
JSNOSE: Detecting JavaScript Code Smells
Amin Milani Fard

University of British Columbia
Vancouver, BC, Canada

aminmf@ece.ubc.ca

Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
amesbah@ece.ubc.ca

Abstract—JavaScript is a powerful and flexible prototype-
based scripting language that is increasingly used by developers
to create interactive web applications. The language is inter-
preted, dynamic, weakly-typed, and has first-class functions. In
addition, it interacts with other web languages such as CSS and
HTML at runtime. All these characteristics make JavaScript code
particularly error-prone and challenging to write and maintain.
Code smells are patterns in the source code that can adversely
influence program comprehension and maintainability of the
program in the long term. We propose a set of 13 JavaScript code
smells, collected from various developer resources. We present a
JavaScript code smell detection technique called JSNOSE. Our
metric-based approach combines static and dynamic analysis to
detect smells in client-side code. This automated technique can
help developers to spot code that could benefit from refactoring.
We evaluate the smell finding capabilities of our technique
through an empirical study. By analyzing 11 web applications, we
investigate which smells detected by JSNOSE are more prevalent.

Index Terms—JavaScript, code smell, web applications, smell
detection

I. INTRODUCTION

JavaScript is a flexible popular scripting language for de-
veloping Web 2.0 applications. It is used to offload core
functionality to the client-side web browser and mutate the
Document Object Modelling (DOM) tree at runtime to fa-
cilitate smooth state transitions. Because of its flexibility
JavaScript is a particularly challenging language to write code
in and maintain.

The challenges are manifold: First, it is an interpreted
language, meaning that there is typically no compiler in
the development cycle that would help developers to spot
erroneous or unoptimized code. Second, it has a dynamic,
weakly-typed, asynchronous nature. Third, it supports intricate
features such as prototypes [23], first-class functions, and
closures [8]. And finally, it interacts with the DOM through a
complex event-based mechanism [29].

All these characteristics make it difficult for web developers
who lack in-depth knowledge of JavaScript, to write maintain-
able code. As a result, web applications written in JavaScript
tend to contain many code smells [9]. Code smells are patterns
in the source code that indicate potential comprehension
and maintenance issues in the program. Code smells, once
detected, need to be refactored to improve the design and
quality of the code.

Detecting code smells manually is time consuming and
error-prone. Automated smell detection tools can lower long-

term development costs and increase the chances for success
[28] by helping to make the code more maintainable.

Current work on web application code smell detection is
scarce [20] and tools [3], [4], [6], [20] available to web
developers to maintain their code are mainly static analyzers
and thus limited in their capabilities.

In this paper, we propose a list of code smells for JavaScript-
based applications. In total, we consider 13 code smells: 7 are
existing well-known smells adapted to JavaScript, and 6 are
specific JavaScript code smell types, collected from various
JavaScript development resources. We present an automated
technique, called JSNOSE, to detect these code smells. Our
approach uses a metric-based algorithm, and combines static
with dynamic analysis to detect these smells in JavaScript
code.

Our work makes the following main contributions:

• We propose a list of JavaScript code smells, collected
from various web development resources;

• We present an automated metric-based approach to detect
JavaScript code smells;

• We implement our approach in a tool called JSNose,
which is freely available;

• We evaluate the effectiveness of our technique in detect-
ing code smells in JavaScript applications;

• We empirically investigate 11 web applications using
JSNOSE to find out which smells are more prevalent.

Our results indicate that amongst the smells detected by
JSNOSE, lazy object, long method/function, closure smells,
coupling between JavaScript, HTML, and CSS, and excessive
global variables, are the most prevalent code smells. Further,
our study indicates that there exists a strong and significant
positive correlation between the types of smells and lines of
code, number of functions, number of JavaScript files, and
cyclomatic complexity.

II. MOTIVATION AND CHALLENGES

Although JavaScript is increasingly used to develop modern
web applications, there is still lack of tool support targeting
code quality and maintenance, in particular for automated code
smell detection and refactoring.

JavaScript is a dynamic weakly typed and prototype-based
scripting language, with first-class functions. Prototype-based
programming is a class-free style of object-oriented program-
ming, in which objects can inherit properties from other978-1-4673-5739-5/13/$31.00 © 2013 IEEE

objects directly. In JavaScript, prototypes can be redefined at
runtime, and immediately affect all the referring objects.

The detection process for many of the traditional code
smells [9], [12] in object-oriented languages is dependent
on identifying objects, classes, and functions in the code.
Unlike most object-oriented languages such as Java or C++,
identification of such key language items is not straightforward
in JavaScript code. Bellow we explain the major challenges in
identifying objects and functions in JavaScript.

JavaScript has a very flexible model of objects and func-
tions. Object properties and their values can be created,
changed, or deleted at runtime and accessed via first-class
functions. For instance, in the following piece of code a call
to the function foo() will dynamically create a property prop
for the object obj if prop does not already exist.
function foo(obj, prop, value){

obj.prop = value;
}

Due to such dynamism, the set of all available properties of
an object is not easily retrievable through static analysis of the
code alone. Empirical studies [24] reveal that most dynamic
features in JavaScript are frequently used by developers and
cannot be disregarded in code analysis processes.

Furthermore, functions in JavaScript are first-class values.
They can (1) be objects themselves, (2) contain properties and
nested function closures, (3) be assigned dynamically to other
objects, (4) be stored in variables, objects, and arrays, (5) be
passed as arguments to other functions, and (6) be returned
from functions. JavaScript also allows the creation (through
eval()) and execution of new code at runtime, which again
makes static analysis techniques insufficient.

Manual analysis and detection of code smells in JavaScript
is time consuming, tedious, and error-prone in large code
bases. Therefore, automated techniques are needed to support
web developers in maintaining their code. Given the challeng-
ing characteristics of JavaScript, our goal in this work is to
propose a technique that can handle the highly dynamic nature
of the language to detect potential code smells effectively.

III. RELATED WORK

Fowler and Beck [9] proposed 22 code smells in object-
oriented languages and associated each of them with a possible
refactoring. Although code smells in object-oriented languages
have been extensively studied in the past, current work on
smell detection for JavaScript code is scarce [20]. In this work
we study a list of code smells in JavaScript, and propose an
automated detection technique. The list of proposed JavaScript
code smells in this paper is based on a study of various dis-
cussions in online development forums and JavaScript books
[19], [20], [21], [22], [10].

Many tools and techniques have been proposed to detect
code smells automatically in Java and C++ such as Checkstyle
[2], Decor [17], and JDeodorant [27]. A common heuristic-
based approach to code smell detection is the use of code
metrics and user defined thresholds [17], [7], [18], [25], [13].
Similarly we adopt a metric-based smell detection strategy.

Our approach is different from such techniques in the sense
that due to the dynamic nature of JavaScript, we propose
a code smell technique that combines static with dynamic
analysis.

Cilla [15] is a tool that similar to our work applies dynamic
analysis but for detecting unused CSS code in relation to
dynamically mutated DOM elements. A case study conducted
with Cilla revealed that over 60% of CSS rules are unused in
real-world deployed web applications, and eliminating them
could vastly improve the size and maintainability of the code.

A more closely related tool is WebScent [20], which detects
client-side smells that exist in embedded code within scattered
server-side code. Such smells can not be easily detected until
the client-side code is generated. After detecting smells in
the generated client-side code, WebScent locates the smells in
the corresponding location in the server-side code. WebScent
primarily identifies mixing of HTML, CSS, and JavaScript,
duplicate code in JavaScript, and HTML syntax errors. Our
tool, JSNOSE, can similarly identify JavaScript code smells
generated via server-side code. However, we propose and tar-
get a larger set of JavaScript code smells and unlike the manual
navigation of the application in WebScent, we apply automated
dynamic exploration using a crawler. Another advantage of
JSNOSE is that it can infer dynamic creation/change of
objects, properties, and functions at runtime, which WebScent
does not support.

A number of industrial tools exist that aim at assisting web
developers with maintaining their code. For instance, WARI
[6] examines dependencies between JavaScript functions, CSS
styles, HTML tags and images. The goal is to statically find
unused images as well as unused and duplicated JavaScript
functions and CSS styles. Because of the dynamic nature
of JavaScript, WARI cannot guarantee the correctness of the
results. JSLint [4] is a static code analysis tool written in
JavaScript that validates JavaScript code against a set of
good coding practices. The code inspection tends to focus
on improving code quality from a technical perspective. The
Google Closure Compiler [3] is a JavaScript optimizer that
rewrites JavaScript code to make it faster and more compact.
It helps to reduce the size of JavaScript code by removing
comments and unreachable code.

IV. JAVASCRIPT CODE SMELLS

In this section, we propose a list of code smells for
JavaScript-based applications. Of course a list of code smells
can never be complete as the domain and projects that the
code is used in may vary. Moreover, code smells are generally
subjective and imprecise, i.e., they are based on opinions and
experiences [28]. To mitigate this subjective nature of code
smells, we have collected these smells by studying various
online development resources [5], [10], [19], [21], [22], [26]
and books [8], [31], [32] that discuss bad JavaScript coding
patterns.

In total, we consider 13 code smells in JavaScript. Although
JavaScript has its own specific code smells, most of the
generic code smells for object-oriented languages [9], [12]

can be adapted to JavaScript as well. Since JavaScript is a
class-free language and objects are defined directly, we use
the notion of “object” instead of “class” for these generic
smells. The generic smells include the following 7: Empty
catch blocks (poor understanding of logic in the try), Large
object (too many responsibilities), Lazy object (does too little),
Long functions (inadequate decomposition), Long parameter
list (need for an object), Switch statements (duplicated code
and high complexity), and Unused/dead code (never executed
or unreachable code).

In addition to the generic smells, we propose 6 types of
JavaScript code smells in this section as follows.

A. Closure Smells

In JavaScript, it is possible to declare nested functions,
called closures. Closures make it possible to emulate object-
oriented notions such as public, private, and privileged

members. Inner functions have access to the parameters and
variables — except for this and argument variables — of
the functions they are nested in, even after the outer function
has returned [8]. We consider four smells related to the concept
of function closures in JavaScript.

Long scope chaining. Functions can be multiply-nested, thus
closures can have multiple scopes. This is called “scope
chaining” [5], where inner functions have access to the scope
of the functions containing them. An example is the following
code:
function foo(x) {
var tmp = 3;
function bar(y) {

++tmp;
function baz(z) {
document.write(x + y + z + tmp);

}
baz(3);

}
bar(10);

}
foo(2); // writes 19 i.e., 2+10+3+4

This nested function style of programming is useful to emu-
late privacy, however, using too many levels of nested closures
over-complicates the code, making it hard to comprehend
and maintain. Moreover, identifier resolution performance is
directly related to the number of objects to search in the scope
chain [31]. The farther up in the scope chain an identifier
exists, the longer the search goes on and the longer time it
takes to access that variable.

Closures in loops. Inner functions have access to the actual
variables of their outer functions and not their copies. There-
fore, creating functions within a loop can cause confusion
and be wasteful computationally [8]. Consider the following
example:
var addTheHandler = function (nodes) {

for (i = 0; i < nodes.length; i++) {
nodes[i].onclick = function (e) {

document.write(i);
};

}
};
addTheHandler(document.getElementsByTagName("div"));

Assume that there are three div DOM elements present.
If the developer’s actual intention is to display the ordinal
of the div nodes when a node is clicked, then the result
will not be what she expected as the length of nodes, 3,
will be returned instead of the node’s ordinal position. In this
example, the value of i in the document.write function
is assigned when the for loop is finished and the inner
anonymous function is created. Therefore, the variable i has
the value of nodes.length, which is 3 in this case. To avoid
this confusion and potential mistake, the developer can use a
helper function outside of the loop that will deliver a function
binding to the current local value of i.

Variable name conflict in closures. When two variables
in the scopes of a closure have the same name, there is a
name conflict. In case of such conflicts, the inner scope takes
precedence. Consider the following example [5]:
function outside() {

var a = 10;
function inside(a) {

return a;
}
return inside;

}
result = outside()(20); \\ result: 20

In this example, there is a name conflict between the
variable a in outside() and the function parameter a in
inside() that takes precedence. We consider this a code
smell as it makes it difficult to comprehend the actual intended
value assignment. Due to scope chain precedence, the value of
result is now 20. However, it is not evident from the code
whether this is the intended result (or perhaps 10).

Moreover, dynamic typing in JavaScript makes it possible
to reuse the same variable for different types at runtime.
Similar to the variable name conflict issue, this style of
programming reduces readability and in turn maintainability.
Thus, declaring a new variable with a dedicated unique name
is the recommended refactoring. This issue is not restricted to
closures, or to nested functions.

Accessing the this reference in closures. Due to the design
of JavaScript language, when an inner function in a closure is
invoked, this becomes bounded to the global object and not
to the this variable of the outer function [8]. We consider
the usage of this in closures a code smell as it is a potential
symptom for mistakes. As a refactoring workaround, the
developer can assign the value of the this variable of the
outer function to a new variable that and then use that in
the inner function [8].

B. Coupling between JavaScript, HTML, and CSS

In web applications, HTML is meant for presenting content
and structure, CSS for styling, and JavaScript for functional
behaviour. Keeping these three entities separate is a well-
known programming practice, known as separation of con-
cerns. Unfortunately, web developers often mix JavaScript
code with markup and styling code [20], which adversely in-
fluences program comprehension, maintenance and debugging
efforts in web applications. We categorize the tight coupling

of JavaScript with HTML and CSS code into the following
three code smells types:

JavaScript in HTML. One common way to register an event
listener in web applications is via inline assignment in the
HTML code. We consider this inline assignment of event
handlers a code smell as it tightly couples the HTML code to
the JavaScript code. An example of such a coupling is shown
below:
<button onclick="foo();" id="myBtn"/>

This smell can be refactored by removing the onclick

attribute from the button in HTML and using the
addEventListener function of DOM Level 2 [29] to assign
the event handler through JavaScript:
<button id="myBtn"/>

function foo() {
// code

}
var btn = document.getElementById("myBtn");
btn.addEventListener("click", foo, false);

This could be further refactored using the jQuery library as
$("#myBtn").on("click", foo);.

Note that JavaScript code within the <script> tag in
HTML code can be seen as a code smell [20]. We do not con-
sider this a code smell as it does not affect comprehension nor
maintainability, although separating the code to a JavaScript
file is preferable.

HTML in JavaScript. Extensive DOM API calls and embed-
ded HTML strings in JavaScript complicate debugging and
software evolution. In addition, editing markup is believed
to be less error prone than editing JavaScript code [32].
The following code is an example of embedded HTML in
JavaScript [10]:
// add book to the list
var book = doc.createElement("li");
var title = doc.createElement("strong");
titletext = doc.createTextNode(name);
title.appendChild(titletext);
var cover = doc.createElement("img");
cover.src = url;
book.appendChild(cover);
book.appendChild(title);
bookList.appendChild(book);

To refactor this code smell, we can move the HTML code
to a template (book_tpl.html):
TITLE

The JavaScript code would then be refactored as:
var tpl = loadTemplate("book_tpl.html");
var book = tpl.substitute({TITLE: name, COVER: url});
bookList.appendChild(book);

Another example this smell is using long strings of HTML
in jQuery function calls [22]:
$('\#news')

.append('<div class="gall"><a href="javascript:void(0)←↩
">Linky</div>')

.append('<button onclick="app.doStuff()">Button</←↩
button>');

CSS in JavaScript. Setting the presentation style of DOM
elements by assigning their style properties in JavaScript
is a code smell [10]. Keeping styling code inside JavaScript
is asking for maintenance problems. Consider the following
example:
div.onclick = function(e) {

var clicked = this;
clicked.style.border = "1px solid blue";

}

The best way to change the style of an element in JavaScript
is by manipulating CSS classes properly defined in CSS files
[10], [32]. The above code smell can be refactored as follows:
\\ CSS file:
.selected{border: 1px solid blue;}
\\ JavaScript:
div.onclick = function(e) {

this.setAttribute("class","selected");
}

C. Excessive Global Variables
Global variables are accessible from anywhere in JavaScript

code, even when defined in different files loaded on the same
page. As such, naming conflicts between global variables in
different JavaScript source files is common, which affects
program dependability and correctness. The higher the number
of global variables in the code, the more dependent existing
modules are likely to be; and dependency increases error-
proneness, and maintainability efforts [21]. Therefore, we see
the excessive use of global variables as a code smell in
JavaScript. One way to mitigate this issue is to create a single
global object for the whole application that contains all the
global variables as its properties [8]. Grouping related global
variables into objects is another remedy.

D. Long Message Chain
Long chaining of functions with the dot operator can result

in complex control flows that are hard to comprehend. This
style of programming happens frequently when using the
jQuery library. One extreme example is shown bellow [22]:
$('a').addClass('reg-link').find('span').addClass('inner'←↩

).end().find('div').mouseenter(mouseEnterHandler).←↩
mouseleave(mouseLeaveHandler).end().explode();

Long chains are unreadable specially when a large amount
of DOM traversing is taking place [22].

Another instance of this code smell is too much cascading.
Similar to object-oriented languages such as Java, in JavaScript
many methods calls can be cascaded on the same object
sequentially within a single statement. This is possible when
the methods return the this object. Cascading can help to
produce expressive interfaces that perform much work at once.
However, the code written this way tends to be harder to follow
and maintain. The following example is borrowed from [8]:
getElement('myBoxDiv').move(350, 150).width(100).height←↩

(100).color('red').border('10px outset').padding('4px←↩
').appendText("Please stand by").on('mousedown', ←↩
function (m) {
this.startDrag(m, this.getNinth(m));}).on('mousemove'←↩

, 'drag').on('mouseup', 'stopDrag').tip("This box←↩
is resizeable");

A possible refactoring to shorten the message chain is to
break the chain into more general methods/properties for that
object which incorporate longer chains.

E. Nested Callback

A callback is a function passed as an argument to another
(parent) function. Callbacks are executed after the parent
function has completed its execution. Callback functions are
typically used in asynchronous calls such as timeouts and
XMLHttpRequests (XHRs). Using excessive callbacks, how-
ever, can result in hard to read and maintain code due to
their nested anonymous (and usually asynchronous) nature.
An example of a nested callback is given below [26]:
setTimeout(function () {

xhr("/greeting/", function (greeting) {
xhr("/who/?greeting=" + greeting, function (who) ←↩

{
document.write(greeting + " " + who);

});
});

}, 1000);

A possible refactoring to resolve unreadable nested call-
backs is to split the functions and pass a reference to another
function [1]. The above code can be rewritten as bellow:
setTimeout(foo,1000);
function foo() {
xhr("/greeting/", bar);

}
function bar(greeting) {
xhr("/who/?greeting=" + greeting, baz);

}
function baz(who) {
document.write(greeting + " " + who);

}

F. Refused Bequest

JavaScript is a class-free prototypal inheritance language,
i.e., an object can inherit properties from another object, called
a prototype object. A JavaScript object that does not use/over-
ride many of the properties it inherits from its prototype object
is an instance of a refused bequest [9] soft code smell. In
the following example, the student object inherits from its
prototype parent person. However, student only uses one
of the five properties inherited from person, namely fname.
var person={fname:"John", lname:"Smith", gender:"male", ←↩

age:28, location:"Vancouver"};
var student = Object.create(person);
...
student.university = "UBC";
document.write(student.fname + " studies at " + student.←↩

university);

A simple refactoring, similar to the push down field/method
proposed by Fowler [9], could be to eliminate the inheritance
altogether and add the required property (fname) of the
prototype to the object that refused the bequest.

V. SMELL DETECTION MECHANISM

In this section, we present our JavaScript code smell detec-
tion mechanism, which is capable of detecting the code smells
discussed in the previous section.

(2)
Intercept & Instrument

JavaScript Code

(7)
Crawler

(8)
Execution

Trace

Server Browser

(6)
Infer Runtime

Objects Properties

(3)
Extract

JavaScript
(9)

Detect
Code

Smells

(4)
Analyze

AST

(5)
Extract

Patterns
(10)

Code
Smell
Report(1)

Config

Fig. 1. Processing view of JSNOSE, our JavaScript code smell detector.

A common heuristic-based approach to detect code smells
is the use of source code metrics and thresholds [7], [13],
[17], [18], [25]. In this work, we adopt a similar metric-based
approach to identify smelly sections of JavaScript code.

In order to calculate the metrics, we first need to extract
objects, functions, and their relationships from the source code.
Due to the dynamic nature of JavaScript, static code analysis
alone will not suffice, as discussed in Section II. Therefore,
in addition to static code analysis, we also employ dynamic
analysis to monitor and infer information about objects and
their relations at runtime.

Figure 1 depicts an overview of our approach. At a high
level, (1) the configuration, containing the defined metrics
and thresholds, is fed into the code smell detector. We au-
tomatically (2) intercept the JavaScript code of a given web
application, by setting up a proxy between the server and the
browser, (3) extract JavaScript code from all .js and HTML
files, (4) parse the source code into an Abstract Syntax Tree
(AST) and analyze it by traversing the tree. During the AST
traversal, the analyzer visits all program entities, objects, prop-
erties, functions, and code blocks, and stores their structure
and relations. At the same time, we (2) instrument the code
to monitor statement coverage, which is used for unused/dead
code smell detection. Next, we (7) navigate the instrumented
application in the browser to produce an execution trace,
through an automated dynamic crawler, and (8) collect and
use execution traces to calculate code coverage. We (5) extract
patterns from the AST such as names of objects and functions,
and (6) infer JavaScript objects, their types, and properties
dynamically by querying the browser at runtime. Finally, (9)
based on all the static and dynamic data collected, we detect
code smells (10) using the metrics.

A. Metrics and Criteria Used for Smell Detection

Table I presents the metrics and criteria we use in our
approach to detect code smells in JavaScript applications.
Some of these metrics and their corresponding thresholds have
been proposed and used for detecting code smells in object-
oriented languages [7], [13], [17], [18], [25]. In addition, we

TABLE I
METRIC-BASED CRITERIA FOR JAVASCRIPT CODE SMELL DETECTION.

Code smell Level Detection method Detection criteria Metric
Closure smell Function Static & Dynamic LSC > 3 LSC: Length of scope chain
Coupling JS/HTML/CSS File Static & Dynamic JSC > 1 JSC: JavaScript coupling instance
Empty catch Code block Static LOC(catchBlock) = 0 LOC: Lines of code
Excessive global variables Code block Static & Dynamic GLB > 10 GLB: Number of global variables
Large object Object Static & Dynamic [30]: LOC(obj) > 750 or NOP > 20 NOP: Number of properties
Lazy object Object Static & Dynamic NOP < 3 NOP: Number of properties
Long message chain Code block Static LMC > 3 LMC: Length of message chain
Long method/function Function Static & Dynamic [13], [30]: MLOC > 50 MLOC: Method lines of code
Long parameter list Function Static & Dynamic [30]: PAR > 5 PAR: Number of parameters
Nested callback Function Static & Dynamic CBD > 3 CBD: Callback depth
Refused bequest Object Static & Dynamic [13]: BUR < 1

3
and NOP > 2 BUR: Base-object usage ratio

Switch statement Code block Static NOC > 3 NOC: Number of cases
Unused/dead code Code block Static & Dynamic EXEC = 0 EXEC: Execution count

or RCH = 0 RCH: Reachability of code

propose new metrics and criteria to capture the characteristics
of JavaScript code smells discussed in Section IV.
Closure smell. We identify long scope chaining and accessing
this in closures. If the length of scope chain (LSC) is greater
than 3, or if this is used in an inner function closure, we
report it as a closure smell instance.
Coupling JS/HTML/CSS. We count the number of occur-
rences of JavaScript within HTML tags, and CSS in JavaScript
as described in Section IV-B. Our tool reports all such
JavaScript coupling instances as code smell.
Empty catch. Detecting empty catches is straightforward in
that the number of lines of code (LOC) in the catch block
should be zero.
Excessive global variables. We extract global variables in
JavaScript, which can be defined in three ways: (1) using
a var statement outside of any function, such as var x =

value;, (2) adding a property to the window global object,
i.e., the container of all global variables, such as window.foo
= value;, and (3) using a variable without declaring it by
var. If the number of global variables (GLB) exceeds 10, we
consider it as a code smell.
Large/Lazy object. An object that is doing too much or not
doing enough work should be refactored. Large objects may
be restructured or broken into smaller objects, and lazy objects
maybe collapsed or combined into other classes. If an object’s
lines of code is greater than 750 or the number of its methods
is greater than 20, it is identified as a large object [30]. We
consider an object lazy, if the number of its properties (NOP)
is less than 3.
Long message chain. If the length of a message chain (LMC),
i.e., the number of items being chained by dots as explained
in Section IV-D, in a statement is greater than 3, we consider
it a long message chain and report it as a smell.
Long method/function. A method with more than 50 lines of
code (MLOC) is identified as a long method smell [13], [30].
Long parameter list. We consider a parameter list long when
the number of parameters (PAR) exceeds 5 [30].

Nested callback. We identify nested functions that pass a
function type as an argument. If the callback depth (CBD)
exceeds 3, we report it as a smell.
Refused bequest. If an object uses or specializes less than a
third of its parent prototype, i.e., base-object usage ratio (BUR)
is less than 1

3 , it is considered as refused parent bequest [13].
Further, the number of methods and the cyclomatic complexity
of the child object should be above average since simple
and small objects may unintentionally refuse a bequest. In
our work, we slightly change this criteria to the constraint of
NOP>2, i.e., not to be a lazy small object.
Switch statement. The problem with switch statements is
duplicated code. Typically, similar switch statements are scat-
tered throughout a program. If one adds or removes a clause
in one switch, she often has to find and repair the others too
[9], [12]. When the number of switch cases (NOC) is more
than three, it is considered as a code smell. This can also be
applied to if-then-else statements with more than three
branches.
Unused/dead code. Unused/dead code has negative effects
on maintainability as it makes the code unnecessarily more
difficult to understand [21], [14]. Unlike languages such as
Java, due to the dynamic nature of JavaScript it is quite
challenging to reason about dead JavaScript code statically.
Hence, if the execution count (EXEC) of an statement remains
0 after executing the web application, we report it as a
candidate unused/dead code. Reachability of code (RCH) is
another metric we use to identify unreachable code.

B. Combining Static and Dynamic Analysis
Algorithm 1 presents our smell detection method. The al-

gorithm is generic in the sense that the metric-based static and
dynamic smell detection procedures can be defined and used
according to any smell detection criteria. Given a JavaScript
application A, a maximum crawling time t, and a set of code
smell criteria τ , the algorithm generates a set of code smells
CS.

The algorithm starts by looking for inline JavaScript code
embedded in HTML (line 3). All JavaScript code is then

Algorithm 1: JavaScript Code Smell Detection
input : A JavaScript application A, the maximum exploration time

t, the set of smell metric criteria τ
output: The list of JavaScript code smells CS

1 CS ← ∅
Procedure EXPLORE() begin

2 while TIMELEFT(t) do
3 CS ← CS ∪ DETECTINLINEJSINHTML(τ)
4 code ← EXTRACTJAVASCRIPT(A)
5 AST ← PARSTOAST(code)
6 VISITNODE(AST.root)
7 ASTinst ← INSTRUMENT(AST)
8 INJECTJAVASCRIPTCODE(A,ASTinst)
9 C ← EXTRACTCLICKABLES(A)

10 for c ∈ C do
11 dom← browser.GETDOM()
12 robot.FIREEVENT(c)
13 new dom← browser.GETDOM()
14 CS ← CS ∪ DETECTDYNAMICALLY(τ)
15 if dom.HASCHANGED(new dom) then
16 EXPLORE(A)

17 CS ← CS ∪ DETECTUNUSEDCODE()
18 return CS

Procedure VISITNODE(ASTNode) begin
19 CS ← CS ∪ DETECTSTATICALLY(node, τ)
20 for node ∈ ASTNode.getChildren() do
21 VISITNODE(node)

extracted from JavaScript files and HTML <script> tags
(line 4). An AST of the extracted code is then generated using
a parser (line 5). This AST is traversed recursively (lines 6,
19-21) to detect code smells using a static analyzer. Next
the AST is instrumented (line 7) and transformed back to
the corresponding JavaScript source code and passed to the
browser (lines 8). The crawler then navigates (line 9-16) the
application, and potential code smells are explored dynam-
ically (line 9 14). After the termination of the exploration
process, unused code is identified based on the execution trace
and added to the list of code smells (line 17), and the resulting
list of smells is returned (line 18).

Next, we present the relevant static and dynamic smell
detection processes in detail.

Static Analysis. The static code analysis (Line 19) involves
analyzing the AST by traversing the tree. During this step,
we extract CSS style usage, objects, properties, inheritance
relations, functions, and code blocks to calculate the smell
metrics. If the calculated metrics violate the given criteria (τ),
the smell is returned.

There are different ways to create objects in JavaScript.
In this work, we only consider two main standard forms of
using object literals, namely, through (1) the new keyword,
and (2) Object.create(). To detect the prototype of an
object, we consider both the non-standard form of using
the __proto__ property assignment, and the more general
constructor functions through Object.create().

In order to detect unreachable code, we search the AST
nodes for return, break, continue, and throw statements.
Whatever a statement is found right after these statements that

is on the same node level in the AST, we mark it as potential
unreachable code.

Dynamic Analysis. Dynamic analysis (Line 14) is performed
for two reasons:

1) To calculate many of the metrics in Table I, we need
to monitor the creation/update of functions, objects, and
their properties at runtime. To that end, a combination
of static and dynamic analysis should be applied. The
dynamic analysis is performed by executing a piece of
JavaScript code in the browser, which enables retrieving
a list of all global variables, objects, and functions (own
properties of the window object) and dynamically de-
tecting prototypes of objects (using getPrototypeOf()

on each object). However, local objects in functions are
not accessible via JavaScript code execution in the global
scope. Therefore, we use static analysis and extract the
required information from the parsed AST. The objects,
functions, and properties information gathered this way
is then fed to the smell detector process.

2) To detect unused/dead code we need to collect execu-
tion traces for measuring code coverage. Therefore, we
instrument the code and record which parts of it are
invoked by exploring the application through automated
crawling. However, this dynamic analysis can give false
positives for non-executed, but reachable code. This is a
limitation of any dynamic analysis approach since there
is no guarantee of completeness (such as code coverage).

Note that our approach merely reports candidate code smells
and the decision will always be upon developers whether or
not to refactor the code smells.

C. Implementation

We have implemented our approach in a tool called JS-
NOSE, which is publicly available.1 JSNOSE operates auto-
matically, does not modify the web browser, is independent
of the server technology, and requires no extra effort from the
user. We use the WebScarab proxy to intercept the JavaScrip-
t/HTML code. To parse the JavaScript code to an AST and
instrument the code, we use Mozilla Rhino.2 To automatically
explore and dynamically crawl the web application, we use
CRAWLJAX [16]. The output of JSNOSE is a text file that lists
all detected JavaScript code smells with their corresponding
line numbers in a JavaScript file or an HTML page.

VI. EMPIRICAL EVALUATION

We have conducted an empirical study to evaluate the
effectiveness and real-world relevance of JSNOSE. Our study
is designed to address the following research questions:

RQ1: How effective is JSNOSE in detecting JavaScript
code smells?

RQ2: Which code smells are more prevalent in web appli-
cations?

1http://salt.ece.ubc.ca/content/jsnose/
2https://github.com/mozilla/rhino/

TABLE II
EXPERIMENTAL OBJECTS.

ID Name #J
S

fil
es

JS
L

O
C

#F
un

ct
io

ns

Av
er

ag
e

C
C

Av
er

ag
e

M
I

Description Resource
1 PeriodicTable 1 71 9 12 116 An AJAX-based periodic table of the elements http://code.jalenack.com/periodic/
2 CollegeVis 1 177 30 11 119 A JavaScript-based visualization tool https://github.com/nerdyworm/collegesvis
3 ChessGame 2 198 15 102 105 A JavaScript-based simple game p4wn.sourceforge.net
4 Symbolistic 1 203 20 28 109 A JavaScript-based simple game http://10k.aneventapart.com/2/Uploads/652
5 Tunnel 0 234 32 29 116 A JavaScript-based simple game http://arcade.christianmontoya.com/tunnel
6 GhostBusters 0 278 26 45 97 A JavaScript-based simple game http://10k.aneventapart.com/2/Uploads/657
7 TuduList 4 782 89 106 94 An AJAX-based todo lists manager in J2EE and MySQL julien-dubois.com/tudu-lists/
8 FractalViewer 8 1245 125 35 116 A JavaScript-based fractal zoomer http://onecm.com/projects/canopy
9 PhotoGallery 5 1535 102 53 102 An AJAX-based photo gallery in PHP without MySQL sourceforge.net/projects/rephormer

10 TinySiteCMS 13 2496 462 54 115 An AJAX-based CMS in PHP without MySQL tinysitecms.com
11 TinyMCE 174 26908 4455 67 101 A JavaScript-based WYSIWYG editor tinymce.com

RQ3: Is there a correlation between JavaScript code smells
and source code metrics?

Our experimental data along with the implementation of
JSNOSE are available for download.1

A. Experimental Objects
We selected 11 web applications that make extensive use

of client-side JavaScript, and fall under different application
domains. The experimental objects along with their source
code metrics are shown in Table II. In the calculation of these
source code metrics, we included inline HTML JavaScript
code, and excluded blank lines, comments, and common
JavaScript libraries such as jQuery, DWR, Scriptaculous, Pro-
totype, and google-analytics. Note that we also exclude these
libraries in the instrumentation step. We use CLOC3 to count
the JavaScript lines of code (JS LOC). Number of func-
tions (including anonymous functions), cyclomatic complexity
(CC), and maintainability index (MI) are all calculated using
complexityReport.js.4 The reported CC and MI are across all
JavaScript functions in each application.

B. Experimental Setup
We confine the dynamic crawling time for each application

to 10 minutes, which is acceptable in a maintenance envi-
ronment. Of course, the more time we designate for exploring
the application, the higher statement coverage we may get and
thus more accurate the detection of unused/dead code. For the
crawling configuration, we set no limits on the crawling depth
nor the maximum number of DOM states to be discovered.
The criteria for code smell metrics are configured according
to those presented in Table I.

To evaluate the effectiveness of JSNOSE (RQ1), we val-
idate the produced results by JSNOSE against manual code
inspection. Similar to [17], we measure precision and recall
as follows:

Precision is the rate of true smells identified among the
detected smells: TP

TP+FP
Recall is the rate of true smells identified among the existing

smells: TP
TP+FN

3http://cloc.sourceforge.net
4https://npmjs.org/package/complexity-report/

where TP (true positives), FP (false positives), and FN (false
negatives) respectively represent the number of correctly de-
tected smells, falsely detected smells, and missed smells. To
count TP, FP, and FN in a timely fashion while preserving
accuracy, we only consider the first 9 applications since the last
2 applications have relatively larger code bases. In our manual
validation process, we also consider runtime created/modified
objects and functions that are inferred during JSNOSE dy-
namic analysis. It is worth mentioning that this manual process
is a labour intensive task, which took approximately 6.5 hours
for the 9 applications.

Note that the precision-recall values for detecting un-
used/dead code smell is calculated considering only “unreach-
able” code, which is code after an unconditional return

statement. This is due to the fact that the accuracy of dead
code detection depends on the running time and dynamic
exploration strategy.

To measure the prevalence of JavaScript code smells (RQ2),
we ran JSNOSE on all the 11 web applications and counted
each smell instance.

To evaluate the correlation between the number of smells
and application source code metrics (RQ3), we use R5 to
calculate the non-parametric Spearman correlation coefficients
as well as the p-values. The Spearman correlation coefficient
does not require the data to be normally distributed [11].

C. Results

Effectiveness (RQ1). We report the precision and recall in
the first 5 rows of Table III. The reported TPtotal, FPtotal,
and FNtotal, are the sum of TP, FP, and FN values for the first
9 applications. Our results show that JSNOSE has an overall
precision of 93% and an average recall of 98% in detecting
the JavaScript code smells, which points to its effectiveness.

We observed that most false positives detected are related
to large/lazy objects and refused bequest, which are primitive
variables, object properties, and methods in jQuery. This is
due to the diverse coding styles and different techniques
in object manipulations in JavaScript, such as creating and
initializing arrays of objects. There were a few false negatives

5http://www.r-project.org

TABLE III
PRECISION-RECALL ANALYSIS (BASED ON THE FIRST 9 APPLICATIONS), AND DETECTED CODE SMELL STATISTICS (FOR ALL 11 APPLICATIONS).

S1
.C

lo
su

re
sm

el
ls

S2
.C

ou
pl

in
g

JS
/H

T
M

L
/C

SS

S3
.E

m
pt

y
ca

tc
h

N
um

be
r

of
gl

ob
al

va
ri

ab
le

s

S4
.E

xc
es

si
ve

gl
ob

al
va

ri
ab

le
s

S5
.L

ar
ge

ob
je

ct

S6
.L

az
y

ob
je

ct

S7
.L

on
g

m
es

sa
ge

ch
ai

n

S8
.L

on
g

m
et

ho
d/

fu
nc

tio
n

S9
.L

on
g

pa
ra

m
et

er
lis

t

S1
0.

N
es

te
d

ca
llb

ac
k

S1
1.

R
ef

us
ed

be
qu

es
t

S1
2.

Sw
itc

h
st

at
em

en
t

S1
3.

U
nr

ea
ch

ab
le

co
de

S1
3.

U
nu

se
d/

de
ad

co
de

N
um

be
r

of
sm

el
l

in
st

an
ce

s

N
um

be
r

of
ty

pe
s

of
sm

el
ls

TPtotal 19 171 16 200 - 14 391 87 25 12 1 13 10 0 n/a 959 n/a
FPtotal 0 0 0 0 - 4 73 0 0 0 0 6 0 0 n/a 83 n/a
FNtotal 6 0 0 0 - 1 2 8 0 0 0 0 0 0 n/a 17 n/a
Precisiontotal 100% 100% 100% 100% - 78% 85% 100% 100% 100% 100% 68% 100% n/a n/a 92% n/a
Recalltotal 76% 100% 100% 100% - 94% 99% 92% 100% 100% 100% 100% 100% n/a n/a 98% n/a
PeriodicTable 1 2 0 6 - 4 10 0 0 0 0 0 0 0 28% 23 4
CollegeVis 1 0 0 17 + 0 32 0 2 0 1 0 0 0 22% 53 5
ChessGame 0 7 0 39 + 3 9 4 0 2 0 0 0 0 36% 64 6
Symbolistic 0 0 0 4 - 0 17 0 1 0 0 1 0 0 20% 23 3
Tunnel 9 0 0 15 + 0 28 0 2 0 0 0 0 0 44% 54 4
GhostBusters 2 0 0 4 - 0 38 0 2 3 0 0 0 0 45% 49 4
TuduList 6 47 0 45 + 6 138 78 12 2 0 2 7 0 65% 343 10
FractalViewer 0 16 0 40 + 7 117 4 5 5 0 16 2 0 36% 212 9
PhotoGallery 0 99 16 30 + 0 73 1 1 0 0 0 1 0 64% 221 7
TinySiteCMS 2 7 0 82 + 3 13 4 3 58 0 0 0 0 22% 172 8
TinyMCE 3 3 1 4 - 5 23 4 0 2 1 3 3 0 63% 52 10
Average 2.2 16.5 1.5 26 + 2.5 45.2 8.6 2.6 6.5 0.2 2 1.2 0 40% 115 6.4
#Smelly apps 7 7 2 n/a 7 6 11 6 8 6 2 4 4 0 n/a n/a n/a
%Smelly apps 64% 64% 18% n/a 64% 55% 100% 55% 73% 55% 18% 36% 36% 0% n/a n/a n/a

in closure smells and long message chain, which are due to
the permissive nature of jQuery syntax, complex chains of
methods, array elements, as well as jQuery objects created
via $() function.

Code smell prevalence (RQ2). Table III shows the frequency
of code smells in each of the experimental objects. The results
show that among the JavaScript code smells detected by
JSNOSE, lazy object, long method/function, closure smells,
coupling JS/HTML/CSS, and excessive global variables, are
the most prevalent smells (appeared in 100%-64% of the
experimental objects).

Tunnel and TuduList use many instances of this in clo-
sures. Major coupling smells in TuduList and PhotoGallary
are with the use of CSS in JavaScript. Refused bequest are
most observed in FractalViewer in objects inheriting from
geometry objects. The high percentage of unused/dead code
reported for TuduList, PhotoGallary, and TinyMCE is in fact
not due to dead code per se, but is mainly related to the
existence of admin pages and parts of the code which require
precise data inputs that were not provided during the crawling
process. On the other hand, TinyMCE has a huge number of
possible actions and features that could not be exercised in the
designated time of 10 minutes.

Correlations (RQ3). Table IV shows the Spearman correlation
coefficients between the source code metrics and the total
number of smell instances/types. The results show that there
exists a strong and significant positive correlation between the
types of smells and LOC, number of functions, number of
JavaScript files, and cyclomatic complexity. A weak correla-

TABLE IV
SPEARMAN CORRELATION COEFFICIENTS BETWEEN NUMBER OF CODE

SMELLS AND CODE QUALITY METRICS.

Total number of Total number of
Metric smell instances types of smells
Lines of code (r = 0.53, p = 0.05) (r = 0.70, p = 0.01)
Functions (r = 0.57, p = 0.03) (r = 0.76, p = 0.00)
JavaScript files (r = 0.53, p = 0.05) (r = 0.85, p = 0.00)
Cyclomatic complexity (r = 0.63, p = 0.02) (r = 0.70, p = 0.01)
Maintainability index (r = −0.25, p = 0.74) (r = −0.35, p = 0.86)

tion is also observed between the number of smell instances
and the aforementioned source code metrics. Surprisingly, for
the maintainability index (MI) we do not see any significant
correlation with the types or number of code smells.

D. Discussion

Here, we discuss some of the limitations and threats to
validity of our results.

Implementation Limitations. The current implementation of
JSNOSE is not able to detect all various ways of object
creation in JavaScript. Also it does not deal with various
syntax styles of frameworks such as jQuery. For the dynamic
analysis part, JSNOSE is dependent on the crawling strategy
and execution time, which may affect the accuracy if certain
JavaScript files are never loaded in the browser during the
execution since the state space of web applications is typically
huge. Since JSNOSE is using Rhino to parse the JavaScript
code and generate the AST, if there exists a syntax error in a
JavaScript file, the code in that file will not be parsed to an
AST and thus any potential code smells within that file will

be missed. Note that these are all implementation issues and
not related to the design of our approach.
Threats to Validity. A threat to the external validity of our
evaluation is with regard to the generalization of the results
to other web applications. We acknowledge that more web
applications should be evaluated to support the conclusions.
To mitigate this threat we selected our experimental objects
from different application domains, which exhibit variations
in design, size, and functionality.

One threat to the internal validity of our study is related
to the metrics and criteria we proposed in Table I. However,
we believe these metrics can effectively identify code smells
described in Section IV. The designated 10 minutes time for
crawling could also be increased to get more accurate results,
however, we believe that in most maintenance environments
this is acceptable considering frequent code releases. The val-
idation and accuracy analysis performed by manual inspection
can be incomplete and inaccurate. We mitigated this threat by
focusing on the applications with smaller sets of code smells
so that manual comparison could be conducted accurately.

With respect to reliability of our evaluation, JSNOSE and
all the web-based systems are publicly available, making the
results reproducible.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a set of 13 JavaScript code
smells and presented a metric-based smell detection technique,
which combines static and dynamic analysis of the client-side
code. Our approach, implemented in a tool called JSNOSE,
can be used by web developers during development and
maintenance cycles to spot potential code smells in JavaScript-
based applications. The detected smells can be refactored to
improve their code quality.

Our empirical evaluation shows that JSNOSE is effective
in detecting JavaScript code smells; Our results indicate that
lazy object, long method/function, closure smells, coupling
between JavaScript, HTML, and CSS, and excessive global
variables are the most prevalent code smells. Further, our study
indicates that there exists a strong and significant positive
correlation between the types of smells and LOC, cyclomatic
complexity, and the number of functions and JavaScript files.

For future work, we intend to extend our list of code smells,
increase the accuracy of JSNOSE, add smell detection support
for jQuery syntax, and design and implement an automated
tool for refactoring detected JavaScript code smells.
Acknowledgment: This work was supported by the Na-
tional Science and Engineering Research Council of Canada
(NSERC) through its Strategic Project Grants programme.
Amin Milani Fard is also supported by an Alexander Graham
Bell Canada Graduate Scholarship (CGS-D) from NSERC.

REFERENCES

[1] Callback hell: A guide to writing elegant asynchronous JavaScript
programs. http://callbackhell.com/.

[2] Checkstyle. http://checkstyle.sourceforge.net/.
[3] Google closure compiler. https://developers.google.com/closure/.
[4] Jslint: The JavaScript code quality tool. http://www.jslint.com/.

[5] Mozilla developer network’s JavaScript reference. https://developer.
mozilla.org/en-US/docs/JavaScript/Reference.

[6] WARI: Web application resource inspector. http://wari.konem.net.
[7] Y. Crespo, C. López, R. Marticorena, and E. Manso. Language inde-

pendent metrics support towards refactoring inference. In 9th ECOOP
Workshop on QAOOSE, volume 5, pages 18–29, 2005.

[8] D. Crockford. JavaScript: the good parts. O’Reilly Media, Incorporated,
2008.

[9] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[10] F. Galassi. Refactoring to unobtrusive JavaScript. JavaScript Camp
2009.

[11] S. H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2002.

[12] J. Kerievsky. Refactoring to patterns. Pearson Deutschland GmbH,
2005.

[13] M. Lanza and R. Marinescu. Object-oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[14] M. Mäntylä, J. Vanhanen, and C. Lassenius. A taxonomy and an
initial empirical study of bad smells in code. In Proc. International
Conference on Software Maintenance (ICSM), pages 381–384. IEEE
Computer Society, 2003.

[15] A. Mesbah and S. Mirshokraie. Automated analysis of CSS rules
to support style maintenance. In Proc. International Conference on
Software Engineering (ICSE), pages 408–418. IEEE Computer Society,
2012.

[16] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[17] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur. DECOR:
A method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering, 36(1):20–36, 2010.

[18] M. J. Munro. Product metrics for automatic identification of “bad smell”
design problems in Java source-code. In Proc. International Symposium
Software Metrics, pages 15–15. IEEE, 2005.

[19] R. Murphey. JS minty fresh: Identifying and eliminating
JavaScript code smells. http://fronteers.nl/congres/2012/sessions/
js-minty-fresh-rebecca-murphey.

[20] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Detection of embedded code smells in dynamic web appli-
cations. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 282–285. ACM, 2012.

[21] V. Özçelik. o2.js JavaScript conventions & best practices. https://github.
com/v0lkan/o2.js/blob/master/CONVENTIONS.md.

[22] J. Padolsey. jQuery code smells. http://james.padolsey.com/javascript/
jquery-code-smells/.

[23] S. Porto. A plain english guide to JavaScript
prototypes. http://sporto.github.com/blog/2013/02/22/
a-plain-english-guide-to-javascript-prototypes/.

[24] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In Proc. of the conf. on
Programming language design and implementation (PLDI’10), pages
1–12. ACM, 2010.

[25] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based refac-
toring. In Proc European Conference on Software Maintenance and
Reengineering (CSMR), pages 30–38. IEEE, 2001.

[26] K. Simpson. Native JavaScript: sync and async. http://blog.getify.com/
native-javascript-sync-async.

[27] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. JDeodorant: Identi-
fication and removal of type-checking bad smells. In Proc. European
Conference on Software Maintenance and Reengineering (CSMR), pages
329–331, 2008.

[28] E. Van Emden and L. Moonen. Java quality assurance by detecting
code smells. In Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 97–106. IEEE Computer Society, 2002.

[29] W3C. Document Object Model (DOM) level 2 events specification.
http://www.w3.org/TR/DOM-Level-2-Events/, 13 November 2000.

[30] L. Williams, D. Ho, and S. Heckman. Software metrics in eclipse.
http://realsearchgroup.org/SEMaterials/tutorials/metrics/.

[31] N. C. Zakas. Writing efficient JavaScript. In S. Souders, editor, Even
Faster Web Sites. O’Reilly, 2009.

[32] N. C. Zakas. Maintainable JavaScript - Writing Readable Code.
O’Reilly, 2012.

