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Abstract— In this paper, we introduce an adaptive Lp–norm
metric for robust coherent diversity combining in non–Gaussian
noise and interference. We derive a general closed–form expres-
sion for the asymptotic bit error rate (BER) for Lp–norm combin-
ing in independent non–identically distributed Ricean fading and
non–Gaussian noise and interference with finite moments. Based
on this asymptotic BER expression, the metric parameters can be
adapted to the underlying type of noise and interference using
a finite difference stochastic approximation (FDSA) algorithm.
Simulation results confirm the validity of the derived asymptotic
BER expression and the excellent performance of the proposed
adaptive Lp–norm metric.

I. I NTRODUCTION

Diversity combining is an efficient means for combating
the detrimental effects of fading in wireless channels. For
impairment by additive white Gaussian noise (AWGN) it is
well known that maximal ratio combining (MRC) is optimal
[1].

In practice, wireless communication systems are not only
impaired by AWGN but also by various forms of non–
Gaussian noise and interference1 such as man–made and
impulsive noise [2], co–channel interference (CCI) [1], partial–
band interference [3], and ultra–wideband (UWB) interference
[4]. Unfortunately, diversity combining schemes optimized for
AWGN do not perform well in non–Gaussian noise [2]–[5].
Of course, if the distribution of the noise isa priori known,
the optimum combining scheme can be derived based on the
maximum–likelihood (ML) concept. However, in many cases,
the noise distribution is not known at the receiver and may
even change with time. This motivates the use ofrobust
combining schemes, which perform well for a large class
of noise distributions and possibly have a tunable parameter
which can be adjusted to the underlying noise distribution.
Prominent examples for robust metrics include Huber’sM–
metric [6], Myriad and Meridian metrics [7], and theLp–norm
metric [8], [4]. Thereby, theLp–norm metric is particularly in-
teresting since it performs well in both noise with heavy–tailed
distributions (e.g. impulsive noise) and noise with short–tailed
distributions (e.g. CCI) if parameterp is adjusted accordingly
[8]. However, finding the optimump for a particular type of
noise is a formidable task, as appropriate optimization criteria
are not known.

In this paper, we consider general coherentLp–norm com-
bining, where different diversity branches may use different
Lp–norms and different combining weights. We derive an
analytical expression for the asymptotic bit error rate (BER)
for Lp–norm combining, which is valid for Ricean fading and
any type of noise with finite moments. This analysis is similar
in spirit to the asymptotic analysis of MRC for AWGN and
non–Gaussian noise in [9] and [10], respectively. However,

1To simplify our notation, in the following, ”noise” refers to any additive
impairment of the received signal, i.e., our definition of noise also includes
what is commonly referred to as ”interference”.

the tools developed in [9], [10] cannot be applied in the more
generalLp–norm case. The derived analytical BER expression
enables the optimization of the metric parameters. Since
closed–form expressions for the optimal metric parameters
cannot be obtained in general and the type of noise is not
known in practice, we develop an efficient adaptive algorithm
for on–line metric optimization.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and theLp–norm
metric. The asymptotic BER expression is derived in Section
III, and metric optimization is discussed in Section IV. In
Section V, analytical and simulation results are presented, and
conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we present the considered signal and noise
models and theLp–norm metric.

A. Signal Model

AssumingL diversity branches, for coherent linear modu-
lation formats the received signal in thelth branch and in the
kth symbol interval can be modeled in equivalent complex
baseband representation as

rl[k] =
√

γ̄lhlb[k] + nl[k], 1 ≤ l ≤ L, (1)

where γ̄l, hl, and nl[k] denote the average signal–to–noise
ratio (SNR), the fading gain, and the noise in thelth diversity
branch, respectively. The powers of both fading gain and noise
are normalized toσ2

l , E{|hl|2} = E{|nl[k]|2}, 1 ≤ l ≤ L.2

Furthermore, the transmitted symbolsb[k] ∈ A are normalized
to E{|b[k]|2} = 1 and taken from anM–ary alphabetA such
as M–ary quadrature amplitude modulation (M–QAM) and
M–ary phase–shift keying (M–PSK).

The fading gainshl are modeled as independent, non–
identically distributed (i.n.d.) Gaussian random variables with
mean h̄l , E{hl} and varianceσ2

hl
, E{|hl − h̄l|2}, i.e.,

i.n.d. Ricean fading is assumed. The Ricean factor is defined
as Kl , |h̄l|2/σ2

hl
and Rayleigh fading results as a special

case forKl = 0, 1 ≤ l ≤ L.
The noise is assumed to be independent of the fading gains

but the noise samples3 nl, 1 ≤ l ≤ L, may be statistically
dependent and non–Gaussian. The only restriction that we
impose on the noise is that all joint moments of thenl, 1 ≤ l ≤
L, exist, i.e.,E{nκ1

1 (n∗
1)

ν1nκ2

2 (n∗
2)

ν2 · · ·nκL

L (n∗
L)νL} < ∞ for

all κl ≥ 0, νl ≥ 0, 1 ≤ l ≤ L. Most practically relevant types
of noise fulfill this condition. An exception isα–stable noise
for which moments of order greater thanα do not exist and

2In this paper,E{·}, [·]T , [·]∗, and I0(·) denote statistical expectation,
transposition, complex conjugation, and the zeroth order modified Bessel
function of the first kind, respectively. Furthermore,A

.
= B means thatA is

asymptotically (i.e., for high SNR) equal toB and a functionf(x) is o(x)
if limx→0 f(x)/x = 0.

3To simplify our notation, in the following, we will drop the time indexk
in variables such asnl[k] whenever possible.



which is sometimes used to model impulsive noise. However,
other models for impulsive noise such as Middleton’s Class A
model [2] are included in our considerations.

For diversity combining we adopt theLp–norm metric

m(b̃) =
L
∑

l=1

ql|rl −
√

γ̄lhlb̃|pl , (2)

where b̃ ∈ A is a trial symbol, andql > 0 and pl > 0,
1 ≤ l ≤ L, are metric parameters that can be optimized for
performance maximization for the underlying type of noise4.
The decision̂b is thatb̃ which minimizesm(b̃). Forql = 1 and
pl = 2, 1 ≤ l ≤ L, theLp–norm metricm(b̃) is equivalent to
MRC which is optimal in AWGN. For convenience we define
q , [q1 . . . qL]T andp , [p1 . . . pL]T .

B. Noise Models

For future reference and to demonstrate the versatility of the
proposed approach, we briefly discuss some important types
of noise for which the analysis and metric optimization in this
paper is applicable.

1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the
probability density function (pdf) of the noise in thelth
diversity branch is given by

fn(nl) =

I
∑

i=1

ci,l

πσ2
n,i,l

exp

(

− |nl|2
σ2

n,i,l

)

, 1 ≤ l ≤ L, (3)

whereci,l > 0,
∑I

i=1 ci,l = 1, andσ2
n,i,l,

∑I
i=1 ci,lσ

2
n,i,l =

σ2
l , are constants. Special cases of GMN includeǫ–mixture

noise (I = 2, c1,l = 1 − ǫl, c2 = ǫl, σ2
n,1,l = σ2

l /(1 −
ǫl + κlǫl), σ2

n,2,l = κlσ
2
n,1,l, 0 ≤ ǫl < 1, and κl > 1) and

Middleton’s Class A noise (I → ∞). GMN is a popular model
for impulsive noise in systems with receive antenna diversity
[5] and for partial band interference in frequency hopping (FH)
systems with frequency diversity [3].

2) Co–Channel Interference I (CCI-I): The interference
caused byI co–channel interferers in a system with receive
antenna diversity can be modeled as

nl[k] =
I
∑

i=1

gi,l

k2
∑

κ=k1

pi[κ]bi[k − κ], 1 ≤ l ≤ L, (4)

wheregi,l, pi[k], and bi[k] denote the fading gain at thelth
receive antenna, the effective pulse shape, and the transmit
symbols of theith interferer, respectively.pi[k] depends on
the transmit pulse shape of the interferer, the receiver input
filter of the user, and the delayτi between theith interferer
and the user. Theith co–channel interferer is synchronous and
asynchronous forτi = 0 and τi 6= 0, respectively. The limits
k1 andk2 are chosen such thatpi[k] ≈ 0 if k < k1 or k > k2.
Here, we model the interference channel gainsgi,l as (possibly
correlated) Ricean fading with variancesσ2

g,i,l and Ricean
factorsKg,i,l. We note that CCI–I is spatially dependent even
if the channel gainsgi,l are independent because the term
∑k2

κ=k1
pi[κ]bi[k − κ] is common to all diversity branches.

4We note that strictly speaking the metric defined in (2) is only a norm if
pl ≥ 1, 1 ≤ l ≤ L. However, whether or notm(b̃) is a norm is not important
in our context.

3) CCI-II: The CCI model for FH systems with frequency
diversity is slightly different from CCI-I. Assuming the syn-
chronous case and that at each hopping frequency co–channel
interfereri, 1 ≤ i ≤ I, is present at thelth hopping frequency
with probability ǫi,l, 0 ≤ ǫi,l < 1, the resulting interference
can be modeled as

nl =
I
∑

i=1

Xi,lgi,lbi,l, 1 ≤ l ≤ L, (5)

where theXi,l are mutually independent, andXi,l = 1 and
Xi,l = 0 with probabilitiesǫi,l and 1 − ǫi,l, 1 ≤ l ≤ L,
1 ≤ i ≤ I, respectively.bi,l denotes the transmit symbols
of the ith interferer at thelth hopping frequency and the
Ricean fading interference gainsgi,l are i.n.d. with Ricean
factors and variances as defined in the CCI–I case. CCI–II
can be used to model the interference in systems that use
FH for multiple access (e.g. Bluetooth) and different usersare
assigned random, not necessarily orthogonal hopping patterns.

4) Generalized Gaussian Noise (GGN):I.n.d. GGN is a
popular model for non–Gaussian noise [4]. The corresponding
pdf for the lth diversity branch is given by

fn(nl) =
βlΓ(4/βl)

2π(Γ(2/βl))2
exp

(

−|nl|βl

cl

)

, 1 ≤ l ≤ L, (6)

where cl , (Γ(2/βl)/Γ(4/βl))
βl/2, and βl, 0 < βl < ∞,

denotes the shape parameter. GGN noise contains Laplacian
(βl = 1) and Gaussian (βl = 2) noise as special cases. We
note that theLp–norm metric with properly chosen metric
parametersq andp is the ML metric for GGN [8].

The proposed analysis is also applicable to any linear
combination of the noises specified in 1)–4).

III. A SYMPTOTIC ANALYSIS OF Lp–NORM COMBINING

In this section, we develop an asymptotic expression for
the pairwise error probability (PEP) of coherentLp–norm
combining and relate this PEP to the asymptotic BER.

A. Asymptotic PEP

We show in the Appendix that for any type of noise with
finite moments, the asymptotic PEP ofLp–norm combining
for γ̄l → ∞, 1 ≤ l ≤ L, is given by

Pe(d)
.
=

2L
∏L

l=1

(

Γ
(

2
pl

)

1+Kl

σ2

l

exp (−Kl)
)

d2L
∏L=1

l=1

(

γ̄lplq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
) Mn(q, p),

(7)

where Mn(q, p) , E
{

(

∑L
l=1 ql|nl|pl

)

PL
l=1

2/pl

}

can be

interpreted as ageneralized momentof the elements of noise
vector n , [n1 . . . nL]T , and d denotes the Euclidean
distance between the alternative signal points consideredfor
the PEP. The generalized noise momentMn(q, p) in (7) can
be calculated in closed form for special cases, cf. Section III-
C. Nevertheless, even if the generalized noise moment is not
available in closed form, (7) can be used for fast evaluation
of the asymptotic PEP sinceMn(q, p) is independent of the
SNR and has to be evaluated only once, which can be done
e.g. by Monte–Carlo simulation. More importantly, (7) reveals



how parametersql andpl influence the asymptotic PEP, which
will be exploited for metric optimization in Section IV.

For complexity reasons it may be desirable for some ap-
plications to limit the number of metric parameters to be
optimized. For this purpose we may setql = q and pl = p,
1 ≤ l ≤ L, and simplify (7) to

Pe(d)
.
=

2L
(

Γ
(

2
p

))L
∏L

l=1

(

1+Kl

σ2

l

exp (−Kl)
)

d2L
∏L

l=1(γ̄l) pLΓ
(

2L
p + 1

) Mn(p),

(8)

whereMn(p) , E
{

(

∑L
l=1 |nl|p

)2L/p
}

. Note that the PEP

in (8) depends onp but is independent ofq.

B. Asymptotic BER

The asymptotic BER can be obtained from the asymptotic
PEP as [9]

BER
.
=

ξmin

log2(M)
Pe(dmin), (9)

where dmin and ξmin denote the minimum Euclidean dis-
tance of signal constellationA and the average number of
minimum–distance neighbors, respectively. For example, for
binary PSK (BPSK)ξmin = 1, dmin = 2 and for M–QAM
ξmin = 4(1 − 1/

√
M), dmin =

√

6/(M − 1).
It is often convenient to express the asymptotic BER as

BER
.
= (Gcγ̄)−Gd [9], whereGc andGd denote the combin-

ing and the diversity gain, respectively, andγ̄ = (
∏L

l=1 γ̄l)
1/L,

i.e., γ̄ [dB] = 1
L

∑L
l=1 γ̄l [dB]. From (7) we observe that the

diversity gain is given byGd = L independent of metric
parametersq andp, and independent of the type of noise. In
contrast, (7) shows that the combining gainGc does depend
on the type of noise and onp andq.

C. Generalized Noise Moments

For evaluation of the PEPs in (7) and (8) the generalized
noise moments have to be calculated, which is possible in
closed form for special cases. In particular, to make the
problem tractable, in this section, we consider not necessar-
ily independent but identically distributed (n.i.d.) noise and
Mn(p) instead ofMn(q, p). To simplify our notation, for
n.i.d. noise (which includes i.i.d. noise as a special case), we
drop subscriptl in all noise parameters (e.g. inci,l, ǫl, κl,
Kg,i,l, etc.) in the following.

In the following, we will provide accurate approximations
for Mn(p) for n.i.d. noise distributions that are based on the
Gaussian distribution (i.e., independent, identically distributed
(i.i.d.) GMN, n.i.d. Rayleigh–faded CCI–I, i.i.d. Rayleigh–
faded CCI–II), and exact results for unfaded n.i.d. CCI–I and
i.i.d. CCI–II with I = 1 andKg,1 → ∞.

1) Gaussian–based Noise Distributions:We first con-
sider i.n.d. Gaussian RVsxl with variancesσ2

xl
, 1 ≤ l ≤

L, and our goal is to calculateMG(p; σ2
x1

, . . . , σ2
xL

) ,

E{(
∑L

l=1 |xl|p)2L/p}. It can be shown that the pdf ofyl =
|xl|p is given by

fyl
(yl) =

2

pσ2
xl

y
2/p−1
l exp

(

−y
2/p
l

σ2
xl

)

, (10)

which is a Weibull pdf. We are interested in the pdf of
z =

∑L
l=1 yl. Unfortunately, a closed–form expression for

a sum of Weibull RVs is not known. However, an accurate
approximation for the pdf ofz is given by theα–µ pdf [11]

fz(z) =
αµµzαµ−1

ΩµΓ(µ)
exp

(

−µzα

Ω

)

, (11)

where parametersα, µ, andΩ have to be optimized for the best
possible agreement with the true pdf ofz. For this purpose,
the efficient moment-based method in [11, Eq. (5)–(9)] may
be used. We note that in [11] only i.i.d. Weibull variables
are considered, whereas we allow different variancesσ2

xl
.

This small extension can be accommodated by replacing [11,
Eq. (9)] byE{yn

l } = σpn
xl

Γ(1 + pn/2), n ∈ {0, 1, 2, . . .} (yl

is referred to asRl in [11]), and we found the corresponding
approximation to be still very accurate. Using (11) we obtain

MG(p; σ2
x1

, . . . , σ2
xL

) =
Γ(µ + 2L/(pα))

Γ(µ)

(

Ω

µ

)2L/(pα)

.

(12)
Based on the approximation forMG(p; σ2

x1
, . . . , σ2

xL
) in (12),

we can find the generalized moments for AWGN, GMN,
Rayleigh–faded CCI–I, and Rayleigh–faded CCI–II (I = 1)
given in Table I.

2) Unfaded CCI: We first consider n.i.d. CCI–I. Assuming
a single, unfaded interferer (Kg,1 → ∞), (4) simplifies to

nl[k] = ejΘ1,l

P1−1
∑

κ=0

p1[κ]b1[k − κ], 1 ≤ l ≤ L, (13)

with uniformly distributed, mutually independent phases
Θ1,l ∈ (−π, π], 1 ≤ l ≤ L. Based on (13), the exact result
for the generalized moment of unfaded CCI–I given in Table
I can be easily obtained. Similarly, specializing (5) toI = 1
andKg,1 → ∞, the exact expression for i.i.d. CCI–II in Table
I can be derived.

TABLE I
GENERALIZED NOISE MOMENTSMn(p) FOR AWGN, I .I .D. GMN,

RAYLEIGH –FADED AND UNFADED (UNF.) N.I .D. CCI–I AND I .I .D. CCI–II

(I = 1). THE FOLLOWING DEFINITIONS ARE USED. CCI–I:S IS THE SET

OF ALL POSSIBLE VALUES OF
Pk2

κ=k1
p1[κ]b1[κ]; CCI–II: c1 , 1 − ǫ,

c2 , ǫ, ξ1 , 1, ξ2 , 0, bI , [b1,1, . . . , b1,L]T , MI CONTAINS ALL

POSSIBLE VALUES OFbI .

Noise Model MomentsMn(p)

AWGN MG(p; 1, . . . , 1)

GMN
I

P

i1=1

· · ·
I

P

iL=1

ci1 · · · ciL
MG(p, σ2

n,i1
, . . . , σ2

n,iL
)

CCI–I (Ray.) 1

|S|

P

s∈S
MG(p,

PI
i=1

σ2

g,i|si|
2, . . . ,

PI
i=1

σ2

g,i|si|
2)

CCI–II (Ray.) 1

|MI |

P

2

i1=1
· · ·

P

2

iL=1
ci1 · · · ciL

P

bI∈MI

MG(p, ξi1σ2

g,i1
|b1|2, . . . , ξiL

σ2

g,iL
|b1,L|2)

CCI–I (Unf.) L2L/p 1

|S|

P

s∈S |s|2L

CCI–II (Unf.) 1

|MI |

P

2

i1=1
· · ·

P

2

iL=1
ci1 · · · ciL

P

bI∈MI

“

PL
l=1

ξil
|b1,l|

p
”

2L/p



IV. M ETRIC OPTIMIZATION

In this section, we optimize the metric parametersp andq

for minimization of the asymptotic BER. In the following, we
consider both off–line and on–line optimization.

A. Off–line Optimization

If the underlying type of noise is knowna priori, the
metric parameters can be optimized off–line based on (7) or
(8). To gain some insight and to make the problem tractable,
we assume n.i.d. noise in this subsection. The more general
case of non–identically distributed noise will be considered
in the next subsection. For n.i.d. noise we may setql = q
and pl = p, 1 ≤ l ≤ L, in metric (2) without loss of
optimality, i.e., we can base our off–line optimization on (8)
and have to optimize only parameterp. The generalized noise
moments required in (8) can be taken from Table I or be
obtained by Monte–Carlo simulation. Unfortunately, even for
those cases where analytical expressions for the generalized
moments are available, a closed–form optimization ofp is
not possible in general. An exception is n.i.d. unfaded CCI–
I, where we can show based on (8) and Table I that the
optimum p is given by popt = ∞ corresponding to metric
m(b̃) = maxl∈{1,...,L}{|rl −

√
γ̄hlb̃|}.

If the optimum p cannot be obtained in closed form,
numerical optimization is necessary. To illustrate this, we
show in Fig. 1 the asymptotic BER (solid lines) calculated
based on (8), (9), and the generalized moments in Table I
for BPSK, i.i.d. Rayleigh fading,L = 3, SNR = 20 dB, and
various types of n.i.d. noise as a function ofp. The markers
indicate simulation results and confirm the analytical results.
The bold ”+” markers denote the minima of the analytical
BER. As expected, Fig. 1 shows thatp = 2 is optimum for
AWGN. In constrast, for heavy–tailed types of noise such as
Rayleigh–faded CCI–II andǫ–mixture noisepopt < 2 holds
for the optimump. For short–tailed noise such as unfaded
CCI–I popt > 2 holds. Note that for unfaded CCI–II there
are two local minima. Fig. 1 clearly illustrates the benefitsof
optimizing p and confirms our analysis.

B. On–line Optimization

In practice, the statistical properties of the noise impairing a
wireless communication system are often not knowna priori.
Therefore, in this section, we provide an adaptive algorithm
for optimization of theLp–norm metric parametersq and
p that does not require any prior knowledge regarding the
noise statistics. Since the outcome of the detection process
with Lp–norm combining, is invariant to multiplication with
a positive constant, we can fixq1 = 1 and optimize only
the elements of vectorx , [q2 . . . qL p

T ]T without loss
of optimality. Furthermore, in each iterationt the proposed
adaptive algorithm requires an estimate of the cost function to
be minimized. Based on (7), we obtain the instantaneous cost
function estimate

Lt(x) ,

∏L
l=1 Γ

(

2
pl

)(

∑L
l=1 ql|n̂l[t]|pl

)

P

L
l=1

2/pl

∏L=1
l=1

(

plq
2/pl

l

)

Γ
(

∑L
l=1

2
pl

+ 1
) (14)

where we have neglected all irrelevant terms andn̂l[t] , rl −√
γ̄lhlb[t]. Here,b[t] may be a training symbol or a previous

decision.

1 2 3 4 5 6 7 8 9 10

10
−7

10
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−5 Rayleigh−faded CCI−II

Unfaded CCI−II

Rayleigh−faded CCI−I

AWGN

Unfaded CCI−I

B
E

R

p

ǫ-mixture noise I

ǫ-mixture noise II

Fig. 1. BER vs.p for BPSK, i.i.d. Rayleigh fading,L = 3, SNR = 20
dB, and different types of n.i.d. noise. Noise parameters: I.i.d. ǫ–mixture
noise I (ǫ = 0.1, κ = 10), i.i.d. ǫ–mixture noise II (ǫ = 0.1, κ = 5),
n.i.d. Rayleigh–faded and unfaded QPSK CCI–I (I = 1, τ1 = 0.25T with
symbol durationT , raised cosine pulse shape with roll–off factor0.22), and
i.i.d. Rayleigh–faded and unfaded QPSK CCI–II (I = 1, ǫ1 = 0.41). Solid
lines: Asymptotic BER based on (8), (9), and Table I. Markers: Simulation
results. Bold ”+”–markers: Minimum of asymptotic BER.

Adaptive Algorithm: The proposed adaptive algorithm is
based on the multivariate finite difference stochastic approxi-
mation (FDSA) framework with gradient approximation [12].
This framework is particularly well suited for the problem
at hand since it employs a Kiefer–Wolfowitz type of gradient
estimatêgt(xt) avoiding cumbersome differentiation ofLt(x)
[13]. In the tth iteration the FDSA algorithm generates the
estimatext for the optimumx as [12]

xt+1 = xt − atĝt(xt) (15)

ĝt(xt) =

[

Lt(xt + cte1) − Lt(xt − cte1)

2ct
. . .

Lt(xt + cte2L−1) − Lt(xt − cte2L−1)

2ct

]T

(16)

whereen is a column vector of length2L − 1 with a one in
positionn and zeros in all other positions. Ifn[k] is stationary
and at and ct fulfill at > 0, ct > 0, at → 0, ct → 0,
∑∞

t=0 at = ∞, and
∑∞

t=0 a2
t /c2

t < ∞, the above algorithm
finds the global minimum if the BER has only one minimum
and at least a local minimum otherwise (as long asLt(x) and
the BER meet some mild conditions, see [12] for more details).
Since, in practice,n[k] will be non–stationary, we may set
at = a and ct = c, ∀t, wherea and c are small constants
to give the algorithm some tracking capability. Furthermore,
since pl may assume very large values, it is advisable to
limit the maximum of the elements ofxt to some finite value
xmax to improve the tracking capabilities of the algorithm. For
initialization, ql = 1, 2 ≤ l ≤ L, andpl = 2, 1 ≤ l ≤ L, are a
good choice since this guarantees that the solution found by
the algorithm will not perform worse than conventional MRC.

Example: In Figs. 2 and 3 we show metric coefficientsql,
pl and the corresponding BER for BPSK as a function of the
number of iterationst of the FDSA algorithm, respectively.
For this example, we have chosenat = a = 4 · 10−4, ct =



c = 10−5, xmax = 10, SNR = 16 dB, and i.i.d. Rayleigh
fading with L = 4. At t = (ν − 1) · 106 we switch abruptly
to a new noise Nν, 1 ≤ ν ≤ 5, which is defined as follows.
N1: I.i.d. Rayleigh–faded QPSK CCI–II (I = 1, ǫ = 0.1)
and AWGN, where the CCI–II power is ten times larger than
the AWGN variance; N2: I.n.d. Gaussian noise with variances
σ2

1 = 1, σ2
2 = 0.5, σ2

3 = 0.5, σ2
4 = 2; N3: I.n.d. ǫ–mixture

noise with ǫl = 0.1, 1 ≤ l ≤ 4, and κ1 = 20, κ2 = 40,
κ3 = 50, κ4 = 100; N4: I.n.d. GGN with β1 = β2 = 3
and β3 = β4 = 1; N5: N.i.d. unfaded QPSK CCI–I (I =
1, τ1 = 0.3T , raised cosine pulse shape with roll–off factor
0.22). xt is initialized with ql = 1, 2 ≤ l ≤ 4, and pl =
2, 1 ≤ l ≤ 4, and previous decisionŝb[t] are used in the
adaptation process. For the metric coefficients in Fig. 2 the
results of one adaptation process are shown and the BER in
Fig. 3 is calculated with (7) and (9), where the generalized
moments were obtained by Monte–Carlo simulation. Figs. 2
and 3 show that the FDSA algorithm works well and that after
each switch to a new type of noise steady state operation is
achieved quickly. Fig. 2 reveals that in steady state for the
n.i.d. noises N1 and N5 allql andpl are equal, respectively,
whereas for the i.n.d. noises N2, N3, and N4 either theql

or/and thepl are not equal as expected. For N5pl → ∞,
1 ≤ l ≤ 4, is optimum and the FDSA yieldspl = 10, 1 ≤
l ≤ 4, because we setxmax = 10. Fig. 3 shows that theLp–
norm metric with FDSA adaptation substantially outperforms
the L2–norm metric (i.e., MRC).
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Fig. 2. Metric coefficientspl, 2 ≤ l ≤ 4, andpl, 1 ≤ l ≤ 4, vs. iteration
t.

V. RESULTS AND DISCUSSION

In this section, we compare the adaptiveLp–norm metric
with the conventionalL2–norm metric and several other pop-
ular robust metrics. For convenience we defineul = |rl −√

γ̄lhlb̃|. We consider the Huber metricm(b̃) =
∑L

l=1 ml(b̃),
ml(b̃) = u2

l /2 if ul ≤ δ, and ml(b̃) = δul − δ2/2 if
ul > δ [6], the Meridian metricm(b̃) =

∑L
l=1 log(ul + δ)

[7], and the Myriad metricm(b̃) =
∑L

l=1 log(u2
l + δ2) [7].

Note that for all these robust metrics parameterδ has to be
optimized by hand, which is quite tedious, since, unlike for
the Lp–norm metric, a systematic optimization framework is
not available. Figs. 4 and 5 show the BER of 16–QAM for
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Fig. 3. BER vs. iterationt.

i.i.d. Rayleigh fading withL = 2 and impairment by i.i.d.ǫ–
mixture noise and n.i.d. unfaded QPSK CCI–I, respectively.
Simulation results for all metrics are shown (solid lines with
markers). In addition, for theLp–norm metric and theL2–
norm metric the simulation results are confirmed by the
analytical asymptotic BER (bold solid and dashed lines). For
the robust metricsδ was optimized by simulation for SNR =
30 dB. In contrast, theLp–norm metric was optimized with
the FDSA algorithm. Since the considered noises are n.i.d.,
p = p1 = p2 and q = q1 = q2 is valid for the Lp–norm
metric. Fig. 4 shows that for the heavy–tailedǫ–mixture noise
the Lp–norm metric withpopt = 0.39 outperforms the other
robust metrics and the gap to the optimum ML–metric is less
than 1 dB. Fig. 5 shows that for short–tailed unfaded CCI–I the
Huber and Myriad metrics are essentially equivalent to theL2–
norm metric and are outperformed by more than 1 dB by the
Lp–norm metric withp = 20 (popt → ∞ holds in this case).
Interestingly, while theLp–norm metric was optimized based
on the presented asymptotic analysis, Figs. 4 and 5 suggest
that it also performs well for small SNRs.
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Fig. 4. BER vs. SNR per bit for 16–QAM, i.i.d. Rayleigh fading, L = 2,
and i.i.d.ǫ–mixture noise (ǫ = 0.1, κ = 100).
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Fig. 5. BER vs. SNR per bit for 16–QAM, i.i.d. Rayleigh fading, L = 2,
and n.i.d. unfaded QPSK CCI–I (I = 1, τ1 = 0.3T , raised–cosine pulse
shape with roll–offα = 0.22).

VI. CONCLUSIONS

In this paper, we have derived a closed–form expression
for the asymptotic BER of coherentLp–norm combining in
Ricean fading and non–Gaussian noise and interference. Based
on the asymptotic BER, we have developed an efficient FDSA
algorithm for on–line adaptation of the metric parameters.The
proposed adaptiveLp–norm metric was shown to outperform
other robust metrics in both heavy–tailed and short–tailednon–
Gaussian noise.

APPENDIX

Assuming thatb was transmitted and̂b 6= b was detected,
the corresponding PEP can be expressed as

Pe(d) = Pr{m(b) > m(b̂)}, (17)

whered , |e| ande , b − b̂. In a first step, we calculate the
PEP conditioned on the noise vectorn , [n1 . . . nL]T . With
(2) and (17) this conditional PEP can be obtained as

Pe(d|n) =

m(b)
∫

0

f(z) dz, (18)

where we have used the fact that due to the conditioning on
n, m(b) =

∑L
l=1 ql|nl|pl is a constant.f(z) is the pdf of

m(b̂) =
∑L

l=1 ql|
√

γ̄lhle+nl|pl , which we calculate step–by–
step in the following. The conditional pdffxl

(xl) of xl =
|√γ̄lhle + nl| is a Ricean pdf. The pdf of the transformed

variableyl = xpl

l is given byfyl
(yl) = 1

pl
y
1/pl−1
l fxl

(

y
1/pl

l

)

and the scaling withql leads tozl = qlyl with pdf fzl
(zl) =

1
ql

fyl
(zl/ql). Taking into account these identities the pdf of

zl = ql|
√

γ̄lhle + nl|pl is given by

fzl
(zl)=

2z
2/pl−1
l

d2γ̄lσ2
hl

plq
2/pl

l

exp

(

−z
2/pl

l + q
2/pl

l |√γ̄lh̄le + nl|2

d2γ̄lσ2
hl

q
2/pl

l

)

×I0

(

2
z
1/pl

l |√γ̄lh̄le + nl|
d2γ̄lσ2

hl
q
1/pl

l

)

. (19)

Considering the asymptotic caseγ̄l → ∞ and exploiting the
Taylor series expansions ofexp(·) and I0(·), fzl

(zl) can be
written as

fzl
(zl) =

Cl

γ̄l
z
2/pl−1
l + o(γ̄−1

l ), (20)

where Cl , 2 exp
(

−|h̄2
l |/σ2

hl

)

/(d2σ2
hl

plq
2/pl

l ). Thus, the
moment generating function (MGF) ofzl can be expanded as
Φzl

(s) , E{e−szl} = ClΓ(2/pl)γ̄
−1
l s−2/pl + o(γ̄−1

l ). Since,
conditioned onn thezl are statistically independent, the MGF
of m(b̂) is given byΦ(s) =

∏L
l=1 Φzl

(s), and the asymptotic
expansion of the corresponding pdf is given by

f(z) =

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

)

∏L
l=1 γ̄l

z
P

L
l=1

2

pl
−1

+ o

(

L
∏

l=1

γ̄−1
l

)

.

(21)
Using this result in (18) leads to

Pe(d|n)=

∏L
l=1

(

ClΓ
(

2
pl

))

Γ
(

∑L
l=1

2
pl

+ 1
)

∏L
l=1 γ̄l

(

L
∑

l=1

ql|nl|pl

)

PL
l=1

2

pl

+o

(

L
∏

l=1

γ̄−1
l

)

. (22)

If all joint moments of the elements ofn are finite, averaging
Pe(d|n) in (22) with respect ton yields (7). The assumption
of finite joint noise moments is necessary, since the terms
absorbed intoo(

∏L
l=1 γ̄−1

l ) in (22) involve sums of products
of the elements ofn which have to remain finite after
expectation.
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