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Abstract—In today’s web applications, JavaScript code inter-
acts with the Document Object Model (DOM) at runtime. This
runtime interaction between JavaScript and the DOM is error-
prone and challenging to test. In order to unit test a JavaScript
function that has read/write DOM operations, a DOM instance
has to be provided as a test fixture. This DOM fixture needs to
be in the exact structure expected by the function under test.
Otherwise, the test case can terminate prematurely due to a null
exception. Generating these fixtures is challenging due to the
dynamic nature of JavaScript and the hierarchical structure of
the DOM. We present an automated technique, based on dynamic
symbolic execution, which generates test fixtures for unit testing
JavaScript functions. Our approach is implemented in a tool
called CONFIX. Our empirical evaluation shows that CONFI1x
can effectively generate tests that cover DOM-dependent paths.
We also find that CONFIX yields considerably higher coverage
compared to an existing JavaScript input generation technique.

Keywords—Test fixture, test generation, dynamic symbolic exe-
cution, concolic execution, DOM, JavaScript, web applications

I. INTRODUCTION

JavaScript has grown to be among the most popular
programming languages. For instance, JavaScript is now the
most prevalent language in GitHub repositories [18] and a
recent survey of more than 26K developers conducted by Stack
Overflow found that JavaScript is the most-used programming
language [38]. To create responsive web applications, devel-
opers write JavaScript code that dynamically interacts with
the Document Object Model (DOM). The DOM is a tree-
like structure that provides APIs [40] for accessing, traversing,
and mutating the content and structure of HTML elements at
runtime. As such, changes made through JavaScript code via
these DOM API calls become directly visible in the browser.

This complex interplay between two separate languages,
namely JavaScript and the HTML, makes it hard to analyze
statically [22], [26], and particularly challenging for developers
to understand [12] and test [14]], [31] effectively. As revealed
in a recent empirical study [33]], the majority (65%) of reported
JavaScript bugs are DOM-related, meaning the fault pertains
to a DOM API call in JavaScript code. Moreover, 80% of the
highest impact JavaScript faults are DOM-related.

In order to unit test a JavaScript function that has
DOM read/write operations, a DOM instance needs to
be provided in the exact structure as expected by the
function. Otherwise, a DOM API method (e.g., var n =
getElementById ("news")) returns null because the
expected DOM node is not available; any operations on
the variable pointing to this non-existent DOM node (e.g.,
n.firstChild) causes a null exception and the test case
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calling the function terminates prematurely. To mitigate this
problem, testers have to write test fixtures for the expected
DOM structure before calling the JavaScript function in their
unit tests. The manual construction of proper DOM fixtures is,
however, tedious and costly.

Despite the problematic nature of JavaScript-DOM inter-
actions, most current automated testing techniques ignore the
DOM and focus on generating events and function arguments
[14]], [36]. JSeft [31] applies an approach in which the
application is executed and the DOM tree is captured just
before executing the function under test. This DOM tree is
used as a test fixture in generated test cases. This heuristic-
based approach, however, assumes that the DOM captured at
runtime contains all the DOM elements, values, and relations as
expected by the function, which is not always the case. Thus, the
code coverage achieved with such a DOM can be quite limited.
Moreover, the DOM captured this way, can be too large and
difficult to read as a fixture in a test case. SymJS [25] applies
symbolic execution to increase JavaScript code coverage, with
limited support for the DOM, i.e., it considers DOM element
variables as integer or string values and ignores the DOM
structure. However, there exist complex DOM structures and
element relations expected by the JavaScript code in practice,
which this simplification cannot handle.

In this paper, we provide a technique for automatically
generating DOM-based fixtures and function arguments. Our
technique, called CONFIX, is focused on covering DOM-
dependent paths inside JavaScript functions. It operates through
an iterative process that (1) dynamically analyses JavaScript
code to deduce DOM-dependent statements and conditions,
(2) collects path constraints in the form of symbolic DOM
constraints, (3) translates the symbolic path constraints into
XPath expressions, (4) feeds the generated XPath expressions
into an existing structural constraint solver [17] to produce
a satisfiable XML structure, (5) generates a test case with
the solved structure as a test fixture or function argument,
runs the generated test case, and continues recursively until all
DOM-dependent paths are covered.

To the best of our knowledge, our work is the first to
consider the DOM as a test input entity, and to automatically
generate test fixtures to cover DOM-dependent JavaScript
functions.

Our work makes the following main contributions:

e A novel dynamic symbolic execution engine to generate
DOM-based test fixtures and inputs for unit testing
JavaScript functions;



1 function dg(x) {
2 return document.getElementById(x);
3}

5 function sumTotalPrice () {
6 sum = 0;

7 itemList = dg("items");

8 if (itemList.children.length == 0)

9 dg ("message") .innerHTML = "List is empty!";

10 else {

11 for (i = 0; i < itemList.children.length; i++) {

12 p = parselnt (itemList.children[i].value);

13 if (p > 0)

14 sum += p;

15 else

16 dg ("message") .innerHTML += "Wrong value for the
price of item " + 1i;

17 }

18 dg("total") .innerHTML = sum;
19 }

20 return sum;

21 }

[<div id:"qunit—fixture">]

[<form id:"items”>j [<div id:"total">]

[<input id="iteml" value:”50">j [<input id="item2" value:"120">]

Fig. 2: A DOM subtree for covering a path (lines 6-8, 10-14,

and 18-20) of sumTotalPrice in

| test ("A test for sumTotalPrice", function() {

2 S ("#qunit-fixture") .append(’<form id="items"><input type
="text" id="iteml" value=50><input type="text" id="
item2" value=120></form><div id="total"/>");

3 sum = sumTotalPrice();

4 equal (sum, 170, "Function sums correctly.");

51

Fig. 1: A JavaScript function to compute the items total price.

e A technique for deducing DOM structural constraints and
translating those to XPath expressions, which can be fed
into existing structural constraint solvers;

e An implementation of our approach in a tool, called
CoNFI1X, which is publicly available [[L1];

e An empirical evaluation to assess the coverage of CONFIX
on real-world JavaScript applications. We also compare
CONF1X’s coverage with that of other JavaScript test
generation techniques.

The results of our empirical evaluation show that CONFIX
yields considerably higher coverage — up to 40 and 31
percentage point increase on the branch, and the statement
coverage, respectively — compared to tests generated without
DOM fixtures/inputs.

II. BACKGROUND AND MOTIVATION

The majority of reported JavaScript bugs are caused by
faulty interactions with the DOM [33]]. Therefore, it is important
to properly test DOM-dependent JavaScript code. This work
is motivated by the fact that the execution of some paths in a
JavaScript function, i.e., unique sequences of branches from the
function entry to the exit, depends on the existence of specific
DOM structures. Such DOM structures have to be provided as
test fixtures to effectively test such DOM-dependent paths.

A. DOM Fixtures for JavaScript Unit Testing

A test fixture is a fixed state of the system under test used
for executing tests [28]]. It pertains to the code that initializes
the system, brings it into the right state, prepares input data,
or creates mock objects, to ensure tests can run and produce
repeatable results. In JavaScript unit testing, a fixture can be a
partial HTML that the JavaScript function under test expects and
can operate on (read or write to), or a fragment of JSON/XML
to mock the server responses in case of XMLHttpRequest
(XHR) calls in the code.

Running Example. Figure [1| depicts a simple JavaScript code
for calculating the total price of online items. We use this as

Fig. 3: A QUint test case for the sumTotalPrice function.
The DOM subtree of is provided as a fixture before
calling the function. This test with this fixture covers the path
going through lines 6-8, 10-14, and 18 in sumTotalPrice.

a running example to illustrate the need for providing proper
DOM structures as test input for unit testing JavaScript code.

Lets assume that a tester writes a unit test for the
sumTotalPrice function without any test fixture. In this
case, when the function is executed, it throws a null exception
at line 8 when the variable itemlList is accessed
for its children property. The reason is that the DOM
API method getElementById (line 2) returns null since
there is no DOM tree available when running the unit test
case. Consequently, dg (line 2) returns null, and hence the
exception at line 8. Thus, in order for the function to be called
from a test case, a DOM tree needs to be present. Otherwise,
the function will terminate prematurely. What is interesting is
that the mere presence of the DOM does not suffice in this case.
The DOM tree needs to be in a particular structure and contain
attributes and values as expected by the different statements
and conditions of the JavaScript function.

For instance, in the case of sumTotalPrice, in order to
test the calculation, a DOM tree needs to be present that meets
the following constraints:

1) A DOM element with id "items" must exist (line 7)

2) That element needs to have one or more child nodes (lines
8, 10)

3) The child nodes must be of a DOM element type that can
hold values (line 12), e.g., <input value="..."/>

4) The values of the child nodes need to be positive (line 13)
integers (lines 12)

5) A DOM element with id "total™ must exist (line 18).

A DOM subtree that satisfies these constraints is depicted
in Figure [2] which can be used as a test fixture for unit testing
the JavaScript function. There are currently many JavaScript
unit testing frameworks available, such as QUnit [7]], JSUnit
[4]], and Jasmine [2]. We use the popular QUnit framework to
illustrate the running example in this paper. QUnit provides a
$"qunit-fixture" variable to which DOM test fixtures




can be appended in a test case. A QUnit unit test is shown in
Figure [3] The execution of the test case with this particular
fixture results in covering a path (lines 6-8, 10-14, and 18). If
the fixture lacks any of the provided DOM elements that is
required in the execution path, the test case fails and terminates
before reaching the assertion.

Other DOM fixtures are required to achieve branch coverage.
For example, to cover the true branch of the if condition in
line 8, the DOM must satisfy the following constraints:

1) A DOM element with id "items" must exist (line 7)
2) That element must have no child nodes (line 8)
3) A DOM clement with id "message" must exist (line 9).

Yet another DOM fixture is needed for covering the else
branch in line 16:

1) A DOM element with id "items" must exist (line 7)

2) That element needs to have one or more child nodes (lines
8, 10)

3) The child nodes must be of a DOM element type that can
hold values (line 12) e.g., input

4) The child nodes values need to be integers (lines 12)

5) The value of a child node needs to be zero or negative
(line 15)

6) A DOM element with id "message" must exist (line
16).

7) A DOM element with id "total" must exist (line 18).

B. Challenges

As illustrated in this simple example, different DOM fixtures
are required for maximizing JavaScript code coverage. Writing
these DOM fixtures manually is a daunting task for testers.
Generating these fixtures is not an easy task either. There are
two main challenges in generating proper DOM-based fixtures
that we address in our proposed approach.

Challenge 1: DOM-related variables. JavaScript is a weakly-
typed and highly-dynamic language, which makes static code
analysis quite challenging [34], [36], [41]. Moreover, its
interactions with the DOM can become difficult to follow
[33], [12]. For instance, in the condition of line 13 in
the value of the variable p is checked. A fixture
generator needs to determine that p is DOM-dependent and
it refers to the value of a property of a DOM element, i.e.,
itemList.children[i].value.

Challenge 2: Hierarchical DOM relations. Unlike most
test fixtures that deal only with primitive data types, DOM-
based test fixtures require a tree structure. In fact, DOM
fixtures not only contain proper DOM elements with at-
tributes and their values, but also hierarchical parent-child
relations that can be difficult to reconstruct. For example
the DOM fixture in encompasses the parent-child
relation between <form> and <input> elements, which is
required to evaluate itemList.children.length and
itemList.children[i].value in the code (lines 8, 11,

and 12 in [Figure T).

C. Dynamic Symbolic Execution

Our insight in this work is that the problem of generating
expected DOM fixtures can be formulated as a constraint
solving problem, to achieve branch coverage.

Symbolic execution [24] is a static analysis technique that
uses symbolic values as input values instead of concrete data,
to determine what values cause each branch of a program to
execute. For each decision point in the program, it infers a
set of symbolic constraints. Satisfiability of the conjunction of
these symbolic constraints is then checked through a constraint
solver. Concolic execution [19], [37], also known as dynamic
symbolic execution [39]], performs symbolic execution while
systematically executing all feasible program paths of a program
on some concrete inputs. It starts by executing a program
with random inputs, gathers symbolic constraints at conditional
statements during execution, and then uses a constraint solver
to generate a new input. Each new input forces the execution
of the program through a new uncovered path; thus repeating
this process results in exploring all feasible execution paths of
the program.

III. APPROACH

We propose a DOM-based test fixture generation technique,
called CoNFI1x. To address the highly dynamic nature of
JavaScript, CONFIX is based on a dynamic symbolic execution
approach.

Scope. Since primitive data constraints can be solved using
existing input generators for JavaScript [35]], [36], [25], in this
paper, we focus on collecting and solving DOM constraints
that enable achieving coverage for DOM dependent statements
and conditions in JavaScript code. Thus, CONFIX is designed
to generate DOM-based test fixtures and function arguments
for JavaScript functions that are DOM-dependent.

Definition 1 (DOM-Dependent Function) A DOM depen-
dent function is a JavaScript function, which directly or
indirectly accesses DOM elements, attributes, or attribute
values at runtime using DOM APIs. O

An instance of a direct access to a DOM element is
document .getElementById ("items") in the function
dg (Line 2, [Figure T)). An indirect access is a call to another
JavaScript function that accesses the DOM. For instance, the
statement at line 7 of is an indirect DOM access
through function dg.

Overview. Figure [4 depicts an overview of CONFIX. At a high
level, CONFIX instruments the JavaScript code (block 1), and
executes the function under test to collect a trace (blocks 2 and
3). Using the execution trace, it deduces DOM-dependent path
constraints (block 4), translates those constraints into XPath
expressions (block 5), which are fed into an XML constraint
solver (block 6). The solved XML tree is then used to generate
a DOM-based fixture (block 7), which subsequently helps in
covering unexplored paths (block 8). Finally, it generates a
test suite by adding generated test fixtures into a JavaScript
unit testing template such as QUnit (block 9). In the following
subsections we discuss each of these steps in more details.
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Fig. 4: Processing view of our approach.

Algorithm. Algorithm [I| demonstrates our DOM fixture gener-
ation technique. The input to our algorithm is the JavaScript
code, the function under test f, and optionally its function
arguments (provided by a tester or a tool [35], [36]). The
algorithm concolically generates DOM fixtures required for
exploring all DOM-dependent paths.

A. Collecting DOM-based Traces
We instrument the JavaScript code under test (algorithm |

line 3) with wrapper functions to collect information pertaining
to DOM interactions, which include statements or conditional
constructs that depend on the existence of a DOM structure,
element, attribute, or value. The instrumentation is non-intrusive
meaning that it does not affect the normal functionality of the
original program.

The instrumentation augments function calls, conditionals
(in if and loop constructs), infix expressions, variable initial-
izations and assignments, and return statements with inline
wrapper functions to store an execution trace (see
for more details). Such a trace includes the actual
statement, type of statement (e.g. infix, condition, or function
call), list of variables and their values in the statement, the
enclosing function name, and the actual concrete values of the
statement at runtime. CONFIX currently supports DOM element
retrieval patterns based on tag names, IDs, and class names,
such as getElementById, getElementsByTagName,
children, innerHTML, parentNode, and $ () for
jQuery-based code.

After instrumenting the source code, the modified JavaScript
file is used in a runner HTML page that is loaded inside a
browser (line 7, and then a JavaScript driver (e.g.,
WebDriver [8]) executes the JavaScript function under test
(line 8). This execution results in an execution trace, which is
collected from the browser for further analysis (line 9).

B. Deducing DOM Constraints

An important phase of dynamic symbolic execution is
gathering path constraints (PCs). In our work, path constraints
are conjunctions of constraints on symbolic DOM elements.

Algorithm 1: Test Fixture Generation

input :JavaScript code JS, the function under test f, function arguments
for f
output: A set of DOM fixtures fixztureSet for f

-

negatedConstraints < &

DOMRefTrackList <— &

Procedure GENERATEFIXTURE(JS, f)

begin

JSinst < INSTRUMENT(JS)

fiztureSet < &

fixture < O

repeat
browser.LOAD(JS;ys¢, fizture)
browser.EXECUTE( f)
t < browser.GETEXECUTIONTRACE()
fizture < SOLVECONSTRAINTS(t)
fizxtureSet + fizxtureSet U fixture

until fizxture # J;

12 return fixtureSet

)

T2 cxuoa wm e W

Procedure SOLVECONSTRAINTS(?)

begin

13 DOMRefTrackList < GETDOMREFERENCETRACKS(t)

14 pc < GETPATHCONSTRAINT (¢, DOMRefTrackList)

15 fixture <— UNSAT

16 while fixture = UNSAT do

17 fizture < @

18 ¢ <— GETLASTNONNEGCONST(pc, negatedConstraint)

19 if ¢ # null then

20 negatedConstraint < negatedConstraint U ¢

21 pc < NEGATECONSTRAINT(pc, ¢)

2 zp < GENERATEXPATH(pc, DOM Re fTrackList)
/* SOLVEXPATHCONSTRAINT returns UNSAT if

zp is not solvable. x/
23 fixture <~ SOLVEXPATHCONSTRAINT(xp)
24 return fixture

Definition 2 (Symbolic DOM Element) A symbolic DOM el-
ement d is a data structure representing a DOM element in
terms of its symbolic properties and values. d is denoted by a

4 tuple < P,C, A, T > where:

1) P is d’s parent symbolic DOM element.

2) C is a set of child symbolic DOM elements of d.

3) Ais a set of (att, val) pairs; each pair stores an
attribute att of d with a symbolic value val.

4) T is the element type of d. O

Note that keeping the parent-children relation for DOM
elements is sufficient to recursively generate the DOM tree.

DOM constraints in the code can be conditional or non-
conditional. A non-conditional DOM constraint is a constraint
on the DOM tree required by a DOM accessing JavaScript
statement. A conditional DOM constraint is a constraint on the
DOM tree used in a conditional construct.

ExXAMPLE 1. Consider the JavaScript code in Fig-
ure [ In line 2, document.getElementById (x)
is a non-conditional DOM constraint, i.e., an element
with a particular ID is targeted. On the other hand,
itemList.children.length == 0 (line 8) is a con-
ditional DOM constraint, i.e., the number of child nodes of a
DOM element is checked to be zero. O

Non-conditional DOM constraints evaluate to null or
a not-null object, while, conditional DOM constraints eval-
uate to true or false. For example, if we execute
sumTotalPrice () with a DOM subtree void of an element



with id="items", the value of itemList at line 7 will be
null and the execution will terminate at line 8 when evaluating
itemList.children.length == 0. On the other hand,
if that element exists and has a child, the condition at line 8
evaluates to false.

In this work, the input to be generated is a DOM subtree
that is accessed via DOM APIs in the JavaScript code. As
we explained in due to the dynamic nature
of JavaScript, its interaction with the DOM can be difficult to
follow (challenge 1). Tracking DOM interactions in the code
is needed for extracting DOM constraints. Aliases in the code
add an extra layer of complexity. We need to find variables
in the code that refer to DOM elements or element attributes.
To address this challenge, we apply an approach similar to
dynamic backward slicing, except that instead of slices of the
code, we are interested in relevant DOM-referring variables.
To that end, we use dynamic analysis to extract DOM referring
variables from the execution trace, by first searching for DOM
API calls, their arguments, and their actual values at runtime.
The process of collecting DOM referring variables (Algorithm
line 13) is outlined further in subsection |lII-E

Once DOM referring variables are extracted, constraints
on their corresponding DOM elements are collected and
used to generate constraints on symbolic DOM elements
(see Definition [2). DOM constraints can be either attribute-
wise or structure-wise. Attribute-wise constraints are satisfied
when special values are provided for element attributes. For
example, parseInt (itemList.children[i].value)
> 0 (line 13 of requires the value of the i-th child
node to be an integer greater than zero. The value is an attribute
of the child node in this example. Structure-wise constraints are
applied to the element type and its parent-children relations. For
example, in itemList.children.length == 0 (line 8
of [Figure T]to cover the else branch (lines 10-19) an element
with id "items" is needed with at least one child node.

The conjunction of these symbolic DOM constraints
in an iteration forms a path constraint. For instance,
the structure-wise constraint in parseInt (itemList-—
.children[i].value) > 0 (line 13 of[Figure I) requires
the child nodes to be of an element type that can hold values,
e.g., input type, and the attribute-wise constraint requires the
value to be a positive integer.

Our technique reasons about a collected path constraint and
constructs symbolic DOM elements needed. For each symbolic
DOM element, CONFIx (1) infers the type of the parent node,
(2) determines the type and number of child nodes, and (3)
generates, through a constraint solver, satisfied values that are
used to assign attributes and values (i.e., (att, wval) pairs).
The default element type for a symbolic DOM element is div
— the div is a placeholder element that defines a division or a
section in an HTML document. It satisfies most of the element
type constraints and can be parent/child of many elements —
unless specific attributes/values are accessed from the element,
which would imply that a different element type is needed.
For instance, if the value is read/set for an element, the
type of that element needs to change to, for instance input,
because per definition, the div type does not carry a value
attribute (more detail in subsection [[TI-E). These path constraints
with satisfied symbolic DOM elements are used to generate

a corresponding XPath expression, as presented in the next
subsection.

C. Translating Constraints to XPath

The problem of DOM fixture generation can be formulated
as a decision problem for the emptiness test [15] of an XPath
expression, in the presence of XHTML meta-models, such
as Document Type Definitions (DTD) or XML Schemas.
These meta-models define the hierarchical tree-like structure
of XHTML documents with the type, order, and multiplicity
of valid elements and attributes. XPath [16] is a query
language for selecting nodes from an XML document. An ex-
ample is the expression /child: :store/child::item—
/child: :price which navigates the root through the top-
level “store" node to its “item" child nodes and on to its “price"
child nodes. The result of the evaluation of the entire expression
is the set of all the “price" nodes that can be reached in this
manner. XPath is a very expressive language. We propose a
restricted XPath expression grammar, shown in Figure [5] which
we use to model our DOM constraints in.

(XPath) ::= (Path) | /{Path)

(Pathy ::= (Pathy/(Path) | (Path)[{Qualifier)] | child::(Name) | (Name)

(Qualifier) ::= (Qualifier) and (Qualifier) | (Path) | @(Name)

(Name) ::== (HTMLTag) | {Attribute)=(Value)

(HTMLTag) ::= a | b | button | div | form | frame | h1 - h6 | iframe | img |
input | i | 1i | link | menu | option | ol | p | select | span | td | tr | ul

(Attribute) == id | type | name | class | value | src | innerHTML | title | selected
| checked | href | size | width | height

Fig. 5: Restricted XPath grammar for modeling DOM con-
straints.

We transform the deduced path constraints, with the
symbolic DOM elements, into their equivalent XPath expres-
sions conforming to this specified grammar. These XPath
expressions systematically capture the hierarchical relations
between elements. Types of common constraints translated
to expressions include specifying the existence of a DOM
element/attribute/value, properties of style attributes, type and
number of child nodes or descendants of an element, or binary
properties such as selected/not selected.

EXAMPLE 2. Table [I| shows examples of collected DOM
constraints that are translated to XPath expressions, for the
running example. For example, in the first row, the DOM
constraint document .getElementById("items")
# null is translated to the XPath expression
div[@id="qunit-fixture"] [div[@id="items"]],
which expresses the desire for the existence of a div element
with id “items” in the fixture. The second row shows a more
complex example, including six DOM constraints in a path
constraint, which are translated into a corresponding XPath
expression. O

D. Constructing DOM Fixtures

Next, the XPath expressions are fed into a structural XML
solver [17]]. The constraint solver parses the XPath expressions
and compiles them into a logical representation, which is tested



TABLE I: Examples of DOM constraints, translated XPath expressions, and solved XHTML instances for the running example.

DOM constraints

Corresponding XPath expressions

Solved XHTML

document.getElementById(“items”) 7 null

div[ @id="qunit-fixture”][div[ @id="items”]]

<div id="items”/>

document.getElementById(“items”) # null A
itemList.children.length # 0 A

0 < itemList.children.length A
parselnt(itemList.children[0].value) > 0 A
document.getElementById(“message”) # null A
document.getElementById(“total”’) # null

div[@id="qunit-fixture”][div[ @id="items” and
child::input[ @id="Confix1” and @value="1"]] and
child::div[ @id="message”] and

child::div[ @id="total]]

<div id="items”>
<input id="Confix1” value="1"/>
</div>
<div id="message”/>
<div id="total”/>

for satisfiability. If satisfiable, the solver generates a solution
in the XML language. Since an XHTML meta-model (i.e.,
DTD) is fed into the solver along with the XPath expressions,
the actual XML output is an instance of valid XHTML. The
last column of [Table Il shows solved XHTML instances that
satisfy the XPath expressions, for the running example. These
solved XHTML instances are subsequently used to construct
test fixtures.

Each newly generated fixture forces the execution of the
JavaScript function under test along a new uncovered path. This
is achieved by systematically negating the last non-negated
conjunct in the path constraint and solving it to obtain a
new fixture, in a depth first manner. If a path constraint is
unsatisfiable, the technique chooses a different path constraint
and this process repeats until all constraints are negated.

In the main loop of Algorithm [I] (lines 6-11), fixtures are
iteratively generated and added to the fixtureSet. In the
SolveConstraints procedure, a fixture is initialized to
UNSAT; the loop (lines 16-23) continues until the fixture is set
either to a solved DOM subtre (line 23), or to @ (line 17)
if there exist no non-negated constraints in the PCs. When a
@ fixture returns from SolveConstraints, the loop in the
main procedure terminates, and the fixtureSet is returned.

EXAMPLE 3. Table [l shows the extracted path constraints
and their values, as well as the current and next iteration fixtures
at each iteration of the concolic execution for the running
example. Since there is no fixture available in the first iteration,
the constraint obtained is document .getElementById ("
items")=null. This means the execution terminates at line
8 of the JavaScript code due to a null exception. Our
algorithm negates the last non-negated constraint (docume
nt.getElementById ("items")#null), and generates
the corresponding fixture (<div id="items">) to satisfy
this negated constraint. This process continues until the solver
fails at producing a satisfiable fixture in the sixth iteration.
UNSAT is returned because the constraints itemList.chi
ldren.length#0 and the newly negated one (0£itemL
ist.children.length) require that the number of child
nodes be negative, which is not feasible in the DOM structure.
It then tries to generate a fixture by negating the last non-
negated constraint without applying any fixtures, i.e., the path
constraint extracted in the sixth iteration. However, in this case
there are no non-negated constraints left since the last one (0<
itemList.children.length) had already been negated
and the result was not satisfiable. Consequently the algorithm
terminates with an empty fixture in the last iteration. The table

INote that SolveXpathConstraint returns UNSAT when it fails to
solve the given path constraint.

also shows which paths of the running example are covered in
terms of lines of JavaScript code. O

E. Implementation Details

CONFIX currently generates QUnit test cases with fixtures,
however, it can be easily adapted to generate test suites in other
JavaScript testing frameworks. To parse the JavaScript code
into an abstract syntax tree for instrumentation, we build up on
Mozilla Rhino [S]]. To collect execution traces while executing
a function in the browser, we use WebDriver [8]].

XML Solver. To solve structure-wise DOM constraints using
XPath expressions, we use an existing XML reasoning solver
[L7]. A limitation with this solver is that it cannot generate
XML structures with valued attributes (i.e., attributes are
supported but not their values). To mitigate this, we developed
a transformation technique that takes our generic XPath syntax
(Figure [3)) and produces an XPath format understandable by the
solver. More specifically, we merge attributes and their values
together and feed them to the solver as single attributes to be
generated. Once the satisfied XML is generated, we parse and
decompose it to the proper attribute-value format as expected in
a valid XHTML instance. Another limitation is that it merges
instances of the same tag elements at the same tree level when
declared as children of a common parent. We resolved this by
appending an auto-increment number to the end of each tag
and remove it back once the XML produced.

Handling asynchronous calls. Another challenge we encoun-
tered pertains to handling asynchronous HTTP requests that
send/retrieve data (e.g., in JSON/XML format) to/from a server
performed by using the XMLHttpRequest (XHR) object.
This feature makes unit-level testing more challenging since
the server-side generated data should also be considered in a test
fixture as an XHR response if the function under test (in)directly
uses the XHR and expects a response from the server. Existing
techniques [21] address this issue by mocking the server
responses, but they require multiple concrete executions of
the application to learn the response. This is, however, not
feasible in our case because we generate JavaScript unit tests
in isolation from other dependencies such as the server-side
code. As a solution, our instrumentation replaces the XHR
object of the browser with a new object and redefines the
XHR open () method in a way that it always uses the GET
request method to synchronously retrieve data from a local
URL referring to our mocked server. This helps us to avoid null
exceptions and continue the execution of the function under
test. However, if the execution depends on the actual value of
the retrieved data (and not merely their existence), our current
approach can not handle it. In such cases, a string solver [23]]
may be helpful.



TABLE II: Constraints table for the running example. The “Next to negate" field refers to the last non-negated constraint.

3
<
g
g 3| s
= | Current fixture Current DOM constraints Z | Z | Fixture for the next iteration Paths covered
1 7] document.getElementById(“items”) = null - v | <div id=“items”/> Lines 1-8
2 | <div id="items”/> document.getElementById(“items”) 7 null A v - <div id="items”/> Lines 1-9
itemList.children.length = 0 A - - <div id="message”/ >
document.getElementByld(“message”) = null - v
3 | <div id="items”/> document.getElementById(“items”) # null A v - <div id="items”> Lines 1-9 and 20
<div id="message”/ > itemList.children.length = 0 A -7 <div id="Confix1”/>
document.getElementById(“message”) 7 null v - </div>
<div id="message”/>
4 <div id="items”> document.getElementById(*“items”) 7 null A v <div id="items”> Lines 1-8, 10-13,
<div id="Confix1"/> itemList.children.length # 0 A V| - <div id="Confix1"/> and 15-18
</div> 0 < itemList.children.length A - - </div>
<div id="message”/> parselnt(itemList.children[0].value) % 0 A - - <div id="message”/>
document.getElementById(“message”) # null A v - <div id="total”/>
document.getElementById(“total””) = null - v
5 <div id="items”> document.getElementById(“items”) 7 null A V| - <div id="items”> Lines 1-8, 10-13,
<div id="Confix1”/> itemList.children.length # 0 A V| - <input id="Confix1” value="1"/> and 15-20
</div> 0 < itemList.children.length A - - </div>
<div id="message”/> parselnt(itemList.children[0].value) % 0 A - v | <div id="message”/>
<div id="total”/> document.getElementById(“message”) # null A v - <div id="total”/>
document.getElementById(“total”) # null V| -
6 <div id="items”> document.getElementById(*“items”) # null A V| - UNSAT = Negate last non-negated Lines 1-8, 10-14,
<input id="Confix1” value="1"/> itemList.children.length # 0 A V| - constraint and 18-20
</div> 0 < itemList.children.length A - v
<div id="message”/> parselnt(itemList.children[0].value) > 0 A V| -
<div id="total”/> document.getElementByld(“message”) # null A -
document.getElementById(“total”) # null v | -
<div id="items”> document.getElementById(“items”) # null A - No non-negated constraint exists =
<input id=“Confix1” value="“1"/> itemList.children.length # 0 A V| - Fixture = &
</div> 0 < itemList.children.length A v -
<div id="message”/> parselnt(itemList.children[0].value) > 0 A V| -
<div id="total”/> document.getElementById(“message”) 7 null A -
document.getElementById(“total”) # null V| -
“?Ck“‘g DOM-referring variables. TO detect DOM .refemng TABLE III: DRT data structure for the running example.
variables — used to generate constraints on symbolic DOM
elements (Definition [2) — we automatically search for DOM g
API calls, their arguments, and their actual values at runtime, in 2 2 g =
the execution trace. Algorithm [T]keeps track of DOM references o £ § = 2
(line 13) by storing information units, called DOM Reference = é z g 2 %
Track (DRT), in a data structure. 5l S £ E £ 4
=l /R A = < =
1| itemList| document| div (id:items, -) X
Definition 3 (DOM Reference Track (DRT)) A DOM refer- 7| *enmist] docunenti aiv | iccitens,) :
" . . - itemList| div (id:Confixl,) X
ence track is a data structure capturing how a DOM tree is - document| div | (idmessage,-) X
accessed in the JavaScript code. It is denoted by a 4 tuple 3| itemList| document| div | (id:items,) v
<D.P.A.T > where: - itemList| div (id:confixl,) X
»havh : - document| div (id:message,-) v
1) D (DOMVariable) is a JavaScript variable v that is set 6| itemList| document| div | (id:items,) v
to refer to a DOM element d. - itemList| input] (id:Confix1,-), (value:l, p) v
. - document| div (id:message,-) v
2) P (ParentVariable) is a JavaScript variable (or the - document| div | (id:itotal,) v

document object) that refers to the parent node of d.
3) A (AttributeVariables) is a set of {att:val, var)

pairs, each pair stores the variable var in the code

that refers to an attribute att of d with a value val.
4) T (ElementType) is the node type of d. O

When JavaScript variables are evaluated in a condition, the
DRT entries in this data structure are examined to determine
whether they refer to the DOM. If the actual value of a
JavaScript variable at runtime contains information regarding a
DOM element object, and it does not exist in our DRT data
structure, we add it as a new DOM referring variable. Table
presents an example of the DRT for the running example.

We implemented a constraint solver that reasons about
some common symbolic DOM constraints such as string/integer
attribute values, and number of children nodes. Specifically
the solver infers conditions on DOM referring variables by
examining DRT entries. If the constraint is on an attribute of
a DOM element, then the AttributeVariables property
of the corresponding DRT will be updated with a satisfying
value. In case the constraint is a structural constraint, such as
number of child nodes, a satisfying number of DRT entities
would be added to the table. Table [ITI] depicts the process of
constructing the DRT during different iterations of the concolic



execution. The Exists field indicates whether the element
exists in the DOM fixture.

EXAMPLE 4. Consider the running example of Figure
When sumTotalPrice () is called in the first iteration,
dg ("items") returns null as no DOM element with
ID items exists. Table [[Tl] would then be populated by
adding the first row: DOMVariable is itemList, the
ParentVariable points to document, the default element
type is set to div, and the attribute id is set to items;
and this particular element does not exist yet. The execution
terminates with a null exception at line 8. In the next iteration,
CONFIX updates the DOM fixture with a div element with id
items. Therefore dg ("items") returns a DOM element and
line 8 evaluates the number of child nodes under itemList.
This would then update the table with a new entry having
ParentVariable point to itemList and attribute id set
to an automatically incremented id "Confix1" (in the second

row). This process continues as shown in O

Generating DOM-based function arguments. Current tools
for JavaScript input generation (e.g., [35], [36]) only consider
primitive data types for function arguments and thus cannot
handle functions that take DOM elements as input. Consider
the following simple function:

function foo(elem) {

1

2 var price = elem.firstChild.value;
3 if (price > 200) {
4 .
5

I3

The elem function parameter is expected to be a DOM
element, whose first child node’s value is read in line 2 and
used in line 3. The problem of generating DOM function
arguments is not fundamentally different from generating DOM
fixtures. Thus, we propose a solution for this issue in CONFIX.
The challenge here, however, is that JavaScript is dynamically
typed and since elem in this example does not reveal its type
statically nor when foo is executed in isolation in a unit test
(because elem does not exist to log its type dynamically), it
is not possible to determine that elem is a DOM element.
To address this challenge, CONFIX first computes a forward
slice of the function parameters. If there is a DOM API call
in the forward slice, CONFI1X deduces constraints and solves
them similarly to how DOM fixtures are constructed. The
generated fixture is then parsed into a DOM element object
and the function is called with that object as input in the test
case. In the example above, there is a DOM API call present,
namely firstChild in the forward slice of e 1em. Therefore,
CONFIX would know that elem is a DOM element and would
generate it accordingly. Then foo is called in the test case
with that object as input.

IV. EMPIRICAL EVALUATION

To assess the efficacy of our proposed technique, we have
conducted a controlled experiment to address the following
research questions:

RQ1 (Coverage) Can fixtures generated by CONFIX effec-
tively increase code coverage of DOM-dependent func-
tions?

RQ2 (Performance) What is the performance of running
CoNFi1x? Is it acceptable?

TABLE IV: Characteristics of experimental objects excluding
blank/comment lines and external JavaScript libraries.

1]
=
g
£l g
21 2|8
E 21 3| v
< - = =
=% 2 = -1
2 g| & S| 5| 2
ol £l 21 2| 2| 3| %
& | & 2| 2 Z| 5| ¢
- 5 é’ a = V4 Q
Name 2 * * 5 =+ R 53
ToDoList 82 10 7 100 19 84 16
HotelReserve 106 88 9 56 13 69 31
Sudoku 399 344 18 78 66 67 33
Phormer 1553 464 109 71 194 70 30
Total 2140 906 143 72 292 70 30

The experimental objects and our results, along with the
implementation of CONFIX are available for download [11].

A. Experimental Objects

To evaluate CONFIX, we selected four open source web ap-
plications that have many DOM-dependent JavaScript functions.
shows these applications, which fall under different
application domains and have different sizes. ToDoList [9] is a
simple JavaScript-based todo list manager. HotelReserve [1] is
a reservation management application. Sudoku [10] is a web-
based implementation of the Sudoku game. And Phormer [0]
is an Ajax photo gallery. As presented in about 70%
of the functions in these applications are DOM-dependent. The
table also shows the lines of JavaScript code, and number of
branches and functions in each application.

B. Experimental Setup

Our experiments are performed on Mac OS X, running on
a 2.3GHz Intel Core i7 with 8 GB memory, and FireFox 37.

1) Independent variables: To the best of our knowledge,
there exists no DOM test fixture generation tool to compare
against; the closest to CONFIX is JSeft [31], which generates
tests that use the entire DOM at runtime as test fixtures.
However, JSeft does not generate DOM fixtures, and it requires
a deployed web application before it can be used.

Therefore, we construct baseline test suites to compare
against. We compare different types of test suites to evaluate
the effectiveness of test fixtures generated by CONFIX.
depicts different JavaScript unit test suites. We classify test
suites based on the type of test input they have support for,
namely, (1) DOM fixtures, and/or (2) DOM function arguments.

Test suites without DOM fixtures. Nolnput is a naive test
suite that calls each function without setting any fixture or
input for it. Jalangi produces (non-DOM) function arguments
using the concolic execution engine of JALANGI [36]. Manual
is a test suite that uses manually provided (non-DOM) inputs.

Test suites with DOM fixtures. To assess the effect of DOM
fixtures and inputs generated by CONFIX, we consider different
combinations: ConFix + Nolnput has DOM fixtures generated
by CONFIX but no function arguments, ConFix + Jalangi



TABLE V: Evaluated function-level test suites.

Test Suite Function Arguments DOM DOM # Test

Fixture Input Cases
Nolnput No input X X 98
Jalangi Generated by JALANGI X X 98+4
Manual Manual inputs X X 98+55
ConFix + Nolnput | No input v X 98+125
ConFix + Jalangi Generated by JALANGI v X 98+129
ConFix + Manual Manual inputs v v 98+236

has DOM fixtures generated by CONFIX but uses the inputs
generated by JALANGI for non-DOM function arguments, and
ConFix + Manual uses DOM fixtures and DOM function
arguments generated by CONFIX and manual inputs for non-
DOM function arguments. shows all these combinations
along with the number of test cases in each category.

Note that since our approach is geared toward generating
DOM-based test fixtures/inputs, we only consider test genera-
tion for DOM-dependent functions and thus for all categories
we consider the same set of 98 DOM-dependent functions
under test, but with different inputs/fixtures. The 55 manual
non-DOM function arguments were written by the authors
through source code inspection.

2) Dependent variables: Our dependent variables are code
coverage and generation time.

Code coverage. Code coverage is commonly used as a test
suite adequacy criterion. To address RQ1, we compare the
JavaScript code coverage of the different test suites, using
JSCover [3]]. Since our target functions in this work are DOM-
dependent functions (Definition [T), code coverage is calculated
by considering only DOM-dependent functions.

Fixture generation time. To answer RQ2 (performance), we
measure the time (in seconds) required for CONFIX to generate
test fixtures for a test suite, divide it by the number of generated
tests, and report this as the average fixture generation time.

C. Results

Coverage (RQ1). Figure [f] illustrates the comparison of code
coverage achieved by each test suite category. We report the
total statement and branch coverage of the JavaScript code
obtained from the experimental objects.

Table V| shows that in total about 14% of the code (i.e.,
292 out of 2140 LOC) contains DOM constraints. However, as
shown in Figure[6] this relatively small portion of the code has
a remarkable impact on the code coverage when comparing test
suites with and without DOM test fixtures. This is due to the fact
that if a DOM constraint is not satisfied, the function terminates
as a result of a null exception in most cases. Such constraints
may exist at statements near the entrance of functions (as shown
in and thus, proper DOM test fixtures are essential to
achieve proper coverage. shows the coverage increase
for the test suites.

Our results, depicted in [Figure 6] and [Table VI, show
that Manual and Jalangi cannot achieve a much higher code

coverage than Nolnput. This again relates to the fact that if
expected DOM elements are not available, then the execution

O Statement Coverage B Branch Coverage

80%
70%

60%
50%
40%
30%
20%
10%

0%

Code Coverage

Manual ConFix +
Manual

Nolnput ConFix +
Nolnput

Jalangi  ConFix +
Jalangi

Fig. 6: Comparison of statement and branch coverage, for
DOM-dependent functions, using different test suite generation
methods.

TABLE VI: Coverage increase (in percentage point) of test
suites on rows over test suites on columns. Statement and
branch coverage are separated by a slash, respectively.

Nolnput | Jalangi Manual ConFix ConFix
+ +
Nolnput | Jalangi
Jalangi 3/2 — — — —
Manual 719 4117 — — —
ConFix + Nolnp 23/23 20/ 21 16/ 14 — —
ConFix + Jalangi 26/ 25 23/23 19/ 16 3/2 —
ConFix + Manual 34/ 42 31/40 | 27/33 11/19 8/17

of DOM-dependent functions terminates and consequently code
coverage cannot be increased much, no matter the quality of
the function arguments provided.

The considerable coverage increase for ConFix + Nolnput
vs. Jalangi and Manual indicates that test suites generated by
CoONFIX, even without providing any arguments, is superior
over other test suites with respect to the achieved code coverage.
The coverage increases even more when function arguments
are provided; for example, for ConFix + Manual compared
to Jalangi, there is a 40 percentage point increase (300%
improvement) in the branch coverage, and a 31 percentage
point increase (67% improvement) in the statement coverage.

The coverage increase for ConFix + Manual vs. ConFix
+ Nolnput and ConFix + Jalangi is more substantial in
comparison with the coverage increase for Manual vs. Nolnput
and Jalangi. This is mainly due to (1) the DOM fixtures
generated, which are required to execute paths that depend
on manually given arguments; and (2) the DOM arguments
generated, which enable executing paths that depend on DOM
elements provided as function arguments.

Although DOM fixtures generated by CONFIX can substan-
tially improve the coverage compared to the current state-of-
the-art techniques, we discuss why CONFIX does not achieve

full coverage in

Performance (RQ2). The execution time of CONFIX is mainly
affected by its concolic execution, which requires iterative code
execution in the browser and collecting and solving constraints.
Our results show that, on average, CONFIX requires 0.7 second
per test case and 1.6 second per function to generate DOM
fixtures. Since the number of conditional DOM constraints in



typical JavaScript functions is not extremely large, concolic
execution can be performed in a reasonable time.

V. DISCUSSION

Applications. Given the fact that JavaScript extensively inter-
acts with the DOM on the client-side, and these interactions
are highly error-prone [33], we see many applications for our
technique. CONFIX can be used to automatically generate
JavaScript unit tests with DOM fixtures that could otherwise
be quite time consuming to write manually. It can also be used
in combination with other existing test generation techniques
[31], [36] to improve the code coverage. In case a DOM
constraint depends on a function argument, we can perform
concolic execution i.e., beginning with an arbitrary value for
the argument, capturing the DOM constraint during execution,
and treating the DOM referring variable and the argument
as symbolic variables. In addition to DOM fixtures, CONFIX
can also generate DOM-based function arguments, i.e., DOM
elements as inputs, as explained in subsection Currently
there is no tool that supports DOM input generation for
JavaScript functions.

Limitations. We investigated why CONFIX does not achieve
full coverage. The main reasons that we found reveal some of
the current limitations of our implementation, which include:
(1) we implemented a simple integer/string constraint solver to
generate XPath expressions with proper structure and attribute
values, which cannot handle complex constraints currently;
(2) we do not support statements that require event-triggering;
(3) the XML solver used in our work cannot efficiently solve
long lists of constraints, (4) some paths are browser-dependent,
which is out of the scope of CONFIX; (5) the execution of
some paths are dependent on global variables that are set via
other function calls during the execution, which is also out
of the scope of CONFIX; and (6) CONFIX does not analyze
dynamically generated code using eval () that interacts with
the DOM.

Threats to validity. A threat to the external validity of our
experiment is with regard to the generalization of the results to
other JavaScript applications. To mitigate this threat, we selected
applications from different domains (task management, form
validation, game, gallery) that exhibit variations in functionality,
and we believe they are representative of JavaScript applications
that use DOM APIs for manipulating the page; although we
do need more and large applications to make our results more
generalizable. With respect to the reproducibility of our results,
CONFIX, the test suites, and the experimental objects are all
available [11], making the experiment repeatable.

VI. RELATED WORK

Most current web testing techniques focus on generating
sequences of events at the DOM level, while we consider unit
test generation at the JavaScript code level. Event-based test
generation techniques [27], [29], [30] can miss JavaScript faults
that do not propagate to the DOM [31]].

Unit testing. Alshraideh [[13]] generates unit tests for JavaScript
programs through mutation analysis by applying basic mutation
operators. Heidegger et al. [20] propose a test case generator for
JavaScript that uses contracts (i.e., type signature annotations

that the tester has to include in the program manually) to
generate inputs. ARTEMIS [14] is a framework for automated
testing of JavaScript, which applies feedback-directed random
test generation. None of these techniques consider DOM fixtures
for JavaScript unit testing.

More related to our work, JSEFT [31] applies a heuristic-
based approach by capturing the full DOM tree during the
execution of an application just before executing the function
under test, and uses that DOM as a test fixture in a generated test
case. This approach, however, cannot cover all DOM dependent
branches.

Symbolic and concolic execution. Nguyen et al. [32] present
a technique that applies symbolic execution for reasoning about
the potential execution of client-side code embedded in server-
side code. KUDZU [35] performs symbolic reasoning to analyze
JavaScript security vulnerabilities, such as code injections in
web applications. JALANGI [36] is a dynamic analysis frame-
work for JavaScript that applies concolic execution to generate
function arguments; however, it does not support DOM-based
arguments nor DOM fixtures, as CONFIX does. SYMJS [235]
contains a symbolic execution engine for JavaScript, as well
as an automatic event explorer. It extends HTMLUnit’'s DOM
and browser API model to support symbolic execution by
introducing symbolic values for specific elements, such as
text inputs and radio boxes. However, it considers substituting
DOM element variables with integer or string values and using a
traditional solver, rather than actually generating the hierarchical
DOM structure. CONFIX on the other hand has support for
the full DOM tree-structure including its elements and their
hierarchical relations, attributes, and attribute values.

To the best of our knowledge, CONFIX is the first to address
the problem of DOM test fixture construction for JavaScript unit
testing. Unlike most other techniques, we consider JavaScript
code in isolation from server-side code and without the need
to execute the application as a whole.

VII. CONCLUSIONS

Proper test fixtures are required to cover DOM-dependent
statements and conditions in unit testing JavaScript code.
However, generating such fixtures is not an easy task. In
this paper, we proposed a concolic technique and tool, called
CONFIX, to automatically generate a set of unit tests with
DOM fixtures and DOM function arguments. Our empirical
results show that the generated fixtures substantially improve
code coverage compared to test suites without these fixtures.

For future work, we plan to enhance CONFIX by addressing
its current limitations, and evaluate its bug finding capability
of the approach, and (3) conduct experiments on a larger set
of JavaScript applications.
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