' is an M—ary constellation such as binary
phase—shift keying (BPSK) ak/—ary phase—shift keying\(—PSK). Furthermore, we assumeis
normalized such thaf{|z|?} = 1. In (1) and (2),h, and hy, are the fading gains of the source—
destination channel and the channel between the sourcéamelayR,., respectively. Furthermore
andn,, denote the Gaussian distributed noise samples at, regggcthe destination in the first hop
and thekth relay in the first hop. The variances of these noise sangptedenoted by?2 = £{|no|*}
ando? = £{|n1|?}, respectively. After receiving the signaly, relay R, 1 < k < K, performs

Nik

coherent ML detection to obtain the decoded symhobhs
I = arg :;Iél}(l 71k — /Ps Parz|?. (3)

In the second hop, relag,, 1 < k£ < K, multiplies the decoded symba}, with factor ,/p,a; and
forwards the resulting signal to the destination. Herge [0, 1], 1 < k < K|, is the relay gain which
depends on the adopted DF scheme and will be discussed ateisisection. The signal received

from the kth relay at the destination in the second heg, can therefore be modeled as

Tor = +/DsCu o T + nag, 1<Ek<K, (4)

where hy, denotes the gain of the channel between relgyand the destination and,, is the

Gaussian distributed noise at the destination in the sehopdwith variancer?, £ &£{|na|}.



We assume independent Rayleigh fading for all transmiteeiver pairs [1, 2, 5, 7]. Thus, the
fading gainshy £ age 7%, hy, £ a;e77%, and hy, £ as,e 7%, are independent Gaussian random
variables (RVs) with zero mean and varian€gs= £{|ho|*}, Qur = E{|hwl?}, andQoy, = E{| o)},
respectively. The channel amplitudes a.;, and a,, are positive real RVs and follow a Rayleigh
distribution. Furthermore, the channel phagg9,, andd,; are uniformly distributed in—=, =) and
are independent from the channel amplitudes. For futuereate, we define the instantaneous SNRs
associated with the source—destination link, the souetaylinks, and the relay—destination links as
Yo £ psad/ol,, i = psady /o2, andyy = pea3, /o2, respectively. The corresponding average
SNRs are given byj, = p, QO/UZO! Y1k = Ps Q1k/0’,2m, and s, = ps 921@/03%-

Having received the signhalg andr,y, from the source and the relay, respectively, the destinatio
performs diversity combining to obtain the estimate= argmingzcx m.(Z). The decision metric

m.(Z) is defined as
A 10— /PshoT|? 7ok — \/Psk har |
( ) = + Ak )

me(T
2 2
U"O 0n2k

(5)

wherez € A is a trial symbol. Furthermore, the combining weighte [0, 1], 1 < k£ < K, depends
on the adopted DF scheme and will be discussed shortly.

Relay Gain «y: This factor is defined in Table | for C-MRC, LAR;,.;, and LAR-«. For C-MRC
ap = 1 is valid and therefore no scaling is performed at the relay. FAR—;,; and LAR—,
however, a variable gain,, is used to appropriately adjust the instantaneous powdredtth relay
to variations in the respective source—relay and relaytdg®on links.

Combining Weight \;: This factor is also defined in Table | for the considered DFesubs. For
C-MRC, a variable weighh, < 1 is assigned to the signal received from the relay in ordeeke t
into account the effect of possible erroneous decisionbetth relay. For LAR+«;,,; and LAR-«
A = 1 is valid, i.e., the destination performs conventional MRCdaie to proper power scaling at
the relay additional processing is not required at the dastn.

Signaling Requirements: Since the three considered DF schemes employ differeny gdans and
combining weights, they require varying amount of chantaiesinformation (CSIl) at the relay and
the destination. In particular, in order to obtaip at the destination, C—-MRC relies on sending
from relay R, to the destination. In contrasty, and ., have to be fedback from the destination
to the kth relay in order to calculatey, for LAR—«;,,; and LAR-, respectively. Since average

SNR values tend to vary with considerably slower rates cogath#o instantaneous SNR values, the



overhead associated the required signaling for LARs- considerably lower compared to those of
C-MRC and LAR+;,,; and this scheme has a higher robustness against outdatedAE8iill be
shown in Sections IIl and IV, this advantage comes at the abatdiversity loss for LAR«. special
case of C-MRC with\; = 1.

[1l. ERRORRATE ANALYSIS

In this section, we provide a unified performance analysihefC-MRC, LAR-«;,,.;, and LAR-
DF schemes for high SNRs, i.e., f6¢, Y1x, 72 — 00, 1 < k < K. In particular, we develop an
asymptotic expression for the (average) pairwise errdpgdodity (PEP) in Subsection IlI-A and relate
this PEP to the asymptotic (average) SER and BER in SubseittiB. Furthermore, we employ the
developed asymptotic results to analyze the diversity galmeved by the considered DF schemes in
Subsection IlI-C.

A. Asymptotic PEP

Assuming thatr € X was transmitted by the source agde X, ¥ # x was detected at the
destination, the PEP for the considered CD system can bessgu as”(x — ) = Pr{m.(z) >
m.(Z)}. We use the nearest neighbor approximation for the decogetd 7. at the relay, i.e., we
assume that, € {z} UN(z), where the seiV'(z) contains all nearest neighbors ofin X. This
assumption is well justified fof;;, — oo and its accuracy will be confirm by simulation results in

Section IV. Based on this assumption the PEP can be written as

A K
Pz —1)= Z <PT {me(x) > me(@)|vi} ] ¢r(ns Vik)) : (6)

In (6), A is the set of all possible values for the decoded signal vedto...,ix]|7, i.e., A =
{vilvi £ [#1,...,2¢]", 8, € {2} UN(z),1 < k < K}, wherei is used to index the elements
of A. Furthermore,y;;, denotes thekth element in vectow; and we have definedy (i, vir) =

1 — BQ(v20 ) for vy = x and vy (g, vir) = %Q(\/W) for v, # x, where3 and ¢ are
two modulation dependent constants (gig= (= 1 for BPSK). Using (5) in (6) yields

A K K
Plx—3)=)Y_ <Pr{A0(x, B+ e Y Ap(e, 3 i) < 0} [ ] en(ran, m) , 7)

=0 k=1 k=1
with Ag(z, 7) 2 | /Aol — &) + 7| — |7i|* and

Ap(z,%,%) = |\ yowan(T — 1) + far)® — |V Y2k0k (T — 3) + fige |, 1<k<K, (8)



wheren, = no/ano and figy, = nop /0y, 1 < k < K. We now exploit that for any RVA we have
Pr{A <0} = 5 [P A (s)% with moment generating function (MGFpa(s) £ Ea{e 2%}

—joo

wherec is a small positive constant that lies in the region of cogeace of the integrand [8]. This

leads to
N - ds
P(xéi):%z /q’o(S)Hq’k(S»%‘kz)?v )
=0 oo k=1
with
d — po¢ ik =
D5, ) 2 THE) ~ O, 0) v = (10)

N(@) (I)]i(S; Vik); Vi 7£ xr
where we have defined the MGRg(s) £ &, 7, {e 2D} @¢(s) £ &, 1, 7, {em A2
and @ (s, &) = &,y ropnm {Q(V y1x) e A@EEIL 0 [6], an asymptotic expression fdl(s)

for 49 — oo has been obtained as
1

ng(l — S)’VO7
whered, = |7 — z|. Furthermore, asymptotic expressions (s, 7;,) and ®¢(s) for 41, yor — oo

Po(s) = (11)

are provided in Table Il for C-MRC, LARx,,.;, and LAR-« (The corresponding proofs are provided
in the Appendix). With these expressions at hand, the asytm@EP can be obtained from (9) and

(10) for the considered DF schemes, cf. Section IlI-B.

B. Asymptotic SER and BER

To obtain an asymptotic expression for the SER we use a tredhcenion—bound over the asymptotic
PEPsP(x — &), where we include only nearest neighbor error events. Itiqodatr, a highly accurate
approximation for the asymptotic SER is given by

P, = %Z > Pla— i), (12)

xeX TeN (z)
To derive a general expression for the SER we first note tratrding to (10) and Table 1y (s, v )

can be written as

o /71]6 ’ng /7“6 ’

wherey,, = 1‘{%% and @/ (s,vy), 7 € {1,2,1}, 1 < k < K, can be easily obtained based on (10)
and Table Il for the considered DF schemes. By combining ((®), (12), and (13) we obtain the

asymptotic SER as
P, = Z Cj1~~~jK% ’7;1% ’ ’73_}(1[{7 (14)

JR€{1,2,0}, 1<k<K



where the coefficient§’;, .., jr € {1,2,1}, 1 < k < K, are given by

/6 ct+jo0 ‘_A‘ K dS
N _
le“‘jK - 27T]M / (I)O ( § § E | | (I)]k 5 Vik ) S’ (15)

z€X zeN (z) i=0 k=1

c—joo
with @ (s) £ m. Furthermore, for Gray labeling the asymptotic BER can ¢letly approximated

based on the asymptotic SER as
Py

P, = .
’ 10g2(M)

The coefficientsCj,...;, in (15) involve a single complex integration which, in geaercannot

(16)

be obtained in closed—form, and therefore should be oldamaenerically, e.g., using the Gauss—
Quadrature method [8]. However, for a given DF scheme, sigorastellation, and number of relays
K, these coefficients have to be calculated only once, andhleusomputational complexity associated
with the numerical evaluation of the involved complex inmedg is not a concern.

In the following examples we demonstrate how (14)—(16) caminployed to obtain an expression
for the asymptotic error rate of the C-MRC, LARs, and LAR-«, respectively, for different
number of relays and different modulation formats.

Example 1) In the first example, we consider a CD system employing C—-MRECBPSK modulation.
For K = 2 relays based on (15) we obtafry; = 0.4853, C5 = Cy; = 0.3435, and Cyy = 0.1562,
while the remaining coefficients are zero. Therefore, ugitg)—(16) the asymptotic BER can be
expressed a®, = -

Y0

BER can be expressed d§ = L (ﬂ + @> with ¢, = 0.2952 and C, = 0.1875, which is in

Yo \ 711 Y21
agreement with [6, Eq. (25)]. In contrast to AF relaying [#)e asymptotic BER expression for

C C C C i _ i
<%1§112 +5 5+ %1‘%222). Similarly, for K = 1 relay the asymptotic

C-MRC is not symmetric with respect to the source—relay adyrdestination links as we have

C, # Cy and Cy; # Cy for K =1 and K = 2, respectively. For example, for AF and BPSK from
K

[2] we obtain P, = S [] (% + ;) with ¢, = 0.1875 and Cy = 0.1562 for K — 1 and K = 2,

70 Y2k
k=1

respectively. As a result of the aforementioned asymmetrZ-eMRC, while the channel quality
settingysr = 50 = 7, Y1 — 00, 1 < k < K, leads to the same asymptotic BER for AF and C-MRC,
AF outperforms C-MRC fofy, = 59 = 7, Jar — o0, 1 < k < K. This is due to the fact that some
information about the transmit signal may be lost when parfiog hard—decision decoding at the
relays (cf. Eqg. (3)) which can not be recovered at the destimaven if the relay—destination links

are ideal.



Example 2) Here, we consider a CD system with LAR,; and BPSK modulation. Based on (14)—
(16), for K = 1 and K = 2 we obtainP, = L (i + @> with C; = 0.4099 and C, = 0.1875,

Yo \ Y11 Y21

and B, = 1 < Cu + C12 + Cau + C22 ) with Ch11 = 0.8249, C9 = Cy; = 0.4746, and Cyy =

Yo \ V11712 Y11722 Y21712 Y21722
0.1562, respectively. We note that a similar asymmetry with respedche source-relay and relay—

destination links as in Example 1 is also observed in thig.cas

Example 3) In the final example, we consider a CD system using LARA = 1 relay, and 8-
PSK modulation. Using (14), (15), angh = 1"5% the asymptotic SER can be expressedPas=

1 (% + ey Cl{y%) with € = —(10.6 + 8.74 B\ (a1 /711)), C = 8.74e /71, ¢ = 8.74. In
this case(; is non-zero, and therefore, the asymptotic error rate sspe involves a logarithmic
term which was not present in the case of C-MRC and LAR:. As will be discussed in the next
subsection, this term leads to a diversity loss and thezedioconsiderable performance degradation

for LAR—«a at high SNRs.

C. Diversity Gain
The diversity gain is defined as the negative asymptoticestafperror rate curves as a function of
the SNR on a double—logarithmic scale and plays a crucial iolthe performance of CD system.
Therefore, in this subsection we analyze the diversity gaihieved by C-MRC, LAR«;,.;, and
LAR—« using the asymptotic error rate results obtained in theipuavsubsection. To formally define
the diversity gain we assume without loss of generality that (o7, 71 = Cix?y, and e, = (i,
1 <k < K, where(y, (&, and (s, are finite (positive) constants, which are independeny.ofhe
diversity gain associated with the asymptotic SER is thdimee asG; = — lim_.., log (P,) /log(7).
For C-MRC and LARe,,; from (10), Table I, and (13) we hav&l (s, v;.) = 0, and therefore
based on (15) we conclude that,..;, = 0 for j, =1, 1 < k < K. As a result, according to (14)
we haveP, = (5 (E+D where(; is a (positive) constant. Therefore the diversity gain igegi
by G4 = K + 1, i.e., a full diversity gain equal to the number of paths kesw the source and

the destination is achieved. However, for LAR®! (s, ;) and thereforeC; are, in general,

1K
non—zero forj, = [, 1 < k < K. Consequently, from (14) we obtaii, = ¢, logy 5~ **1, where
(» is a (positive) constant. Therefore, the diversity gainie@ed by LAR-« is smaller thank + 1
but greater thany, i.e., in general, LARe« is unable to achieve full diversity. As will be shown in

Section IV, this diversity loss adversely affects the perfance of LAR-« especially at high SNRs.



IV. NUMERICAL AND SIMULATION RESULTS

In this section, we verify the analytical results derivedSections Il with computer simulations.
Furthermore, we employ these results to study the perfacemah C-MRC, LAR+;,,,;, and LAR-
and to compare the performance of these schemes with thaFaklying [2]. For the figures in
this section, the analytical results were obtained usidy{{1.6). Furthermore, we have adopted equal
variances for all noise samples (i.e;, = o, =0, = Ny, 1 <k < K) and shown the BER as
a function of the total per-node average SNRiefined asy, = (1 + Zszlg{ak})ﬁ/(K + 1) with

7E L

In Fig. 2, we show the BERs of CD systems employing C-MRC, LARs, LAR—a, and AF
schemes forK = 1,2 relays. For the considered system we have assumed BPSK atioduand
Yk =%k =% =7 1 <k <K, ie., all links have the same quality. As seen from the figtoe
high enough SNRs the analytical and simulation resultsraexc¢ellent agreement confirming that the
analytical results provide a suitable means for compatiegperformance of the considered schemes.
Furthermore, in accordance with Section 1lI-B, a diverggin of G; = K + 1 is achieved by both
C-MRC and LAR+;,.. However, for LAR+;,.; the achieved diversity gain is smaller than+ 1
(but greater thark) resulting in a substantial performance loss at high SNRs¢chvincreases with
the number of relays.

Fig. 3 shows the BER of CD systems employing C-MRC, LAR=, LAR—«, and AF schemes for
8—PSK modulation and = 1, 3 relays. Here, we have assumeg = 5, = 7 and 7., = 7 + 30dB,
1 < k < K, and therefore the relay—destination links are much sgorgmpared to the source—
relay links. In contrast to Fig. 3, we observe that LAR; and LAR—« perform considerably better
relative to C-MRC. This due to the fact that for the considethannel quality setting LARx,,
and LAR-« utilize the available transmit power at the relays more igffity, and consequently for
a giveny achieve a much lowef;, compared to C-MRC. However, due to the diversity loss by
LAR—q, this performance improvement over C-MRC is significandgiuced or lost for LARe at

high SNRs.
V. CONCLUSIONS

In this paper, we have provided a performance analysis of REMLAR—;,;, and LAR-«« DF
schemes for multi-branch CD systems for high SNRs and Ryylkeiding. The developed analytical
results a) are valid for arbitrary modulation formats anMiteasry channel qualities b) facilitate a

performance comparison with other relaying schemes c)ateyat for CD systems withi relays
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C-MRC and LAR=;,; achieve the full diversity gain off; = K + 1, but the diversiy gain achieved

by LAR— is betweenk and K + 1, i.e., LAR— is, in general, unable to achieve full diversity.

APPENDIX
In this appendix, we analyze the asymptotic behavio®pfs, 2x) for 41y, o — 00, 1 < k < K,
for C-MRC, LAR-;,,s:, and LAR-«, respectively. The asymptotic behavior®f(s) can be obtained
in a similar manner for the considered DF schemes. The iegusymptotic expressions fax; (s, i)

and @4 (s) are provided in Table II. For simplicity, we drop the substﬁ in the following.

Using the alternative representation for the Q—funciigix) = 0”/ ?em2*/sin?0q9 we can write
dc(s,7) as
1 w/2
(s, 7) = = / B(s, 0) o, (17)
T™Jo

where®(s,0) £ &, ., n,{e” 5 oMA@2)) Using (8) and the relatiofi,, {e—* M1 = o5, (s, 6)
can be expressed as

/ / —s)\aﬂfzd )+s2A%ays df— ;Jre 71/71@ 72/72d’}/ d’}/Q, (18)
7172

whered(#) = | — #|> — |x — 2|2. In the following, we employ (17) and (18) to obtain the asyotig
(s,z) for C-MRC, LAR-;,s;, and LAR-«, respectively.
C—-MRC: The asymptotic behavior ob(s, ) for 5;, 5, — oo has been obtained in [6] a8(s, ) =

behavior of®¢

m, where we have adjusted the notation of [6] to the problemaathApplying this result
*)s sin2 6
in (17) leads to the asymptotic expression given in Tableild(s, ) and C-MRC.

LAR—q;,.: For LAR—ainst based on (18) and Table | we obtain

e / / e o mntn By ot R B om0/ 0722 dyy dy. (19)
7172

Splitting the inner integration interval in (19) into twaté@mvals|0, v;) and|v;, co) results in®(s, §) =
Dy (s,0) + Po(s,0) where

Py(s,0) & — ! h dy, e Gz t/M) /71 dry2e—“/2(sd(f)—s2 d3+1/“72)’ (20)
M172 0
and
A - ! —n (sd@)+ 55552 d3+1/71) —v2/72
Dy(s,0) = = dye sinZ 0 dys e : (21)
Y172 "

For &, (s, d) based on (20) we obtain
1

Dy(s,0
1(5:6) = o (sd(2) — s d2+ 1/%a + 5o + 1/7) (555 + 1/%

j o). @)
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For ®,(s, ) from (21) we get

1 [ A - X
Dy (s,0) = _/ dv o (sd@)+ g —s? B+1/M+1/72) o (23)
0

g Y (sd(z) + Sincg@ —s2d3)
The asymptotic behavior ob¢(s,z) can be obtained as given in Table Il by combining (22), (23),
and (17).
LAR—a: For LAR— from (18) and Table | we have

(s, 0) = — / h / T gm0 52} /T202d(0) 3 minn a2 292 B 6= 0=/ oy oy, (24)
N2 Jo Jo

Splitting the inner integration interval in (19) into twotémvals[0,7,), [J2, 00) results in®(s, §) =

Dy (s,0) + Po(s,0), where

a1 - i [T —1 (s72/F2d(3)+ =55 —5272/72 d3+1/71)
Dy(s,0) & — dyse Y2/%2 dryp e \$12/32d(@)F TG =52/ do +1/7 ) (25)
7172 Jo 0
and
Dy(s,0) = é - dryg e (sd(2)+52 72 d3+1/72) /OO dyre” i e~ /M (26)
7172 Jo Fa
Using (25),9,(s,#) can be written as
1 00 - d~"
Bso s [T 27)
YiJoo syd() + prp — s* 7 d3

For ®,(s, ) from (26) we obtain
o~ (gt /M)
(sorg T 1/7) 172

By combining (27), (28), and (17) we arrive at the asymptexipression given in Table Il fob®(s, &)
and LAR-«.

@2(5, 9) =

S R 5, 4]
/ d’Yz e—’yg(sd(r)+82 Y2 d3+1/“/2) =0 <6_ sin’y229 ’71_1’72_1) . (28)
0
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ABLE |
RELAY GAIN « AND COMBINING WEIGHT-/(k FORC—-MRC [1], LAR—;pnst, AND LAR—« [5].

Scheme | g | Ak |
C—MRC 1 min{vyi4,v2k}
Yok
LAR—(vin st min{vix VoK) 1
Y2k
LAR—a min{i Yok} 1
F2k
TABLE I

ASYMPTOTIC BEHAVIOR OF®{ (s, 21 ) AND Df (s) FOR¥1k, Yo — 00 FORC—MRC, LAR—;nst, AND LAR—a. HERE, WE HAVE
USEDd(CEk) =& — &x|? — |z — 2x|*, n(s, &x) £ (sd(ix) — s> d3)/C, AND & 2 Fap /715. FURTHERMORE T'(+), erf(+), erfi(-),
Ei(), pFq ({al, o ap kB, Bets ) AND 7, DENOTE THE GAMMA FUNCTION, THE ERROR FUNCTION THE IMAGINARY

ERROR FUNCTION THE EXPONENTIAL INTEGRAL FUNCTION, THE GENERALIZED HYPERGEOMETRIC FUNCTION OF ORDERp q)
AND THE EULER CONSTANT, RESPECTIVELY

[ Scheme | Asymptotic @5, (s, Zx) Asymptotic @, (s)
C-MRC I (1 B \/d(i}f)SC+C2) %kldﬁs + Wzdel(lfs)
HART it i (1 _ \/<d(@k)sf52d2)c+42) 0% (m + E)
T CICETOLTTS {22}‘2({1 13:{2,5/2} 7% ) m ( — E1(&) + log(s(1 — s)d3) — %)
LAR—a +3 n(s@)(m e/t erf (1//n(s, &x)) +rdee + s
—merfi(1/ (s, &) — logn(s, :ck)+fy0+log4—2)}




Fig. 1.

Block diagram for the considered multi-branch CDteys
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Fig. 2. BER vs.y for CD systems employing C-MRC, LAR,s:, LAR—, and AF schemes foK = 1,2 relays,
BPSK modulation, andyx = J2r = %0 = 7, 1 < k < K. Solid lines with markers: Simulated BER. Dashed line:
Asymptotic BER.
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Fig. 3. BER vs.y for CD systems employing C-MRC, LAR,s:, LAR—, and AF schemes foK = 1,3 relays,
8-PSK modulation, andx = Y = 7, 2 = ¥+ 30dB, 1 < k < K. Solid lines with markers: Simulated BER.
Dashed line: Asymptotic BER.



