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Abstract Social network analysis has many important applications but it de-
pends on sharing and publishing the underlying graph. Link privacy requires
limiting the ability of an adversary to infer the presence of a sensitive link be-
tween two individuals in the published social network graph. A standard tech-
nique for achieving link privacy is to probabilistically randomize a link over
the space for node pairs. A major drawback of such graph-wise randomization
is that it ignores the structural proximity of nodes, thus, alters considerably
the structure of social networks and distorts the accuracy of social network
analysis. To address this problem, we propose a structure-aware randomiza-
tion scheme, called neighborhood randomization. This scheme models a social
network as a directed graph and probabilistically randomizes the destination
of a link within a local neighborhood. By confining the randomization to a lo-
cal neighborhood, this scheme drastically reduces the distortion to the graph
structure yet hides a sensitive link. The trade-off between privacy and utility
is dictated by the retention probability of a destination and by the size of the
randomization neighborhood. We conduct extensive experiments to evaluate
this trade-off using real life social network data.
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1 Introduction

Social network analysis is gaining attentions and applications in database and
data mining, web applications, sociology, and communication. Social networks
vary from social networking sites such as Facebook, LinkedIn, and Twitter, to
user interaction networks such as emails, chats, blogs, and file sharing system
[22]. The first step in social network analysis is sharing the network data
with the data miner, however, this raises privacy concerns due to disclosure of
sensitive relationships among social networks users. Privacy preserving social
network analysis goes beyond removing identifying attributes of users from
their nodes because an adversary could apply background knowledge about a
local neighborhood of a node such as degree to re-identify the node of a user [2].
Another challenge is preserving graph utility. Simple statistics on local features
such as the number of nodes/links do not capture structural properties such
as centrality, shortest distances, and communities that are essential for social
network analysis [24]. Preserving user privacy while retaining vital structural
properties is the focus of this work.

Several types of privacy disclosure for social network data have been stud-
ied in the literature, namely, content disclosure, identity disclosure, and link
disclosure. Content disclosure refers to disclosure of content information asso-
ciated with each user, such as age, gender, sex orientation, and are typically
addressed by data anonymization (see works in [11]). Even if no content infor-
mation is released, identity disclosure can occur where the node of a target user
is re-identified using knowledge on neighborhood structure such as the degree
of a node [2]. Identity disclosure can be limited by node anonymization, which
renders a neighborhood of several nodes similar, such as degree k-anonymity
[14,19,29,30], k-automorphism [31], and k-isomorphism [8]. Often, achieving
neighborhood similarity requires considerable structural distortion, such as
transforming a graph into k disconnected isomorphic subgraphs required by
the k-isomorphism technique. Link disclosure occurs when an adversary infers
the existence of a link between two users with a high probability. The study
in [8] shows that limiting identity disclosure is insufficient for limiting link
disclosure. Link disclosure is the focus of this work.

1.1 Motivation

In some scenarios the contents or identities of nodes in a network are not
sensitive whereas the links between nodes are considered to be confidential.
Examples are financial transaction networks, email networks, and professional
social networks in which existence of links, i.e., money transactions, private
emails, or friendship between two individuals and their direction are considered
sensitive.

In this paper, we consider the problem of publishing a sanitized version of
a social network graph for data analysis while limiting link disclosure. Specifi-
cally, we want to ensure that an adversary cannot reliably infer the presence of



Neighborhood Randomization for Link Privacy in Social Network Analysis 3

a true link in the original graph given the presence of the link in the sanitized
graph. We do not consider inferring the absence of a link because in a typically
sparse social network graph the absence of a link between a pair of nodes is
far more common than the presence of a link of the pair. In this case, privacy
concerns are primarily caused by the presence of a link. For a similar reason,
the absence of a link in the sanitized graph most likely implies the absence of
the link in the original graph, so we do not consider inferring the presence of
a true link from the absence of a link in the sanitized graph.

A standard technique for preserving link privacy is link randomization [13,
26]. This technique, called graph-wise randomization in this paper, models a
social network as an undirected graph, and randomly deletes some fraction
of existing links (u, v) and adds the same number of non-existing links (w, z)
randomly chosen from the space of all non-existing edges. This operation is
equivalent to randomizing a true link (u, v) to a false link (w, z).

The major drawback of graph-wise randomization approach is considerable
structural distortion because the false link (w, z) is chosen at random from the
entire space for non-existing links. For example, adding a false link between
two remote nodes, or deleting the only link connecting two parts of the graph,
drastically affects the shortest path and reachability analysis. In addition, this
approach treats a social network as an undirected graph, whereas many real-
world social networks, such as Twitter followers, e-mail networks, Google+
circles, and Facebook, are inherently directed graphs. For example, an edge
(u, v) may represent that “u endorses v”, “u cites v”, and “u follows v”, which
obviously differs from “v endorses u”, “v cites u”, and “v follows u” in terms
of both privacy and utility. Indeed, it has a different privacy and utility impli-
cation to publish a user as the source of a link or as the destination of a link.
In the case of directed graphs, ignoring the direction of links would distort
the graph to the extent that the resulting graph is useless. If data analysis
is required to be based on directed graphs, there is no choice but to consider
randomizing directed graphs. To that end it suffices to hide either the source
or the destination node of a link.

1.2 Contributions

This paper makes the following contributions.

Contribution 1: sanitation operator. We propose a structure-aware
randomization scheme, called neighborhood randomization, with two distinc-
tive features. First, it models a social network as a directed graph, and for each
link (u, v), probabilistically retains the destination v with a certain probability
p and replaces the destination with a random node w with probability 1− p.
Second, it picks the randomized destination w from a local neighborhood of u.
This scheme better preserves the graph structure by keeping the source u of
a link intact and confining the random destination w to a local neighborhood
of the source u.
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Contribution 2: link privacy. We formalize the notion of link privacy
by ensuring the probability that an observed link in the sanitized graph is a
true link is no more than 1−δ. The publisher-specified parameter δ represents
a trade-off between the uncertainty of links, which is required for link privacy,
and the preservation of graph structure, which is required by graph utility.

Contribution 3: algorithm. We present a sanitation algorithm based on
neighborhood randomization. For a given level δ of link privacy, this algorithm
preserves graph structures by maximizing the link retention probability p and
minimizing the size of randomization neighborhood. We analyze the defense
of this approach against an adversary with additional background knowledge,
and evaluate the effectiveness of preserving vital metrics for social network
analysis through extensive experiments on real life social network data.

The rest of the paper is organized as follows. We review related work in
Section 2, define the problem in Section 3, present the neighborhood random-
ization approach in Section 4, and evaluate the utility of sanitized graphs in
Section 5. Finally, we conclude the paper.

2 Related Work

Most previous works consider identity privacy, e.g., [3,19,30,31]. The study
in [8] showed that limiting identity disclosure is insufficient for limiting link
disclosure. We focus on the work on limiting link disclosure, which can be
divided into three major groups.

The first group achieves some form of edge anonymity by transforming
the graph to have some structural similarity. In particular, k-isomorphism
[8] transforms the original graph into k disconnected pairwise isomorphic sub-
graphs through link insertion and deletion, and [28] partitions nodes into equiv-
alence classes and inducing edge equivalence classes between node classes. In
general, considerable structural distortion is required to provide the required
structural similarity.

The second group of work performs some form of structure collapsing in
order to hide sensitive links. In [7,14,29], the graph is partitioned into clusters
and each cluster is collapsed into one super-node. Although these methods
store statistic information about the nodes in super-nodes and the number
of edges between clusters, the structure among the nodes represented by a
super-node is lost due to the cluster collapsing.

The third group is based on link perturbation. Our work belongs to this
group. The work in [26,13] randomly adds m non-existing links and randomly
deletes m existing links, or randomly switches m pairs of links. As explained in
Section 1.1, such link perturbation introduces considerable structural distor-
tion due to its insensitivity to structural proximity. The work in [26] presented
a randomization method to preserve spectral characteristics of graphs, but
there is a lack of formal privacy measures. To address structural distortion, we
proposed subgraph-wise perturbation [21] that partitions the graph into sub-
graphs and randomizes the links within each subgraph. However, the graph
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partitioning introduces new threats in that a node may become a much more
popular destination in a subgraph than in the original graph, which increases
the risk of being inferred as the destination of a link in the subgraph. As a
solution to this issue, a degree balancing phase is applied which moves edges
between subgraphs, thus, compromises the effectiveness of confining the ran-
domization to each subgraph. Our new approach, neighborhood randomization,
does not partition the graph, therefore, does not have this problem.

The work in [2] describes a family of subgraph attacks in which an ad-
versary learns the existence of a link between a targeted pair of nodes by
constructing a distinguishable subgraph with edges attached to the targeted
nodes. They present both active and passive attacks on anonymized social
networks, showing that both types of attacks can be used to reveal the iden-
tity of a targeted node. The work in [17] studies link prediction based attacks
that exploit certain local graph features to infer the existence of a sensitive
link. The aforementioned attacks heavily depend on identifying certain sub-
graphs or collecting graph features. Our neighborhood randomization deters
such attacks because subgraphs or local features cannot be reliably identified
or collected from randomized links. Besides, we do not assume that an ad-
versary never identifies a target individual; rather, our privacy goal is to hide
the existence of a link between two individuals by bounding the probability of
inferring the true destination of an observed link. Compared to deterministic
algorithms, randomization-based algorithms are less vulnerable to the attack
that exploits the knowledge on the algorithms, such as minimality attack [25].

In [20] the risks of sequential releases of the same social network is pro-
posed. They introduce the degree-trail attack, which compares the degrees of
the nodes in the published graphs with the degree evolution of the target node
for re-identification. As a solution they propose a variation of link perturbation
[13], called stable link randomization, which reuses the randomized edges from
prior publications and performs randomization only on new edges/non-edges.
In this work we do not consider the sequential release problem.

3 Problem Statement

This section defines the data model for social networks, privacy notion, and
the problems studied. In this work, we consider a social network that can be
represented by a simple directed graph G = (V,E), where V is the set of
nodes {1,. . . ,|V |} representing the network users, and E is the link table with
two columns (Src,Dst). A link (u, v) in E represents a directed relationship
from user u to user v. u is the source of the link and v is the destination of
the link. If a social network has an undirected edge (such as the “friend-of”
relationship), we can regard any of the two nodes in an edge as the source
and other node as the destination. Dst(u) denotes the set of destinations of a
source u. Dst(G) denotes the set of all destinations and Src(G) denotes the
set of all sources in G. There is a path u0, u1, · · · , uq from u0 to uq, or a node
uq is reachable from a node u0, if for 0 ≤ i ≤ q − 1, (ui, ui+1) is a link in G. q
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is the length of the path. The distance from u0 to uq is the length of a shortest
path from u0 to uq.

We consider the data publishing problem where a publisher wants to release
a sanitized version of G, denoted by G∗, to serve a variety of data analysis,
ranging from PageRank [6] to common graph metrics such as degree centrality,
closeness centrality, betweenness centrality, transitivity, eigenvalues, average
shortest path length, etc. [24]. Such metrics are important for understanding
the trends in relationships, communities, information spreading, influential
users, etc. We consider it a privacy breach to infer the existence of a link
between two users. We assume that all content information about a node,
such as the user’s name, age, gender, have been removed from G∗. We protect
user’s privacy by limiting the ability of an adversary to infer the existence of
a link between two nodes in G, given the published graph G∗.

More precisely, suppose that G∗ is obtained from G by probabilistically
randomizing each link in G to a false (i.e., non-existing in G) link following
a fixed probability distribution p. The detail of this randomization operator
will be discussed in Section 4. Let A = (aij)|V |×|V | and A∗ = (a∗ij)|V |×|V | be
the adjacency matrix of G and G∗ respectively. aij = 1 means that (i, j) is a
link in G, and a∗ij = 1 means that (i, j) is a link in G∗. On observing a link
(i, j) in G∗, the adversary tries to infer if (i, j) is a link in G. An observed
link (i, j) in G∗ has two possibilities: (i, j) is a link in G if it was retained by
the randomization operator, and (i, j) is not a link in G if it was added by
the randomization operator. Let Pr[aij=1|a∗ij=1] denote the probability that
(i, j) is a link in G given that (i, j) is observed in G∗. To limit the adversary’s
ability to infer the presence of a link in G, we want to bound Pr[aij=1|a∗ij=1].
With each link in G being retained with the probability p and being replaced
with a false link with the probability 1−p, the best guess for Pr[aij=1|a∗ij=1]
is the percentage of true links (i.e., retained links) among all observed links in
G∗. This percentage is p. So Pr[aij = 1|a∗ij = 1] = p.

Definition 1 (Perturbation-Privacy) We say G∗ is δ-perturbation-private
if Pr[aij = 1|a∗ij = 1] ≤ 1− δ for 1 ≤ i 6= j ≤ |V |, and 0 ≤ δ ≤ 1. 2

Several points are worth mentioning. First, as explained in Section 1.1, we
do not consider inferring the absence of a link in G because privacy concern
primarily comes from the presence of a link, which is because the absence of
a link is far more common than the presence of a link in a typically sparse
social network. For a similar reason, we do not consider inferring the presence
of a link in G from the absence of a link in G∗ because the absence of a
link between a pair of nodes in G∗ most likely originates from the absence
of the link in G. Second, the above privacy definition does not consider the
adversary’s background knowledge on a neighborhood structure such as the
degree of a node. One reason is that such background knowledge relies on
identifying matching structures, but our randomization operator makes this
identification less reliable by introducing enough uncertainty to each link. We
will discuss this in details in Section 4.3.2 after introducing our randomization
operator.
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Definition 2 (Link Perturbation Problem) Given a graph G and 0 ≤
δ ≤ 1, we want to produce a sanitized graph G∗ that is δ-perturbation-private
while preserving, as much as possible, utility for social network analysis. 2

4 Neighborhood Randomization

We present our solution to the link perturbation problem. We first present an
overview, then the choice of neighborhood for randomization, a key issue in
our approach, and finally the algorithm and analysis.

4.1 Overview of the Method

The traditional link perturbation [26,13] randomly replaces an existing link
with a randomly selected non-existing link. Since the replacing link is selected
randomly, it ca be “structurally remote” from the replaced link, thus, the
resulting graph tends to be a random graph. We address this issue with three
ideas.

First, to hide a link it suffices to hide either its destination or its source
because knowing one but not the other does not help to infer the existence of
the link. We consider hiding the destination, but the same method can be used
to hide the source. Second, to hide a destination we can retain the destination
v of a link (u, v) with some probability p and replace it with a false destination
w with probability 1− p. The retention probability p depends on the desired
δ-perturbation-privacy. Third, the false destination w should be chosen from
a local neighborhood of the source u so that it is structurally close from u to
preserve the graph structure.

These ideas are incorporated in the neighborhood randomization defined
below. For now, letDDS(u) denote a set of candidate nodes for the randomized
destination w in some neighborhood of u, called the Destination Decoy Set for
u. We will formally define DDS(u) in Section 4.2.

Neighborhood Randomization. Given the retention probability p and
the destination decoy set DDS(u) for each source u in G, for each link (u, v)
in G, we toss a coin with head probability p. If the coin lands on head, we
retain the link (u, v), otherwise, we replace the link with a false link (u,w),
where w is randomly chosen from DDS(u) without replacement. Note that
the decision for each link G is made independently and that the outcome of
each coin toss (i.e., head or tail) is hidden from the adversary.

The choice of p and DDS(u) dictates the trade-off between privacy and
utility. The larger the p is, the more true links are retained, but at the same
time, the more likely the adversary can infer a true destination of a link.
The more compact the neighborhood for defining DDS(u) is, the closer the
randomized destination is to the source u and the more graph structure is
preserved, but at the same time, the adversary can infer that an observed
destination is a close neighbor of the source. In the rest of this section, we
discuss the choices for DDS(u) and p in detail.
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4.2 Choosing Destination Decoy Sets

The choice of DDS(u) is dictated by the following requirements.

Requirement 1. (Structural proximity) The randomized destination w of a link
(u, v) should be structurally close to the source u so that a false link does
not connect two structurally remote nodes.

Requirement 2. (False link) The randomized link (u,w) should not be a true
link in G. To satisfy this requirement, DDS(u) should not contain any
node from Dst(u).

Requirement 3. (Indistinguishability) The randomized link (u,w) should not
be a self-loop or multi-link. This is because a self-loop or a multi-link in G∗

can be immediately distinguished from a true link since G does not con-
tain any self-loop or multi-link. To avoid a self-loop, u should be excluded
from DDS(u), and to avoid multi-link originating at u, all randomized
destinations w of the same source u must be distinct.

We say that a randomized link (u,w) satisfying Requirement 1 is (struc-
turally) close and a randomized link (u,w) satisfying Requirements 2 and 3
is (structurally) legitimate. To address these requirements, we introduce the
notion of r-neighborhood.

Definition 3 (r-neighborhood) For an integer r≥0 and a source u in G,
the r-neighborhood of u, denoted by Nr(u), contains all destinations in G that
are reachable from u within the distance (shortest path length of) r. r is called
the radius. N∗(u) contains all destinations that are reachable from u by any
finite distance. 2

Note N0(u) = {u}, N1(u) = {u} ∪Dst(u), and for r ≥ 1, Nr(u) = {u} ∪
(∪v∈Dst(u)Nk−1(v)). Requirement 1 implies that the nodes in DDS(u) should
be in Nr(u) for some “small” r. Requirements 2 and 3 imply that DDS(u)
should not contain any node in N1(u) and a randomized destination w for
u should be sampled from DDS(u) without replacement. Thus the nodes in
DDS(u) are selected from Nr(u)−N1(u), where r > 1. Since u has |Dst(u)|
out-going links and since there is a non-zero probability (assuming 1 − p >
0) that each link will be replaced with a randomized link, sampling without
replacement entails thatDDS(u) must contain at least distinct |Dst(u)| nodes,
i.e, |Dst(u)| ≤ |DDS(u)|.

DDS(u) satisfying the above requirements can be specified byDDS(u, r, s),
where r specifies the “radius” of the neighborhood for DDS(u) and s specifies
the “size” of DDS(u). From the above discussion, r > 1 and |Dst(u)| ≤ s.

DDS(u,r,s). The following procedure chooses s nodes for DDS(u, r, s)
according to a priority corresponding to the closeness to u. Let s1 = |Nr(u)|−
|N1(u)|, s2 = |N∗(u)| − |N1(u)|, and s3 = |Dst(G)| − |N1(u)|. Note s3 ≥ s2 ≥
s1.

Case 1. If s1 ≥ s, there are enough number of nodes in Nr(u) − N1(u), so
DDS(u, r, s) contains s nodes randomly selected from Nr(u)−N1(u).
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Fig. 1 A simple social network graph

Table 1 r-neighborhood of sources in Figure 1

u N1(u) N2(u) N3(u) N4(u)
1 {1,4} {1,4,2,5} {1,4,2,5,3,6,7} N3(1)
2 {2,1,3} {2,1,3,4,6} {2,1,3,4,6,5} {2,1,3,4,6,5,7}
3 {3,6} N1(3) N1(3) N1(3)

Case 2. Else if s2 ≥ s, there are not enough number of nodes in Nr(u)−N1(u)
but there are enough number of destinations reachable from u. In this case,
DDS(u, r, s) contains all nodes from Nr(u) − N1(u) and contains s − s1
nodes randomly selected from Nr(u)−Nr(u), where r is the smallest integer
≥ r such that |Nr(u)| − |Nr(u)| ≥ s− s1.

Case 3. Else if |Dst(G)| − |N∗(u)| ≥ s − s2, there are not enough number
of reachable destinations from u but there are enough number of nodes if
non-reachable destinations are used. In this case, DDS(u, r, s) contains all
(reachable) nodes from N∗(u)−N1(u) and contains s− s2 nodes randomly
selected from Dst(G)−N∗(u).

Case 4. Else if |V |−|Dst(G)|≥s−s3, there are not enough number of destina-
tions but there are enough number of nodes if non-destinations are used. In
this case, DDS(u, r, s) contains all nodes from Dst(G)−N1(u) and contains
s−s3 nodes randomly chosen from V− Dst(G).

Note that if s ≤ |V | − |N1(u)|, we have |V |−|Dst(G)|≥s−s3, so the above
covers all cases and DDS(u, r, s) is well defined.

Example 1 Table 1 shows the r-neighborhoods of three source nodes {1, 2, 3}
of the graph depicted in Figure 1. Dst(G) = {1, 2, 3, 4, 5, 6, 7}. Let r = 2 and
s = 2. Consider the source u = 1. s1 = |N2(u)|− |N1(u)| = 2, and s1 ≥ s. This
is Case 1. So DDS(u, r, s) contains two nodes from N2(u)−N1(u), i.e., {2, 5}.

Consider the source u = 3 (for r = 2 and s = 2). s1 = |N2(u)|−|N1(u)| = 0,
s1 < s. s2 = |N∗(u)|− |N1(u)| = 0, so s2 < s. |Dst(G)|− |N∗(u)| = 5 ≥ s− s2.
This is Case 3. So DDS(u, r, s) contains all nodes in N∗(u)−N1(u), which is
empty, and two nodes from Dst(G)−N∗(u) = {1, 2, 4, 5, 7}. 2

DDS(u, r, s) will not be published. From the published G∗, the adversary
knows that each destination of u in G∗ is either in Dst(u) or in DDS(u, r, s),



10 Amin Milani Fard, Ke Wang

but does not know which with certainty. For this reason, hiding Dst(u) requires
hiding DDS(u, r, s) for each source u.

Consider Figure 1 as part of a financial transaction network. Assume that
in the published graph link (1,4) is perturbed into (1,5). If an attacker can
identify Bob is node 1, Alice is node 4, and Tom is node 5, he can not infer the
true transaction from Bob to Alice or detect the fake transaction from Bob to
Tom with high certainty.

A smaller s and r means that a randomized destination is chosen from a
more compact neighborhood and with fewer choices, thus, better preservation
of graph structure. However, a larger s and r means more uncertainty for
a randomized destination, thus better hiding the true destination. The data
publisher can use these parameters to balance between structural preservation
and link privacy.

The next theorem gives a condition for guaranteeing that every randomized
link (u,w) is legitimate, i.e., satisfying Requirements 2 and 3.

Theorem 1 Let r ≥ 2 and p > 0, where p is the retention probability of a des-
tination. Every randomized link (u,w), where w is sampled from DDS(u, r, s)
without replacement, is legitimate if and only if s ≥ |Dst(u)|.

Proof (If) Since DDS(u, r, s) does not contain any node in N1(u), for any w
in DDS(u, r, s), (u,w) is not a true link or a self-loop. u has at most |Dst(u)|
randomized links (u,w), where w is sampled from DDS(u, r, s) without re-
placement. Since DDS(u, r, s) contains s ≥ |Dst(u)| nodes, sampling without
replacement ensures that the destination w of every randomized link (u,w) is
distinct, thus, (u,w) is not a multi-link. This shows that (u,w) is legitimate.

(Only if) For a non-zero retention probability p, there is a non-zero proba-
bility that every link (u, v) in G from the source u is replaced with a random-
ized link (u,w). In this case, every randomized link (u,w) is legitimate only if
s ≥ |Dst(u)| holds because all w must be distinct. 2

The next corollary summarizes when DDS(u, r, s) is defined and every
randomized link is legitimate.

Corollary 1 Assume |V | ≥ 2|Dst(u)|+ 1. For any r ≥ 2 and |Dst(u)| ≤ s ≤
|V | − |Dst(u)| − 1, DDS(u, r, s) is defined and every randomized link (u,w) is
legitimate, where w is sampled from DDS(u, r, s) without replacement.

Proof s ≤ |V | − |Dst(u)| − 1 implies |V | ≥ s + |Dst(u)| + 1 = s + |N1(u)|,
which implies the condition |V |−|Dst(G)|≥ s−s3 in Case 4 of DDS(u, km).
Therefore, DDS(u, r, s) is defined. The rest of the proof follows from Theorem
1 and |Dst(u)| ≤ s. 2

Let us consider a case where the condition in Corollary 1 fails. Suppose
that a source u has every other node as its destination in G, i.e., |Dst(u)| =
|V | − 1, so the condition |V | ≥ 2|Dst(u)| + 1 in Corollary 1 fails. In this
case, N1(u) = V , and since DDS(u, r, s) must not contain any nodes in N1(u)
(i.e., Requirements 2 and 3), DDS(u, r, s) is undefined for s > 1 (i.e., none
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of the four cases holds). In this case, randomizing a link (u, v) to any link
(u,w) will create a self-loop (if w = u) or a multi-link (if w 6= u) in G∗.
This situation happens because u has too many destinations. To prevent this
situation, the condition |V | ≥ 2|Dst(u)|+1 states that a source u is connected
to no more than half of all nodes in G. This ensures that for s such that
|Dst(u)| ≤ s ≤ |V | − |Dst(u)| − 1, DDS(u, r, s) is defined. For a large social
network graph, it is almost certain that |V | ≥ 2|Dst(u)|+ 1 holds due to the
well known link sparsity for social networks. For this reason, we assume that
DDS(u, r, s) is defined. Indeed, for all real life social networks considered in
Section 5, |V | ≥ 2|Dst(u)|+ 1 always holds.

4.3 Algorithm and Privacy Analysis

In this section, we present the algorithm for neighborhood randomization and
analyze the privacy implication.

4.3.1 Algorithm

Algorithm 1 presents the neighborhood randomization algorithm. The input
consists of the graph G, the link retention probability p, the neighborhood
radius r, and the size s(u) for DDS(u, r, s) for each source node u. We assume
that the condition in Corollary 1 holds. The algorithm produces the sanitized
graph G∗ as follows. For each source u, it computes DDS(u, r, s(u)) and ran-
domizes the destination of every link (u, v) with the retention probability p
(Lines 4-11). In particular, for each link (u, v), it tosses a coin with head prob-
ability p, adds the link (u, v) to G∗ if the coin lands on head, or adds a new link
(u,w) to G∗ if the coin lands on tail, where w is sampled from DDS(u, r, s(u))
at random without replacement. After considering all sources u in G, the al-
gorithm returns G∗. Note that DDS(u, r, s(u)) is computed with respect to
the input graph G, which is unaffected by the randomization of a link, so the
order of considering the sources u at Line 2 does not affect DDS(u, r, s(u)).

The time complexity consists of two parts. The first part comes from ran-
domizing each edge in G, which takes O(|E|) time. The second part comes
from computing DDS(u, r, s(u) for each source node u (i.e., Line 3), which is
dominated by the time of computing the r-neighborhood of u, Nr(u). Since r
is typically small due to the structural proximity requirement (i.e., Require-
ment 1), say 2-3, this part can also be computed efficiently. For the rest of this
section, we focus on privacy analysis.

4.3.2 Privacy Analysis

Let us analyze what an adversary can learn from G∗ produced by Algorithm
1. We assume that Algorithm 1 and the parameters r, s, p are public and
thus known to the attacker. DDS(u, r, s) will not be published. The next
theorem shows that G∗ is δ-perturbation-private if the retention probability
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Algorithm. 1 Neighborhood Randomization
Input: A directed graph G, link retention probability p, neighborhood radius r ≥ 2, the
size s(u) of DDS(u, r, s) for all sources u. Assume the condition in Corollary 1 holds.
Output: The sanitized graph G∗

1: G∗ ← ∅
2: for each source node u in G do
3: compute DDS(u, r, s(u))
4: for each link (u, v) ∈ G do
5: toss the coin with head probability p
6: if the coin lands on head then
7: add (u, v) to G∗

8: else
9: add (u,w) to G∗ with w randomly sampled from DDS(u, r, s(u)) without re-

placement
10: end if
11: end for
12: end for
13: return G∗

p is set to 1 − δ and this is the maximum retention probability for providing
δ-perturbation-privacy.

Theorem 2 Assume |Dst(G)| ≥ 2|Dst(u)| + 1 for every source u. Let r≥2
and |Dst(u)|≤s(u)≤|Dst(G)|−|Dst(u)|−1. Let G∗ be produced by Algorithm
1 with p = 1 − δ. Then (i) every randomized link (u,w) in G∗ is legitimate,
(ii) G∗ is δ-perturbation-private, and (iii) p = 1− δ is the maximum retention
probability for ensuring δ-perturbation-privacy.

Proof (i). This follows from Corollary 1. (ii). From Definition 1, G∗ is δ-
perturbation-private if the fraction of true links in G∗ is at most 1−δ. With
the retention probability p = 1− δ, each link (u, v) in G is retained with prob-
ability 1−δ and is randomized to a link (u,w) with probability δ. Since every
randomized (u,w) is legitimate, thus, a false link, the fraction of true links
remaining in G∗ is 1−δ, so G∗ is δ-perturbation-private. (iii). Any retention
probability p > 1−δ will lead to a larger fraction of true links in G∗. Thus 1−δ
is the maximum retention probability for ensuring δ-perturbation-privacy. 2

Other than learning the information permitted by the δ-perturbation-
privacy, the adversary may learn additional information. For each observed
link (u,w) in G∗, the adversary learns that w belongs to Dst(u)∪DDS(u, r, s),
but does not know whether w ∈ Dst(u) or w ∈ DDS(u, r, s) because neither
Dst(u) nor DDS(u, r, s) is published. Note that DDS(u, r, s) contains at least
as many nodes as Dst(u) (Theorem 1). In Case 1 for DDS(u, r, s), the adver-
sary learns that w is a neighbor in Nr(u)−N1(u) (r ≥ 2), whereas in the other
cases for DDS(u, r, s) the adversary learns even less because w may be at a
larger distance from u. Learning such “indirect neighbors” does not conflict
with our link privacy requirement that aims to hide a direct link between two
nodes. The data publisher can always use a larger r to reduce the information
of such learning, at the cost of more structural distortion.
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So far, we have not considered adversary’s background knowledge. The
most common background knowledge is the degree of a node. In the extreme
case of a small graph, background knowledge on the degree of a node may be
applied to infer a true link. To illustrate this, consider a tiny graph G(V,E)
with V = {u, v, w} and E = {(u, v), (v, w)}. Note Src(G) = Src(G∗) and that
the adversary always knows the out-degree of a node in G from G∗ because
our algorithm never modifies the source of a link. Suppose that the link (u, v)
is randomized to (u,w) and the link (v, w) remains unchanged. Suppose that
the adversary has the background knowledge that the in-degree of v and w in
G is 1. Then based on G∗ the adversary learns that either (u,w) or (v, w) is a
false link because the in-degree of w in G∗ is 2. Since the in-degree of v in G∗

is 0 and u is the only possible source for v in G∗, he learns that (u, v) must
be a link in G.

The above disclosure is due to the fact learnt from G∗ that u is the only
candidate source for v because Src(G∗) contains only two nodes, one of them
being v. However, for a real life social network, G is much larger and is highly
sparse where |Src(G)| is much larger than the maximum in-degree of any
destination node, so the adversary will face more uncertainties about the source
nodes of a destination. We note that our randomization operator does not
alter the out-degree of a source node. To prevent potential re-identification of
a source node by the background knowledge on out-degree, prior to applying
our link perturbation, degree anonymization such as [19] could be first applied
to G to achieve k-anonymity (for some small k > 1) on the out-degree of
source nodes. However, our link perturbation does alter the in-degree of a
destination node in a non-deterministic manner, thus, renders the background
knowledge on in-degree less effective. If necessary, degree anonymization can
also be applied to anonymize the in-degree of a node prior to applying our link
perturbation.

5 Experiments

In this section, we evaluate the proposed neighborhood randomization al-
gorithm. The implementation was in VC++ on a system with core-2 Duo
2.99GHz CPU and 3.83 GB RAM.

5.1 Experiment Setup

5.1.1 Data Sets

We evaluate our proposed method on two real life social network data sets
which vary in terms of domain, size, and density, i.e., the number of edges over
the possible number of edges. Since social networks are generally following a
similar power-law degree distribution pattern [4], we believe that the results
on these data sets can be similarly generalized to other social networks as well.
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(b) Newman’s co-authorship network

Fig. 2 Networks long-tail degree distribution

The first data set is the e-mail network of University Rovirai Virgili with
1,132 nodes and 10,900 links (max in-degree 71) [12]. Links represent e-mails
between university members. The data provider has eliminated e-mails sent to
more than 50 different recipients (i.e., spam ignored) and also only considered
bidirectional interchanges. The graph density of this network is 0.008.

The second data set is the Newman’s co-authorship network [23] with
16,264 nodes and 95,188 links (max in-degree 107), which is a co-authorship
network of scientists posting on the High-Energy Theory in arXiv E-Print
Archive. Bidirectional links between authors indicates their co-authorship. The
graph density of this network is 0.0003.

Figure 2 shows the power-law (long-tail) degree distribution of these data
sets. Note that the co-authorship network is about 15 times larger and 27
times sparser than the e-mail network.

5.1.2 Evaluation Methods

We compare the following approaches on preservation of utility metrics for
social network analysis. These approaches apply a similar randomization tech-
nique to limit the link disclosure in published social networks, with a privacy
notion adaptable to ours.

Neighborhood Randomization (NR): This is the proposed method in
Algorithm 1. This method employs the privacy parameter δ, the neighborhood
radius r, and the size s(u) for DDS(u, r, s) for a source u. We set r to 2, 3,
4 and 5 and set s(u) to 2×|Dst(u)|, 3×|Dst(u)|, and 4×|Dst(u)| (denoted by
2×, 3×, and 4× in figures). The conditions in Corollary 1 are satisfied for all
these settings on the two data sets.

Graph-Wise Randomization (GR): This is the special case of NR when
DSS(u, r, s) contains all destinations except for those in N1(u), i.e., the true
destinations and u itself. Therefore, this method randomizes the destination
of a link without considering structural proximity.

Random Add/Del (RAD): This is the traditional graph-wise link per-
turbation in [26], which randomly adds n non-existing links and randomly
deletes n existing links. In this method, both the link retention probability and
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the probability Pr[aij=1|a∗ij=1] are equal to |E|−n|E| , i.e., the fraction of true

links in the sanitized graph. δ-perturbation-privacy implies Pr[aij=1|a∗ij=1] ≤
1−δ, i.e., |E|−n|E| ≤ 1−δ. The minimum n satisfying this condition is n=δ×|E|.

Subgraph-wise Perturbation (SP): This is the subgraph-wise pertur-
bation in [21]. The idea of SP is to preserve graph structure by partitioning the
graph into subgraphs and randomizing the destinations within each subgraph
using graph-wise randomization. The work in [21] ensures a notion of (ρ1, ρ2)-
privacy [9], where 0 < ρ1 < ρ2 < 1, which states that if the prior belief about
the destination of a link in G is bounded by ρ1, the posterior belief, given the
published graph G∗, is no more than ρ2. δ-perturbation-privacy implies that
ρ2 = 1− δ.

We evaluate these methods in terms of preservation of vital metrics for so-
cial network analysis (SNA). At the graph level, we consider average shortest
distance and largest eigenvalue. At the node level, we consider degree cen-
trality, closeness centrality, betweenness centrality, transitivity, and PageRank
(see definitions in [24][6]). A method is preferred if these metrics of the san-
itized graph are similar to those of the original graph. All SNA metrics are
computed by the UCINET software [5], and PageRank is computed by our
own implementation. All results are the average of 10 runs of a randomization
method.

5.2 The Findings

Sections 5.2.1 and 5.2.2 present the findings on graph level metrics and on node
level metrics, respectively. The privacy level δ for δ-perturbation-privacy is set
to 0.5. Section 5.2.3 presents the findings on the trade-off between privacy and
utility by considering various settings of δ. Section 5.2.4 compares the recent
method NR with SP.

Our goal is not to show that the chosen parameter values are better than
others. Instead, our evaluation focuses on how the choices of these parameters
affect privacy and utility. Ultimately which choice is better is up to the user. If
the user cares more about privacy, then a large δ (small retention probability)
and large DDS(u, r, s) will be better because they provide more privacy pro-
tection but at the cost of less utility. In contrast, if the user is more demanding
on utility, then a small δ and DDS(u, r, s) is preferred, but more privacy will
be lost.

5.2.1 Graph Level SNA Metrics

For the metrics at the graph level, we measure the relative error µ−µ∗
µ , where

µ and µ∗ are the values of a metric in the original graph and the sanitized
graph, respectively.

Average Shortest Distance. The shortest distances between nodes in a
social network have applications in message spreading, searching, and calcu-
lation of SNA metrics such as centrality. The positive relative error of average
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Fig. 3 Average shortest path comparison

Fig. 4 Largest eigenvalue comparison

shortest distances between all pairs of nodes in Figure 3 suggests that link per-
turbation tends to reduce the average shortest distance. To understand why,
recall that social networks follow the power-law degree distribution, that is, a
small number of nodes have high in-degree and a majority of nodes have low
in-degree (as in Figure 2). Due to this property, a randomly selected false desti-
nation is more likely to be a low in-degree node, as such, randomization tends
to reduce the in-degree of a high in-degree node and increase the in-degree of
a low in-degree node. Consequently, the difference in in-degree is reduced by
link randomization. We refer to this phenomenon as “degree smoothing effect”.

The degree smoothing effect increases the in-degree of many nodes, thus,
causes more nodes being on shortest paths (higher degree nodes are more likely
to be on shortest paths), which leads to a reduction in the average shortest
distance. However, this effect is less prevalent for NR where the random se-
lection of false destinations is limited to a small neighborhood, in which case
fewer low in-degree nodes will have their in-degree increased. This explains
why the relative error of NR is smaller than those of RAD and GR. We note
that s(u) has only a limited effect on the relative error, though a larger s(u)
provides more choices of a false destination.

Largest Eigenvalue. A non-zero vector −→v is an eigenvector of a square
matrix A if there is a scalar λ such that A−→v = λ−→v . λ is called the eigenvalue
for −→v . There may be many pairs of eigenvectors and eigenvalues. The set of
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eigenvalues of the adjacency matrix of a graph defines the spectrum of that
graph and has a close relation to many graph characteristics. It was shown
that maximum degree, chromatic number, clique number, epidemic threshold
of virus propagation are all related to the largest eigenvalue [26]. The above
mentioned degree smoothing effect is also reflected on eigenvalues, which re-
sults in reduction in the largest eigenvalue. Since NR has less degree smoothing
effect than GR and RAD, NR better preserves the largest eigenvalue than GR
and RAD, as shown by the smaller relative error in Figure 4.

5.2.2 Node Level SNA Metrics

For a metric at the node level, preserving the relative rank of nodes is more
important than having a small error of the metric, and higher ranked nodes
have more weight than lower ranked nodes in this preservation. For example,
for pagerank, only pages near to the top of the ranked list are interesting, so
preservation of top ranked pages is far more important than preservation of
lower ranked pages. For this reason, we evaluate the Spearman similarity [10]
between the ranked list of nodes L computed using the original graph and the
ranked list of nodes L∗ computed using the sanitized graph. Let rL(x) be the
rank of x in the list L. The Spearman similarity of the top k nodes in L and L∗

is defined as 1−d, where d is the Spearman distance d = 2(k−|Z|)(k+1)+A−B−C
k(k+1) ,

where A =
∑
i∈Z |rL(i) − rL∗(i)|, Z is the set of nodes in the top k sublist

of both L and L∗, B =
∑
i∈S rL(i), S is the set of nodes in the top k sublist

of only L, C =
∑
i∈T rL∗(i), and T is the set of nodes in the top k sublist of

only L∗. Note that Spearman similarity ranges from 0 (totally reversed) to 1
(totally identical) [10]. We report the (Spearman) similarity of top 50% nodes.
The results of evaluating other top percentages are not very different.

Degree Centrality. This is defined as the degree of a node v. A node with
a higher degree centrality is generally a more active player in the network. For a
directed network, in-degree is interpreted as a form of popularity. We focus on
the in-degree since NR and GR never alter the out-degree of a node. Figure 5
shows the Spearman similarity for degree centrality of nodes with the original
graph being the baseline. The similarity for NR is significantly higher that
for GR and RAD, especially for a small r. This is because NR chooses the
randomized destination of a link from a local neighborhood, thus, suffers from
less degree smoothing effect than RAD and GR, as discussed before. Therefore,
NR incurs less changes in the in-degree rank of nodes.

Betweenness Centrality. This is defined as the number of times that a
node occurs on geodesics (i.e., shortest paths) linking other nodes in a graph
[24]. Formally, the betweenness centrality of a node v is

∑
s,t∈V σst(v), where s

and t are not v and σst(v) = 1 if the shortest path from s to t passes through
v and 0 otherwise. The betweenness centrality is a measure of information
control in a network. A node with a high betweenness centrality generally has
more influence on data flow in a network. In general, nodes with a higher
in-degree are more likely to have more shortest paths crossing them, thus, a
higher betweenness centrality. Therefore, the degree smoothing effect of link
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Fig. 5 Degree centrality comparison

Fig. 6 Betweenness centrality comparison

perturbation translates into an increase in betweenness centrality for low in-
degree nodes and a decrease in betweenness centrality for high in-degree nodes.
Since the degree smoothing effect is less for NR than for RAD and GR, NR
has a higher similarity than RAD and GR. This is confirmed by the results in
Figure 6.

Closeness Centrality. The closeness centrality of a node v is the recip-
rocal of the sum of geodesic distances to other nodes reachable from v [24],
defined as 1∑

t∈V d(v,t) , where d(v, t) is the shortest distance from v to t and

d(v, t) 6=∞. It measures the accessibility of v to other nodes in a network, and
a node with a high closeness centrality is generally close to other nodes and
can spread information to others faster. As noted in Section 4.3.2, increasing
r results in decreasing the average shortest path length, thus, increasing the
closeness measure. This results in decreased similarity as depicted in Figure
7. Again, with less degree smoothing effect NR is able to better preserve the
ranking of closeness centrality than RAD and GR, especially for a small r.

Transitivity. The transitivity (a.k.a local clustering coefficient) of a node
measures the extent to which neighbor nodes of the node are connected [24].
For example, a node whose friends are also friends with each other has a high
transitivity. In a social network, people in a small group (where nodes have
a low degree) are usually connected together, whereas people connected to
celebrity nodes (nodes with a high degree) might not be well connected them-
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Fig. 7 Closeness centrality comparison

Fig. 8 Transitivity comparison

selves. Therefore, nodes with a lower degree tend to have a higher transitivity.
Figures 8 shows the similarity for transitivity. Recall the finding in Section
5.2.1 that RAD and GR have a more degree smoothing effect (compared to
NR), thus, more changes in in-degree, and more changes in the transitivity
ranking of nodes. This explains why RAD and GR have a smaller similarity
than NR in Figure 8.

PageRank. A variant of eigenvector centrality is employed by Google’s
PageRank link analysis for web pages [6]. The PageRank for a page u can

be expressed as PR(u) =
∑
v∈Bu

PR(v)
L(v) , where the set Bu contains all pages

linking to u and L(v) is the number of links from the page v. PR(u) indicates
the likelihood of arriving at u by a random surfer and can be considered as
a measure of relative importance of u in the Web. For a social network, u
represents a node instead of a web page and PR(u) is the popularity of u.
The study in [18] suggested that the distribution of PageRank is related to
the distribution of in-degree. Therefore, the degree smoothing effect of link
perturbation in Section 5.2.1 would have a similar smoothing effect on PageR-
ank of nodes. As we observed there, NR incurs less smoothing effect than GR
and RAD. Consequently, PageRank is better preserved in NR than in GR and
RAD. This observation is confirmed by the higher similarity of NR in Figure
9.
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Fig. 9 PageRank comparison

5.2.3 Privacy vs. Utility

In this experiment, we focus on NR and study the effect of the privacy pa-
rameter δ (for δ-perturbation-privacy) on all SNA metrics. A larger δ means
a smaller retention probability p (which is equal to 1− δ) of perturbing a link,
thus, more uncertainty in inferring a true link in the sanitized graph. We set
δ to 0.3, 0.5, and 0.7, and set r = 2 and s(u)=2×|Dst(u)|. Figure 10 shows
that a larger δ leads to a reduced similarity and a higher relative error for
all metrics considered. This finding is expected in that a higher privacy level
incurs a higher price paid for utility.

5.2.4 Comparison with Subgraph-Wise Perturbation

Finally, we compare NR with SP [21]. SP shares a similar motivation with NR,
i.e., preserving structural proximity by limiting the randomization domain for
the destination of a link to subgraphs. Specifically, it partitions the graph
into some number of (small) subgraphs and performs link destination ran-
domization within subgraphs independently. SP employs the (ρ1, ρ2)-privacy
[9], which informally says that if the adversary’s prior belief (before seeing the
published graph) that a node v is the destination of a link is no more than
ρ1, his posterior belief (after seeing the perturbed graph) that v is the true
destination of a link is no more than ρ2, where 0 < ρ1 < ρ2 < 1. For SP, we
set ρ1=0.01, ρ2 = 0.5, and the number of subgraphs to 10 and 50 for the email
network and 100 and 500 for the larger co-authorship network. For NR, we set
δ = 0.5 (because ρ2 = 0.5), r = 2 and s(u)=2×|Dst(u)|.

Figure 11 shows that the similarity and the relative error of NR is better
than SP with smaller number of subgraphs and slightly worse than SP with
larger number of subgraphs. However, as explained in [21], SP introduces new
threats of identifying a true link, as the number of subgraphs increases and
each subgraph becomes small. In particular, a node may become a popular
destination in a small subgraph even though it is not so in the entire graph.
This clearly increases the chance of such nodes being re-identified as the des-
tination of a link in the subgraph. In the terminology of ρ1-ρ2 privacy, this
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Fig. 10 Privacy vs. utility for social network analysis (r = 2, s(u) = 2×|Dst(u)|)

change of popularity could cause the prior belief of such nodes as destinations
in the subgraph to exceed ρ1, in which case such nodes are no longer protected
by the randomization in the subgraph.

Indeed, the study in [21] shows that for the URV data set, only 41.53% of
the nodes protected in the original graph remained protected in a subgraph
whenG is partitioned into 10 subgraphs, and this percentage reduces to 11.98%
and 4.85% when G is partitioned into 50 and 100 subgraphs, respectively. To
tackle this issue, an additional step, called degree balancing, was used in [21]
to heuristically move links between subgraphs. However, as shown in [21],
this step will introduce additional structural distortion which goes against
the idea of graph partitioning. The degree balancing procedure, however, does
not guarantee to always eliminate the above threat. We turn off the degree
balancing process in our experiments and thus the result of SP in Figure 11
has not considered the additional structural distortion. NR, on the other hand,
does not suffer from this drawback because it does not partition the graph.
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Fig. 11 NR (r = 2, s(u) = 2×|Dst(u)|, δ = 0.5) vs. SP (ρ1=0.01, ρ2 = 0.5)

5.3 Summary of Findings and Discussion

Our study shows that the proposed neighborhood randomization indeed better
preserves vital information of social networks than previous link perturbation
methods. Results of our experiment (in figures 4 and 5) show an average of of
about 35% improvement for NR in reducing the relative error of graph level
SNA metrics compared to RAD and GR. There is also an average improve-
ment (shown in figures 5 to 9) of about 10% in similarity for node level SNA
metrics compared to RAD and GR. Note that these improvements over many
settings are indeed significant. This is a consequence of the structure-aware
randomization of the destination of a link. The radius of the neighborhood for
randomization (i.e., r) plays an important role in this preservation whereas
the size of the neighborhood (i.e., s) has only limited effect.

Both neighborhood randomization and subgraph-wise perturbation [21] bet-
ter preserve the structural proximity compared to traditional work because the
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randomization is limited to local neighborhoods or subgraphs. These methods
preserve the out-degree of nodes in the published graph, however, the subgraph-
wise perturbation also enables the data publisher to reconstruct in-degree of
nodes using iterative Bayesian reconstruction [1]. To do so, the data publisher
should also provide researchers with the destination randomization domain,
i.e., publishing each subgraph separately. The in-degree of nodes has applica-
tions such as popularity based ranking and influence of nodes.

The major problem with subgraph-wise perturbation is that with the growth
of number of subgraphs, a node may become a popular destination in a small
subgraph even though it is not so in the entire graph. This popularity change
can make that node no longer protected with respect to the ρ1-ρ2 privacy by
the randomization in the subgraph. Although the degree balancing process
[21] helps partially to reduce such threats, it introduces additional structural
distortion which goes against the idea of graph partitioning. Neighborhood
randomization, on the other hand, does not suffer from this drawback because
it does not partition the graph.

Although more data sets are always better for evaluation, the two data
sets used were carefully selected in terms of varied domain, size, and density.
The similar utility improvement observed in both network data suggests that
the proposed neighborhood randomization method is a promising one. Like
many works in the literature in a similar nature, we have no intent to claim
that our method definitely” outperforms previous work. Instead, we rely on
the intuition of the proposed neighborhood randomization as a heuristic for
better results, and we believe that this heuristic works most of the time.

6 Conclusion

Link perturbation is a powerful technique for preserving link privacy while
allowing social network analysis. The standard link perturbation causes signif-
icant structural distortion due to insensitivity to structural proximity. In this
work, we presented a novel structure-aware link perturbation scheme, neigh-
borhood randomization. This scheme preserves more graph structures through
perturbing only the destination of a link and limiting the randomized desti-
nation to a close neighborhood. Two main contributions are the formulation
of “close neighborhood” that satisfies certain essential requirements, and the
study on the effectiveness of this approach in preserving graph structures.
Our studies confirmed that neighborhood randomization better preserves vi-
tal information for social network analysis than previous link perturbation
techniques.
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