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Abstract— In this paper, we introduce an adaptive L,—norm
metric for robust coherent diversity combining in non—-Gaussian
noise and interference. We derive a general closed—form ergs-
sion for the asymptotic bit error rate (BER) for L,—norm combin-
ing in independent non—identically distributed Ricean fadng and
non—Gaussian noise and interference with finite moments. Bad
on this asymptotic BER expression, the metric parameters cabe
adapted to the underlying type of noise and interference usig
a finite difference stochastic approximation (FDSA) algorihm.
Simulation results confirm the validity of the derived asympotic
BER expression and the excellent performance of the propode
adaptive L,—norm metric.

I. INTRODUCTION

Diversity combining is an efficient means for combating
the detrimental effects of fading in wireless channels. For

the tools developed in [9], [10] cannot be applied in the more
generalL,—norm case. The derived analytical BER expression
enables the optimization of the metric parameters. Since
closed—form expressions for the optimal metric parameters
cannot be obtained in general and the type of noise is not
known in practice, we develop an efficient adaptive algamith
for on—line metric optimization.

The remainder of this paper is organized as follows. In
Section I, we introduce the system model and fhe-norm
metric. The asymptotic BER expression is derived in Section
Ill, and metric optimization is discussed in Section IV. In
Section V, analytical and simulation results are preserged
conclusions are drawn in Section VI.

Il. SYSTEM MODEL

impairment by additive white Gaussian noise (AWGN) it is In this section, we present the considered signal and noise
well known that maximal ratio combining (MRC) is optimalmodels and the.,—norm metric.

[1].

In practice, wireless communication systems are not only

A. Signal Model

impaired by AWGN but also by various forms of non— AssumingL diversity branches, for coherent linear modu-

impulsive noise [2], co—channel interference (CCI) [1]rtjzd—
band interference [3], and ultra—wideband (UWB) intenfeee
[4]. Unfortunately, diversity combining schemes optintZer

AWGN do not perform well in non—Gaussian noise [2]-[5].

Of course, if the distribution of the noise & priori known,

kth symbol interval can be modeled in equivalent complex
baseband representation as

ri[k] = VAhib[k] + k], )
where ¥;, h;, and n;[k] denote the average signal-to—noise

1<1<L,

the optimum combining scheme can be derived based on tatio (SNR), the fading gain, and the noise in fiie diversity
maximum-likelihood (ML) concept. However, in many casedyranch, respectively. The powers of both fading gain andenoi
the noise distribution is not known at the receiver and maye normalized tor? = £{|h|?} = E{|m[K]*}, 1 <1 < L.2

even change with time. This motivates the use rabust

Furthermore, the transmitted symbé|s] € .4 are normalized

combining schemes, which perform well for a large clagse £{|b[k]|?} = 1 and taken from ar/—ary alphabetd such
of noise distributions and possibly have a tunable paramets M—ary quadrature amplitude modulatio® €¢QAM) and
which can be adjusted to the underlying noise distributiod/—ary phase—shift keying\{—PSK).

Prominent examples for robust metrics include Hubérs
metric [6], Myriad and Meridian metrics [7], and tdg—norm

metric [8], [4]. Thereby, thd.,—norm metric is particularly in-

teresting since it performs well in both noise with heavileth
distributions (e.g. impulsive noise) and noise with shiaited

The fading gainsh; are modeled as independent, non—
identically distributed (i.n.d.) Gaussian random vargblvith
meanh; = £{h;} and variancer; = E{|h — hi|*}, ie.,
i.n.d. Ricean fading is assumed. The Ricean factor is defined
as K; £ |w|?/o}, and Rayleigh fading results as a special

distributions (e.g. CCl) if parameteris adjusted accordingly case forK; =0, 1 <1< L.

[8]. However, finding the optimunp for a particular type of

noise is a formidable task, as appropriate optimizatioteda
are not known.
In this paper, we consider general coherégtnorm com-

The noise is assumed to be independent of the fading gains
but the noise samplésy;, 1 < | < L, may be statistically
dependent and non-Gaussian. The only restriction that we
impose on the noise is that all joint moments ofthel <1 <

bining, where different diversity branches may use diff¢re L, exist, i.e..£{n[" (n})"* n5*(n3)"*---nj*(n} )"} < oo for
L,—norms and different combining weights. We derive aall x; > 0, v, > 0, 1 <[ < L. Most practically relevant types
analytical expression for the asymptotic bit error rate RBE of noise fulfill this condition. An exception ia—stable noise
for L,—norm combining, which is valid for Ricean fading andor which moments of order greater thando not exist and
any type of noise with finite moments. This analysis is simila

in spirit to the asymptotic analysis of MRC for AWGN and ZIn this paper,£{-}, []”, []*, and Io(-) denote statistical expectation,
non—Gaussian noise in [9] and [10], respectively. Howevérlansposmon, complex conjugation, and the zeroth ordedified Bessel

1To simplify our notation, in the following, "noise” refer® tany additive
impairment of the received signal, i.e., our definition ofseoalso includes
what is commonly referred to as "interference”.

unction of the first kind, respectively. Furthermoré,= B means thatd is

asymptotically (i.e., for high SNR) equal t8 and a functionf(z) is o(z)

if limg—o f(z)/z = 0.
3To simplify our notation, in the following, we will drop thénte index k
in variables such as;[k] whenever possible.



which is sometimes used to model impulsive noise. However,3) CCI-ll: The CCIl model for FH systems with frequency
other models for impulsive noise such as Middleton’s Class diversity is slightly different from CCI-l. Assuming the 13y

model [2] are included in our considerations. chronous case and that at each hopping frequency co—channel
For diversity combining we adopt the,—norm metric interfereri, 1 <1¢ < I, is present at thé&h hopping frequency
. with probability ¢; ;, 0 < ¢;; < 1, the resulting interference
m(b) = qum b, 2) °an be modeled as
=1 I
ny = ZXi,lgi,lbi,l; 1<I<L, (5)

whereb € A is a trial symbol, andy; > 0 andp, > 0,

1 <1 < L, are metric parameters that can be optimized for _
performance maximization for the underlying type of néiseWhere theX;, are mutually independent, anti;; = 1 and
The decisiorb is thath which minimizesm(b). Forq, = 1and it = 0 with probabilitiese;; and 1 —¢;;, 1 < I < L,
p=2,1<1< L, the L,—norm metricm(b) is equivalent to 1 < i < I, respectively.b;; denotes the transmit symbols

MRC which is optimal in AWGN. For convenience we defing the ith interferer at theith hopping frequency and the
a2q ... q )T andp 2 [p; ... pr]T. icean fading interference gaing; are i.n.d. with Ricean

factors and variances as defined in the CCI-I case. CCI-II
B. Noise Models can be used to model the interference in systems that use

For future reference and to demonstrate the versatilitpef t~H for multiple access (e.g. Bluetooth) and different usees

proposed approach, we briefly discuss some important tygsigned random, not necessarily orthogonal hoppingrpatte
of noise for which the analysis and metric optimization iisth 4) Generalized Gaussian Noise (GGN)L.n.d. GGN is a

i=1

paper is applicable. popular model for non-Gaussian noise [4]. The correspendin
1) Gaussian Mixture Noise (GMN): For i.n.d. GMN the Pdf for theith diversity branch is given by
probability density function (pdf) of the noise in thi¢h BiT(4/8) |
diversity branch is given b n(n) = —————=¢ - , 1<I<L, (6
y g y fn () T2/ B) xp( ” ) (6)

I ) 2
falm) =3 =S exp (- 'Z” ) 1<I<L, (3) wherec 2 (I'(2/3)/T(4/8))%/2, and B, 0 < B < oo,
i=1 ' Onyil il denotes the shape parameter. GGN noise contains Laplacian
I B 9 I » (B =1) and Gaussianf{ = 2) noise as special cases. We
whereci; > 0, > cip = 1, andoy, 4, 2251 €19, 50 = note that theL,~norm metric with properly chosen metric
o?, are constants. Special cases of GMN inclugeixture parameterg; andp is the ML metric for GGN [8].
noise ( = 3 11 = 12— €, C2 = €, 03,,1,1 = o7/(1 -~ The proposed analysis is also applicable to any linear
€+ Ki€l), 0,0, = Ki0,5,, 0 < & <1, andr; > 1) and combination of the noises specified in 1)—4).
Middleton’s Class A noisel(— oc). GMN is a popular model
for impulsive noise in systems with receive antenna ditgrsi Ill. ASYMPTOTIC ANALYSIS OF L,—NORM COMBINING
[5] and for partial band interference in frequency hoppiRg)Y

systems with frequency diversity [3]. the pairwise error probability (PEP) of coherehfj—norm

2) Co—Channel Interference | (CCI-I): The interference combining and relate this PEP to the asymptotic BER.
caused byl co—channel interferers in a system with receive

antenna diversity can be modeled as A. Asymptotic PEP

In this section, we develop an asymptotic expression for

! k2 We show in the Appendix that for any type of noise with
mlk] =Y git Y pilslbilk —&], 1<1<L, (4) finite moments, the asymptotic PEP bf-norm combining
i=1 r=k1 for 3, — 00, 1 <1 < L, is given by

whereg; ;, p;[k], andb;[k] denote the fading gain at thh

L 2 1+ K
receive antenna, the effective pulse shape, and the transpi \ . 2[5y (F (pT) % eXp(_Kl)) M
symbols of theith interferer, respectivelyp;[k] depends on o(d) = 2ETTEE (2™ VT (5L 2 4 g n(a:P),
the transmit pulse shape of the interferer, the receiveutinp L= (%plq’ ) (Zl:l w T )
filter of the user, and the delay between theth interferer . )
and the user. Théth co—channel interferer is synchronous anghere 1, (q,p) £ € (ZlL_l ql|m|pl) =2 be
asynchronous for; = 0 andr; # 0, respectively. The limits B

ki andks are chosen such that[k] ~ 0 if k < k; or k > k,. Interpreted as generalized momeruf the elements of noise

Here, we model the interference channel gainsas (possibly Vector m = [ny ... ng]", and d denotes the Euclidean
correlated) Ricean fading with variances ,, and Ricean distance between the alternative signal points considtmed
factors K, ; ;. We note that CCII is spatially dependent evef’¢ PEP. The generalized noise momef (g, p) in (7) can

if the channel gaing;;; are independent because the terf@® calculated in closed form for special cases, cf. Sectien |
Zﬁikl pilk]bi[k — x] is common to all diversity branches. C. Nevertheless, even if the generalized noise moment is not

available in closed form, (7) can be used for fast evaluation
4We note that strictly speaking the metric defined in (2) isyanlinorm if of the asymptotic PEP SInCMn(q,p) IS mdepgndent of the

p; > 1,1 <1 < L. However, whether or ne(b) is a norm is not important SNR and has to be e_Valuat_Gd only OI_’lce, which can be done

in our context. e.g. by Monte—Carlo simulation. More importantly, (7) ralge



how parameterg; andp; influence the asymptotic PEP, whichwhich is a Weibull pdf. We are interested in the pdf of
will be exploited for metric optimization in Section IV. z = Ele y;. Unfortunately, a closed—form expression for
For complexity reasons it may be desirable for some ap-sum of Weibull RVs is not known. However, an accurate
plications to limit the number of metric parameters to bapproximation for the pdf of is given by thea—u pdf [11]
optimized. For this purpose we may sgt= ¢ andp;, = p, o op1 N
1 <1< L, and simplify (7) to fo(2) = % P <_%) ’ (11)
L
. 2b (F (%)) HzL:1 (IJ;?Z €Xp (_Kl)) where parameteis, ., and2 have to be optimized for the best
Fe(d) = LTl - L (2L Mn(p), possible agreement with the true pdf af For this purpose,
> T2 () p'T (7 + 1) the efficient moment-based method in [11, Eq. (5)—(9)] may
ol be used. We note that in [11] only i.i.d. Weibull variables
A L /p . . )
where M, (p) £ € t(zl_l |nl|7’) . Note that the PEP are considered, whereas we allow different varianaés

o This small extension can be accommodated by replacing [11,
utis independent of. Eq. (9)] by&{y} = 02T (1 +pn/2), n € {0, 1,2, ...} (w
. is referred to agk; in [11]), and we found the corresponding
B. Asymptotic BER approximation to be still very accurate. Using (11) we abtai
The asymptotic BER can be obtained from the asymptotic

in (8) depends omp

PEP D(u+ 2L Q) 2/ )
as [9] . Ma(p;o2,,..., 0% ) = M <_> .
BER = Toe. (31 P.(duin), 9) (1) I 12)
Based on the approximation fad (p; o2 ..., o2, ) in (12),

where dyin and £uin denote the minimum Euclidean diS'We can find the generalized moments for AWGN, GMN,

tance of signal constellatiol and the average number of . N -
minimum—distance neighbors, respectively. For exampule, fRaer|gh faded CCl-, and Rayleigh—faded CCI-I £ 1)

. - - given in Table I.
binary PSK (BPSK)imin = 1, dmin = 2 and for M-QAM 2) Unfaded CCI: We first consider n.i.d. CCl—I. Assuming

gmin - 4(1 - 1/\/M), dmin - 6/(M - 1) i | faded interf 4 H lifi t
It is often convenient to express the asymptotic BER éassmg e, unfaded interferefy,, — oc), (4) simplifies to
BER = (G.7)~ % [9], whereG.. andG, denote the combin- =
ing and the diversity gain, respectively, and= (T, 7,)'/%, k] = 791 Z plklbilk — k], 1<I1<L, (13)
k=0

ie., 7[dB] = L 32/, % [dB]. From (7) we observe that the
diversity gain is given byG; = L independent of metric with uniformly distributed, mutually independent phases
parameterg andp, and independent of the type of noise. "91,1 € (—m,7], 1 <1 < L. Based on (13), the exact result
contrast, (7) shows that the combining g does depend for the generalized moment of unfaded CCI-I given in Table
on the type of noise and op andgq. | can be easily obtained. Similarly, specializing (5)te= 1
C. Generalized Noise Moments ?ngﬁ,’é g()eﬁ\?ég.]e exact expression for i.i.d. CCI-Il in Table
For evaluation of the PEPs in (7) and (8) the generalized
noise moments have to be calculated, which is possible in
closed form for special cases. In particular, to make the
problem tractable, in this section, we consider not necess&AY EGH—FADED AND UNFADED (UNF.)N.1.D. CCI-IAND I.1.D. CCI-II
ily independent but identically distributed (n.i.d.) neignd ~(/ = 1): THE FOLLOWING DEFINITIONS ARE USED CCI—I: SIS THE SET
My (p) instead of My(q,p). To simplify our notation, for ~©FAtLPOSSIBLEVALUES Ozznikl pilrlbifs]; CCl-llzer =1 —e,
n.i.d. noise (which includes i.i.d. noise as a special cage) ¢ = €& =1, =0,br = [bra, -, b1, L], My CONTAINS ALL
drop subscript in all noise parameters (e.g. i, €, ki, POSSIBLE VALUES OFb; .
K,.,, etc.) in the following.

TABLE |
GENERALIZED NOISE MOMENTSMy, (p) FORAWGN, 1.1.D. GMN,

- . . . . Noise Model Moments My, (p)
In the following, we will provide accurate apprommaﬂon%
for M, (p) for n.i.d. noise distributions that are based on tHe AWGN Mg(p;1,..., 1)
Gaussian distribution (i.e., independent, identicalltrithuted T T
(i.i.d.)) GMN, n.i.d. Rayleigh—faded CCI-I, i.i.d. Rayldig GMN AZ{-;Zlcil~'~cl-LMc(p,cri,i1,-..,UZ,iL)
faded CCI-Il), and exact results for unfaded n.i.d. CCl-dl an e —
- ' CCHl (Ray.) | & > M, : Jsil2, .. 0 02 s
i.d. CCI-Il With I = 1 and £, 1 — oo, Rev) | 73 & Mol Tl o P Tl 1)
1) Gaussian-based Noise Distributions\We first con- | CCHII (Ray) TRGT ofim1 " 2oty =1 Cir " Cig, 2obyeMy
sider i.n.d. Gaussian RVs; with variancess? , 1 < | < Mc(p,&iyoy ; 10117, & op ; [b1,L]?)
L, ang our gzoLa/I is to calculaté\/[c(p;oﬁl,..., aﬁL) £ CCI-I (Unf.) 2L p‘?l‘ S acs ISI7E
p p —
5{(})2.121'|xl| ) }. It can be shown that the pdf of = eI Unf) ST Y ey
|z;? is given by 1 2L/
L p p
2/p 2beMy (21:1 &y b1l )

2 o9p1 Y
fyz (yl) = po_%l Y exp <_ o2 ) (10)

]



IV. METRIC OPTIMIZATION

In this section, we optimize the metric parametgrand g 107}
for minimization of the asymptotic BER. In the following, we
consider both off-line and on-line optimization.

A. Off-line Optimization

If the underlying type of noise is knowa priori, the
metric parameters can be optimized off-line based on (7) d”
(8). To gain some insight and to make the problem tractabl
we assume n.i.d. noise in this subsection. The more geneé
case of non—identically distributed noise will be consgter
in the next subsection. For n.i.d. noise we may get ¢
andp, = p, 1 < [ < L, in metric (2) without loss of 4~
optimality, i.e., we can base our off-line optimization @) (
and have to optimize only parameterThe generalized noise
moments required in (8) can be taken from Table | or be i ‘
obtained by Monte—Carlo simulation. Unfortunately, even f ! 2 s bt ! o
those cases where analytical expressions for the gerestaliz
moments are available, a closed—form optimizationpofs Fig. 1. BER vs.p for BPSK, i.i.d. Rayleigh fadingZ = 3, SNR = 20
not possible in general. An exception is n.i.d. unfaded CCfB. :”lded[fege;“ ;yp_eslg;‘ nic. gorﬁiiu'r\'eo'ﬁgisiaﬁ?rzeieﬂgdi'imf‘“gf)e
|, where we can show based on (8) and Table | that th€ - Rayleigh-taded and unfaded QPSK CCIFI 1, 71 = 0.257 with
0pt~|mump IS given bypopt = o0 corresponding to metric _sygwblgl dlur_atri]o;ﬂ;j rgise(ij cosfinée gulsgssgaé)&v_\j/{ilth r(l)ll—off febctflm),salr)éj

_ = i.i.d. igh— nd un s = 0.41). i
m(b) = maXl,E{L---aL}{m — V/yhbl} . . lines: Aagy?ngptoti: EES bagedao(ra] (Eg, (9), and Ta:f)le I.elMarketerulagon

If th_e optlmum b CannOt be obtained _'n closed form'results. Bold *-"—markers: Minimum of asymptotic BER.

numerical optimization is necessary. To illustrate thig w

show in Fig. 1 the asymptotic BER (solid lines) calculated pdaptive Algorithm: The proposed adaptive algorithm is
based on (8), (9), and the generalized moments in Tabl§ydsed on the multivariate finite difference stochastic axipr
for BPSK, i.i.d. Rayleigh fadingl, = 3, SNR = 20 dB, and mation (FDSA) framework with gradient approximation [12].
various types of n.i.d. noise as a functionjofThe markers Thijs framework is particularly well suited for the problem
indicate simulation results and confirm the analytical tssu at hand since it employs a Kiefer—Wolfowitz type of gradient
The bold +” markers denote the minima of the analyticaéstimatajt(mt) avoiding cumbersome differentiation ﬂt(w)

BER. As expected, Fig. 1 shows that= 2 is optimum for [13]. In the tth iteration the FDSA algorithm generates the
AWGN. In constrast, for heavy—tailed types of noise such &stimatex, for the optimumz as [12]

Rayleigh—faded CCI-II and-mixture noisep,,; < 2 holds

Q
Rayleigh-faded.CCI-ll 4

e-mixture noise |:

Unfaded CCI-II -

Unfaded CCI-I

for the optimump. For short—tailed noise such as unfaded ®t+1 = @t — a1g, (@) (15)
CCl~l pope > 2 holds. Note that for unfaded CCI-II there . [ Li(@i 4 crer) — Li(x — creq)
are two local minima. Fig. 1 clearly illustrates the benedits ~ 9¢(¥t) = 2, .

optimizing p and confirms our analysis.
P gr y Li(xy + crear—1) — Li(y — crear—1)

QCt

T
B. On-line Optimization (16)

In practice, the statistical properties of the noise impgia
wireless communication system are often not kn@woriori.
Therefore, in this section, we provide an adaptive algorith
for optimization of the L,—norm metric parameterg and
p that does not require any prior knowledge regarding t
noise statistics. Since the outcome of the detection psoc
with L,—norm combining, is invariant to multiplication with
a positive constant, we can fig = 1 and optimize only
the elements of vector 2 [go ...qr pT]7 without loss
of optimality. Furthermore, in each iteratianthe proposed
adaptive algorithm requires an estimate of the cost fundtio
be minimized. Based on (7), we obtain the instantaneous cﬁ
function estimate !

wheree,, is a column vector of lengtBL — 1 with a one in
positionn and zeros in all other positions. 4[] is stationary
and a; and ¢; fulfil a; > 0, ¢; > 0, a; — 0, ¢ — O,
oar = oo, and Y77 a?/c? < oo, the above algorithm
ﬁds the global minimum if the BER has only one minimum
and at least a local minimum otherwise (as lond.agc) and
the BER meet some mild conditions, see [12] for more details)
Since, in practicen[k] will be non-stationary, we may set
a; = a and¢; = ¢, Vt, wherea and ¢ are small constants
to give the algorithm some tracking capability. Furthereyor
'g}ce p; may assume very large values, it is advisable to
mit the maximum of the elements af; to some finite value
Tmax 10 iImprove the tracking capabilities of the algorithm. For

L
M-, r (2) (ElL_l qlml[t”m)z"zl 2/p initialization, ¢ = 1,2 <1 < L, andp; =2, 1 <1< L, are a
Li(x) & — P _ (14) good chc_nce since this guarantees that the solut_lon found by
lL::11 (pqu/m) T (Zf:1 pz + 1) the algorithm will not perform worse than conventional MRC.
! Example: In Figs. 2 and 3 we show metric coefficienfs
where we have neglected all irrelevant terms apd] =, — p, and the corresponding BER for BPSK as a function of the

Vihibt]. Here,b[t] may be a training symbol or a previousnumber of iterationg of the FDSA algorithm, respectively.
decision. For this example, we have chosep=a = 41074, ¢, =



c = 1075, Tmax = 10, SNR = 16 dB, and i.i.d. Raylelgh w0’ ! ‘ ‘ ‘ : ! ;Adapuve‘Lp—narm‘(FDSA)
fading with L = 4. At t = (v — 1) - 105 we switch abruptly !
to a new noise N, 1 < v < 5, which is defined as follows. ;
N1: Lid. Rayleigh-faded QPSK CCI-IlI(= 1, e = 0.1) !
and AWGN, where the CCI-Il power is ten times larger than .| !

- L,~norm

the AWGN variance; N2: I.n.d. Gaussian noise with variances
O’% =1, US = 0.5, U§ = 0.5, O’E = 2; N3: l.n.d. e-mixture
noise withe, = 0.1, 1 < [ < 4, andk; = 20, ko = 40, l
k3 = 50, kg = 100; N4: L.n.d. GGN with3; = 8, = 3
and 83 = B4 = 1; N5: N.i.d. unfaded QPSK CCI-lI(= 107
1, m = 0.3T, raised cosine pulse shape with roll—off factor
0.22). x; is initialized with g = 1, 2 < [ < 4, andp, =
2,1 <1 < 4, and previous decisiong|t] are used in the
adaptatlon process. For the metric coefficients in Fig. 2 the

N1

results of one adaptation process are shown and the BER in o s 1 wszo2s s ss 4 ds s
Fig. 3 is calculated with (7) and (9), where the generalized _ ’ o e
moments were obtained by Monte—Carlo simulation. Figs. 2 Fig. 3. BER vs. iteratiort.

and 3 show that the FDSA algorithm works well and that after
each switch to a new type of noise steady state operation jgi. Rayleigh fading withZ = 2 and impairment by i.i.de—
achieved quickly. Fig. 2 reveals that in steady state for thgixture noise and n.i.d. unfaded QPSK CCI-I, respectively.
n.i.d. noises N1 and N5 af}, andp; are equal, respectively, Simulation results for all metrics are shown (solid lineghwi
whereas for the i.n.d. noises N2, N3, and N4 either ghe markers). In addition, for the.,—norm metric and thelo—
or/and thep; are not equal as expected For M6 — oo, norm metric the simulation results are confirmed by the
1 <1 <4, is optimum and the FDSA yields; = 10, 1 < analytical asymptotic BER (bold solid and dashed linesy. Fo
< 4, because we sty = 10. Fig. 3 shows that thé,— the robust metricé was optimized by simulation for SNR =
norm metric with FDSA adaptation substantially outperferrreo dB. In contrast, the.,—norm metric was optimized with
the Lo—norm metric (i.e., MRC). the FDSA algorithm. Since the considered noises are n.i. d.,
p=p = pandqg = ¢ = ¢ is valid for the L,—norm
o metric. Fig. 4 shows that for the heavy—taileemixture noise
| the L,—norm metric withp,,. = 0.39 outperforms the other
robust metrics and the gap to the optimum ML—metric is less
than 1 dB. Fig. 5 shows that for short—tailed unfaded CClel th
Huber and Myriad metrics are essentially equivalent talthe
norm metric and are outperformed by more than 1 dB by the
L,—norm metric withp = 20 (p.pt — oo holds in this case).

~ @ ©
T T T
I I I

<Il<4—»
>
T
|

sl NI N2 N3 N4 N5 Interestingly, while theL,—norm metric was optimized based
£ el on the presented asymptotic analysis, Figs. 4 and 5 suggest
=4 b .
M ! that it also performs well for small SNRs.
— 3 \ T
: \
[P = . B 2
S s3zsz1% ’ 0 i
s —-— [‘;—:—-*-M-— t_—_-
00 0‘5 1 1‘5 2 2.‘5 3 3‘5 4 4‘5 5
t — x 10
Fig. 2. Metric coefficienty;, 2 <1 < 4, andp;, 1 <1 < 4, vs. iteration 10°F X 4
t.
V. RESULTS AND DISCUSSION T

In this section, we compare the adaptilg—norm metric &+

with the conventional.,—norm metric and several other pop-®  [[—=—t,om (,,, =039, simuiation)

ular robust metrics. For convenience we def'me— lri — ::j’.":m;j::'a".m), .

VAithib|. We consider the Huber metria(b) = S, m(b), 5 Wi 5= 1.3, smtaton)

my(b) = /2 if w < 5, and my(b) = Jur = 52/2 if | oy _

w > 0 [6], the Meridian metricm(b) = 3/, log(u +0) T o et oyt ey

[7], and the Myriad metricn(b) = El L log(u? + 62) [7]. 6 8 10 12 14 16 18 20 22 2 2
Note that for all these robust metrics parametdnas to be SNR per bit [dBf—>

optimized by hand, which is quite tedious, since, unlike for
the L,—norm metric, a systematic optimization framework i§!
not avallable Figs. 4 and 5 show the BER of 16—QAM for

ig. 4. BER vs. SNR per bit for 16-QAM, i.i.d. Rayleigh fading = 2,
and i.i.d.e—mixture noise { = 0.1, k = 100).



o R Considering the asymptotic case — oo and exploiting the
o Taylor series expansions ekp(-) and Iy(-), f.,(z;) can be
. written as o
s 2 —1 _—
. | fal) = = 5 oY, (20)
X where C; £ 2exp (=[hf|/o?) /(d*0} pig;’™). Thus, the
moment generating function (MGF) af can be expanded as
T 1 @y (s) & Efem) = OT(2/p)7; s+ o(3;7Y). Since,
i conditioned om the z; are statistically independent, the MGF
@ - A of m(b) is given by®(s) = ]_[ZL:1 ., (s), and the asymptotic
| e e et expansion of the corresponding pdf is given by
10°H —t— "2 El
5 Merdan (5 100, smalaton L 2 L
im@; (5(:61_0(:;?(s)iymulatllqrt1) ) _ _ Hl:l (Clr (Pl )) SE P_2l_1 1
——L,-norm (p = 20, theoretical asymptotic BER) f(Z) z + o0 "/l
. - = .L,mnorm (tf‘leorelical asymptolic‘ BER) ‘ ‘ F (ZlL:1 %) HlL:1 :}/l P
05 5 10 15 20 25 (21)
SNR per bit [dE] Using this result in (18) leads to
Fig. 5. BER vs. SNR per bit for 16-QAM, i.i.d. Rayleigh fading = 2, L 2 I Sh pl
and n.i.d. unfaded QPSK CCI-I (= 1, 1 = 0.37, raised—cosine pulse Hl:l (CJ‘ (E)) !
shape with roll-offa: = 0.22). P.(dn)= T — Z qi|ni|P!
r (Zl:l D + 1) Hl:1 M \i=1
VI. CONCLUSIONS I
In this paper, we have derived a closed—form expression +o H”_/fl (22)
for the asymptotic BER of cohererdt,—norm combining in =1

on the asymptotic BER, we have developed an efficient FD
algorithm for on—line adaptation of the metric paramet&he
proposed adaptivé,—norm metric was shown to outperform
other robust metrics in both heavy—tailed and short—taitat-
Gaussian noise.

Ricean fading and non—Gaussian noise and interferencedB%

a

Il joint moments of the elements af are finite, averaging
. (d|n) in (22) with respect ta yields (7). The assumption
of finite joint noise moments is necessary, since the terms
absorbed into)(]_[f:ﬂfl) in (22) involve sums of products
of the elements ofn which have to remain finite after

expectation.

APPENDIX

Assuming thatb was transmitted and # b was detected, [1]
the corresponding PEP can be expressed as
- (2]
Pe(d) = Pr{m(b) > m(b)}, 17)
whered £ |e| ande £ b — b. In a first step, we calculate the [3]
PEP conditioned on the noise vector2 [n; ... nz]T. With
(2) and (17) this conditional PEP can be obtained as

m(b

P = |
0

where we have used the fact that due to the conditioning q[ﬂ%
n, m(b) = Zf:1q1|nl|m is a constant.f(z) is the pdf of ]
m(b) = Zle qi|/Jihie +mn|Pt, which we calculate step—by—
step in the following. The conditional pdf,,(z;) of z; = 9
|v/Aihie + ny| is a Ricean pdf. The pdf of the transformed®’

variabley, = z!" is given by f,, (v;) = %y}/f’l‘lfm y P

and the scaling withy; leads toz; = gy with pdf f,,(z) =
%fm(zl/ql). Taking into account these identities the pdf of

2] = qﬂﬁhle + nl|pl is given by

2z/P ! exp G+ @M e + )
dzxﬂgilplq?/:"l 2 2/pi

dQ;Ythlql
1/ -
XhG%MWWW+W

(4

(5]

)
f(z)dz, (18)

[10]

[11]
[12]
[13]

fZJ, (Zl) =

(19)
dQ’VlU;Qqull/pl
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