
Directed Test Generation and Analysis for
Web Applications

by

Amin Milani Fard

BSc. Computer Engineering, Ferdowsi University of Mashhad, Iran, 2008

MSc. Computing Science, Simon Fraser University, Canada, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

January 2017

© Amin Milani Fard, 2017

Abstract

The advent of web technologies has led to the proliferation of modern web appli-
cations with enhanced user interaction and client-side execution. JavaScript (the
most widely used programming language) is extensively used to build responsive
modern web applications. The event-driven and dynamic nature of JavaScript, and
its interaction with the Document Object Model (DOM), make it challenging to
understand and test effectively. The ultimate goal of this thesis is to improve the
quality of web applications through automated testing and maintenance.

The work presented in this dissertation has focused on advancing the state-
of-the-art in testing and maintaining web applications by proposing a new set of
techniques and tools. We proposed (1) a feedback-directed exploration technique
and a tool to cover a subset of the state-space of a given web application; the ex-
ploration is guided towards achieving higher functionality, navigational, and page
structural coverage while reducing the test model size, (2) a technique and a tool
to generate UI tests using existing tests; it mines the existing test suite to infer
a model of the covered DOM states and event-based transitions including input
values and assertions; it then expands the inferred model by exploring alternative
paths and generates assertions for the new states; finally it generates a new test
suite from the extended model, (3) the first empirical study on JavaScript tests to
characterize their prevalence and quality metrics, and to find out root causes for
the uncovered (missed) parts of the code under test, (4) a DOM-based JavaScript
test fixture generation technique and a tool, which is based on dynamic symbolic
execution; it guides the executing through different branches of a function by pro-
ducing expected DOM instances, (5) a technique and a tool to detect JavaScript
code smells using static and dynamic analysis.

We evaluated the presented techniques by conducting various empirical studies
and comparisons. The evaluation results point to the effectiveness of the proposed
techniques in terms of fault detection capability and code coverage for test genera-
tion, and in terms of accuracy for code smell detection.

ii

Preface

Research projects included in this dissertation have been either published or cur-
rently under review. I have conducted the research described in this work in col-
laboration with my supervisor, Ali Mesbah. I was the main contributor for the
research projects, including the idea, tool development, and evaluations. I also
had the collaboration of Mehdi Mirzaaghaei, and Eric Wohlstadter in two of the
presented work.

The following list presents publications for each chapter.

• Chapter 2:

– Feedback-Directed Exploration of Web Applications to Derive Test
Models [123]: A. Milani Fard, A. Mesbah, IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE’13), 278–287, 2013,
©IEEE, Reprinted by permission;

• Chapter 3:

– Leveraging Existing Tests in Automated Test Generation for Web Ap-
plications [126]: A. Milani Fard, M. Mirzaaghaei, A. Mesbah, IEEE
/ACM International Conference on Automated Software Engineering
(ASE’14), 67–78, 2014, ©ACM, Inc., Reprinted by permission;

– Leveraging Existing Tests in Automated Web Test Generation: A. Mi-
lani Fard, A. Mesbah, Submitted to a software engineering journal;

• Chapter 4:

– JavaScript: The (Un)covered Parts [125]: A. Milani Fard, A. Mesbah,
Accepted at IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST’17), 11 pages, 2017;

• Chapter 5:

– Generating Fixtures for JavaScript Unit Testing [127]: A. Milani Fard,
A. Mesbah, and E. Wohlstadter, IEEE/ACM International Conference
on Automated Software Engineering (ASE’15), 190–200, 2015, ©IEEE,
Reprinted by permission;

iii

• Chapter 6:

– JSNose: Detecting JavaScript Code Smells [124]: A. Milani Fard, A.
Mesbah, IEEE International Conference on Source Code Analysis and
Manipulation (SCAM’13), 116–125, 2013, ©IEEE, Reprinted by per-
mission;

iv

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . v

List of Tables . ix

List of Figures . xi

Glossary . xiv

Acknowledgments . xv

1 Introduction . 1
1.1 UI Testing . 2

1.1.1 Test Model Generation 2
1.1.2 UI Test Generation . 3

1.2 Unit Testing . 4
1.2.1 JavaScript Test Quality Assessment 4
1.2.2 JavaScript Unit Test Generation 6

1.3 Code Maintenance . 7
1.3.1 JavaScript Code Smell Detection 7

1.4 Research Questions . 8
1.5 Publications . 10

2 Feedback-Directed Exploration of Web Applications to Derive Test
Models . 11
2.1 Introduction . 12
2.2 Background and Motivation . 13
2.3 Approach . 16

2.3.1 Deriving Test Models . 16
2.3.2 Feedback-directed Exploration Algorithm 18

v

2.3.3 State Expansion Strategy 20
2.3.4 Event Execution Strategy 24
2.3.5 Implementation . 26

2.4 Empirical Evaluation . 27
2.4.1 Experimental Objects . 27
2.4.2 Experimental Setup . 28
2.4.3 Results and Findings . 30

2.5 Discussion . 32
2.6 Related Work . 33
2.7 Conclusions . 35

3 Leveraging Existing Tests in User Interface Test Generation for Web
Applications . 37
3.1 Introduction . 38
3.2 Background and Motivation . 40
3.3 Approach . 43

3.3.1 Mining Human-Written Test Cases 43
3.3.2 Exploring Alternative Paths 47
3.3.3 Regenerating Assertions 48
3.3.4 Test Suite Generation . 57

3.4 Implementation . 57
3.5 Empirical Evaluation . 58

3.5.1 Experimental Objects . 58
3.5.2 Experimental Setup . 59
3.5.3 Results . 64

3.6 Discussion . 68
3.6.1 Applications . 68
3.6.2 Generating Negative Assertions 68
3.6.3 Test Case Dependencies 69
3.6.4 Effectiveness . 69
3.6.5 Efficiency . 69
3.6.6 Threats to Validity . 70

3.7 Related Work . 70
3.8 Conclusions . 73

4 JavaScript: The (Un)covered Parts 74
4.1 Introduction . 75
4.2 Methodology . 76

4.2.1 Subject Systems . 76
4.2.2 Analysis . 79

4.3 Results . 85
4.3.1 Prevalence of Tests . 85

vi

4.3.2 Quality of Tests . 88
4.3.3 (Un)covered Code . 92
4.3.4 Discussion . 95

4.4 Related Work . 98
4.5 Conclusions . 99

5 Generating Fixtures for JavaScript Unit Testing 100
5.1 Introduction . 100
5.2 Background and Motivation . 103

5.2.1 DOM Fixtures for JavaScript Unit Testing 103
5.2.2 Challenges . 106
5.2.3 Dynamic Symbolic Execution 106

5.3 Approach . 107
5.3.1 Collecting DOM-based Traces 108
5.3.2 Deducing DOM Constraints 109
5.3.3 Translating Constraints to XPath 112
5.3.4 Constructing DOM Fixtures 115
5.3.5 Implementation Details 117

5.4 Empirical Evaluation . 121
5.4.1 Experimental Objects . 121
5.4.2 Experimental Setup . 122
5.4.3 Results . 124

5.5 Discussion . 126
5.6 Related Work . 127
5.7 Conclusions . 128

6 Detecting JavaScript Code Smells 129
6.1 Introduction . 129
6.2 Motivation and Challenges . 131
6.3 Related Work . 132
6.4 JavaScript Code Smells . 134

6.4.1 Closure Smells . 134
6.4.2 Coupling between JavaScript, HTML, and CSS 137
6.4.3 Excessive Global Variables 139
6.4.4 Long Message Chain . 139
6.4.5 Nested Callback . 140
6.4.6 Refused Bequest . 141

6.5 Smell Detection Mechanism . 141
6.5.1 Metrics and Criteria Used for Smell Detection 144
6.5.2 Combining Static and Dynamic Analysis 145
6.5.3 Implementation . 148

6.6 Empirical Evaluation . 148

vii

6.6.1 Experimental Objects . 149
6.6.2 Experimental Setup . 149
6.6.3 Results . 152
6.6.4 Discussion . 153

6.7 Conclusions . 154

7 Conclusions . 155
7.1 Revisiting Research Questions and Future Directions 155
7.2 Concluding Remarks . 159

Bibliography . 161

viii

List of Tables

Table 2.1 Experimental objects (statistics excluding blank/comment lines,
and JavaScript libraries). 27

Table 2.2 State-space exploration methods evaluated. 28
Table 2.3 Results of different exploration methods. 30

Table 3.1 Summary of the assertion reuse/regeneration conditions for an
element e j on a DOM state s j, given a checked element ei on
state si. 51

Table 3.2 DOM element features used to train a classifier. 54
Table 3.3 Experimental objects. 59
Table 3.4 Test suite generation methods evaluated. 60
Table 3.5 DOM mutation operators. 62
Table 3.6 Statistics of the original test suite information usage, average

over experimental objects. 65

Table 4.1 Our JavaScript subject systems (60K files, 3.7 M production
SLOC, 1.7 M test SLOC, and 100K test cases). 78

Table 4.2 Test quality metrics average values. 89
Table 4.3 Statistics for analyzing uncovered code. The ”–” sign indicates

no instance of a particular code. 93

Table 5.1 Examples of DOM constraints, translated XPath expressions,
and solved XHTML instances for the running example. 114

Table 5.2 Constraints table for the running example. The “Next to negate”
field refers to the last non-negated constraint. 116

Table 5.3 DRT data structure for the running example. 119
Table 5.4 Characteristics of experimental objects excluding blank/com-

ment lines and external JavaScript libraries. 122
Table 5.5 Evaluated function-level test suites. 123
Table 5.6 Coverage increase (in percentage point) of test suites on rows

over test suites on columns. Statement and branch coverage are
separated by a slash, respectively. 125

ix

Table 6.1 Metric-based criteria for JavaScript code smell detection. . . . 143
Table 6.2 Experimental JavaScript-based objects. 149
Table 6.3 Precision-recall analysis (based on the first 9 applications), and

detected code smell statistics (for all 11 applications). 151
Table 6.4 Spearman correlation coefficients between number of code smells

and code quality metrics. 153

x

List of Figures

Figure 2.1 State-flow graph of the running example. The shaded nodes
represent partially expanded states, edges with dashed lines are
candidate events, and nodes shown in dashed circle are states
that might be discovered after event execution. 15

Figure 2.2 Processing view of FEEDEX, our feedback-directed exploration
approach. 16

Figure 2.3 Simple JavaScript code snippet. 21
Figure 2.4 A simple DOM instance. 21
Figure 2.5 DOM tree comparison. 23

Figure 3.1 A snapshot of the running example (an organizer application)
and its partial DOM structure. 41

Figure 3.2 A human-written DOM-based (SELENIUM) test case for the
Organizer. 42

Figure 3.3 Partial view of the running example application’s state-flow
graph. Paths in thick solid lines correspond to the covered
functionalities in existing tests. Alternative paths, shown in
thin lines, can be explore using a crawler. Alternative paths
through newly detected states (i.e., s10 and s11) are highlighted
as dashed lines. 42

Figure 3.4 Processing view of our approach. 44
Figure 3.5 The subsumption lattice showing the is-subsumed-by relation

for generated assertions. 56
Figure 3.6 Box plots of number of states, transitions, and test cases for

different test suites. Mean values are shown with (*). 63
Figure 3.7 Average number of assertions per state, before and after filter-

ing unstable assertions. 65
Figure 3.8 Box plots of mutation score using different test suite genera-

tion methods. Mean values are shown with (*). 66
Figure 3.9 Box plots of JavaScript code coverage achieved using different

test suites. Mean values are shown with (*). 67

xi

Figure 4.1 Distribution of studied subject systems. 77
Figure 4.2 A hard to test JavaScript code snippet. 82
Figure 4.3 Distribution of JavaScript tests. 86
Figure 4.4 Percentage of subjects with test per each quartile with respect

to popularity (number of stars and watchers) and maturity (num-
ber of commits and contributors). 87

Figure 4.5 Boxplots of the code coverage of the executed JavaScript tests.
Mean values are shown with (*). 88

Figure 4.6 Average number of assertions per test. 90
Figure 4.7 Test to total code ratio. 91
Figure 4.8 Test to total commits ratio. 92

Figure 5.1 A JavaScript function to compute the items total price. 103
Figure 5.2 A DOM subtree for covering a path (lines 6-8, 10-14, and 18-

20) of sumTotalPrice in Figure 5.1. 105
Figure 5.3 A QUint test case for the sumTotalPrice function. The

DOM subtree of Figure 5.2 is provided as a fixture before call-
ing the function. This test with this fixture covers the path
going through lines 6-8, 10-14, and 18 in sumTotalPrice. 105

Figure 5.4 Processing view of our approach. 108
Figure 5.5 Restricted XPath grammar for modeling DOM constraints. . . 113
Figure 5.6 Comparison of statement and branch coverage, for DOM-dependent

functions, using different test suite generation methods. 124

Figure 6.1 Processing view of JSNOSE, our JavaScript code smell detector. 142

xii

List of Algorithms

1 Feedback-directed Exploration . 18

2 State-Flow Graph Inference . 46
3 Assertion Regeneration . 50

4 Test Fixture Generation . 110

5 JavaScript Code Smell Detection 147

xiii

Glossary

List of acronyms and abbreviations.

AJAX Asynchronous JavaScript and XML
API Application Program Interface
AST Abstract Syntax Tree
BFS Breadth-First Search
CFG Control-Flow Graph
CSS Cascading Style Sheets
DFS Depth-First Search
DOM Document Object Model
DTD Document Type Definition
HTML HyperText Markup Language
JS JavaScript
SFG State-Flow Graph
SLOC Source Lines of Code
UI User Interface
URL Uniform Resource Locator
XHR XMLHttpRequest
XML Extensible Markup Language

xiv

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Ali Mesbah, for

his exemplary supervision and guidance in the past four and a half years. He in-

troduced me to the field of web software testing and analysis, and had a profound

influence on my research. I have always benefited from his insightful comments

and discussions. This thesis would not have been completed without his support.

I collaborated with Eric Wohlstadter and Mehdi Mirzaaghaei in two of my re-

search projects, whom I would like to thank. I am also thankful to Karthik Pattabi-

raman and Ivan Beschastnikh for providing valuable comments and suggestions on

my PhD proposal. Moreover, I would like to thank Philippe Kruchten, Mieszko

Lis, Hasan Cavusoglu, and Guy-Vincent Jourdan for reading my dissertation and

providing valuable comments.

Thanks also go to all faculty members, staff, and friends in the Electrical and

Computer Engineering at UBC for providing such a nice academic environment. In

particular, I have enjoyed the time with all the members in the Software Analysis

and Testing Lab. I also gratefully acknowledge the financial support by the Nat-

ural Sciences and Engineering Research Council of Canada (NSERC) through its

Canada Graduate Scholarship and Strategic Project Grants, as well as the Four Year

Doctoral Fellowship of UBC, that helped me to focus full time on my research.

Finally, I would like to thank my family and friends for their love and support

over the years. I am specially indebted to my wife, Hoda, for her patience, love,

understanding, and encouragement since we started our life journey ten years ago.

I wish to dedicate this thesis to her. Fatima, my beloved daughter, thank you also

for coming into our life in the middle of my PhD career and bringing joy to our

family. And last but not the least, I would like to thank the Almighty for giving me

the strength and patience to work through all these years.

xv

Chapter 1

Introduction

The advent of web technologies has led to the proliferation of modern web ap-

plications, such as Gmail, Google Drive, Facebook, and YouTube, with enhanced

user interaction and client-side execution. Due to the considerable impact of web

applications on economic, technical, and social activities, it is important to ensure

their quality. Testing techniques aim at increasing the quality of functional prop-

erties of a software to ensure they meet the requirements. On the other hand, the

goal of maintenance techniques is to increase the quality of non-functional (struc-

tural) properties. In this work, we aim at improving the quality of web applications

through both testing and maintenance.

Web applications are often written in multiple languages such as JavaScript,

HTML, and CSS. JavaScript is known to be the most widely used programming

language1, which is extensively used to build responsive modern web applications.

The event-driven dynamic nature of JavaScript and its interaction with the Docu-

ment Object Model (DOM2) [180], make it challenging for developers to under-

stand [62], test [66, 130], and debug [141] effectively. Testing frameworks, such

as SELENIUM [42] for DOM-based user interface (UI) testing and QUNIT [40]

for JavaScript unit testing, help to automate test execution. However, test cases

are written manually, which is a tedious process with an incomplete result. Main-

taining web applications is also difficult due to intricate dependencies among the

components written in different programming languages.

1According to a recent survey of more than 56K developers conducted by Stack Overflow [167],
and also exploration of the programming languages used across GitHub repositories [91].

2The DOM is a tree-like structure that provides APIs for accessing, traversing, and mutating the
content and structure of HTML elements at runtime.

1

The ultimate goal of this thesis is improving the quality of web applications

through automated testing and maintenance. Such automated techniques reduce

the time and effort of manual testing and maintenance. Towards this objective, we

consider three perspectives that are complementary to each other: (1) UI testing,

(2) unit testing, and (3) code maintenance. The results of each perspective will

benefit the goal of this thesis in a different way.

1.1 UI Testing
To avoid dealing separately with the complex interactions between multiple web

languages, many developers treat the web application as a black-box and test it

via its manifested DOM and perform UI testing. Such DOM-based UI tests bring

the application to a particular DOM state through a sequence of actions, such as

filling a form and clicking on an element, and subsequently verify the existence or

properties of particular elements in that DOM state.

1.1.1 Test Model Generation

Model-based testing uses models of program behaviour to generate test cases [175].

These test models are either specified manually or derived automatically. Dynamic

analysis and exploration (also know as crawling) plays a significant role in auto-

mated test model derivation for many automated testing techniques [68, 71, 74,

113, 119, 121, 128, 129, 171]. Unlike traditional static hyper-linked web pages,

crawling web applications is challenging due to event-driven user interface changes

caused by client-side code execution.

In the recent past, web crawlers have been proposed to explore event-driven

DOM mutations in web applications. For instance, CRAWLJAX [120] uses dynamic

analysis to exercise and crawl client-side states of web applications. It incremen-

tally reverse engineers a model, called State-Flow Graph (SFG), where each vertex

represents a runtime DOM state and each edge represents an event-driven transi-

tion between two states. Such an inferred SFG can be utilized in DOM-based UI

test case generation [121], by adopting different graph coverage methods (e.g., all

states/edges/paths/transitions coverage).

Challenge. Most industrial web applications have a huge state-space and exhaus-

2

tive crawling – e.g., breadth-first search (BFS), depth-first search (DFS), or ran-

dom search – lead to state explosion[177]. In addition, given a limited amount of

time, exhaustive crawlers can become mired in specific parts of the application,

yielding poor functionality coverage. Since exploring the whole state-space can be

infeasible (state explosion) and undesirable (time constrains), it is challenging to

automatically derive an incomplete test model but with an adequate functionality

coverage in a timely manner.

Related Work. Efficient strategies for web application crawling [70, 73, 79, 134]

try to discover as many states as possible in the shortest amount of time. However,

discovering more state does not necessarily result in higher functionality coverage.

Thummalapenta et al. [169] proposed a guided test generation technique for web

applications. Although their approach directs test generation towards higher busi-

ness logic coverage, the application is crawled in an exhaustive manner that can

lead to poor coverage.

1.1.2 UI Test Generation

Manually writing DOM-based UI test cases is inefficient with limited coverage,

therefore crawling-based techniques [74, 121, 159, 169] have been proposed to

automate exploration and test generation.

Challenges. Such test generation methods are limited in three areas:

1. Input values: Valid input values is required for proper state-space coverage.

Automatic input generation is challenging since many applications require

a specific type, value, or combination of inputs to expose the hidden states

behind input fields and forms.

2. Paths to explore: Since covering the whole state-space of many industrial

web applications is infeasible in practice, crawlers are limited to a crawl

depth, exploration time or number of states. Not knowing which paths are

important to explore results in obtaining a partial coverage of a specific re-

gion of the application.

3. Assertions: Any generated test case needs to assert the application behaviour.

However, generating proper assertions, known as the oracle problem [184],

3

without human knowledge is challenging. Thus, many web testing tech-

niques rely on generic invariants [121] or standard validators [66].

Related work. Researchers have proposed techniques to use existing artifacts for

testing. Elbaum et al. [81] and Sprenkle et al. [165] leverage user-sessions data

for web application test generation. Schur et al. [159] infer behaviour models

from enterprise web applications via crawling and generate test cases simulating

possible user inputs. Similarly, Xu et al. [188] mine executable specifications of

web applications from SELENIUM test cases to create an abstraction of the system.

Yuan and Memon [192] propose an approach to iteratively rerun automatically

generated test cases for generating alternating test cases. Artzi et al. [66] present

Artemis, which uses the gathered information while random testing to generated

new test inputs. These approaches, however, do not use information in the existing

tests and do not address test oracle generation. Yoo and Harman [190] propose

a search-based approach to reuse and regenerate existing test data for primitive

data types. Pezze et al. [150] present a technique to generate integration test cases

from existing unit test cases. Test suite augmentation techniques, such as [189],

are used in regression testing to generate new test cases for the changed parts of

the application. Wang et at.[181] propose aggregating tests generated by different

approaches using a unified test case language. However, these techniques also do

not consider the oracle generation problem.

1.2 Unit Testing
Writing DOM-based UI tests does not generally require an understanding of the

client side code under test as it is a black-box testing process, thus easier to write for

testers. However, DOM-based tests may miss code-level bugs that do not propagate

to the DOM [130]; therefore JavaScript unit testing is important for proper testing

of web applications.

1.2.1 JavaScript Test Quality Assessment

To assist developers with writing tests, there exist number of JavaScript unit test-

ing frameworks, such as Mocha [36], Jasmine[31], QUnit [40], and Nodeunit [37],

each having its own advantages and disadvantages [52]. However, even by us-

4

ing a testing framework, some JavaScript features, such as DOM interactions,

event-dependent callbacks, asynchronous callbacks, and closures (hidden scopes),

are considered to be harder to test [28, 46, 48, 53, 127, 130, 173]. Thus the re-

search community have proposed some automated test generation techniques for

JavaScript programs to partially assist with hard to test code [66, 95, 127, 130, 131],

though are not considerably used by testers and developers yet. Currently there is

no (large scale) study on JavaScript (unit) tests in the wild to evaluate difficulties

in writing such tests. Moreover, studying the quality of JavaScript tests can reveal

some shortcomings and difficulties of manual testing, which provides insights on

how to improve existing JavaScript test generation tools and techniques.

Challenges. Test quality assessment is, however, not a trivial task and can be

subjective. For instance a good test quality metric that considers test effective-

ness, is fault/bug detection capability. Ideally, this requires manual investigation

of JavaScript bug reports, which confines the study to JavaScript projects that have

bug reports associated to some test cases. As an alternative, mutation score, i.e.,

the percentage of killed mutants over total non-equivalent mutants, is often used

as an estimate of defect detection capability of a test suite. However, running test

suites on many generated mutated versions of JavaScript programs can be very time

consuming to apply for a large scale study. Consequently, some other test quality

metrics, such as code coverage, and average number of assertions per test, can be

used. While code coverage does not directly imply a test suite effectiveness [97],

it is a widely accepted test quality indicator. Thus finding the root cause of why a

particular statement is not covered by a test suite, can help in writing higher quality

tests.

Related work. Ocariza et al. [142] performed study to characterize root causes

of client-side JavaScript bugs. Researchers also studied test cases and mining test

suites in the past. Inozemtseva et al. [97] found that code coverage does not directly

imply the test suite effectiveness. Zhang et al. [199] analyzed test assertions and

showed that existence of assertions is strongly correlated with test suite effective-

ness. These work, however, did not study JavaScript tests. Mirshokraie et al. [129]

presented a JavaScript mutation testing approach and as part of their evaluation,

assessed mutation score for test suites of two JavaScript libraries.

5

1.2.2 JavaScript Unit Test Generation

Unit testing is a software testing method to test individual units of a source code.

In generic unit testing, a test fixture is a fixed state of the software under test that is

set up to provide all the required resources in order to properly run a test. In client-

side JavaScript unit testing, test fixtures can be in the form of a partial HTML for

the expected DOM structure before calling the JavaScript function under tests. If

such a DOM-based fixture is not provided in the exact structure as expected by

the function, a DOM API method (e.g., getElementById()) returns null,

thus the execution of the function fails due to the null exception and the test case

terminates prematurely. Therefore proper DOM fixtures are required for effective

JavaScript unit testing. Since manual construction of test fixtures is tedious and

costly, automated fixture generation is of great value.

Challenges. Automated generation of proper test fixtures is challenging as it re-

quires inferring and solving constraints in the code. This is even more complicated

when DOM structure is involved. There are two main challenges in generating

proper DOM-based fixtures:

1. DOM-related variables: JavaScript is a weakly-typed and highly-dynamic

language, which makes static code analysis quite challenging. Moreover,

its interactions with the DOM can become difficult to follow [62, 141]. A

fixture generator needs to determine DOM-dependent variables that refer to

values/properties of DOM elements.

2. Hierarchical DOM relations: Unlike most test fixtures that deal only with

primitive data types, DOM-based test fixtures require a tree structure. In fact,

DOM fixtures not only contain proper DOM elements with attributes and

their values, but also hierarchical parent-child relations that can be difficult

to reconstruct.

Related work. Most JavaScript test generation techniques [66, 95, 158, 161] do not

consider DOM fixture generation. Li et al. [109] proposed SymJS, which applies

symbolic execution with a limited support for the DOM. They consider substituting

DOM element variables with integer or string values and using a solver, rather than

actually generating the hierarchical DOM structure. Mirshokraie et al. [130] pro-

posed JSeft that captures the full DOM tree during the execution of an application

6

before executing the function under test, and uses that DOM as a test fixture. This

approach, assumes that the captured DOM contains the DOM structure as expected

by the function, which is not always the case. As such, the code coverage achieved

with such a DOM can be quite limited. Moreover, the DOM captured this way, can

be too large and difficult to read as a fixture in a test case.

1.3 Code Maintenance
Web applications must continually evolve and be maintained to remain functional.

Maintenance may involve refactoring to improve the internal logical structure of

the code without changing its external behaviour.

1.3.1 JavaScript Code Smell Detection

JavaScript code maintenance is particularly challenging because (1) there is typ-

ically no compiler in the development cycle that would help developers to spot

erroneous or unoptimized code; (2) JavaScript has a dynamic, weakly-typed, asyn-

chronous nature, and supports intricate features such as prototypes, first-class func-

tions, and closures; and (3), it interacts with the DOM through a complex event-

based mechanism [180]. As a result JavaScript applications tend to contain many

code smells, i.e., patterns in the code that indicate potential comprehension and

maintenance issues [85]. Code smells, once detected, need to be refactored to im-

prove the design and quality of the code.

Challenges. Manual JavaScript code smell detection is time consuming and error-

prone, thus automated tools can be very helpful. Detecting code smells is de-

pendent on identifying objects, classes, and functions in the code, which is not

straightforward in JavaScript due to its very flexible model of objects and func-

tions. JavaScript code refactoring is also challenging due to dynamism, wide use of

global variables and first-class functions, which can cause unexpected side-effects

when making code changes.

Related work. WebScent [137] is a tool to detect client-side smells (mixing of

HTML, CSS, and JavaScript, duplicate code in JavaScript, and HTML syntax

errors) in embedded code within server-side code. However it requires manual

navigation of the application, and also does not support inferring dynamic cre-

7

ation/change of objects, properties, and functions at runtime. WARI [17] finds un-

used and duplicated JavaScript functions. JSLint [9] and PMD [12] are static code

analysis tools that validate JavaScript code against a set of good coding practices.

The Google Closure Compiler [27] rewrites JavaScript code to make it faster by

removing comments and unreachable code. Tool support for refactoring JavaScript

are in their early stages. Feldthaus et al. [83, 84] proposed static pointer anal-

ysis techniques to perform renaming of variables or object properties, and some

JavaScript-specific refactorings, such as encapsulation of properties and extraction

of modules, targeting programming idioms [77].

1.4 Research Questions
The overarching goal of this dissertation is to develop automated testing and main-

tenance techniques that improve the quality of web applications. To achieve this

goal and in accordance to the aforementioned three perspectives, we designed five

research questions listed below.

RQ1.4.1 How can we effectively derive test models for web applications?

RQ1.4.1 is in line with UI testing. In response to RQ1.4.1, we propose a

feedback-directed exploration technique [123] and tool, called FEEDEX [25], that

selectively covers a subset of the state-space of a given web application. The ex-

ploration is guided towards achieving higher functionality, navigational, and page

structural coverage of a given web application while reducing the size of our test

model i.e., a State-Flow Graph (SFG) [120, 121]. Our results show that FEEDEX

is capable of generating test models that are enhanced in all aspects compared to

the traditional exploration methods.

RQ1.4.2. Can we utilize the knowledge in existing UI tests to generate new

tests?

RQ1.4.2 is also with respect to UI testing. To address RQ1.4.2, we proposed

a technique [126] and a tool, called TESTILIZER [47], to generate DOM-based UI

test cases using existing tests. TESTILIZER mines the existing test suite to infer a

model (in the form of a SFG) of the covered DOM states and event-based transi-

tions including input values and assertions. It then expands the inferred model by

exploring alternative paths and generates assertions for the new states. Finally it

8

generates a new test suite from the extended model. Our results supports that lever-

aging input values and assertions from human-written test suites can be helpful in

generating more effective UI tests.

RQ1.4.3. What is the quality of JavaScript tests in practice and which part of

the code is hard to cover and test?

RQ1.4.3 is in line with unit testing. To address RQ1.4.3, we present the first

empirical study of JavaScript tests to characterize their prevalence, quality metrics,

and shortcomings [125]. We perform our study across a large corpus of JavaScript

projects and found that about 22% of the studied subjects do not have test code.

About 40% of projects with JavaScript at client-side do not have a test, while this is

only about 3% for the purely server-side JavaScript projects. Also tests for server-

side code have high quality, while tests for client-side code have moderate to low

quality. On average JavaScript tests lack proper coverage for event-dependent call-

backs (36%), asynchronous callbacks (53%), and DOM-related code (63%).

RQ1.4.4. How can we automate fixture generation for JavaScript unit testing?

RQ1.4.4 is also with respect to unit testing. In response to RQ1.4.4, we pro-

posed a DOM-based test fixture generation technique [127] and a tool, called CON-

FIX [24], which is based on concolic execution. Conceptually our approach infers

a control flow graph (CFG) by guiding the executing through different branches

of a function. Our empirical results show that the generated fixtures substantially

improve code coverage compared to test suites without these fixtures, with a neg-

ligible overhead.

RQ1.4.5. Which JavaScript code smells are prevalent in practice and what

maintenance issues they cause?

RQ1.4.5 is regarding code maintenance. In response to RQ1.4.5, we proposed

a tool and technique, called JSNOSE [34], to detect JavaScript code smells [124]

that could benefit from refactoring. It uses static and dynamic analysis to infer

program entities model containing objects, functions, variables, and code blocks.

We collected 13 JavaScript code smells by studying various online development

resources and books that discuss bad JavaScript coding patterns. Our results show

that lazy object, long method/function, closure smells, coupling JS/HTML/CSS,

and excessive global variables, are the most prevalent JavaScript smells.

9

1.5 Publications
In response to the research questions in Section 1.4, the following peer-reviewed

papers have been published:

• Feedback-Directed Exploration of Web Applications to Derive Test Mod-

els [123]: A. Milani Fard, A. Mesbah, IEEE International Symposium on

Software Reliability Engineering (ISSRE’13), 278–287, 2013;

• Leveraging Existing Tests in Automated Test Generation for Web Applica-

tions [126]: A. Milani Fard, M. Mirzaaghaei, A. Mesbah, IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE’14), 67–78,

2014;

• JavaScript: The (Un)covered Parts [125]: A. Milani Fard, A. Mesbah, IEEE

International Conference on Software Testing, Verification and Validation

(ICST’17), 11 pages, 2017;

• Generating Fixtures for JavaScript Unit Testing [127]: A. Milani Fard, A.

Mesbah, and E. Wohlstadter, IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE’15), 190–200, 2015;

• JSNose: Detecting JavaScript Code Smells [124]: A. Milani Fard, A. Mes-

bah, IEEE International Conference on Source Code Analysis and Manipu-

lation (SCAM’13), 116–125, 2013.

I have also contributed to the following testing related publication:

• An Empirical Study of Bugs in Test Code [176]: A. Vahabzadeh, A. Milani

Fard, and A. Mesbah, International Conference on Software Maintenance

and Evolution (ICSME’15), 101–110, 2015.

10

Chapter 2

Feedback-Directed Exploration of Web Applica-
tions to Derive Test Models

Summary3

Dynamic exploration techniques play a significant role in automated web appli-

cation testing and analysis. However, a general web application crawler that ex-

haustively explores the states can become mired in limited specific regions of the

web application, yielding poor functionality coverage. In this chapter, we propose

a feedback-directed web application exploration technique to derive test models.

While exploring, our approach dynamically measures and applies a combination

of code coverage impact, navigational diversity, and structural diversity, to decide

a-priori (1) which state should be expanded, and (2) which event should be exer-

cised next to maximize the overall coverage, while minimizing the size of the test

model. Our approach is implemented in a tool called FEEDEX. We have empir-

ically evaluated the efficacy of FEEDEX using six web applications. The results

show that our technique is successful in yielding higher coverage while reducing

the size of the test model, compared to classical exhaustive techniques such as

depth-first, breadth-first, and random exploration.

3An initial version of this chapter has been published in the IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2013 [123].

11

2.1 Introduction
Modern web applications make extensive use of JavaScript to dynamically mutate

the DOM in order to provide responsive interactions within the browser. Due to

this highly dynamic nature of such applications, dynamic analysis and exploration

(also know as crawling) play a significant role [88] in many automated web appli-

cation testing techniques [64, 68, 74, 114, 119, 121, 128, 129, 171]. Such testing

techniques depend on data and models generated dynamically through web appli-

cation crawling.

Most web application exploration techniques used for testing apply an exhaus-

tive search in order to achieve a “complete” coverage of the application state-space

and functionality. An assumption often made is that the state-space of the applica-

tion is completely coverable in a reasonable amount of time. In reality, however,

most industrial web applications have a huge dynamic state-space and exhaustive

crawling – e.g., through breadth-first search (BFS), depth-first search (DFS), or

random search – can cause the state explosion problem [177]. In addition, a generic

crawler that exhaustively explores the states can become mired in irrelevant regions

of the web application [144], producing large test models that yield poor function-

ality coverage.

Because exploring the whole state-space can be infeasible (state explosion)

and undesirable (time constrains), the challenge we are targeting in this chapter is

to automatically derive an incomplete test model but with adequate functionality

coverage, in a timely manner.

To that end, we propose a novel feedback-directed exploration technique, called

FEEDEX, which is focused on efficiently covering a web application’s functional-

ity to generate test models. We propose four metrics to capture different aspects of

a test model, namely code coverage impact, navigational diversity, page structural

diversity, and test model size. Using a combination of these four metrics, our ap-

proach dynamically monitors the exploration and its history. It uses the feedback

obtained to decide a-priori (1) which states should be expanded, and (2) which

events should be exercised next, so that a subset of the total state-space is effec-

tively captured for adequate test case generation.

The main contributions of our work include:

12

• We present a feedback-directed exploration technique that selectively covers

a subset of the state-space of a given web application to generate an adequate

test model;

• We propose the notions of coverage impact and diversity – i.e., navigational

and page structural diversity – to capture different aspects of derived test

models;

• We describe an event execution method, which prioritizes events based on

their historical productivity in producing relevant states;

• We implement our approach in a tool called FEEDEX, which is freely avail-

able;

• We empirically evaluate the efficacy of our approach on six web applications.

The results show that our method yields much better code coverage (10% at

the minimum), and diversity (23% at the minimum), compared to traditional

exhaustive methods. In addition, our approach is able to reduce the size of

the derived test model and test suite by at least 38% and 42%, respectively.

2.2 Background and Motivation

Web Applications. The advent of recent Web and browser technologies has led

to the proliferation of modern – also known as web 2.0 – web applications, with

enhanced user interaction and more efficient client-side execution. Building on

web technologies such as AJAX, web applications execute a significant amount of

JavaScript code in the browser. A large portion of this code is dedicated to interact

with the Document Object Model (DOM) to update the user interface at runtime.

In turn, these incremental updates lead to dynamically generated execution states

within the browser.

Automated Test Model Generation. Model-based testing uses models of program

behaviour to generate test cases. These test models are either specified manually

or derived automatically.

Tool support for exploring (or “crawling”) dynamic states of web applications

enables automated test model derivation. Unlike traditional static hyper-linked

13

web pages, automatically exploring web applications is challenging because many

of the user interface state changes are (1) event-driven, (2) caused by the execution

of client-side application code, and (3) represented by dynamically mutating the

internal DOM tree in the browser. In the recent past, web crawlers have been

proposed that can explore event-driven DOM mutations in web applications. For

instance, CRAWLJAX [120] uses dynamic analysis to exercise and crawl client-

side states of web applications. It incrementally reverse engineers a model, called

State-Flow Graph (SFG), which captures dynamic DOM states and event-driven

transitions connecting them. This SFG model is formally defined as follows:

Definition 1 A state-flow graph SFG for a web application A, is a labeled directed

graph, denoted by a 4 tuple < r,V ,E,L > where:

1. r is the root node (called Index) representing the initial state after A has

been fully loaded into the browser.

2. V is a set of vertices representing the states. Each v ∈ V represents a

runtime DOM state in A.

3. E is a set of (directed) edges between vertices. Each (v1,v2) ∈ E repre-

sents a clickable c connecting two states if and only if state v2 is reached by

executing c in state v1.

4. L is a labelling function that assigns a label, from a set of event types and

DOM element properties, to each edge.

5. SFG can have multi-edges and can be cyclic. 2

To infer this SFG, events (e.g., clicks) are automatically generated on candidate

clickables, i.e., user interface elements of the web application that can potentially

change the state of the application. An example is a DIV element, dynamically

bound to an event-listener, which when clicked calls a JavaScript function, which

in turn mutates the DOM inside the browser (see Figures 2.3 and 2.4). Only when

the event generated results in a state change, the candidate clickable is seen as a

real clickable and the new state and the clickable are added to the SFG.

14

Index

e0 s1
e1

s5e4

s7

e6

s6

e0 c1
e1

c2

e6

s8

e6

c3
e7

s4s3
e3

e5

e0 s2e2

e3

e2 e2

e3

e5

e4

Figure 2.1: State-flow graph of the running example. The shaded nodes represent partially expanded
states, edges with dashed lines are candidate events, and nodes shown in dashed circle are states that
might be discovered after event execution.

An example of such a SFG is shown in Figure 2.1. Such an automatically in-

ferred test model can be utilized in test case generation [121], by adopting different

graph coverage methods (e.g., all states/edges/paths/transitions coverage).

Motivation. Given that (1) most industrial web applications have a huge dynamic

state-space, which can cause the state explosion problem, (2) dynamic exploration

is time-consuming, and (3) in any realistic software development environment, the

amount of time dedicated to testing is limited, opting for the exploration of a partial

subset of the total state-space of a given web application seems like a pragmatic

feasible solution.

Given a specific amount of time, there are, however, different ways of explor-

ing this partial subset. For example, assume that the SFG in Figure 2.1, including

the dashed nodes and edges, represents the complete state model of a web applica-

tion. Also assume that our allowed crawling time is limited to 4 event executions

and our crawler applies a depth-first search. If the explored sequence of exercised

clickables is e1, e2, e2, e2, we retrieve states s1, s2, s3, and s4, all of which belong

to same crawling path. It could also be the case that the crawler has a predeter-

mined order for event execution. Consider a crawler in which e3 always executes

before e2. The sequence of the resulting clicks would then become e1, e2, e3, e2

which results in discovering only 3 states, namely s1, s2, and s3. Another exam-

ple, depicted in Figures 2.3–2.4, includes exploring states behind next and previous

links. This is a typical scenario in which exhaustive crawlers can become mired in

15

Intercept &
Instrument JS

code
Generate

event

Execution
Trace

Server Browser

Measure Code
Coverage Impact

Guided
Crawler

State-flow
Graph

Analyze
DOM

Calculate
state scores

Calculate
event productivity

update

Figure 2.2: Processing view of FEEDEX, our feedback-directed exploration approach.

specific parts of the web application, yielding poor functionality coverage.

Because a complete exploration of the whole application can be infeasible

(state explosion), undesirable (time constraint), and inefficient (large test model

derived that yields low coverage), the challenge we are targeting in this chapter is

to derive an incomplete test model that can adequately provide functionality cov-

erage.

2.3 Approach
The goal of our work is to automatically derive a test model that captures different

aspects of the given web application’s client-side functionality. In the next sub-

sections, we present these desired aspects of a test model, followed by a salient

description of our feedback-directed exploration technique, called FEEDEX.

2.3.1 Deriving Test Models

A web crawler is generally evaluated on its ability to retrieve relevant and desirable

content [61, 144, 166]. In this work, we propose metrics that target relevance

and desirability in the context of web application testing. We believe that a test

16

model derived automatically from a web application should possess the following

properties to effectively cover different aspects of the application under test:

• Functionality Coverage. A test suite generated from a derived test model

can only cover the maximum functionality contained in the test model, and

not more. For instance consider Figure 2.1. If the inferred test model does

not capture events e6 and e7 the generated test suite will not be able to cover

the underlying functionality behind those two events. Therefore, it is im-

portant to derive a test model that possesses adequate coverage of the web

application when the end goal is test suite generation.

• Navigational Coverage. The navigational structure of a web application

allows its users to navigate it in various directions. For instance s3 and s4

are both on the same navigational path, whereas s3 and s8 are on different

branches (Figure 2.1). To cover the navigational structure adequately, we

believe that a test model should cover different navigational branches of the

web application.

• Page Structural Coverage. The structure of a webpage in terms of its in-

ternal DOM elements, attributes, and values, provides the main interaction

interface with end users. Each page structure provides a different degree of

content and functionality. To capture this structural functionality adequately,

we believe a test model should cover heterogeneous DOM structures of the

web application.

• Size. The size of the derived test model has a direct impact on the number of

generated test cases and event executions within each test case. Reducing the

size of the test model can decrease both the cost of maintaining the generated

test suite and the number of test cases that must be rerun after changes are

made to the software [94]. Thus, while deriving test models, the size should

be optimized as long as the reduction does not adversely influence the cover-

age. We consider the number of events (edges) in the SFG as an indicator of

the model size since test case generation is done by traversing the sequence

of events.

17

Algorithm 1: Feedback-directed Exploration
input : A web application A, the maximum exploration time t, the maximum

number of states to explore n, exploration strategy STR
output: The inferred state-flow graph SFG

1 SFG← ADDINITIALSTATE(A)
Procedure EXPLORE() begin

2 while CONSTRAINTSATISFIED(t,n) do
3 PES← GETPARTIALLYEXPANDEDSTATES(SFG)
4 for si ∈ PES do
5 for s j ∈ PES & s j 6= si do
6 Score(si,s j)← GETSCORE(si,s j,STR)

end
7 MinScore(si)← GETMINSCORE(si)

end
8 s← GETNEXTTOEXPLORESTATE(PES,MinScore)
9 C← PRIORITIZEEVENTS(s)

10 for c ∈C do
11 browser.GOTO(SFG.GETPATH(s))
12 dom← browser.GETDOM()
13 robot.FIREEVENT(c)
14 new dom← browser.GETDOM()
15 if dom.HASCHANGED(new dom) then
16 SFG.UPDATE(c,new dom)
17 EXPLORE()

end
end

end
18 return SFG

end

2.3.2 Feedback-directed Exploration Algorithm

In this chapter, we refer to the process of executing candidate clickables of a state as

state expansion. Figure 2.2 depicts an overview of our approach. At a high level,

it dynamically analyzes the exploration history at runtime, including previously

covered states and events, to anticipate and decide a-priori (1) which state should

be expanded next, and (2) from the state that is selected for expansion, which event

(i.e., clickable element) should be exercised.

Given a web application, a maximum exploration time t, and a maximum num-

ber of states to explore n, the intent is to maximize the test model coverage while

18

reducing the model size within t. The rationale behind our technique is to reward

states and events that have a substantial impact on different aspects of a test model

(and penalize those that do not). Our exploration strategy, shown in Algorithm 1,

applies a greedy approach to select and expand a partially expanded state.

Definition 2 A partially expanded state is a state, during exploration, which still

contains one or more unexercised candidate clickables. 2

In Figure 2.1, both s6 and s8 are partially expanded states. To expand the next

partially expanded state, while exploring, we calculate a state score (explained in

Section 2.3.3) for each state that needs to be expanded, at runtime; this score pri-

oritizes partially expanded states selectively so that a test model with enhanced

aspects can be inferred for testing. Our key insight is that by dynamically mea-

suring and expanding states with the highest scores, we can construct a state-flow

graph of an application, yielding higher overall coverage. In addition to the state

score, our approach prioritizes events based on their productivity ratio (described

in Section 2.3.4).

Algorithm 1 repeats the following main steps until the given time limit t, or

state-space limit n is reached:

• For each partially expanded state, compute the state score with respect to

other unexpanded states (Lines 4-6). The score of a state is the minimum

pair-wise state score of that state (Line 7);

• Choose the state with the highest fitness (score) value as the next state to

expand (Line 8);

• On the chosen state for expansion, prioritize the events based on their event

score (Line 9);

• Take the browser to the chosen state and execute the highest ranked event

according to the prioritized order (Lines 10-3);

• If the DOM state is changed after the event execution, update the SFG ac-

cordingly (Lines 14-16) and call the Explore procedure (line 17).

19

2.3.3 State Expansion Strategy

In this section, we describe our state expansion strategy, which is used to prioritize

partially expanded states based on their overall contributions towards the different

desired properties of the test model.

Code Coverage Impact. One primary objective for generating a test model is to

achieve an adequate code coverage of the core functionality of the system. Note

that we only consider the client-side code coverage and the server-side code cover-

age is not the goal of this work. The following example shows how state expansion

can affect the code coverage.

Example 1 Figure 2.3 depicts a simple JavaScript code. Figure 2.4 shows the

corresponding DOM state. Assume that the state-flow graph as shown in the Figure

2.1 was generated by exploring this simple example. If the crawler finishes after

clicking on the next and the previous clickables multiple times, only the function

show and the first two lines of the script code will be covered, i.e., 9 lines in total.

Assuming that the total number of JavaScript lines of code is 27 (not all the code is

shown in the figure), coverage percentage would be 9
27 = 33.33%. This indicates

that no matter what test case generation method we apply on the inferred SFG, we

can not achieve a higher code coverage than 33.33%. However, if the crawler was

able to click on the Update clickable before termination, the function load would

be executed as well, yielding a coverage of 15
27 = 55.55%. 2

The code coverage impact for a state s, denoted by CI(s), is defined as the

amount of increase in the code coverage after s is created. Considering the exam-

ple again, when the Index page is loaded, the first two JavaScript lines are executed

and thus initial coverage is 2
27 = 7.4%, and the CI(Index)=0.074. After executing

onclick="show()", coverage would reach 33.33% with a 25.93% increase

and thus CI(s1) = 0.259. For each newly discovered state, we calculate the CI

in this manner. If a resulting state of an event is an already discovered state in

the SFG, the CI value will be updated if the new value is larger. The CI score

is taken into consideration when making decisions about expanding partially ex-

panded states.

Path Diversity. Given a state-flow graph, states located on different branches are

20

1 myImg = new Array("1.jpg","2.jpg","3.jpg","4.jpg");
2 curIndex = 1;
3 ...
4 function show (offset) {
5 curIndex = curIndex + offset;
6 if (curIndex > 4) {
7 curIndex = 1; }
8 if (curIndex == 0) {
9 curIndex = 4 ; }

10 document.imgSrc.src = myImg[curIndex - 1];
11 }
12 ...
13 function load () {
14 var xhr = new XMLHttpRequest();
15 xhr.open('GET', '/update/', true);
16 xhr.onreadystatechange = function(e) {
17 document.getElementById("container").innerHTML = this.responseText
18 };
19 xhr.send();
20 }

Figure 2.3: Simple JavaScript code snippet.

<body>

previous
next
...
Update!
<div id="container"></div>

</body>

Figure 2.4: A simple DOM instance.

more likely to cover different navigational functionality (as in Section 2.3.1) than

those on a same path. Thus, guiding the exploration towards diversified paths can

yield a better navigational functionality coverage.

Definition 3 A simple event path Psi of state si is a path on SFG from the Index

node to si, without repeated nodes. 2

Note that in our definition we only consider “simple paths” without repeated

nodes to avoid the ambiguity of having cycles and loops, such as those shown in

Figure 2.1, where for instance, there exists an infinite number of paths from Index

21

to s2. We formulate the path similarity of two states si and s j as:

PathSim(si,s j) =
2×|Psi ∩Ps j |
|Psi |+ |Ps j |

(2.1)

where |Psi | is the length of Psi , and |Psi ∩Ps j | denotes the number of shared events

between Psi and Ps j . The path similarity notion captures the percentage of events

shared by two simple paths. The fewer events two states share in their paths, the

more diverse their navigational functionality. Thus, let MaxPathSim(si,s j) be the

maximum path similarity of si and s j considering all possible simple paths, from In-

dex to si and s j, respectively. The path diversity of si and s j, denoted by PD(si,s j),

is then calculated as:

PD(si,s j) = 1−MaxPathSim(si,s j) (2.2)

Example 2 Consider the running example of Figure 2.1. We calculate pair-wise

path diversity scores for states s4, s6, and s8. PathSim(s4,s6) = 2×|Ps4∩Ps6|
|Ps4|+|Ps6| can

be computed in two ways as there exist two simple event paths from Index to

s6: For Ps6 through s1, PathSim(s4,s6) = 2×1
4+2 = 2

6 = 1
3 , and for Ps6 through s5,

PathSim(s4,s6) = 2×0
4+2 = 0. Thus MaxPathSim(s4,s6) = 1

3 and PD(s4,s6) = 1−
1
3 = 2

3 . Similarly, PD(s4,s8)=1-0=1, and PD(s6,s8)=1-0=1. This indicates that

s4 and s6 are not that diverse with respect to each other, but they are very diverse

with respect to s8. 2

DOM Diversity. In many web applications, the DOM is mutated dynamically

through JavaScript to reflect a state change, without requiring a URL change. Many

of such dynamic DOM mutations are, however, incremental in nature and corre-

spond to small delta changes, which might not be interesting from a testing per-

spective, especially given the space and time constraints. Therefore, guiding the

exploration towards diversified DOM states can result in a better page structural

coverage.

In most current AJAX crawlers, string representations of the DOM states are

used for state comparison. The strings are compared by either calculating the edit

distance [120], a strip and compare method [120], or by computing a hash of the

22

<html>

<head> <body>

<title> <h1> <div>

(a) DOM tree t1

<html>

<head> <body>

<title> <table> <div>

<tr>

<td> <td>

(b) DOM tree t2

<html>

<head> <body>

<title> <table> <div>

<tr> <tr>

<td> <td> <td> <td>

(c) DOM tree t3

Figure 2.5: DOM tree comparison.

content [80]. These approaches ignore the tree structure of DOM trees. To ac-

count for the actual structural differences, we adopt the tree edit distance between

two ordered labeled trees, which was proposed [168] and implemented [149] as

the minimum cost of a sequence of edit operations that transforms one tree into

another. The operations include deleting a node and connecting its children to the

parent, inserting a node between a node and the children of that node, and rela-

belling a node.

We define state DOM diversity as the normalized DOM tree edit distance. Let ti
and t j be the corresponding DOM trees of two states si and s j. The DOM diversity

of si and s j, denoted by DD(si,s j), is defined as:

DD(si,s j) =
T ED(ti, t j)

max(|ti|, |t j|)
(2.3)

where T ED(ti, t j) is the tree edit distance between ti and t j, and max(|ti|, |t j|) is the

maximum number of nodes in ti and t j.

Example 3 Figure 2.5 depicts three DOM trees with |t1|=7, |t2|=10, and |t3|=13.

t2 can be produced from t1 by (1) relabelling <h1> in t1 to <table>, and (2)

inserting three nodes under <table>. Thus T ED(t1, t2) = 4 and their DOM di-

versity equals 4
10 =0.4. Similarly T ED(t1, t3) = 7 and thus their DOM diversity

equals 7
13 =0.53. This shows t3 is more DOM diverse than t2 with respect to t1.

T ED(t2, t3) = 3 and their DOM diversity equals 3
13 =0.23 2

23

Overall State Score. The state score is a combination of code coverage impact,

path diversity, and DOM diversity. Our state expansion fitness function is a linear

combination of the three metrics as follows:

Score(si,s j) = wCI ·CI(si,s j)+wPD ·PD(si,s j)+wDD ·DD(si,s j) (2.4)

where, wCI , wPD, and wDD are user-defined weights (between 0 and 1) for code

coverage impact, path diversity, and DOM diversity, respectively.

2.3.4 Event Execution Strategy

The goal of our event execution strategy is to reduce the size of events sequences

(edges) in the SFG, while preserving the coverage. Reducing the size of events is

important since it reduces the size of generated test cases, which in turn minimizes

the time overhead of test rerun [94].

Intuitively, we try to minimize the execution of events that are not likely to

produce new states. We categorize web application user interface events into four

groups based on their impact on the application state transitional behaviour: (1)

An event that does not change the DOM state is called a self-loop, e.g., events

that replace the DOM tree with an exact replica, e.g., refresh with no changes, or

clear data in a form; (2) A state-independent event is an event that always causes

the same resulting state, e.g., events that always result in the Index page; (3) A

state-dependent event is an event that after its first execution, always causes the

same state, when triggered from the same state. (4) A Nondeterministic event is an

event that may results in a new state, regardless of where it is triggered from. Such

events can result in different states when triggered from the same state. In Figure

2.1, for instance, e0 is a self-loop event, e5 is a state-independent event, and e4 is

a state-dependent event.

A crawler that distinguishes between these different events can avoid self-

loops, minimize state-independent and nondeterministic event executions, and em-

phasize state-dependent events to explore uncovered states. To that end, we define

event productivity (EP) as follows.

Let RSi(e) denote the resulting state of the i-th execution of the event e, and

n be the total number of executions of e (including the last execution). The event

24

productivity ratio of e, denoted by EP(e), is defined as:

EP(e) =

1 ; if n = 0

∑
n
i=1 MinDD(RSi(e))

n ; otherwise

(2.5)

where MinDD(RSi(e)) = min
s∈SFG

{DD(RSi(e),s)}, i.e., the minimum diversity of

RSi(e) and all existing states in the SFG. Note that 0 ≤ EP(e) ≤ 1 and its value

can change after each execution of e, while exploring.

The above definition captures three properties. Firstly, it gives the highest ratio

to the unexecuted events (in case n = 0) since the resulting state is more likely

to be a new state compared to already executed events. Naturally, this also helps

in covering more of the JavaScript code, since the event-listeners typically trigger

the execution of one or more JavaScript function(s). Secondly, it penalizes events

that result in an already discovered state, such as self-loops and state-independent

events, with MinDD(RSi(e))=0. Thirdly, the productivity ratio is proportional to

the structural diversity of the resulting state with respect to previously discovered

states. This gives a higher productivity ratio to events that have resulted in more

diverse structures, guiding the exploration towards more DOM diverse states.

Remark 1. We do not consider path-diversity (PD) in the calculation of EP.

This is because when the execution of an event results in a new state, the resulting

state shares much of its navigational path with the source state that leads to PD

close to 0, which discourages new state discovery. On the other hand, if the re-

sulting state is an already discovered state in the SFG, its shortest event path may

not share much with other paths and therefore might get a high PD. This is also

contrary to penalizing events causing already discovered states.

The next example shows how this definition is applied on self-loops, state-

independent events, and forward-backward events.

Example 4 Consider Figure 2.1 again. For simplicity assume DOM diversity is

1 for new states and 0 for existing states. An example of a self-loop event is e0.

Assume that the first observation of e0 is at state Index. Since we have never

executed e0 before, EP(e0) = 1. After the first execution, EP(e0) = 0
1 = 0 because

MinDD(Index) = 0 as the diversity of the source state (Index) and the resulting

25

state (Index) is 0. By the second execution, say at s1, EP(e0) = 0+0
1+1 = 0. Now

consider e5 as a state-independent event. For the first time, say at s1, EP(e5) = 1.

After its first execution, since s6 is a new state (we assume diversity is 1), the

productivity ratio will be EP(e5) = 1
1 = 1. However, the second execution results

in a duplicate (s6 again) and thus EP(e5) = 1+0
1+1 = 0.5. Events e2 and e3 are

examples of previous-next events (see Figure 2.4). After the first execution of e3 at

state s2, EP(e3) = 0
1 = 0, because s1 was already in the SFG before executing e3

and thus MinDD(s1)=0. 2

Remark 2. Prioritizing events only makes sense when we allow the crawler

to exercise the same clickable multiple times. If the objective of the test model

generation is to merely achieve high code coverage, then clicking on the same

clickable again is unlikely to increase the code coverage; however, if the event is

state-dependent or nondeterministic, multiple execution of the same clickable can

have an impact on DOM and path diversity.

2.3.5 Implementation

Our proposed approach is implemented in a tool called FEEDEX, which is publicly

available [25].

To explore web applications, we build on top of CRAWLJAX [120, 121]. The

default engine supports both depth-first and breadth-first (multi-threaded, multi-

browser) crawling strategies. FEEDEX replaces the default crawling strategy of

CRAWLJAX (as described in [120]) with our feedback-directed exploration algo-

rithm. The tool can be configured to constrain the state space, by setting parame-

ters such as the maximum number of states to crawl, maximum crawling time, and

search depth level.

As shown in Figure 2.2, FEEDEX intercepts and instruments the JavaScript

code to collect execution traces while crawling. To parse and instrument the JavaScript

code, we use Mozilla Rhino [41]. After each event execution, FEEDEX analyzes

the collected execution trace and measures the code coverage impact, which in turn

is used in our overall exploration decision making.

State path diversity is calculated according to Equation 2.2 by finding simple

paths (Definition 3) from Index state to each state in the SFG. In order to compute

26

Table 2.1: Experimental objects (statistics excluding blank/comment lines, and JavaScript libraries).

ID Name JS LOC Description
1 ChessGame [20] 198 A JavaScript-based simple game
2 TacirFormBuilder [45] 209 A JavaScript-based simple HTML form builder
3 TuduList [51] 782 An AJAX-based todo lists manager in J2EE and MySQL
4 FractalViewer [26] 1245 A JavaScript-based fractal zoomer
5 PhotoGallery [39] 1535 An AJAX-based photo gallery in PHP without MySQL
6 TinyMCE [50] 26908 A JavaScript-based WYSIWYG editor

each simple event path, we apply a DFS traversal from the Index state to a state

node in the SFG and disregard already visited ones to avoid cycles or loops. For

the computation of the tree edit distance for DOM state diversity as in Equation

2.3, we take advantage of the Robust Tree Edit Distance (RTED) algorithm [149],

which has optimal O(n3) worst case complexity and is robust, where n is the max-

imum number of nodes of the two given trees. Considering that the number of

nodes in a typical DOM tree is relatively small, the overhead of the DOM diversity

computation is negligible.

In order to calculate the productivity ratio for an event, we store, for each event,

a set of tuples comprising of source and target states, corresponding to all the pre-

vious executions of that event.

2.4 Empirical Evaluation
To assess the efficacy of the proposed feedback-directed exploration, we have con-

ducted a controlled experiment. Our main research question is whether our pro-

posed exploration technique is able to derive a better test model compared to tra-

ditional exhaustive methods.

Our experimental data along with the implementation of FEEDEX are available

for download [25].

2.4.1 Experimental Objects

Because our approach is targeted towards web applications, our selection criteria

included applications that (1) use extensive client-side JavaScript, (2) are based on

dynamic DOM manipulation and AJAX interactions, and (3) fall under different

27

Table 2.2: State-space exploration methods evaluated.

Method Exploration Criteria
DFS Expand the last partially expanded state
BFS Expand the first partially expanded state
RND Randomly expand a partially expanded state
FEEDEX Expand the partially expanded state with the highest score

(wCI = 1,wPD = 0.5,wDD = 0.3), and prioritize events

domains. Based on these criteria, we selected six open source applications from

different domains which are shown in Table 2.1. We use CLOC [22] to count the

JavaScript lines of code (JS LOC). The reported LOC in Table 2.1 is excluding

blank lines, comment lines, and JavaScript libraries such as jQuery, DWR, Scrip-

taculous, Prototype, Bootstrap, and google-analytics. Note that we also exclude

these libraries in the instrumentation step.

2.4.2 Experimental Setup

All our experiments are performed on a core-2 Duo 2.40GHz CPU with 3.46 GB

memory, running Windows 7 and Firefox web browser.

Independent Variables

We compare our feedback-directed exploration approach with different traditional

exploration strategies.

Exploration Constraints. We confine the designated exploration time for deriving

a test model to 300 seconds (5 minutes) for all the experimental runs.4 We set no

limits on the crawling depth nor the maximum number of states to be discovered.

We configure the tool to allow multiple executions of the same clickable element,

as the same clickable can cause different resulting states.

State-space Exploration. Table 2.2 presents the different state expansion strate-

gies we evaluate in the first part of our experiment. The first three (DFS, BFS,

RND) are exhaustive crawling methods. DFS expands states in a depth-first fash-

ion, i.e., the last discovered state would be expanded next. BFS applies breath-first

4Dedicating 5–10 minutes to test generation is acceptable in most testing environments [96].

28

exploration by expanding the first discovered state next. RND performs random

exploration in which a partially expanded state is chosen uniformly at random to

be expanded next. Note that for these traditional exhaustive exploration meth-

ods we consider the original event execution strategy, i.e., a user-defined order

for clicking on elements. For this experiment, the order is defined as: A, DIV,

SPAN, IMG, BUTTON, INPUT, and TD.The last method is an instantiation of our

feedback-directed exploration score (See Equation 2.4) where wCI = 1, wPD = 0.5,

and wDD = 0.3. We empirically evaluated different weightings and found this set-

ting among other settings can generally produce good results. FEEDEX prioritizes

clickable elements based on the event productivity ratio EP (Equation 2.5) and

executes them in that order (see Section 2.3.4).

Dependent Variables

We analyze the impact of different state-space exploration strategies on the code

coverage, the overall average path diversity and DOM diversity, as well as the size

of the derived test model.

Code Coverage Score. We measure the final statement code coverage achieved

by each method, after 5 minutes of exploration. In order to measure the JavaScript

code coverage, we instrument the JavaScript code as explained in Section 2.3.5.

Diversity Scores. In order to measure the path diversity of a SFG, we measure

average pair-wise navigational diversity of leaf nodes (states without any outgoing

edges) since the position of the leaf nodes in the graph is an indication of the

diversity of its event paths (i.e., paths from the Index node to the leaves). The

AvgPD is defined as:

AvgPD(SFG) =
∑∀si,s j∈L(V) PD(si,s j)

2 ·m · (m−1)
(2.6)

where L(V) denotes the set of leaf nodes in the SFG and m = |L(V)|, i.e., the

number of leaf nodes. This value is in the range of 0 to 1.

To assess the page structural diversity of the derived test models from each

method, we compute the overall average pair-wise structural diversity (AvgDD) in

29

Table 2.3: Results of different exploration methods.

Exploration Statement Navigational Page Test Test
Method Coverage Path Structural Model Suite

Diversity Diversity Size Size
DFS 37.55% 0.010 0.035 578 247
BFS 43.82% 0.410 0.065 475 165
RND 40.44% 0.369 0.066 450 241
FEEDEX 48.13% 0.443 0.081 280 95
Improvement (min–max%) 10–28% 7–4000% 23–130% 38–86% 42–61%

the derived SFG as:

AvgDD(SFG) =
∑∀si,s j∈V DD(si,s j)

2 ·n · (n−1)
(2.7)

where n = |V |, i.e., the number of states in the SFG and AvgDD is in the range of

0 to 1.

Test Model and Test Suite Size. As discussed in Section 2.3.1, the derived test

model (SFG) can be used to generate test cases through different graph traversal

and coverage methods. The event size of the derived test model has a direct impact

on the number and size of test cases that can be generated, regardless of the test

generation method used.

We consider (1) the number of edges (events) in the SFG, as the size of test

model, and (2) the number of “distinct” simple event paths in the SFG, as the size

of test suite (e.g. the number of all possible Selenium [42] test cases generated

from the test model). Two simple event paths (Definition 3) are distinct if they

visit different sequence of states. Note that simple event paths can not have cycles

or loops. As described in Section 2.3.5, simple paths are generated using DFS

traversal from the Index state to every other state in the SFG.

2.4.3 Results and Findings

Table 2.3 shows the results of different exploration methods. We report the average

values obtained from the six experimental objects. For the random state expansion

method (RND), we report the average values over five runs. The table shows state-

ment code coverage, navigational path diversity (AvgPD), page structural diversity

30

(AvgDD), number of edges (events) as well as the number of distinct paths in the

derived test model.

Results present that for FEEDEX, there is on average between (min–max%)

10–28% improvement on the final statement coverage (after 5 minutes), 7–4000%

on path diversity, 23–130% on page structural diversity, 38–86% reduction in the

number of edges, and 42–61% reduction in the distinct paths in the test model. It

is evident from the results that FEEDEX is capable of generating test models that

are enhanced in all aspects compared to the traditional exploration methods. Test

models created using FEEDEX have smaller size (thus need less time to execute

test cases) and higher code coverage and state diversity. The simultaneous im-

provement in all the evaluation criteria points to the the effectiveness of our state

expansion and event execution strategy.

Given the limited amount of exploration time, we believe the achieved im-

provements for code coverage is substantial. Our approach also significantly in-

creases the average DOM diversity compared to the RND method. Note that the

main reason for having small AvgDD values for all the methods, is the normaliza-

tion by the large number of possible pair-wise links in the computation of AvgDD

(Equations 2.7). There is a low improvement of 7% achieved by FEEDEX over BFS

with respect to the navigational path diversity (AvgPD). This is expected due to the

fact that BFS, by its nature, generates models with many branches that do not share

too many event paths, and are more sparse, compared to the other methods. The

amount of shared paths also contribute to reducing the number of distinct paths,

thus reducing the size of test suite. Therefore, although there is some improve-

ment, FEEDEX can not improve AvgPD significantly compared to BFS. Among

traditional methods, DFS is the least effective. Specifically, AvgPD achieved by

DFS is much lower than others due to the fact that it keeps expanding states in the

same branch in most cases, and FEEDEX can improve the navigational diversity

significantly (4000%).

While evaluating different weights in FEEDEX scoring function, we found that

assigning 1 to wDD and 0 to the rest, is effective in producing more structural

diverse models, if an application has many different DOM states, such as Pho-

toGallery, and not that effective for applications with minimum DOM changes,

such as ChessGame (a chess board that remains relatively the same). Similarly,

31

assigning 1 to wPD and 0 to the rest, is more effective in increasing AvgPD in

applications with many navigational branches (features) such as TinyMCE. In gen-

eral, feedback-directed exploration technique, with the settings we used, is superior

over the exhaustive methods with respect to all aspects of generated test models.

Considering the significant improvements achieved by using FEEDEX, the compu-

tational overhead of our method is negligible.

It worth to mention that if the exploration time is unlimited, the final generated

test model for all the exploration methods will converge to a same model. This is,

however, infeasible for many industrial web applications with huge state space and

short release time. Thus we believe the given 5 minute exploration limit can show

how FEEDEX can outperform exhaustive search methods in different aspects.

2.5 Discussion

Limitations. A limitation of FEEDEX is that the maximum effectiveness depends

on the weights used in the scoring function (Equation 2.4) and on the application

state-space and functionality, which is not known in advance. For example in our

other experiments we observed that setting wDD,wPD = 0 and wCI = 1, can gener-

ate test models with higher code coverage but less diversity and larger test model

size. In general, the setting we used in this work can generate a test model which

enhances all aspects of a test model compared to traditional methods. We do not

claim that Equation 2.4 is the best way to combine CI, PD, and DD, or the weights

that we empirically found, always outperform previous work. Instead, we rely on

the intuition of the feedback-directed heuristic which we believe effectively works

most of the time.

Applications. The main application of our technique is in automated testing of

web applications. The automatically derived test model, for instance, can be used

to generate different types of test cases used for invariant-based assertions after

each event, regression testing, cross-browser testing [68, 74, 114, 119, 121, 128].

Our exploration technique towards higher client-side code coverage can also help

with a more accurate detection of unused/dead JavaScript code [124]. Moreover,

FEEDEX is generic in terms of its scoring function, thus by changing the fitness

function (line 6 of Algorithm 1), it can generate a test model based on other user-

32

defined criteria.

Threats to Validity. A threat to the external validity of our experiment is with re-

gard to the generalization of the results to other web applications. We acknowledge

that more web applications should be evaluated to support the conclusions. To mit-

igate this threat we selected our experimental objects from four different domains:

gallery, task management, game, and editor. The selected web applications exhibit

variations in functionality and structure and we believe they are representative of

modern web applications.

One threat to the internal validity of our experiment is related to the evaluation

metrics including AvgDD and AvgPD proposed by the authors of this work based

on which the effectiveness of FEEDEX is evaluated. However, we believe these

metrics capture different properties of a test model as described in Section 2.3.

With respect to reliability of our results, FEEDEX and all the web-based sys-

tems are publicly available, making the experiment reproducible.

2.6 Related Work

Crawling Web Applications. Web crawling techniques for traditional hypertext-

based websites have been extensively studied in the past two decades. More related

to our work is the idea behind “scoped crawling” [144] to constrain the exploration

to webpages that fall within a particular scope; this way, obtaining relevant content

becomes more efficient than through a comprehensive crawl. Well-known exam-

ples of scoped crawling include hidden-web crawling [110] and focused crawling

[117]. Scope can also be defined in terms of geography, language, genre, format,

and other content-based properties of webpages. All these techniques focus on the

textual contents of webpages. Our approach, on the other hand, is geared towards

functionality coverage of a web application under test.

Crawling modern Web 2.0 applications engenders more challenges due to the

dynamic client-side processing (through JavaScript and AJAX calls), and is rel-

atively a new research area [70, 80, 120, 134]. Many web testing techniques

[64, 68, 74, 114, 119, 121, 128, 129, 169, 171] depend on data gathered and models

generated through crawling. However, such techniques rely on exhaustive search

methods. To the best of our knowledge, this work is the first to propose a feedback-

33

directed exploration of web applications that enhances different aspects of a test

model.

Some metrics have been proposed to measure crawling effectiveness and di-

versity. Marchetto et al. [64] propose crawlability metrics that capture the degree

to which a crawler is able to explore the web application. These metrics combine

dynamic measurements such as code coverage, with static indicators, such as lines

of code and cyclomatic complexity. Their crawlibility metrics are geared towards

the server-side of web applications. Regarding our diversity metrics, although the

notion of diversity has been used for classifying search query results [61, 156, 157],

we propose new metrics for capturing state and navigational diversity as two as-

pects of a web application test model.

More related to our work are guided test generation [169] and efficient AJAX

crawling techniques [70, 73, 79, 134]. Thummalapenta et al. [169] recently pro-

posed a guided test generation technique for web applications, called WATEG.

Their work crawls the application in an exhaustive manner, but directs test gen-

eration towards higher coverage of specific business rules, i.e., business logic of

an application’s GUI. Our work differs from WATEG in two aspects. Firstly, we

guide the exploration and not the test generation, and secondly, our objective is

to increase code coverage and state diversity, and at the same time decrease test

model size. Efficient strategies for AJAX crawling [70, 73, 79, 134] try to discover

as many states as possible in the shortest amount of time. The goal of our work

is, however, not to crawl the complete state-space as soon as possible (which is in-

feasible for many industrial web applications), but to drive a partial model, which

adequately covers different desired properties of the application.

Static analysis. Researchers have used static analysis to detect bugs and security

vulnerabilities in web apps [93, 200]. Jensen et al. [101] model the DOM as a set of

abstract JavaScript objects. However, they acknowledge that there are substantial

gaps in their static analysis, which can result in false-positives. Because JavaScript

is a highly dynamic language, such static techniques typically restrict themselves to

a subset of the language. In particular, they ignore dynamic JavaScript interactions

with the DOM, which is error-prone and challenging to detect and resolve [143].

Dynamic Analysis. Dynamic analysis and automated testing of JavaScript-based

34

web applications has gained more attention in the recent past. Marchetto et al.

[114] proposed a state-based testing technique for AJAX applications in which se-

mantically interacting event sequences are generated for testing. Mesbah et al.

proposed [121] an automated technique for generating test cases with invariants

from models inferred through dynamic crawling. JSArt [128] and DoDOM [148]

dynamically derive invariants for the JavaScript code and the DOM respectively.

Such inferred invariants are used for automated regression and robustness testing.

Artemis [66] is a JavaScript testing framework that uses feedback-directed ran-

dom testing to generate test inputs. Compared to FEEDEX, Artemis randomly gen-

erates test inputs, executes the application with those inputs and uses the gathered

information to generate new input. FEEDEX on the other hand, explores the appli-

cation by dynamically running it and building a state-flow graph that can be used

for test generation. The strength of FEEDEX is that it guides the application at run-

time towards a better code and more diverse navigational and structural coverage.

Kudzu [158] combines symbolic execution of JavaScript with random test gen-

eration to explore sequence of events and produce input values depending on the

execution of the control flow paths. Their approach uses a complex string con-

straint solver to increase the code coverage by producing acceptable input string

values. In our work we did not intend to increase the code coverage by considering

the problem of input generation for the crawler and only focused on improving the

crawling strategy. Compared to Kudzu, FEEDEX is much simpler, more automated,

and does not require such heavy computation.

2.7 Conclusions
An enabling technique commonly used for automating web application testing and

analysis is crawling. In this work we proposed four aspects of a test model that can

be derived by crawling, including functionality coverage, navigational coverage,

page structural coverage, and size of the test model. We have presented a generic

feedback-directed exploration approach, called FEEDEX, to guide the exploration

towards client-side states and events that produce a test model with enhanced as-

pects. Our experiment on six Web 2.0 applications shows that FEEDEX yields

higher code coverage, diversity, and smaller test models, compared to traditional

35

exhaustive methods (DFS, BFS, and random).

In this work, we only measure the client-side coverage. One possible future

work can be including the server-side code coverage in the feedback loop to our

guided exploration engine. This might help deriving some new states that are de-

pendent on particular server-side code execution. Our state expansion method is

currently based on a memory-less greedy algorithm, which might benefit from a

learning mechanism to improve its effectiveness.

36

Chapter 3

Leveraging Existing Tests in User Interface Test
Generation for Web Applications

Summary5

Current test generation techniques start with the assumption that there are no ex-

isting test cases for the system under test. However, many software systems nowa-

days are already accompanied with an existing test suite. We believe that exist-

ing human-written test cases are a valuable resource that can be leveraged in test

generation. We demonstrate our insight by focusing on testing modern web appli-

cations. To test web applications, developers currently write test cases in popular

frameworks such as SELENIUM. On the other hand, most web test generation tech-

niques rely on a crawler to explore the dynamic states of the application. The

former requires much manual effort, but benefits from the domain knowledge of

the developer writing the test cases. The latter is automated and systematic, but

lacks the domain knowledge required to be as effective. We believe combining the

two can be advantageous. In this work, we propose a technique to (1) mine the

human knowledge present in the form of input values, event sequences, and asser-

tions, in the human-written test suites, (2) combine the inferred knowledge with the

power of automated crawling and machine learning, and (3) extend the test suite for

uncovered/unchecked portions of the web application under test. Our approach is

5This chapter is the extended version of the paper appeared at the IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2014 [126] that is in preparation for submission
to a software engineering journal.

37

implemented in a tool called TESTILIZER. An evaluation of our approach indicates

that, on average TESTILIZER can generate test suites with improvements by 105%

in mutation score (fault detection rate) and by 22% in code coverage, compared to

the original human-written test suite.

3.1 Introduction
Testing modern web applications is challenging since multiple languages, such as

HTML, JavaScript, CSS, and server-side code, interact with each other to create

the application. The final result of all these interactions at runtime is manifested

through the DOM and presented to the end-user in the browser. To avoid deal-

ing with all these complex interactions separately, many developers treat the web

application as a black-box and test it via its manifested DOM, using testing frame-

works such as SELENIUM [42]. These DOM-based test cases are written manually,

which is a tedious process with an incomplete result.

On the other hand, many automated testing techniques [74, 121, 159, 169] are

based on crawling to explore the state space of the application. Although crawling-

based techniques automate the testing to a great extent, they are limited in three

areas:

• Input values: Having valid input values is crucial for proper coverage of the

state space of the application. Generating these input values automatically is

challenging since many web applications require a specific type, value, and

combination of inputs to expose the hidden states behind input fields and

forms.

• Paths to explore: Industrial web applications have a huge state space. Cov-

ering the whole space is infeasible in practice. To avoid unbounded explo-

ration, which could result in state explosion, users define constraints on the

depth of the path, exploration time or number of states. Not knowing which

paths are important to explore results in obtaining a partial coverage of a

specific region of the application.

• Assertions: Any generated test case needs to assert the application be-

haviour. However, generating proper assertions automatically without hu-

38

man knowledge is known to be challenging. As a result, many web testing

techniques rely on generic invariants [121] or standard validators [66] to

avoid this problem.

These two approaches work at the two extreme ends of the spectrum, namely,

fully manual or fully automatic. We believe combining the two can be advanta-

geous. In particular, humans may have the domain knowledge to see which in-

teractions are more likely or important to cover than others; they may be able to

use domain knowledge to enter valid data into forms; and, they might know what

elements on the page need to be asserted and how. This knowledge is typically

manifested in manually-written test cases.

In this work, we propose to (1) mine the human knowledge existing in manually-

written test cases, (2) combine that inferred knowledge with the power of auto-

mated crawling, and (3) extend the test suite for uncovered/unchecked portions of

the web application under test. We present our technique and tool called TESTILIZER,

which given a set of SELENIUM test cases TC and the URL of the application, au-

tomatically infers a model from TC, feeds that model to a crawler to expand by ex-

ploring uncovered paths and states, generates assertions for newly detected states

based on the patterns learned from TC, and finally generates new test cases.

To the best of our knowledge, this work is the first to propose an approach for

extending a web application test suite by leveraging existing test cases. The main

contributions of our work include:

• A novel technique to address limitations of automated test generation tech-

niques by leveraging human knowledge from existing test cases.

• An algorithm for mining existing test cases to infer a model that includes (1)

input data, (2) event sequences, (3) and assertions, and feeding and expand-

ing that model through automated crawling.

• An algorithm for reusing human-written assertions in existing test cases by

exact/partial assertion matching as well as through a learning-based mecha-

nism for finding similar assertions.

• An open source implementation of our technique, called TESTILIZER [47].

39

• An empirical evaluation of the efficacy of the generated test cases on 8 web

applications. On average, TESTILIZER can generate test suites that improve

the mutation score (fault detection rate) by 105% and the code coverage by

22%, compared to the original test suite.

• An empirical evaluation of the impact of the original tests effectiveness on

the generated tests. Our results suggest that, there is a very strong correlation

between the effectiveness of the original tests and the effectiveness of the

generated tests.

3.2 Background and Motivation
In practice, web applications are largely tested through their DOM using frame-

works such as SELENIUM. The DOM is a dynamic tree-like structure representing

user interface elements in the web application, which can be dynamically updated

through client-side JavaScript interactions or server-side state changes propagated

to the client-side. DOM-based testing aims at bringing the application to a par-

ticular DOM state through a sequence of actions, such as filling a form and click-

ing on an element, and subsequently verifying the existence or properties (e.g.,

text, visibility, structure) of particular DOM elements in that state. Figure 3.1 de-

picts a snapshot of a web application and Figure 3.2 shows a simple DOM-based

(SELENIUM) test case for that application.

For this work, a DOM state is formally defined as:

Definition 4 (DOM State) A DOM State DS is a rooted, directed, labeled tree. It

is denoted by a 5-tuple, <D,Q,o,Ω ,δ >, where D is the set of vertices, Q is the set

of directed edges, o ∈D is the root vertex, Ω is a finite set of labels and δ : D→Ω

is a labelling function that assigns a label from Ω to each vertex in D. 2

The DOM state is essentially an abstracted version of the DOM tree of a web

application, displayed on the web browser at runtime. This abstraction is con-

ducted through the labelling function δ , the implementation of which is discussed

in Section 3.3.1 and Section 3.4.

40

Figure 3.1: A snapshot of the running example (an organizer application) and its partial DOM structure.

Motivation. Overall, our work is motivated by the fact that a human-written test

suite is a valuable source of domain knowledge, which can be exploited for tack-

ling some of the challenges in automated web application test generation. Another

motivation behind our work is that manually written test cases typically correspond

to the most common happy-paths of the application that are covered. Automated

analysis can subsequently expand these to cover unexplored bad-weather applica-

tion behaviour.

Running example. Figure 3.1 depicts a snapshot of the Organizer [38], a web

application for managing notes, contacts, tasks, and appointments, which we use

as a running example to show how input data, event paths, and assertions can be

leveraged from the existing test cases to generate effective test cases.

Suppose we have a small test suite that verifies the application’s functionality

for “adding a new note” and “adding a new contact”. Due to space constraints,

we only show the testAddNote test case in Figure 3.2. The test case contains

valuable information regarding how to log onto the Organizer (Lines 4–5), what

data to insert (Lines 9–10), where to click (Lines 6, 8, 11, 13), and what to assert

(Lines 7, 12).

We believe this information can be extracted and leveraged in automated test

generation. For example, the paths (i.e., sequence of actions) corresponding to

these covered functionalities can be used to create an abstract model of the appli-

cation, shown in thick solid lines in Figure 3.3. By feeding this model that contains

the event sequences and input data leveraged from the test case to a crawler, we can

41

1 @Test
2 public void testAddNote(){
3 get("http://localhost:8080/theorganizer/");
4 findElement(By.id("logon_username")).sendKeys("user");
5 findElement(By.id("logon_password")).sendKeys("pswd");
6 findElement(By.cssSelector("input type="image"")).click();
7 assertEquals("Welcome to The Organizer!", closeAlertAndGetItsText());
8 findElement(By.id("newNote")).click();
9 findElement(By.id("noteCreateShow_subject")).sendKeys("Running ←↩

Example");
10 findElement(By.id("noteCreateShow_text")).sendKeys("Create a simple ←↩

running example");
11 findElement(By.cssSelector("input type="image"")).click();
12 assertEquals("Note has been created.", driver.findElement(By.id("←↩

mainContent")).getText());
13 findElement(By.id("logoff")).click();
14 }

Figure 3.2: A human-written DOM-based (SELENIUM) test case for the Organizer.

s1
s2notes

s5

logoff

s6

contacts

s4

dayAtAGlance

ok
logoff

logoff

contacts

s8

dayAtAGlance

notes

logoff
ok

s11

dayAtAGlance

delete
update

logoff
contacts

s10

dayAtAGlance
delete
update

notes

logoff

contacts

Index
logOn

s9
createAccount dayAtAGlance

edit

s3newNote

contacts

dayAtAGlance

savenotes
logoff

contacts

dayAtAGlance

edit

notes

logoff

s7

newContact

dayAtAGlance

save
notes

logoff
contacts

createAccount

Figure 3.3: Partial view of the running example application’s state-flow graph. Paths in thick solid lines
correspond to the covered functionalities in existing tests. Alternative paths, shown in thin lines, can
be explore using a crawler. Alternative paths through newly detected states (i.e., s10 and s11) are
highlighted as dashed lines.

explore alternative paths for testing, shown as thin lines in Figure 3.3; alternative

paths for deleting/updating a note/contact that result in newly detected states (i.e.,

s10 and s11) are highlighted as dashed lines.

Further, the assertions in the test case can be used as guidelines for generating

new assertions on the newly detected states along the alternative paths. These orig-

inal assertions can be seen as parallel lines inside the nodes on the graph of Figure

3.3. For instance, line 12 of Figure 3.2 verifies the existence of the text “Note has

been created” for an element (span) with id="mainContent", which can be

42

assigned to the DOM state s4 in Figure 3.3.

By exploring alternative paths around existing paths and learning assertions

from existing assertions, new test cases can be generated. For example the events

corresponding to states 〈Index,s1,s2,s10,s4,s5〉 can be turned into a new test

method testUpdateNote(), which on state s4, verifies the existence of a

 element with id="mainContent". Further, patterns found in exist-

ing assertions can guide us to generate similar assertions for newly detected states

(e.g., s9, s10, s11) that have no assertions.

3.3 Approach
Figure 3.4 depicts an overview of our approach. At a high level, given the URL of

a web application and its human-written test suite, our approach mines the existing

test suite to infer a model of the covered DOM states and event-based transitions

including input values and assertions (blocks 1, 2, and 3). Using the inferred model

as input, it explores alternative paths leading to new DOM states, thus expanding

the model further (blocks 3 and 4). Next it regenerates assertions for the new states,

based on the patterns found in the assertions of the existing test suite (block 5), and

finally generates a new test suite from the extended model, which is a superset of

the original human-written test suite (block 6). We discuss each of these steps in

more details in the following subsections.

Scope. The technique presented in this work is applicable only in the context

of user interface regression testing. We assume the current version of the given

application is correct and thus augmented test suites are not useful to test the same

version of the software under test.

3.3.1 Mining Human-Written Test Cases

To infer an initial model, in the first step, we (1) instrument and execute the human-

written test suite T to mine an intermediate dataset of test operations. Using this

dataset, we (2) run the test operations to infer a state-flow graph (3) by analyzing

DOM changes in the browser after the execution of each test operation.

Instrumenting and executing the test suite. We instrument the test suite (block

1 Figure 3.4) to collect information about DOM interactions such as elements ac-

43

DOM-based
Fixture

JavaScript
Code

(1)
Instrument

Code

(2)
Execute
Function

(4)
Deduce

DOM-dependant
PCs

Execution
Trace

(3)
Collect

Execution
Trace

(9)
Generate
Test case

Generated
Unit Tests

(7)
Generate Fixture

(8)
Apply Fixture

to Cover a New
Path

Instrumented
Code

(6)
Solve XPath
expressions

(5)
Translate PCs to

XPath expressions
Solved XML

tree

Figure 3.4: Processing view of our approach.

cessed in actions (e.g., clicks) and assertions as well as the structure of the DOM

states covered.

Definition 5 (Manual-test Path) A manual-test path is the sequence of event-based

actions performed while executing a human-written test case t ∈ T . 2

Definition 6 (Manual-test State) A manual-test state is a DOM state located on

a manual-test path. 2

The instrumentation hooks into any code that interacts with the DOM in any

part of the test case, such as test setup, helper methods, and assertions. Note that

this instrumentation does not affect the functionality of the test cases (more details

in Section 3.4). By executing the instrumented test suite, we store all observed

manual-test paths as an intermediate dataset of test operations:

Definition 7 (Test Operation) A test operation is a triple <action, target, input>,

where action specifies an event-based action (e.g., a click), or an assertion (e.g.,

verifying a text), target pertains to the DOM element to perform the action on, and

input specifies input values (e.g., data for filling a form). 2

44

The sequence of these test operations forms a dataset that is used to infer the

initial model. For a test operation with an assertion as its action, we refer to the

target DOM element as a checked element, defined as follows:

Definition 8 (Checked Element) A checked element ce ∈ vi is an element in the

DOM tree in state vi, which its existence, its attributes, or its value are checked in

an assertion of a test case t ∈ T . 2

For example in line 12 of the test case in Figure 3.2, the text value of the

element with ID "mainContent" is asserted and thus that element is a checked

element. Part of the DOM structure at this state is shown in Figure 3.1, which

implies that is that checked element.

For each checked element we record the element location strategy used (e.g.,

XPath, ID, tagname, linktext, or cssselector) as well as the access values and inner-

HTML text. This information is later used in the assertion generation process (in

Section 3.3.3).

Constructing the initial model. We model a web application as a State-Flow

Graph (SFG) [120, 121] that captures the dynamic DOM states as nodes and the

event-driven transitions between as edges.

Definition 9 (State-flow Graph) A state-flow graph SFG for a web application

W is a labeled, directed graph, denoted by a 4 tuple < r,V ,E ,L > where:

1. r is the root node (called Index) representing the initial DOM state after W

has been fully loaded into the browser.

2. V is a set of vertices representing the states. Each v ∈ V represents an

abstract DOM state DS of W , with a labelling function Φ : V → A that

assigns a label from A to each vertex in V , where A is a finite set of DOM-

based assertions in a test suite.

3. E is a set of (directed) edges between vertices. Each (v1,v2) ∈ E repre-

sents a clickable c connecting two states if and only if state v2 is reached by

executing c in state v1.

4. L is a labelling function that assigns a label, from a set of event types and

DOM element properties, to each edge.

5. SFG can have multi-edges and be cyclic. 2

45

Algorithm 2: State-Flow Graph Inference
input : A Web application url URL, a DOM-based test suite T S, crawling constraints CC
output: A state-flow graph SFG

Procedure INFERSFG(URL,TS,CC)
begin

1 T Sinst ← INSTRUMENT(T S)
2 EXECUTE(T Sinst)
3 TOP← READTESTOPERATIONDATASET()
4 SFGinit ←∅
5 browser.GOTO(URL)
6 dom← browser.GETDOM()
7 SFGinit .ADDINITIALSTATE(dom)
8 for top ∈ TOP do
9 C← GETCLICKABLES(top)

10 for c ∈C do
11 assertion← GETASSERTION(top)
12 dom← browser.GETDOM()
13 robot.FIREEVENT(c)
14 new dom← browser.GETDOM()
15 if dom.HASCHANGED(new dom) then
16 SFGinit .UPDATE(c,new dom,assertion)

end
end

17 browser.GOTO(URL)
end

18 SFGext ← SFGinit
19 EXPLOREALTERNTIVEPATHS(SFGext ,CC)
20 return SFGext

end
Procedure EXPLOREALTERNTIVEPATHS(SFG,CC) begin

21 while CONSTRAINTSATISFIED(CC) do
22 s← GETNEXTTOEXPLORESTATE(SFG)
23 C← GETCANDIDATECLICKABLES(s)
24 for c ∈C do
25 browser.GOTO(SFG.GETPATH(s))
26 dom← browser.GETDOM()
27 robot.FIREEVENT(c)
28 new dom← browser.GETDOM()
29 if dom.HASCHANGED(new dom) then
30 SFG.UPDATE(c,new dom)
31 EXPLOREALTERNTIVEPATHS(SFG,CC)

end
end

end
end

An example of such a partial SFG is shown in Figure 3.3. The abstract DOM

state is an abstracted version of the DOM tree of a web application, displayed on the

web browser at runtime. This abstraction can be conducted by using a DOM string

edit distance, or by disregarding specific aspects of a DOM tree (such as irrelevant

46

attributes, time stamps, or styling issues) [121]. The state abstraction plays an

important role in reducing the size of SFG since many subtle DOM differences do

not represent a proper state change, e.g., when a row is added to a table.

Algorithm 2 shows how the initial SFG is inferred from the manual-test paths.

First the initial index state is added as a node to an empty SFG (Algorithm 2, lines

5–7). Next, for each test operation in the mined dataset (TOP), it finds DOM el-

ements using the locator information and applies the corresponding actions. If an

action is a DOM-based assertion, the assertion is added to the set of assertions of

the corresponding DOM state node (Algorithm 2, lines 8–17). The state compari-

son to determine a new state (line 15) is carried out via a state abstraction function

(more explanation in Section 3.4).

3.3.2 Exploring Alternative Paths

At this stage, we have a state-flow graph that represents the covered states and paths

from the human-written test suite. In order to further explore the web application

to find alternative paths and new states, we seed the graph to an automated crawler

(block 4 Figure 3.4).

The exploration strategy can be conducted in various ways: (1) remaining close

to the manual-test paths, (2) diverging [123] from the manual-test paths, or (3)

randomly exploring. However, in this work, we have opted for the first option,

remaining close to the manual-test paths. The reason is to maximize the potential

for reuse of and learning from existing assertions. Our insight is that if we diverge

too much from the manual-test paths and states, the human-written assertions will

also be too disparate and thus less useful. We evaluate this exploration approach in

Section 3.5.

To find alternative paths, events are generated on DOM elements and if such an

event mutates the DOM state, the new state and the corresponding event transition

are added to the SFG. Note that the state comparison to determine a new state (line

29) is done via the same state abstraction function used before (line 15). The pro-

cedure ExploreAlternativePaths (Algorithm 2, lines 21–31) repeatedly

crawls the application until a crawling constraint (e.g., maximum time, or number

of states) is reached. The exploration is guided by the manual-test states while ex-

47

ploring alternative paths (Line 22); GetNexToExploreState decides which

state should be expanded next. It gives the highest priority to the manual-test states

and when all manual-test states are fully expanded, the next immediate states found

are explored further. More specifically, it randomly selects a manual-test state that

has some unexercised candidate clickables and navigates the application through

that state. The GetCandidateClickable method (Line 23) returns a set of

candidate clickables that can be applied on the selected state. This process is re-

peated until all manual-test states are fully expanded.

For example, consider the manual-test sates shown in grey circles in Figure

3.3. The alternative paths exploration method starts by randomly selecting a state

such as s2, navigating the application to reach to that state from the Index state,

and firing an event on s2 which can result in an alternative state s10.

3.3.3 Regenerating Assertions

The next step is to generate assertions for the new DOM states in the extended

SFG (block 5 Figure 3.4). In this work, we propose to leverage existing assertions

to regenerate new ones. By analyzing human-written assertions we can leverage

information about (1) portions of the page that are more important for testing; for

example, a banner section or decoration parts of a page might not be as important

as an inner content that changes according to a main functionality, (2) patterns in

the page that are part of a template. Therefore, extracting important DOM patterns

from existing assertions may help us in generating new but similar assertions.

We formally define a DOM-based assertion as a function A : (s,c)→ {True,

False}, where s is a DOM state, and c is a DOM condition to be checked. It

returns True if s matches/satisfies the condition c, denoted by s |= c, and False

otherwise. We say that an assertion A subsumes (implies) assertion B, denoted by

A =⇒ B, if A→ True, then B→ True. This means that B can be obtained from

A by weakening A’s condition. In this case, A is more specific/constrained than

B. For instance, an assertion verifying the existence of a checked element <span

id="mainContent"> can be implied by an assertion which verifies both the

existence of that element and its attributes/textual values.

Algorithm 3 shows our assertion regeneration procedure. We consider each

48

manual-test state si (Definition 6) in the SFG and try to reuse existing associated

assertions in si or generate new ones based on them for another state s j. We extend

the set of DOM-based assertions in three forms: (1) reusing the same assertions

from manual-test states for states without such assertions, (2) regenerating asser-

tions with the exact assertion pattern structure as the original assertions but adapted

for another state, and (3) learning assertions structures of the original assertions,

and generate similar ones for another state.

Assertion Reuse

As an example for the assertion reuse, consider Figure 3.3 and the manual-test

path with the sequence of states 〈Index,s1,s2,s3,s4,s5〉 for adding a note. Asser-

tions in Figure 3.2 line 7 and 12 are associated to states s1 and s4, respectively.

Suppose that we explore an alternative path for deleting a note with the sequence

〈Index,s1,s2,s10,s4,s5〉, which was not originally considered by the developer.

Since the two test paths share a common path from Index to s1, the assertion on s1

can be reused for the new test case (note deletion) as well. This is a simple form of

assertion reuse on new test paths.

Assertion Regeneration

We regenerate two types of precondition assertions namely exact element-based

assertions, and exact region-based assertions. By “exact” we mean repetition of

the same structure of an original assertion on a checked element.

The rationale behind our technique is to use the location and properties of

checked elements and their close-by neighbourhood in the DOM tree to regen-

erate assertions, which focus on the exact repeated structures and patterns in other

DOM states. This approach is based on our intuition that checking the close-by

neighbour of checked elements is similarly important.

Exact element assertion generation. We define assertions of the form A (s j,c(e j))

with a condition c(e j) for element e j on state s j. Given an existing checked element

(Definition 8) ei on a DOM state si, we consider 2 conditions as follows:

1. ElementFullMatched: If a DOM state s j contains an element with exact tag,

attributes, and text value as ei, then reuse assertion on ei for checking e j on

49

Algorithm 3: Assertion Regeneration
input : An extended state-flow graph SFG = < r,V,E,L >

Procedure REGENERATEASSERTIONS(SFG)
begin

/*Learn from DOM elements in the manual-test states*/
1 dataset←MAKEDATASET(SFG.GETMANUALTESTSTATES())
2 TRAIN(dataset)
3 for si ∈V do
4 for ce ∈ si.GETCHECKEDELEMENTS() do
5 assert← ce.GETASSERTION()
6 cer← ce.GETCHECKEDELEMENTREGION()
7 si.ADDREGFULLASSERTION(cer)
8 for s j ∈V & s j 6= si do
9 dom← s j.GETDOM()

/*Generate exact element assertion for s j*/
10 if ELEMENTFULLMATCHED(ce,dom) then
11 s j .REUSEASSERTION(ce,assert)

end
12 else if ELEMENTTAGATTMATCHED(ce,dom) then
13 s j .ADDELEMTAGATTASSERTION(ce)

end
/*Generate exact region assertion for s j*/

14 if REGIONFULLMATCHED(cer,dom) then
15 s j .ADDREGFULLASSERTION(cer)

end
16 else if REGIONTAGATTMATCHED(cer,dom) then
17 s j .ADDREGTAGATTASSERTION(cer)

end
18 else if REGIONTAGMATCHED(cer,dom) then
19 s j .ADDREGTAGASSERTION(cer)

end
end

end
/* Generate similar region assertions for si */

20 for be ∈ si.GETBLOCKELEMENTS() do
21 if PREDICT(be) == 1 then
22 si.ADDREGTAGATTASSERTION(be.GETREGION())

end
end

end
end

s j.

2. ElementTagAttMatched: If a DOM state s j contains an element e j with exact

tag and attributes, but different text value as ei, then generate assertion on e j

for checking its tag and attributes.

Table 3.1 summarizes these conditions. An example of a generated assertion is

50

Table 3.1: Summary of the assertion reuse/regeneration conditions for an element e j on a DOM state s j ,
given a checked element ei on state si.

Condition Description
ElementFullMatched Tag(ei)=Tag(e j) ∧ Att(ei)=Att(e j) ∧

T xt(ei)=T xt(e j)
ElementTagAttMatched Tag(ei)=Tag(e j)∧Att(ei)=Att(e j)
RegionFullMatched Tag(R(ei,si))=Tag(R(e j,s j)) ∧

Att(R(ei,si))=Att(R(e j,s j)) ∧
T xt(R(ei,si))=T xt(R(e j,s j))

RegionTagAttMatched Tag(R(ei,si))=Tag(R(e j,s j)) ∧
Att(R(ei,si))=Att(R(e j,s j))

RegionTagMatched Tag(R(ei,si))=Tag(R(e j,s j))

assertTrue(isElementPresent(By.id("mainContent"))) which

checks the existence of a checked element with ID "mainContent". Such an

assertion can be evaluated in any state in the SFG that contains that DOM element

(and thus meets the precondition). Note that we could also propose assertions in

case of mere tag matches, however, such assertions are not generally considered

useful as they are too generic.

Exact region assertion generation. We define the term checked element region to

refer to a close-by area around a checked element:

Definition 10 (Checked Element Region) For a checked element e on state s, a

checked element region R(e,s), is a function R : (e,s)→{e,P(e),C h(e)}, where

P(e) and C h(e) are the parent node, and children nodes of e respectively. 2

For example, for the element e = (Fig-

ure 3.1), which is in fact a checked element in line 12 of Figure 3.2 (at state

s4 in Figure 3.3), we have R(e,s4) = {e,P(e),C h(e)}, where P(e)=<td

class="cssMain" valign="top">, and C h(e)={<img src="img/he

ad notes.gif">, <p>, <input id="ok" src="img/ok0.gif">}.
We define assertions of the form A (s j,c(R(e j,s j))) with a condition

c(R(e j,s j)) for the region R of an element e j on state s j. Given an existing

checked element ei on a DOM state si, we consider 3 conditions as follows:

1. RegionFullMatched: If a DOM state s j contains an element e j with exact tag,

attributes, and text values of R(e j,s j) as R(ei,si), then generate assertion

on R(e j,s j) for checking its tag, attributes, and text values.

51

2. RegionTagAttMatched: If a DOM state s j contains an element e j with exact

tag, and attributes values of R(e j,s j) as R(ei,si), then generate assertion on

R(e j,s j) for checking its tag and attributes values.

3. RegionTagMatched: If a DOM state s j contains an element e j with exact

tag value of R(e j,s j) as R(ei,si), then generate assertion on R(e j,s j) for

checking its tag value.

Note that the assertion conditions are relaxed one after another. In other words,

on a DOM state s, if s |= RegionFullMatched, then s |= RegionTagAttMatched;

and if s |= RegionTagAttMatched, then we have s |= RegionTagMatched. Conse-

quently it suffices to use the most constrained assertion. We use this property for

reducing the number of generated assertions in Section 22.

Table 3.1 summarizes these conditions. Assertions that we generate for a

checked element region, are targeted around a checked element. For instance, to

check if a DOM state contains a checked element region with its tag, attributes, and

text values, an assertion will be generated in the form of assertTrue(isEle

mentRegionFullPresent(parentElement,element,childrenEl

ements)), where parentElement, element, and childrenElements

are objects reflecting information about that region on the DOM.

For each checked element ce on si, we also generate a RegionFull type of

assertion for checking its region, i.e., verifying RegionFullMatched condition on

si (Algorithm 3 lines 6–7). Lines 10–13 perform exact element assertion gener-

ation. The original assertion can be reused in case of ElementFullMatched (line

11). Lines 14–19 apply exact region assertion generation based on the observed

matching. Notice the hierarchical selection which guarantees generation of more

specific assertions.

Learning Assertions for Similar Regions

The described exact element/region assertion regeneration techniques only con-

sider the exact repetition of a checked element/region. However, there might be

many other DOM elements that are similar to the checked elements but not ex-

actly the same. For instance, consider Figure 3.2 line 12 in which a <span

id="mainContent"> element was checked in an assertion. If in another state,

52

a <div id="centreDiv"> element exists, which is similar to the

element in certain aspects such as content and position on the page, we could gen-

erate a DOM-based assertion for the <div> element in the form of assertTru

e(isElementPresent(By.id("centreDiv")));.

We view the problem of generating similar assertions as a classification prob-

lem which decides whether a block level DOM element is important to be checked

by an assertion or not. To this end, we apply machine learning to train a classi-

fier based on the features of the checked elements in existing assertions. More

specifically, given a training dataset D of n DOM elements in the form D =

{(xi,yi) | xi ∈ Rp, yi ∈ {−1,1}}n
i=1, where each xi is a p-dimensional real vector

representing the features of a DOM element ei, and yi indicates whether ei is a

checked element (+1) or not (−1), the classification function F : xj→ yi maps a

feature vector x j to its class label y j. To do so, we use Support Vector Machine

(SVM) [179] to find the max-margin hyperplane that divides the elements with

yi = 1 from those with yi =−1. We chose SVM because it outperforms other clas-

sification algorithms that we tried. In the rest of this subsection, we describe our

used features, how to label the feature vectors, and how to generate similar region

DOM-based assertions.

DOM element features. We present a set of features for a DOM element to be

used in our classification task. A feature extraction function ψ : e→ x maps an

element e to its feature set x. Many of these features are based on and adapted

from the work in [164], which performs page segmentation ranking for adapta-

tion purpose. The work presented a number of spatial and content features that

capture the importance of a webpage segment based on a comprehensive user

study. Although they targeted a different problem than ours, we gained insight

from their empirical work and use that to reason about the importance of a page

segment for testing purposes. Our proposed DOM features are presented in Ta-

ble 3.2. We normalize feature values between [0–1] as explained in Table 3.2, to

be used in the learning phase. For example, consider the element e =

in Figure 3.1, then ψ(e) = 〈0.5, 0.7, 0.6, 0.5, 1, 0.2, 0, 0.3〉 corresponding to

features BlockCenterX, BlockCenterY, BlockWidth, BlockHeight,

TextImportance, InnerHtmlLength, LinkNum, and ChildrenNum, re-

spectively.

53

Table 3.2: DOM element features used to train a classifier.

Feature Name Definition Rationale
ElementCenterX,
ElementCen-
terY

The (x,y) coordinates of the centre of a DOM ele-
ment. BlockCenterX and BlockCenterY are normal-
ized by dividing by PageWidth and PageHeight (i.e.,
the width and height of the whole page) respectively.

Web designers typically put the most important information (main con-
tent) in the centre of the page, the navigation bar on the header or on the
left side, and the copyright on the footer [164]. Thus, if the (x,y) coordi-
nate of the centre of a DOM block is close to the (x,y) coordinate of the
web page centre, that block is more likely to be part of the main content.

ElementWidth,
ElementHeight

These are the width and height of the DOM element,
which are also normalized by dividing by PageWidth
and PageHeight, respectively.

The width and height of an element can be an indication for an important
segment. Intuitively, large blocks typically contain much irrelevant noisy
content [164].

TextImportance This binary value feature indicates whether the block
element contains any visually important text.

Text in bold/italic style, or header elements (such as h1, h2,..., h5) to
highlight and emphasize textual content usually imply importance in that
region.

InnerHtmlLength The innerHtmlLength is the length of all HTML code
string (without whitespace) in the element block. We
normalize this value by dividing it by InnerHtml-
Length of the whole page.

The normalized feature value can indicate the block content size. Intu-
itively, blocks with many sub-blocks and elements are considered to be
less important than those with fewer but more specific content [164].

LinkNum The LinkNum is the number of anchor (hyperlink) el-
ements inside the DOM element and is normalized by
the link number of the whole page.

If a DOM region contains clickables, it is likely part of a navigational
structure (menu) and not part of the main content [164].

ChildrenNum The ChildrenNum is the number of child nodes under
a DOM node. We normalize this value by dividing it
by a constant number (10 in our implementation) and
setting the normalized value to 1 if it exceeds 1.

We have observed in many DOM-based test cases that checked elements
do not have a large number of children nodes. Therefore, this feature can
be used to discourage elements with many children to be selected for a
region assertion, to enhance test readability.

54

Labelling the feature vectors. For the training phase, we need a dataset of feature

vectors for DOM elements annotated with +1 (important to be checked in assertion)

and -1 (not important for testing) labels. After generating a feature vector for each

“checked DOM element”, we label it by +1. For some elements with label -1,

we consider those with “most frequent features” over all the manual-test states.

Unlike previous work that focuses on DOM invariants [148], our insight is that

DOM subtrees that are invariant across manual-test states, are less important to be

checked in assertions. In fact, most modern web applications execute a significant

amount of client-side code in the browser to mutate the DOM at runtime; hence

DOM elements that remain unchanged across application execution are more likely

to be related to fixed (server-side) HTML templates. Consequently, such elements

are less likely to contain functionality errors. Thus, for our feature vectors we

consider all block elements (such as div, span, table) on the manual-test states

and rank them in a decreasing order based on their occurrences. In order to have

a balanced dataset of items belonging to {-1,+1}, we select the k-top ranked (i.e.,

k most frequent) elements with label -1, were k equals the number of label +1

samples.

Predicting new DOM elements. Once the SVM is trained on the dataset, it is

used to predict whether a given DOM element should be checked in an assertion

(algorithm 3, Lines 20–23). If the condition F (ψ : e→ x)=1 holds, we generate a

RegionTagAtt type assertion (i.e., checking tag and attributes of a region). We

do not consider a RegionFull (i.e., checking tag, attributes, and text of a region)

assertion type in this case because we are dealing with a similar detected region,

not an exact one. Also, we do not generate a RegionTag assertion type because

a higher priority should be given to the similar region-based assertions.

Assertion Minimization

The proposed assertion regeneration technique can generate many DOM-based as-

sertions per state, which in turn can make the generated test method hard to com-

prehend and maintain. Therefore, we (1) avoid generating redundant assertions,

and (2) prioritize assertions based on their constraints and effectiveness.

Avoiding redundant assertions. A new reused/generated assertion for a state

55

RegionTag

RegionTagAttribute

RegionFull

ElementTagAttribute

ElementFull

Figure 3.5: The subsumption lattice showing the is-subsumed-by relation for generated assertions.

(Algorithm 3, lines 5, 11, 13, 15, 17, 19, and 22), might already be sub-

sumed by, or may subsume other assertions, in that state. For example an ex-

act element assertion which verifies the existence of a checked element <span

id="mainContent"> can be subsumed by an exact region assertion which has

the same span element in either its checked element, parent, or its children nodes.

Assertions that are subsumed by other assertions are redundant and safely elimi-

nated to reduce the overhead in testing time and increase the readability and main-

tainability of test cases. For a given state s with an existing assertion B, a new

assertion A generated for s is treated as follows:
Discard A ; if B =⇒ A

Replace B with A ; if A =⇒ B and

B 6∈ original assertions

Add A to s ; otherwise

Figure 3.5 depicts the subsumption lattice in which arrows indicate is-

subsumed-by relation. For instance, assertions of type RegionFull (checking the

tag, attributes, and text of a region) subsume all other weaker assertions such as

RegionTagAttribute (checking the tag and attributes of a region), or ElementFull

(checking the tag, attributes, and text of an element).

Prioritizing assertions. We prioritize the generated assertions such that given a

maximum number of assertions to produce per state, the more effective ones are

ranked higher and chosen. We prioritize assertions in each state in the following or-

56

der; the highest priority is given to the original human-written assertions. Next are

the reused, the RegionFull, the RegionTagAtt, the ElementTagAtt, and

the RegionAtt assertions. This ordering gives higher priorities to more speci-

fic/constrained assertions first.

3.3.4 Test Suite Generation

In the final step, we generate a test suite from the extended state-flow graph. Each

path from the Index node to a sink node (i.e., node without outgoing edges) in

the SFG is transformed into a unit test. Loops are included once. Each test case

captures the sequence of events as well as any assertions for the target states. To

make the test case more readable for the developers, information (such as tag name

and attributes) about related DOM elements is generated as code comments.

Filtering unstable assertions. After generating the extended test suite, we make

sure that the reused/regenerated assertions are stable, i.e., do not falsely fail, when

running the test suite on an unmodified version of the web application. Some of

these assertions are not only DOM related but also depend on the specific path

through which the DOM state is reached. Our technique automatically identifies

and filters these false positive cases from the generated test suite. This is done

through executing the generated test suite and eliminating failing assertions form

the test cases iteratively, until all tests pass successfully.

3.4 Implementation
The approach is implemented in a tool, called TESTILIZER, which is publicly avail-

able [47]. The state exploration component is built on top of CRAWLJAX [120].

TESTILIZER requires as input the source code of the human-written test suite and

the URL of the web application. Our tool does not modify the web application thus

the source code of web application is not required. TESTILIZER currently supports

SELENIUM tests, however, our approach can be easily applied to other DOM-based

tests as well.

To instrument the test cases, we use JavaParser [32] to get an abstract syntax

tree. We instrument all DOM related method calls and calls with arguments that

have DOM element locaters. The identified DOM related method call expressions,

57

such as findElement in SELENIUM tests, will be then wrapped by our own

method call that enables us to collect information such as page source, test case

name, elements under test, element locator, and assertions, from test execution

at runtime. We also log the DOM state after every event in the tests, capable of

changing the DOM. Note that this instrumentation does not affect the functionality

of the test cases.

For the state abstraction function (as defined in Definition 4), we generate an

abstract DOM state by ignoring recurring structures (patterns such as table rows

and list items), textual content (such as ignoring the text node “Note has been

created” in the partial DOM shown in Figure 3.1), and contents in the <script>

tags. For the classification step, we use LIBSVM [72], which is a popular library

for support vector machines.

3.5 Empirical Evaluation
To assess the efficacy of our proposed technique, we have conducted a controlled

experiment to address the following research questions:

RQ1. How much of the information (input data, event sequences, and assertions)

in the original human-written test suite is leveraged by TESTILIZER?

RQ2. How successful is TESTILIZER in regenerating effective assertions?

RQ3. How does the effectiveness of the original test suite affect the effectiveness

of the generated tests?

RQ4. Does TESTILIZER improve code coverage?

Our experimental data along with the implementation of TESTILIZER are avail-

able for download [47].

3.5.1 Experimental Objects

We selected eight open-source web applications that contain existing SELENIUM

test suites and fall under different application domains. Moreover, since our ef-

fectiveness assessment (RQ2) is based on the client-side mutation analysis (as ex-

58

Table 3.3: Experimental objects.

ID Name SLOC # Test # Assertions # Mutants
Methods

1 Claroline PHP (295K) 23 35 38
(v 1.11.7) JS (36K)

2 PhotoGallery PHP (5.6K) 7 18 26
(v 3.31) JS (1.5K)

3 WolfCMS PHP (35K) 12 42 28
(v 0.7.8) JS (1.3K)

4 EnterpriseStore Java (3K) 19 17 52
(v 1.0.0) JS (57K)

5 CookeryBook PHP (25K) 6 25 22
JS (0.4K)

6 AddressBook PHP (30.2K) 13 13 30
(v 8.2.5) JS (1.1K)

7 StudyRoom PHP (1.6K) 12 23 38
JS (10.6K)

8 Brotherhood PHP (212K) 10 10 41
(v 0.4.5) JS (0.8K)

plained in Section 3.5.2), we chose applications that make extensive use of client-

side JavaScript.

The experimental objects and their properties are shown in Table 3.3. Claroline

[21] is a collaborative e-learning environment, which allows instructors to create

and administer courses. Phormer [39] is a photo gallery equipped with upload,

comment, rate, and slideshow functionalities. WolfCMS [18] is a content manage-

ment system. EnterpriseStore [6] is an enterprise asset management web applica-

tion. CookeryBook [5] is an adaptable cookery book that customizes the presenta-

tion of recipes. AddressBook [1] is an address/phone book. SimulatedStudyRoom

[14] is a a web interface for the projector system of a study room, which simulates

an outdoor study environment. Brotherhood [2] is an online social networking plat-

form for sharing interests, activities, and updates, sending messages, and uploading

photos.

3.5.2 Experimental Setup

Our experiments are performed on Mac OS X, running on a 2.3GHz Intel Core i7

CPU with 8 GB memory, and FireFox 38.0.

59

Table 3.4: Test suite generation methods evaluated.

Test Suite Exploration Strategy Action Sequence Assertion
Generation Generation Generation
Method Method Method
ORIG Manual Manual Manual
EXND+AR
(TESTILIZER)

Explore around manual-test states in
the initial SFG (EXND)

Traversing paths in the extended
SFG generated from the original
tests

Assertion
regen-
eration
(AR)

EXND*+AR
(TESTILIZER*)

Explore around newly discovered
states in the extended SFG (EXND*)

Traversing paths in the extended
SFG generated from the original
tests

Assertion
regen-
eration
(AR)

EXND+RND Explore around states in the initial
SFG (EXND)

Traversing paths in the extended
SFG generated from the original
tests

Random
(RND)

RAND+RND Random crawling (RAND) Traversing paths in the SFG gen-
erated by random crawling

Random
(RND)

Independent Variables

We compare the original human-written test suites with the test suites generated by

TESTILIZER.

Test suite generation method. We evaluate different test suite generation meth-

ods for each application as presented in Table 3.4. We compare EXND+AR

(TESTILIZER) with 4 baselines, (1) ORIG: original human-written test suite, (2)

EXND*+AR (TESTILIZER*): differs from TESTILIZER in the alternative path ex-

ploration approach, i.e., EXND* explores around the newly discovered states rather

than exploring around states in the initial SFG. In other word, paths in the extended

SFG are more diverse from manual-test paths. This is to evaluate our proposed

exploration approach (Section 3.3.2). (3) EXND+RND: test suite generated by

traversing the extended SFG, equipped with random assertion generation, and (4)

RAND+RND: random exploration and random assertion generation.

In random assertion generation, for each state we generate element/region as-

sertions by randomly selecting from a pool of DOM-based assertions. These ran-

dom assertions are based on the existence of an element/region in a DOM state.

Such assertions are expected to pass as long as the application is not modified.

However, due to our state abstraction mechanism, this can result in unstable asser-

tions, which are also automatically eliminated following the approach explained in

Section 3.3.4.

60

We further evaluate various instantiations of our assertion generation in

EXND+AR:

• (a) original assertions,

• (b) reused assertions (Section 22),

• (c) exact generated (Section 22),

• (d) similar region generated (Section 22),

• (e) a combination of all these types.

Exploration constraints. We confine the max exploration time to five minutes in

our experiments to evaluate generated models of different sizes. Suppose in the

EXND/EXND* approaches, TESTILIZER/TESTILIZER* spend time t to generate

the initial SFG for an application. To make a fair comparison, we add this time

t to the 5 minutes for the RAND exploration approach. We set no limits on the

crawling depth nor the maximum number of states to be discovered while looking

for alternative paths. Note that for EXND/EXND* and RAND crawling, after a

clickable element on a state was exercised, the crawler resets to the index page and

continues crawling from another chosen state.

Maximum number of generated assertions. We set the maximum number of

generated assertions for each state to five. To have a fair comparison, also for the

EXND+RND and RAND+RND methods, we perform the same assertion prioriti-

zation used in TESTILIZER and select the top ranked.

Learning parameters. We set the SVM’s kernel function to the Gaussian RBF,

and use 5-fold cross-validation for tuning the model and feature selection.

Dependent Variables

Original coverage. To assess how much of the information including input data,

event sequences, and assertions of the original test suite is leveraged (RQ1), we

measure the state and transition coverage of the initial SFG (i.e., SFG mined from

the original test cases). We also measure how much of the unique assertions and

unique input data in the original test cases has been utilized.

61

Table 3.5: DOM mutation operators.

ID Mutation Operator Description
1 Changing the id/tag name in getElementById and getElementByTagName methods.
2 Changing the attribute name/value in setAttribute, getAttribute and removeAttribute

methods.
3 Removing $ sign that returns a jQuery object.
4 Changing the innerHTML assignment of an element to an empty string.
5 Swapping innerHTML and innerText properties.
6 Changing the name of the property/class/element in the addClass, removeClass, removeAttr,

remove, attr, and css methods in jQuery.
7 Changing request type (Get/Post), URL, and the value of the boolean asynch argument in the

request.open method.

Mutation score. In the context of regression testing, a realistic evaluation of the

effectiveness of generated tests requires different versions of the same subject ap-

plications. However, we did not have such multiple versions that work fine with

the existing tests. Thus, to answer RQ2 (assertions effectiveness), we evaluate

the DOM-based fault detection capability of TESTILIZER through automated first-

order mutation analysis. The test suites are evaluated based on the number of

detected (or killed) mutants, which is known as the mutation score. Mutation score

is used to measure the effectiveness of a test suite in terms of its ability to detect

faults [186]. The mutation score is computed as the percentage of killed mutants

over all (non-equivalent) mutants.

We apply the DOM, jQuery, and XHR mutation operators at the JavaScript

code level, shown in Table 3.5, which are based on a study of common mistakes

made by web developers [129]. For each experimental object we generate as much

possible mutated (faulty) versions, each containing one injected artificial defect

into the JavaScript code. To do so, we carefully searched within JavaScript files

of each subject system for target mutation locations based on the defined mutation

operators. The last column of Table 3.3 presents the number of injected mutants

for each application with an average of 34 generated mutants.

Correlation. For RQ3 (the impact of original tests effectiveness), we use the non-

parametric Spearman’s correlation to quantitively study the relationship between

the effectiveness of the original and the generated test suites. The Spearman’s cor-

relation coefficient measures the monotonic relationship between two continuous

random variables. The Spearman correlation coefficient does not require the data

62

ORIG EXND EXND* RAND

10

20

30

40

50

60

70

St
at

es

(a) Number of states.

ORIG EXND EXND* RAND

0

20

40

60

80

Tr

an
si

tio
ns

(b) Number of transitions.

ORIG EXND EXND* RAND

0

10

20

30

40

50

60

Te

st
 c

as
es

(c) Number of test cases.

Figure 3.6: Box plots of number of states, transitions, and test cases for different test suites. Mean values
are shown with (*).

to be normally distributed [103].

In order to measure the influence of the effectiveness of the original tests on

the effectiveness of the generated test, we compute the correlation between the

mutation score of the original tests and the generated tests. For this purpose, we

generate different versions of a test suite by removing some test cases, which can

affect the mutation score of the original test suite as well as the generated test

suite. Since applying mutation analysis on many different variants of test suites

for all of the experimental objects is very costly, we only considered the Phormer

photo gallery application in this study and executed test suites 780 times. The

original written test suite contains 7 test cases. We generate different combinations

on test suites with 1 test case (7 variants) and 6 test cases (7 variants) out of 7 tests,

resulting in 14 test suites. For each of the 14 test suites plus the original one (15

in total) we use TESTILIZER to generate an extended test suite, resulting in 30 test

suites (15 original and 15 generated). Finally we calculate the mutation score for

each of the 30 test suites on 26 mutants, i.e., 780 test suite executions, and measure

the correlation between the mutation score of the 15 original and the 15 generated

tests.

Code coverage. Code coverage has been commonly used as an indicator of the

quality of a test suite by identifying under-tested parts, while it does not directly

imply the effectiveness of a test suite [97]. Although TESTILIZER does not target

code coverage maximization, to address RQ4, we compare the JavaScript code

coverage of the different test suites using JSCover [33].

63

3.5.3 Results

Box plots in Figure 3.6 depict characteristics of the evaluated test suites with re-

spect to the exploration strategies. For the random exploration (RAND), we re-

port the average values over three runs. As expected, the number of states, tran-

sitions, and generated test cases are higher in TESTILIZER/TESTILIZER* (shown

as EXND/EXND*). RAND on average generates fewer states and transitions, but

more test cases compared to the original test suite. This is mainly due to the fact

that in the SFG generated by RAND, there are more paths from the Index to the

sink nodes than in the SFG mined from the original test suite. Results indicate that

the number of states, transitions, and test cases are not that different in EXND or

EXND* exploration methods.

Figure 3.7 presents the average number of assertions per state before and after

filtering the unstable ones (as explained in Section 3.3.4). The difference between

the number of actual generated assertions and the stable ones reveals that our gen-

erated assertions (combined, similar/exact generated) are more stable than the ran-

dom approach. The reduction percentage is 17%, 48%, 30%, 9%, 13%, 15%, 38%,

and 35% for the original, reused, exact generated, similar generated, combined

(TESTILIZER), TESTILIZER*, EXND+RND and RAND+RND, respectively.

A major source of this instability is the selection of dynamic DOM elements in

the generated assertions. For instance, RND (random assertion generation) selects

many DOM elements with dynamic time-based attributes. Also the more restricted

an assertion is, the less likely it is to remain stable in different paths. This is

the case for some of the (1) reused assertions that replicate the original assertions

and (2) exact generated ones specially FullRegionMatchs type. On the other

hand, learned assertions are less strict (e.g., AttTagRegionMatchs) and are

thus more stable.
Finding 1: Test suites generated by TESTILIZER compared to randomly gener-

ated tests are more stable, i.e., they have fewer false failures.

Overall, the test suite generated by TESTILIZER, on average, consists of 9%

original assertions, 14% reused assertions, 33% exact generated assertions, and

44% of similar learned assertions.

Original SFG coverage (RQ1). Table 3.6 shows the usage of original test suite

64

0	

1	

2	

3	

4	

5	

EXND	 +	
Original	

EXND	 +	
Reused	

EXND	 +	
Exact	

Generated	

EXND	 +	
Similar	

Generated	

EXND	 +	
Combined	
(Tes>lizer)	

EXND*	 +	
Combined	
(Tes>lizer*)	

EXND	 +	
RND	

RAND	 +	
RND	

Av
g	
#	
As
se
>o

ns
	 p
er
	 S
ta
te
	

Before	 Filtering	 A4er	 Filtering	

Figure 3.7: Average number of assertions per state, before and after filtering unstable assertions.

Table 3.6: Statistics of the original test suite information usage, average over experimental objects.

Test Suite Generation Original Original Original Original
State Transition Input Assertion

Coverage Coverage Data Usage Usage
EXND/EXND*+AR 98% 96% 100% 100%
EXND+RND 98% 96% 100% 0%
RAND+RND 70% 63% 0% 0%

information (RQ1) by different test suites. As expected TESTILIZER, which lever-

ages the event sequences and inputs of the original test suite, has on average almost

full state (98%) and transition (96%) coverage of the initial model. This is the same

for EXND and EXND* exploration strategies. The few cases missed are due to the

traversal algorithm we used, which has limitations on dealing with cycles in the

graph that do not end with a sink node and thus are not generated. Note that we

can select the missing cases from the original manual-written test suite and add

them to the generated test suite.

On average, the RAND exploration approach covered 70% of the states and of

63% the transitions, without using input data except for the login data, which was

provided to the crawler. By analyzing the generated test suites, we found that the

missing of original states and transitions are mainly due to the lack of proper input

data.
Finding 2: Randomly generated tests are unable to produce many of the states

and transitions of the model extracted from the original written tests due to the

lack of proper inputs.

Test suite effectiveness (RQ2). Figure 3.8 depicts a comparison of mutation scores

65

0

20

40

60

80

M
ut

at
io

n
Sc

or
e

(%
)

ORIG
EXND +
Original

EXND +
Reused

EXND +
Exact

Generated

EXND +
Similar

Generated

EXND +
Combined
(Testilizer)

EXND* +
Combined
(Testilizer*)

EXND +
RND

RAND +
RND

Figure 3.8: Box plots of mutation score using different test suite generation methods. Mean values are
shown with (*).

for the different methods. It is evident that exact and similar generated assertions

are more effective than original and reused ones. The effectiveness of each asser-

tion generation technique solely is not more than the random approach. However,

the results show that their combination (TESTILIZER) outperforms fault detection

capability of the original test suite by 105% (21 percentage point increase) and the

random methods by 22% (8 percentage point increase). This supports our insight

that leveraging input values and assertions from human-written test suites can be

helpful in generating more effective test cases.

Finding 3: On Average, tests generated by TESTILIZER outperform the fault

detection capability of the original test suite by 105% (21 percentage point in-

crease) and the random methods by 22% (8 percentage point increase).

Test suites generated using TESTILIZER* are almost as effective as those gen-

erated by TESTILIZER. Applying EXND and EXND* can result in extended SFGs

with different states and transitions. Based on our observations of failed test cases,

i.e. detected mutants, we can give two reasons for this similar effectiveness: (1)

the injected mutants can be reflected in multiple DOM states and thus assertions

may fail on states that can be different in the two extended SFGs. (2) most of the

detected mutants were reflected on common initial SFG states.

Impact of the original tests effectiveness (RQ3). The Spearman correlation anal-

ysis reveals that there exists a strong positive correlation (r= 0.91, p=0) between

the effectiveness of the original tests and the effectiveness of the generated tests.

This is expected as more manual-test paths/states and assertions helps TESTILIZER

66

ORIG EXND EXND* RAND

10

20

30

40

50

60

C
od

e
C

ov
er

ag
e

(%
)

Figure 3.9: Box plots of JavaScript code coverage achieved using different test suites. Mean values are
shown with (*).

to generate more tests with diverse assertions.

Finding 4: Our results suggest that, there is a strong correlation between the

effectiveness of the original tests and the effectiveness of the generated tests.

Thus the quality of tests generated by TESTILIZER is directly influenced by the

original test suite.

Code coverage (RQ4). Although code coverage improvement is not the main goal

of TESTILIZER in this work, the generated test suite has a slightly higher code cov-

erage. As shown in Figure 3.9, on average there is a 22% improvement (8 percent-

age point increase) over the original test suite and 19% improvement (7 percentage

point increase) over the RAND test suite. Note that the original test suites were

already equipped with proper input data, but not many execution paths (thus the

slight increase). On the other hand, the random exploration considered more paths

in a blind search, but without proper input data (except for login data). Code cov-

erage is slightly higher for EXND compared to EXND*. Our observations reveal

that giving higher priority for expanding manual-test states, i.e., EXND, resulted in

executing lines of code and consequently covering new functionalities that could

be missed by applying EXND*. The difference is, however, not significant and

can not imply that EXND can always achieve higher code coverage compared to

EXND*.
Finding 5: Test suites generated by TESTILIZER have slightly higher code cov-

erage compared to the original ones and the ones generated by random explo-

ration.

67

3.6 Discussion

3.6.1 Applications

TESTILIZER can be used in automated testing of web applications by generating

DOM-based tests given an existing test suite. The presented technique is applicable

only in the context of regression testing, which assumes the current version of the

given application is correct. This assumption is the basis for assertion generation

and the filtration process for unstable assertions.

Although we proposed this work in the context of testing rich web interfaces, a

similar approach can be adapted to GUI applications in general such as desktop and

mobile apps. For instance, Memon [116] proposed dynamic analysis techniques to

reverse engineer an event-flow graph (EFG) of desktop GUI applications. Similar

to the SFG used in our work, EFG can be used for test case generation.

The results of this work support the usefulness of leveraging existing UI tests

to generate new ones. However, TESTILIZER is limited to applications that already

have human-written tests, which may not be so prevalent in practice. An interesting

research question is whether human-written tests of similar applications can be

leveraged to generate effective tests for applications without existing tests.

3.6.2 Generating Negative Assertions

In our experiments we observed that the majority of DOM-based assertions verify

either the existence of an element, its properties, or its value on the DOM tree. In

this work for fewer instances of negative assertions, which assert the absence of

an element, we only considered reusing such assertions on a same state. We be-

lieve that its is possible to generate negative assertions using the existing manually-

written tests for similar DOM states. One possible approach to calculate the simi-

larity – between 0 and 1 – of two abstract DOM state in terms of similarity of their

corresponding string representation. Given a source state containing a negative as-

sertion, and a target state, if the similarity between source and target is above 0.5,

we can add the negative assertion from source to the set of assertions for the target

state. Generating such negative assertions might in some cases produce unstable

assertions that fail on the unmodified version of the application. Such unstable

68

assertions can be removed through the filtering process described in Section 3.3.4.

3.6.3 Test Case Dependencies

An assumption made in TESTILIZER is that the original test suite does not have

any test case dependencies. Generally, test cases should be executable without

any special order or dependency on previous tests. However, it has been shown

that dependent tests exist in practice, and are sometimes difficult to identify [198].

While conducting our evaluation, we also came across multiple test suites that

violated this principle. For such cases, although TESTILIZER can generate test

cases, failures can occur due to these dependencies.

3.6.4 Effectiveness

The effectiveness of the generated test suite depends on multiple factors. First, the

size and the quality of the original test suite is very important; if the original test

suite does not contain paths with effective assertions, it is not possible to generate

an effective extended test suite. Second, the learning-based approach can be tuned

in various ways (e.g., selecting other features, changing the SVM parameters, and

choosing sample dataset size) to obtain better results. Also other learning tech-

niques can be used and we used SVM due to the ease of use. Third, the size of

the DOM subtree (region) to be checked can be increased to detect changes more

effectively, however, it might come at the cost of making the test suite more brittle.

Forth, the crawling time directly affects the size of the extended SFG and thus size

of generated test suites, which may result in producing more effective tests.

3.6.5 Efficiency

The larger a test suite, the more time it takes to test an application. Since in many

testing environments time is limited, not all possible paths of events should be

generated in the extended test suite. The challenge is finding a balance between

effectiveness and efficiency of the test cases. The current graph traversal method in

TESTILIZER may produce test cases that share common paths, which do not con-

tribute much to fault detection or code coverage. An optimization could be realized

by guiding the test generation algorithm towards sates that have more constrained

69

DOM-based assertions.

3.6.6 Threats to Validity

A threat to the external validity of our experiment is with regard to the gener-

alization of the results to other web applications. We acknowledge that more web

applications should be evaluated to support the conclusions. To mitigate this threat,

however, we selected our experimental objects from different domains with vari-

ations in functionality and structure, which we believe they are representative of

real-world web applications. Although SELENIUM is widely used in industry for

testing commercial web applications, unfortunately, very few open source web ap-

plications are publicly available that have (working) SELENIUM test suites. More-

over, since our effectiveness evaluation is based on the client-side mutation anal-

ysis, as shown in Table 3.5, the chosen applications should have a considerable

amount of JavaScript code. However, many available web applications with SE-

LENIUM tests are mainly server-side containing embedded JavaScript code. There-

fore, we were able to include a limited number of applications with not large test

suites in our study.

One threat to the internal validity is related to the mutation score analysis for

the generated tests, for which the mutants were manually produced for the studied

subjects. To mitigate the bias towards producing good results for TESTILIZER,

we carefully searched within all JavaScript files of each subject system for target

mutation locations based on the defined mutation operators on DOM, jQuery, and

XHR, and produced a mutant based on each observed instance similarly for all

cases.

With respect to reproducibility of our results, TESTILIZER, the test suites,

and the experimental objects are publicly available, making the experiment repro-

ducible.

3.7 Related Work
Elbaum et al. [81] leverage user-sessions for web application test generation.

Based on this work, Sprenkle et al. [165] propose a tool to generate additional

test cases based on the captured user-session data. McAllister et al. [115] leverage

70

user interactions for web testing. Their method relies on prerecorded traces of user

interactions and requires instrumenting one specific web application framework.

These techniques do not consider leveraging knowledge from existing test cases.

Yuan and Memon [192] propose an approach to iteratively rerun automat-

ically generated test cases for generating alternating test cases. This is inline

with feedback-directed testing [146], which leverages dynamic data produced

by executing the program using previously generated test cases. For instance,

Artemis [66] is a feedback-directed tool for automated testing of JavaScript ap-

plications that uses generic oracles such as HTML validation. Our previous work,

FeedEx [123], applies a feedback-directed exploration technique to guide the ex-

ploration at runtime towards more coverage and higher navigational and structural

diversity. These approaches also do not use information in existing test cases, and

they do not address the problem of test oracle generation.

A generic approach used often as a test oracle is checking for thrown exceptions

and application crashes [191]. This is, however, not very helpful for web applica-

tions as they do not crash easily and the browser continues the execution even after

exceptions. Current web testing techniques simplify the test oracle problem in the

generated test cases by using soft oracles, such as generic user-defined oracles, and

HTML validation [66, 121]. Mirshokraie and Mesbah [128], and Pattabiraman

and Zorn [148] dynamically derive invariants for the JavaScript code and the DOM

respectively. Such inferred invariants are used for automated regression and ro-

bustness testing. Mirshokraie et al. [130] perform mutation analysis to generate

test cases with oracles using the dynamic event-driven model of JavaScript. They

generate oracle for their test cases using mutation testing. However, they do not

reuse the existing test inputs or oracles.

Xie and Notkin [187] infer a model of the application under test by executing

the existing test cases. Dallmeier et al. [78] mine a specification of desktop sys-

tems by executing the test cases. Schur et al. [159] infer behaviour models from

enterprise web applications via crawling. Their tool generates test cases simulating

possible user inputs. Similarly, Xu et al. [188] mine executable specifications of

web applications from SELENIUM test cases to create an abstraction of the system.

Yoo and Harman [190] propose a search-based approach to reuse and regenerate

existing test data for primitive data types. They show that the knowledge of existing

71

test data can help to improve the quality of new generated test data. Alshahwan and

Harman [63] generate new sequences of HTTP requests through a def-use analysis

of server-side code. Pezze et al. [150] present a technique to generate integration

test cases from existing unit test cases. Mirzaaghaei et al. [132] use test adaptation

patterns in existing test cases to support test suite evolution.

Leveraging unit tests has been studied in the context of mining API usage

[201], and test recommendation [67, 82, 90, 99, 107] where testers can get inspired

by recommended tests written for other similar applications. For instance Jan-

jic and Atkinson [99] introduced recommendation techniques for JUnit tests using

previously written test cases and the knowledge extracted from them. Landhäußer

and Tichy [107] explored the possibilities of test reuse for recommendation based

on clones. Such techniques can be utilized in JavaScript unit test generation tools,

such as JSeft [130] or ConFix [127], to generate test for a similar code.

Adamsen et al. [60] propose a technique for testing Android mobile apps by

systematically exposing existing tests to adverse conditions. Zhang et al. [197]

reuse existing test cases for security testing by analyzing the security vulnerabili-

ties in the execution traces. Tonella et al. [172] reuse existing DOM-based tests to

generate visual web tests. This work is also related to test suite augmentation tech-

niques [155, 189] used in regression testing. In test suite augmentation the goal is

to generate new test cases for the changed parts of the application. More related to

our work is [181], which aggregates tests generated by different approaches using

a unified test case language. They propose a test advice framework that extracts

information in the existing tests to help improve other tests or test generation tech-

niques.

Our work is different from these approaches in that we (1) reuse knowledge

in existing human-written test cases in the context of web application testing, (2)

reuse input values and event sequences in test cases to explore alternative paths and

news states of web application, and (3) reuse oracles of the test cases for regener-

ating assertions to improve the fault finding capability of the test suite.

72

3.8 Conclusions
This work is motivated by the fact that a human-written test suite is a valuable

source of domain knowledge, which can be used to tackle some of the challenges

in automated web application test generation. Given a web application and its

DOM-based (such as SELENIUM) test suite, our tool, called TESTILIZER, utilizes

the given test suite to generate effective test cases by exploring alternative paths of

the application, and regenerating assertions for new detected states. Our empirical

results on 8 real-world applications show that TESTILIZER easily outperforms a

random test generation technique, provides substantial improvements in the fault

detection rate compared with the original test suite, while slightly increasing code

coverage too.

The results support the usefulness of leveraging existing DOM-based tests to

generate new ones. However, TESTILIZER is limited to applications that already

have human-written tests, which may not be so prevalent in practice. On the other

hand, many web applications are similar to each other in terms of design and code

base, such as being built on top of the same content management system. We

propose an open research problem whether human-written tests can be leveraged

to generate effective tests for applications without existing tests. This is, how-

ever, challenging particularly for assertion generation based on learned patterns.

DOM-based assertions on abstract DOM states of an application may require some

changes to be applied on similar abstract DOM state of another application.

73

Chapter 4

JavaScript: The (Un)covered Parts

Summary6

Testing JavaScript code is important. JavaScript has grown to be among the most

popular programming languages and it is extensively used to create web appli-

cations both on the client and server. We present the first empirical study of

JavaScript tests to characterize their prevalence, quality metrics (e.g. code cov-

erage), and shortcomings. We perform our study across a representative corpus of

373 JavaScript projects, with over 5.4 million lines of JavaScript code. Our results

show that 22% of the studied subjects do not have test code. About 40% of projects

with JavaScript at client-side do not have a test, while this is only about 3% for the

purely server-side JavaScript projects. Also tests for server-side code have high

quality (in terms of code coverage, test code ratio, test commit ratio, and average

number of assertions per test), while tests for client-side code have moderate to low

quality. In general, tests written in Mocha, Tape, Tap, and Nodeunit frameworks

have high quality and those written without using any framework have low quality.

We scrutinize the (un)covered parts of the code under test to find out root causes

for the uncovered code. Our results show that JavaScript tests lack proper coverage

for event-dependent callbacks (36%), asynchronous callbacks (53%), and DOM-

related code (63%). We believe that it is worthwhile for the developer and research

community to focus on testing techniques and tools to achieve better coverage for

difficult to cover JavaScript code.

6An initial version of this chapter has been accepted to be published in the IEEE International
Conference on Software Testing, Verification and Validation (ICST), 2017 [125].

74

4.1 Introduction
JavaScript is currently the most widely used programming language according to

a recent survey of more than 56K developers conducted by Stack Overflow [167],

and also exploration of the programming languages used across GitHub reposito-

ries [91]. JavaScript is extensively used to build responsive modern web applica-

tions, and is also used to create desktop and mobile applications, as well as server-

side network programs. Consequently, testing JavaScript applications and modules

is important. However, JavaScript is quite challenging to test and analyze due to

some of its specific features. For instance, the complex and dynamic interactions

between JavaScript and the DOM, makes it hard for developers to test effectively

[66, 127, 130].

To assist developers with writing tests, there exist number of JavaScript unit

testing frameworks, such as Mocha [36], Jasmine[31], QUnit [40], and Nodeunit

[37], each having its own advantages [52]. Also the research community have pro-

posed some automated testing tools and test generation techniques for JavaScript

programs [66, 95, 127, 130, 131], though they are not considerably used by testers

and developers yet.

Some JavaScript features, such as DOM interactions, event-dependent call-

backs, asynchronous callbacks, and closures (hidden scopes), are considered to be

harder to test [28, 46, 48, 53, 127, 173]. However, there is no evidence that to what

extent this is true in real-world practice.

In this work, we study JavaScript (unit) tests in the wild from different angles.

The results of this study reveal some of the shortcomings and difficulties of manual

testing, which provide insights on how to improve existing JavaScript test genera-

tion tools and techniques. We perform our study across a representative corpus of

373 popular JavaScript projects, with over 5.4 million lines of JavaScript code. To

the best of our knowledge, this work is the first study on JavaScript tests. The main

contributions of our work include:

• A large-scale study to investigate the prevalence of JavaScript tests in the

wild;

• A tool, called TESTSCANNER, which statically extracts different metrics in

75

our study and is publicly available [59];

• An evaluation of the quality of JavaScript tests in terms of code coverage,

average number of assertions per test, test code ratio, and test commit ratio;

• An analysis of the uncovered parts of the code under test to understand which

parts are difficult to cover and why.

4.2 Methodology
The goal of this work is to study and characterize JavaScript tests in practice.

We conduct quantitative and qualitative analyses to address the following research

questions:

RQ1: How prevalent are JavaScript tests?

RQ2: What is the quality of JavaScript tests?

RQ3: Which part of the code is mainly uncovered by tests and why?

4.2.1 Subject Systems

We study 373 popular open source JavaScript projects. 138 of these subject sys-

tems are the ones used in a study for JavaScript callbacks [87] including 86 of the

most depended-on modules in the NPM repository [55] and 52 JavaScript reposito-

ries from GitHub Showcases7 [56]. Moreover, we added 234 JavaScript reposito-

ries from Github with over 4000 stars. The complete list of these subjects and our

analysis results, are available for download [59]. We believe that this corpus of 373

projects is representative of real-world JavaScript projects as they differ in domain

(category), size (lines of code), maturity (number of commits and contributors),

and popularity (number of stars and watchers).

We categorize our subjects into 19 categories using topics from JSter

JavaScript Libraries Catalog [54] and GitHub Showcases [56] for the same or simi-

lar projects. Table 4.1 presents these categories with average values for the number

7GitHub Showcases include popular and trending open source repositories organized around dif-
ferent topics.

76

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

C1
	

C2
	

C3
	

C4
	

C5
	

C6
	

C7
	

C8
	

C9
	

C1
0	

C1
1	

C1
2	

C1
3	

C1
4	

C1
5	

C1
6	

C1
7	

C1
8	

C1
9	

To
ta
l	

Client	 side	 Server	 side	 Client	 and	 server	 side	

Figure 4.1: Distribution of studied subject systems.

of JavaScript files (production code), source lines of code (SLOC) for production

and test code, number of test cases, and number of stars in Github repository for

each category. We used SLOC [58] to count lines of source code excluding li-

braries. Overall, we study over 5.4 million (3.7 M production and 1.7 M test)

source lines of JavaScript code.

Figure 4.1 depicts the distribution of our subject systems with respect to the

client or server side code. Those systems that contain server-side components are

written in Node.js8, a popular server-side JavaScript framework. We apply the

same categorization approach as explained in [87]. Some projects such as MVC

frameworks, e.g. Angular, are purely client-side, while most NPM modules are

purely server-side. We assume that client-side code is stored in directories such as

www, public, static, or client. We also use code annotations such as /* jshint

browser:true, jquery:true */ to identify client-side code.

The 373 studied projects include 128 client-side, 130 server-side, and 115

client&server-side code. While distributions in total have almost the same size,

they differ per project category. For instance subject systems in categories C1 (UI

components), C2 (visualization), C8 (touch and drag&drop), C19 (MVC frame-

works), and C18 (multimedia) are mainly client-side and those in categories C4

(software dev tools), C6 (parsers and compilers), C12 (I/O), C13 (package and

build managers), C14 (storage), C16 (browser utils), and C17 (CLI and shell) are

mainly server-side.

8 https://nodejs.org

77

https://nodejs.org

Table 4.1: Our JavaScript subject systems (60K files, 3.7 M production SLOC, 1.7 M test SLOC, and 100K test cases).

ID Category # Subject Ave # Ave Prod Ave Test Ave # Ave # Ave #
systems JS files SLOC SLOC tests assertions stars

C1 UI Components, Widgets, and Frameworks 52 41 4.7K 2.8K 235 641 9.8K
C2 Visualization, Graphics, and Animation Libraries 48 53 10.2K 3.8K 425 926 7.5K
C3 Web Applications and Games 33 61 10.6K 1.4K 61 119 4K
C4 Software Development Tools 29 67 12.7K 7.8K 227 578 6.9K
C5 Web and Mobile App Design and Frameworks 25 91 22.3K 6.9K 277 850 14.4K
C6 Parsers, Code Editors, and Compilers 22 167 27K 9.5K 701 1142 5.5K
C7 Editors, String Processors, and Templating Engines 19 26 4.3K 1.9K 102 221 6.5K
C8 Touch, Drag&Drop, Sliders, and Galleries 19 10 1.9K 408 52 72 7.9K
C9 Other Tools and Libraries 17 93 9.1K 7.6K 180 453 8.5K
C10 Network, Communication, and Async Utilities 16 19 4.1K 7.6K 279 354 7.6K
C11 Game Engines and Frameworks 13 86 17K 1.2K 115 293 3.5K
C12 I/O, Stream, and Keyboard Utilities 13 8 0.6K 1K 40 61 1.5K
C13 Package Managers, Build Utilities, and Loaders 11 47 3.4K 5.4K 200 300 8.5K
C14 Storage Tools and Libraries 10 19 4K 7K 222 317 5.5K
C15 Testing Frameworks and Libraries 10 28 2.8K 3.6K 271 632 5.7K
C16 Browser and DOM Utilities 9 45 5.6K 7.1K 76 179 5.2K
C17 Command-line Interface and Shell Tools 9 9 2.8K 1K 26 244 2.6K
C18 Multimedia Utilities 9 11 1.6K 760 17 97 6.2K
C19 MVC Frameworks 9 174 40.1K 15.2K 657 1401 14.2K

Client-side 128 39 8.2K 3.2K 343 798 7.9K
Server-side 130 63 9.4K 7.2K 231 505 6.7K
Client and server-side 115 73 12.7K 4.7K 221 402 7.4K

Total 373 57 10.1K 4.5K 263 644 7.3K

78

4.2.2 Analysis

To address our research questions, we statically and dynamically analyze test suites

of our subject programs. To extract some of the metrics in our study, we develop

a static analyzer tool, called TESTSCANNER [59], which parses production and

test code into an abstract syntax tree using Mozilla Rhino [41]. In the rest of this

section we explain details of our analysis for each research question.

Prevalence of tests (RQ1)

To answer RQ1, we look for presence of JavaScript tests written in any framework

(e.g. Mocha, Jasmine, or QUnit). Tests are usually located at folders namely tests,

specs9, or similar names.

We further investigate the prevalence of JavaScript tests with respect to sub-

ject categories, client/server-side code, popularity (number of stars and watchers),

maturity (number of commits and contributors), project size (production SLOC),

and testing frameworks. To distinguish testing frameworks, we analyze package

management files (such as package.json), task runner and build files (such as

grunt.js and gulpfile.js), and test files themselves.

Quality of tests (RQ2)

To address RQ2, for each subject with test we compute four quality metrics as

following:

Code coverage. Coverage is generally known as an indicator of test quality. We

compute statement, branch, and function coverage for JavaScript code using JS-

Cover [33] (for tests that run in the browser), and Istanbul [30]. To calculate cover-

age of the minified JavaScript code, we beautify them prior to executing tests. We

also exclude dependencies, such as files under the node modules directory, and

libraries (unless the subject system is itself a library).

Average number of assertions per test. Code coverage does not directly imply

a test suite effectiveness [97], while assertions have been shown to be strongly

correlated with it [199]. Thus, TESTSCANNER also computes average number of

9For instance Jasmine and Mocha tests are written as specs and are usually located at folders with
similar names.

79

assertions per test case as a test suite quality metric. Our analysis tools detects

usage of well-known assertion libraries such as assert.js, should.js, expect.js, and

chai.

Test code ratio. This metric is defined as the ratio of test SLOC to production and

test SLOC. A program with a high test code ratio may have a higher quality test

suite.

Test commit ratio. This metric is the ratio of test commits to total commits. Higher

test commit ratio may indicate more mature and higher quality tests. We assume

that every commit that touches at least one file in a folder named test, tests, spec,

or specs is a test commit. In rare cases that tests are stored elsewhere, such as the

root folder, we manually extract number of test commits by looking at its github

repository page and counting commits on test files.

We investigate these quality metrics with respect to subject categories,

client/server-side code, and testing frameworks.

(Un)covered code (RQ3)

Code coverage is a widely accepted test quality indicator, thus finding the root

cause of why a particular statement is not covered by a test suite, can help in writ-

ing higher quality tests. Some generic possible cases for an uncovered (missed)

statement s, are as following:

1. s belongs to an uncovered function f , where

(a) f has no calling site in both the production and the test code. In this

case, f could be (1) a callback function sent to a callback-accepting

function (e.g., setTimeout()) that was never invoked, or (2) an un-

used utility function that was meant to be used in previous or future

releases. Such unused code can be considered as code smells [124].

Consequently we cannot pinpoint such an uncovered function to a par-

ticular reason.

(b) the calling site for f in the production code was never executed by a

test. Possible root causes can be that (1) f is used as a callback (e.g.

event-dependent or asynchronous) that was never invoked, (2) the call

80

to f statement was never reached because of an earlier return state-

ment or an exception, or the function call falls in a never met condition

branch.

(c) f is an anonymous function. Possible reasons that f was not covered

can be that (1) f is used as a callback that was never invoked (e.g. an

event-dependent callback while the required event was not triggered,

or an asynchronous callback while did not wait for the response), (2) f

is a self-invoking function that was not executed to be invoked, or (3)

f is set to a variable and that variable was never used or its usage was

not executed.

2. s belongs to a covered function f , where

(a) the execution of f was terminated, by a return statement or an ex-

ception, prior to reaching s.

(b) s falls in a never met condition in f (e.g. browser or DOM dependent

statements).

3. The test case responsible for covering s was not executed due to a test exe-

cution failure.

4. s is a dead (unreachable) code.

Uncovered statement in uncovered function ratio. If an uncovered statement

s belongs to an uncovered function f , making f called could possibly cover s as

well. This is important specially if f needs to be called in a particular way, such as

through triggering an event.

In this regard, our tool uses coverage report information (in json or lcov for-

mat) to calculate the ratio of the uncovered statements that fall within uncovered

functions over the total number of uncovered statements. If this value is large it

indicates that the majority of uncovered statements belong to uncovered functions,

and thus code coverage could be increased to a high extent if the enclosing function

is called by a test case.

81

1 function setFontSize(size) {
2 return function() {
3 // this is an anonymous closure
4 document.body.style.fontSize = size + 'px';
5 };
6 }
7 var small = setFontSize(12);
8 var large = setFontSize(16);
9 ...

10 function showMsg() {
11 // this is an async callback
12 alert("Some message goes here!");
13 }
14 ...
15 $("#smallBtn").on("click", small);
16 $("#largeBtn").on("click", large);
17 $("#showBtn").on("click", function() {
18 // this is an event-dependent anonymous callback
19 setTimeout(showMsg, 2000);
20 $("#photo").fadeIn("slow", function() {
21 // this is an anonymous callback
22 alert("Photo animation complete!");
23 });
24 });
25 ...
26 checkList = $("#checkList");
27 checkList.children("input").each(function () {
28 // this is an DOM-related code
29 if (this.is(':checked')) {
30 ...
31 }else{
32 ...
33 }
34 });

Figure 4.2: A hard to test JavaScript code snippet.

Hard-to-test JavaScript code. Some JavaScript features, such as DOM inter-

actions, event-dependent callbacks, asynchronous callbacks, and closures (hidden

scopes), are considered to be harder to test [28, 46, 48, 53, 127, 173]. In this sec-

tion we explain four main hard-to-test code with an example code snippet depicted

in Figure 4.2. Also we fine-grain statement and function coverage metrics to in-

vestigate these hard-to-test code separately in detail. To measure these coverage

metrics, TESTSCANNER maps a given coverage report to the locations of hard-to-

test code.

DOM related code coverage. In order to unit test a JavaScript code with DOM

read/write operations, a DOM instance has to be provided as a test fixture in the ex-

82

act structure expected by the code under test. Otherwise, the test case can terminate

prematurely due to a null exception. Writing such DOM based fixtures can be chal-

lenging due to the dynamic nature of JavaScript and the hierarchical structure of

the DOM [127]. For example, to cover the if branch at line 29 in Figure 4.2, one

needs to provide a DOM instance such as <div id="checkList"><input

type="checkbox" checked></input></div>. To cover the else

branch, a DOM instance such as <div id="checkList"><input

type="checkbox"></input></div> is required. If such fixtures are

not provided, $("checkList") returns null as the expected element is not

available, and thus checkList.children causes a null exception and the test

case terminates.

DOM related code coverage is defined as the fraction of number of covered

over total number of DOM related statements. A DOM related statement is a state-

ment that can affect or be affected by DOM interactions such as a DOM API us-

age. To detect DOM related statements TESTSCANNER extracts all DOM API us-

ages in the code (e.g. getElementById, createElement, appendChild,

addEventListener, $, and innerHTML) and their forward slices. Forward

slicing is applied on the variables that were assigned with a DOM element/attribute.

For example the forward slice of checkList at line 26 in Figure 4.2 are lines 27–

34. A DOM API could be located in a (1) return statement of a function f , (2)

conditional statement, (3) function call (as an argument), (4) an assignment state-

ment, or (5) other parts within a scope. In case (1), all statements that has a call

to f are considered DOM related. In case (2), the whole conditional statements

(condition and the body of condition) are considered DOM related. In case (3) the

statements in the called function, which use that DOM input will be considered

DOM related. In other cases, the statement with DOM API is DOM related.

Event-dependent callback coverage. The execution of some JavaScript code may

require triggering an event such as clicking on a particular DOM element. For in-

stance it is very common in JavaScript client-side code to have an (anonymous)

function bound to an element’s event, e.g. a click, which has to be simulated. The

anonymous function in lines 17–24 is an event-dependent callback function. Such

callback functions would only be passed and invoked if the corresponding event is

triggered. In order to trigger an event, testers can use methods such as jQuery’s

83

.trigger(event, data, ...) or .emit(event, data, ...) of

Node.js EventEmitter. Note that if an event needs to be triggered on a DOM el-

ement, a proper fixture is required otherwise the callback function cannot be exe-

cuted.

Event-dependent callback coverage is defined as the fraction of number of

covered over total number of event-dependent callback functions. In order to

detect event-dependent callbacks, our tool checks if a callback function is an

event method such as bind, click, focus, hover, keypress, emit,

addEventListener, onclick, onmouseover, and onload.

Asynchronous callback coverage. Callbacks are functions passed as an ar-

gument to another function to be invoked either immediately (synchronous) or

at some point in the future (asynchronous) after the enclosing function returns.

Callbacks are particularly useful to perform non-blocking operations. Function

showMsg in lines 10–13 is an asynchronous callback function as it was passed to

the setTimeout() asynchronous API call. Testing asynchronous callbacks re-

quires waiting until the callback is called, otherwise the test would probably finish

unsuccessfully before the callback is invoked. For instance QUnit’s asyncTest

allows tests to wait for asynchronous callbacks to be called.

Asynchronous callback coverage is defined as the fraction of number of cov-

ered over total number of asynchronous callback functions. Similar to a study of

callbacks in JavaScript [87], if a callback argument is passed into a known deferring

API call we count it as as an asynchronous callback. TESTSCANNER detects some

asynchronous APIs including network calls (e.g. XMLHTTPRequest.open),

DOM events (e.g., onclick), timers (setImmediate, setTimeout,

setInterval, and process.nextTick), and I/O (e.g. APIs of fs, http,

and net).

Closure function coverage. Closures are nested functions that make it possible to

create hidden scope to privatize variables and functions from the global scope in

JavaScript. A closure function, i.e., the inner function, has access to all parameters

and variables – except for this and argument variables – of the outer function,

even after the outer function has returned [77]. The anonymous function in lines

2–5 is an instance of a closure.

84

Such hidden functions cannot be called directly in a test case and thus testing

them is challenging. In fact writing a unit test for a closure function without code

modification is impossible. Simple solutions such as making them public or putting

the test code inside the closure are not good software engineering practices. One

approach to test such private functions is adding code inside the closure to store

references to its local variables inside objects and return it to the outer scope [48].

Closure function coverage is defined as the fraction of number of covered over total

number of closure functions.

Average number of function calls per test. Some code functionalities depend on

the execution of a sequence of function calls. For instance in a shopping applica-

tion, one needs to add items to the cart prior to check out. We perform a correlation

analysis between average number of unique function calls per test and code cover-

age. We also investigate whether JavaScript unit tests are mostly written at single

function level or they execute sequence of function calls.

4.3 Results

4.3.1 Prevalence of Tests

The stacked bar charts in Figure 4.3a depicts the percentage of JavaScript tests, per

system category (Table 4.1), per client/server side, and in aggregate. The height

of each bar indicates the percentage of subjects in that category. In total, among

the 373 studied subjects, 83 of them (i.e., 22%) do not have JavaScript tests. The

majority (78%) of subjects have at least one test case.

Finding 1: 22% of the subject systems that we studied do not have any JavaScript

test, and 78% have at least one test case.

As shown in figure 4.3b, amongst subjects with test, the majority of tests are

written in Mocha (38%), Jasmine (19%), and QUnit (18%). 6% does not follow

any particular framework and have their own tests. Minor used frameworks are Tap

(5%), Tape (4%), Nodeunit (3%), Vows (3%) and others (4%) including Jest, Evi-

dence.js, Doh, CasperJS, Ava, UTest, TAD, and Lab. We also observe that 3 repos-

itories have tests written in two testing frameworks: 2 projects (server and client-

server) with Nodeunit+Mocha test, and one (client-server) with Jasmine+QUnit

85

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

C1
	

C2
	

C3
	

C4
	

C5
	

C6
	

C7
	

C8
	

C9
	

C1
0	

C1
1	

C1
2	

C1
3	

C1
4	

C1
5	

C1
6	

C1
7	

C1
8	

C1
9	

Cl
ie
nt
	

Se
rv
er
	

Cl
ie
nt
-‐S
er
ve
r	

To
ta
l	

Mocha	 No	 tests	 Jasmine	 QUnits	 Other	 frameworks	 Its	 own	 tests	

(a) Distribution within all subjects.

Mocha	
38%	

Jasmine	
19%	

QUnits	
18%	

Own	 tests	
6%	

Tap	
5%	

Tape	
4%	

Others	
4%	

Nodeunit	
3%	

Vows	
3%	

(b) Testing frameworks distribution.

Figure 4.3: Distribution of JavaScript tests.

test.
Finding 2: The most prevalent used test frameworks for JavaScript unit testing

are Mocha (38%), Jasmine (19%), and QUnit (18%).

We also investigate the prevalence of UI tests and observe that only 12 projects

(i.e., 3%) among all 373 ones have UI tests for which 9 are written using Webdrive-

rio and Selenium webdriver, and 3 uses CasperJS. 7 of these projects are client and

server side, 3 are client-side, and 2 are server-side. One of these subjects does not

have any JavaScript test.

Finding 3: Only 3% of the studied repositories have functional UI tests.

Almost all (95%) of purely server-side JavaScript projects have tests, while this

is 61% for client-side and 76% for client&server-side ones. Note that the number

of subjects in each category are not very different (i.e., 128 client-side, 130 server-

86

0%	

20%	

40%	

60%	

80%	

100%	

1-‐4K	 4K-‐5.6K	 5.6K-‐8.9K	 8.9K-‐92K	

(a) Number of stars

0%	

20%	

40%	

60%	

80%	

100%	

1-‐151	 151-‐262	 262-‐444	 444-‐6K	

(b) Number of watchers

0%	

20%	

40%	

60%	

80%	

100%	

1-‐251	 254-‐701	 710-‐1.8K	 1.8K-‐27.6K	

(c) Number of commits

0%	

20%	

40%	

60%	

80%	

100%	

1-‐19	 19-‐46	 47-‐102	 102-‐1.4K	

(d) Number of contributors

Figure 4.4: Percentage of subjects with test per each quartile with respect to popularity (number of stars
and watchers) and maturity (number of commits and contributors).

side, and 115 client and server-side code). Interestingly the distribution of test

frameworks looks very similar for client-side and client-server side projects.

As shown in Figure 4.3a, all subjects systems in categories C6 (parsers and

compilers), C12 (I/O), C13 (package and build managers), C14 (storage), C19

(MVC frameworks), and C17(CLI and shell), have JavaScript unit tests. Projects

in all of these categories, except for C19, are mainly server-side as depicted in Fig-

ure 4.1. In contrast, many of subjects in categories C1 (UI components), C3 (web

apps), C8 (touch and drag&drop), and C18 (multimedia) do not have tests, which

are mainly client-side. Thus we can deduce that JavaScript tests are written more

for server-side code than client-side, or client and server-side code.

Finding 4: While almost all subjects (95%) in the server-side category have

tests, about 40% of subjects in client-side and client-server side categories do

not have tests.

We believe the more prevalence of tests for server-side code can be attributed to

(1) the difficulties in testing client-side code, such as writing proper DOM fixtures

or triggering events on DOM elements, and (2) using time-saving test scripts for

most Node.js based projects, such as npm test that is included by default when

initializing a new package.json file. This pattern is advocated in the Node.js

community [57] and thus many server-side JavaScript code, such as NPM modules,

87

Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e
(%

)

(a) Statement coverage

Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e
(%

)

(b) Branch coverage

Client Server Client-Server Total

0
20

40
60

80
10
0

C
ov

er
ag

e
(%

)

(c) Function coverage

Figure 4.5: Boxplots of the code coverage of the executed JavaScript tests. Mean values are shown with
(*).

have test code.

We also consider how popularity (number of stars and watchers) and maturity

(number of commits and contributors) of subject systems are related to the preva-

lence of unit tests. Figure 4.4a shows the percentage of subjects with tests in each

quartile. As popularity and maturity increase, the percentage of subjects with test

increases as well.

4.3.2 Quality of Tests

Code coverage. Calculating the code coverage requires executing tests on a prop-

erly deployed project. In our study, however, we faced number of projects with

failure in build/deployment or running tests. We tried to resolve such problems

by quick changes in build/task configuration files or by retrieving a later version

(i.e., some days after fetching the previous release). In most cases build failure was

due to errors in dependent packages or their absence. We could finally calculate

coverage for 231 out of 290 (about 80%) subjects with tests. We could not prop-

erly deploy or run tests for 44 subject systems (41 with test run failure, freeze, or

break, and 3 build and deployment error), and could not get coverage report for 15

projects with complex test configurations.

Boxplots in Figure 4.5 show that in total tests have a median of 83% statement

coverage, 84% function coverage, and 69% branch coverage. Tests for server-side

code have higher coverage in all aspects compared to those for client-side code. We

narrow down our coverage analysis into different subject categories. As depicted

in Table 4.2, subjects in categories C6 (parsers and compilers), C10 (Network and

88

Table 4.2: Test quality metrics average values.

Statement Branch Function Ave # Test Test
coverage coverage coverage assertions code commit

per test ratio ratio
Su

bj
ec

tc
at

eg
or

y

C1 77% 57% 76% 2.83 0.41 0.16
C2 67% 52% 65% 2.72 0.28 0.14
C3 60% 38% 58% 3.75 0.88 0.14
C4 79% 68% 78% 2.50 0.58 0.24
C5 75% 63% 75% 2.53 0.52 0.21
C6 87% 79% 88% 2.53 0.47 0.24
C7 80% 67% 72% 2.51 0.46 0.22
C8 64% 47% 60% 2.04 0.35 0.12
C9 73% 58% 69% 2.67 0.49 0.23
C10 91% 79% 90% 2.73 0.72 0.24
C11 64% 45% 57% 3.41 0.18 0.11
C12 90% 77% 89% 2.36 0.59 0.20
C13 86% 67% 84% 2.27 0.59 0.18
C14 88% 77% 87% 2.74 0.62 0.26
C15 81% 69% 79% 5.79 0.59 0.25
C16 78% 67% 79% 1.67 0.49 0.29
C17 67% 54% 63% 8.32 0.47 0.21
C18 60% 31% 62% 4.42 0.31 0.16
C19 81% 67% 80% 3.58 0.53 0.21

Te
st

in
g

fr
am

ew
or

k Mocha 82% 70% 79% 2.39 0.49 0.20
Jasmine 74% 60% 75% 1.93 0.41 0.21
QUnit 71% 54% 71% 3.93 0.41 0.16
Own test 61% 41% 58% 5.99 0.30 0.16
Tap 89% 80% 89% 1.56 0.58 0.21
Tape 93% 81% 94% 2.93 0.70 0.18
Others 80% 65% 77% 5.60 0.46 0.24
Nodeunit 74% 63% 72% 6.20 0.57 0.24
Vows 74% 66% 72% 1.92 0.55 0.27
Client 70% 53% 70% 2.71 0.36 0.16
Server 85% 74% 83% 3.16 0.58 0.23
C&S 72% 56% 70% 2.9 0.4 0.18
Total 78% 64% 76% 2.96 0.46 0.2

Async), C12 (I/O), C13 (package and build managers), C14 (storage), C15 (testing

frameworks), and C19 (MVC frameworks) on average have higher code coverage.

Projects in these categories are mainly server-side. In contrast, subjects in cate-

gories C2 (visualization), C3 (web apps), C8 (touch and drag&drop), C11 (game

engines), C17 (CLI and shell), and C18 (multimedia), have lower code coverage.

Note that subjects under these categories are mainly client-side.

Finding 5: The studied JavaScript tests have a median of 83% statement cov-

erage, 84% function coverage, and 69% branch coverage. Tests for server-side

code have higher coverage in all aspects compared to those for client-side code.

89

Client Server Client-Server Total

0
1

2
3

4
5

6

A
ve

 #
 a

ss
er

tio
ns

 p
er

 te
st

Figure 4.6: Average number of assertions per test.

Table 4.2 also depicts the achieved coverage per testing framework. Tests writ-

ten in Tape, Tap, and Mocha have generally higher code coverage. The majority

of server-side JavaScript projects are tested using these frameworks. On the other

hand, tests written in QUnit, which is used more often for the client-side than the

server-side, has generally lower code coverage. Developers that used their own

style of testing without using popular frameworks write tests with the poorest cov-

erage.

Finding 6: Tests written in Tape, Tap, and Mocha frameworks, generally have

higher coverage compared to those written in QUnit, Nodeunit, and those with-

out using any test framework.

Average number of assertions per test. Figure 4.6 depicts boxplots of average

number of assertions per test case. While median values are very similar (about

2.2) for all cases, server-side code has a slightly higher mean value (3.16) com-

pared to client-side (2.71). As shown in Table 4.2, subjects in categories C3 (web

apps), C11 (game engines), C15 (testing frameworks), C17 (CLI and shell), C18

(multimedia), and C19 (MVC frameworks) on average have higher average num-

ber of assertions per test compared to others. Interestingly among these categories

only for C15 and C19 code coverage is also high while it is low for the rest.

Finding 7: The studied test suites have a median of 2.19 and a mean of 2.96

for the average number of assertions per test. These values do not differ much

among server-side and client-side code.

90

Client Server Client-Server Total

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Te
st

 c
od

e
ra

tio

Figure 4.7: Test to total code ratio.

Also results shown in Table 4.2 indicate that tests written in QUnit, Tape, Node-

unit, other frameworks (e.g. Jest, CasperJS, and UTest), and those without using a

framework, have on average more assertions per test. The majority of server-side

JavaScript projects are tested using these frameworks. Again we observe that only

for tests written in Tape framework code coverage is also high while it is low for

the rest.

Test code ratio. Figure 4.7 shows test to total (production and test) code ratio

comparison. The median and mean of this ratio is about 0.6 for server-side projects

and about 0.35 for client-side ones. As shown in Table 4.2, on average subjects with

higher test code ratio belongs to categories C3, C4, C5, C10, C12, C13, C14, C15,

and C19 while those in C2, C8, C11, and C18 have lower test code ratio. Also tests

written in Tap, Tape, Nodeunit, and Vows have higher test code ratio while tests

written without using any framework have lower test code ratio.

We further study the relationship between test code ratio and total code cover-

age (average of statement, branch, and function coverage) through the Spearman’s

correlation analysis10. The result shows that there exists a moderate to strong cor-

relation (ρ = 0.68, p = 0) between test code ratio and code coverage.

Finding 8: Tests for server-side code have higher test code ratio (median and

mean of about 0.6) compared to client-side code (median and mean of about

0.35). Also there exists a moderate to strong correlation (ρ = 0.68, p = 0)

between test code ratio and code coverage.

10The non-parametric Spearman’s correlation coefficient measures the monotonic relationship be-
tween two continuous random variables and does not require the data to be normally distributed.

91

Client Server Client-Server Total

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Te
st

 c
om

m
it

ra
tio

Figure 4.8: Test to total commits ratio.

Test commit ratio. Figure 4.8 depicts test to total (production and test) commit

ratio comparison. The median and mean of this ratio is about 0.25 for server-side

projects and about 0.15 for client-side ones. As shown in Table 4.2, on average

subjects with higher test commit ratio belongs to categories C4, C6, C9, C10, C14,

C15, and C16 while those in C1, C2, C3, C8, C11, and C18 have lower test com-

mit ratio. Also tests written in Nodeunit, Vows, and other frameworks (e.g. Jest,

CasperJS, and UTest) have higher test commit ratio while tests written in QUnit or

without using any framework have lower test commit ratio.

Similar to the correlation analysis for test code ratio, we study the relationship

between test commit ratio and total code coverage. The result indicates that there

exists a moderate to low correlation (ρ = 0.49, p = 0) between test commit ratio

and code coverage.

Finding 9: While test commit ratio is relatively high for server-side projects

(median and mean of about 0.25), it is moderate in total and relatively low for

client-side projects (median and mean of about 0.15). Also there exists a mod-

erate to low correlation (ρ = 0.49, p = 0) between test commit ratio and code

coverage.

4.3.3 (Un)covered Code

As explained earlier in Section 4.2.2, one possible root cause for uncovered code

is that the responsible test code was not executed. In our evaluation, however, we

observed that for almost all the studied subjects, test code had very high coverage

meaning that almost all statements in test code were executed properly. Thus the

92

Table 4.3: Statistics for analyzing uncovered code. The ”–” sign indicates no instance of a particular code.

Function coverage Statement
coverage

All Async Event Closure All DOM Ave # USUF
callback dependent related func calls ratio

callback per test

Su
bj

ec
tc

at
eg

or
y

C1 76% 65% 33% 79% 77% 73% 2.91 0.59
C2 65% 43% 17% 62% 67% 61% 2.82 0.73
C3 58% 21% 10% 38% 60% 27% 3.94 0.82
C4 79% 49% 48% 70% 81% 75% 2.89 0.53
C5 75% 52% 33% 65% 75% 62% 3.05 0.72
C6 88% 60% 32% 87% 87% 57% 3.30 0.33
C7 72% 34% 28% 81% 80% 52% 3.11 0.52
C8 60% 40% 39% 80% 64% 78% 2.18 0.77
C9 69% 14% 8% 80% 73% 23% 2.89 0.59
C10 90% 65% 60% 95% 91% 81% 4.98 0.5
C11 57% 33% 7% 68% 64% 51% 2.79 0.85
C12 89% 85% 68% 98% 90% 85% 3.56 0.32
C13 84% 71% 74% 60% 86% 85% 2.86 0.49
C14 87% 66% 36% 89% 88% – 2.98 0.62
C15 79% 70% 39% 62% 81% 58% 2.16 0.59
C16 79% 40% 5% 43% 78% 48% 2.69 0.39
C17 63% 7% 5% 56% 67% – 2.42 0.65
C18 62% – 0% 89% 60% 40% 2.19 0.86
C19 81% 61% 47% 76% 82% 62% 2.92 0.53

Te
st

in
g

fr
am

ew
or

k Mocha 79% 50% 34% 71% 82% 58% 3.62 0.56
Jasmine 75% 65% 34% 69% 74% 62% 2.28 0.71
QUnit 71% 53% 28% 76% 71% 68% 3.35 0.66
Own test 58% 45% 26% 66% 61% 51% 1.78 0.63
Tap 89% 68% 87% 94% 89% – 2.52 0.24
Tape 94% 79% 65% 92% 93% 88% 3.19 0.22
Others 77% 33% 30% 66% 80% 79% 2.14 0.48
Nodeunit 72% 53% 63% 74% 74% 52% 4.08 0.62
Vows 72% 60% 38% 79% 74% 0% 1.60 0.6
Client 70% 46% 25% 69% 70% 66% 2.96 0.68
Server 83% 64% 48% 82% 85% 67% 3.19 0.45
C&S 70% 48% 29% 69% 72% 57% 2.93 0.69
Total 76% 53% 36% 74% 78% 63% 3.05 0.57

test code coverage does not contribute in the low coverage of production code.

Uncovered statement in uncovered function (USUF) ratio. If an uncovered code

c belongs to an uncovered function f , making f called could possibly cover c as

well. As described in Section 4.2.2, we calculate the ratio of uncovered statements

that fall within uncovered functions over the total number of uncovered statements.

Table 4.3 shows average values for this ratio (USUF). The mean value of USUF

ratio is 0.57 in total, 0.45 for server-side projects, and about 0.7 for client-side ones.

This indicate that the majority of uncovered statements in client-side code belong

93

to uncovered functions, and thus code coverage could be increased to a high extent

if the enclosing function could be called during test execution.

Finding 10: A large portion of uncovered statements fall in uncovered functions

for client-side code (about 70%) compared to server-side code (45%).

Hard-to-test-function coverage. We measure coverage for hard-to-test functions

as defined in Section 4.2.2. While the average function coverage in total is 76%, the

average event-dependent callback coverage is 36% and the average asynchronous

callback coverage is 53%. The average value of closure function coverage in total

is 74% and for server-side subjects is 82% while it is 69% for client-side ones.

Finding 11: On average, JavaScript tests have low coverage for event-dependent

callbacks (36%) and asynchronous callbacks (53%). Average values for client-

side code are even worse (25% and 46% respectively). The average, closure

function coverage is 74%.

We measure the impact of tests with event triggering methods on event-

dependent callback coverage, and writing async tests on asynchronous callback

coverage through correlation analysis. The results show that there exists a weak

correlation (ρ = 0.22) between number of event triggers and event-dependent call-

back coverage, and a very weak correlation (ρ = 0.1) between number of asyn-

chronous tests and asynchronous callback coverage.

Finding 12: There is no strong correlation between number of event triggers

and event-dependent callback coverage. Also number of asynchronous tests and

asynchronous callback coverage are not strongly correlated.

This was contrary to our expectation for higher correlations, however, we ob-

served that in some cases asynchronous tests and tests that trigger events were

written to merely target specific parts and functionalities of the production code

without covering most asynchronous or event-dependent callbacks.

DOM related code coverage. On average, JavaScript tests have a moderately

low coverage of 63% for DOM-related code. We also study the relationship of

existence of DOM fixtures and DOM related code coverage through correlation

analysis. The result shows that there exists a correlation of ρ = 0.4, p = 0 between

having DOM fixtures in tests and DOM related code coverage. Similar to the cases

94

for event-dependent and async callbacks, we also observed that DOM fixtures were

mainly written for executing a subset of DOM related code.

Finding 13: On average, JavaScript tests lack proper coverage for DOM-related

code (63%). Also there exists a moderately low correlation (ρ = 0.4) between

having DOM fixtures in tests and DOM related code coverage.

Average number of function calls per test. As explained in Section 4.2.2, we

investigate number of unique function calls per test. The average number of func-

tion calls per test has a mean value of about 3 in total and also across server-side

and client-side code. We further perform a correlation analysis between the aver-

age number of function calls per test and total code coverage. The result shows

that there exists a weak correlation (ρ = 0.13, p = 0) between average number of

function calls per test and code coverage.

Finding 14: On average, there are about 3 function calls to production code per

test case. The average number of function calls per test is not strongly correlated

with code coverage.

4.3.4 Discussion

Implications. Our findings regarding RQ1 indicate that the majority (78%) of

studied JavaScript projects and in particular popular and trending ones have at least

one test case. This indicates that JavaScript testing is getting attention, however, it

seems that developers have less tendency to write tests for client-side code as they

do for the server-side code. Possible reasons could be difficulties in writing proper

DOM fixtures or triggering events on DOM elements. We also think that the high

percentage of test for server-side JavaScript can be ascribed to the testing pattern

that is advocated in the Node.js community [57]. To assist developers with testing

their JavaScript code, we believe that it is worthwhile for the research community

to invest on developing test generation techniques in particular for the client-side

code, such as [127, 130, 131].

For RQ2, the results indicate that in general, tests written for mainly client-side

subjects in categories C2 (visualization), C8 (touch and drag&drop), C11 (game

engines), and C18 (multimedia) have lower quality. Compared to the client-side

95

projects, tests written for the server-side have higher quality in terms of code cov-

erage, test code ratio, and test commit ratio. The branch coverage in particular for

client-side code is low, which can be ascribed to the challenges in writing tests for

DOM related branches. We investigate reasons behind the code coverage differ-

ence in Section 4.3.3. The higher values for test code ratio and test commit ratio

can also be due to the fact that writing tests for server-side code is easier compared

to client-side.

Developers and testers could possibly increase code coverage of their tests by

using existing JavaScript test generator tools, such as Kudzu [158], ARTEMIS [66],

JALANGI [161], SymJS [109], JSEFT [130], and CONFIX [127]. Tests written in

Mocha, Tap, Tape, and Nodeunit generally have higher test quality compared to

other frameworks and tests that do not use any testing framework. In fact devel-

opers that do not write their test by leveraging an existing testing framework write

low quality tests almost in all aspects. Thus we recommend JavaScript developers

community to use a well-maintained and mature testing framework to write their

tests.

As far as RQ3 is concerned, our study shows that JavaScript tests lack proper

coverage for event-dependent callbacks, asynchronous callbacks, and DOM-

related code. Since these parts of code are hard to test they can be error prone

and thus requires effective targeted tests. For instance a recent empirical study

[141] reveals that the majority of reported JavaScript bugs and the highest impact

faults are DOM-related.

It is expected that using event triggering methods in tests, increase coverage for

event-dependent callbacks, asynchronous callbacks, and DOM-related statements.

However, our results do not show a strong correlation to support this. Our man-

ual analysis revealed that tests with event triggering methods, async behaviours,

and DOM fixtures are mainly written to cover only particular instances of event-

dependent callbacks, asynchronous callbacks, or DOM-related code. This again

can imply difficulties in writing tests with high coverage for such hard-to-test code.

We believe that there is a research potential in this regard for proposing test

generation techniques tailored to such uncovered parts. While most current test

generation tools for JavaScript produce tests at single function level, in practice

developers often write tests that invoke about 3 functions per test on average. It

96

might also worth for researchers to develop test generation tools that produce tests

with a sequence of function calls per test case.

Finally, we observed that UI tests are much less prevalent in the studied

JavaScript projects. Our investigation of the coverage report did not show a sig-

nificant coverage increase on the uncovered event-dependent callbacks or DOM-

related code between UI and unit tests. Since UI tests do not need DOM fixture

generation, they should be able to trigger more of the UI events, compared to code

level unit tests. It would be interesting to further investigate this in JavaScript ap-

plications with large UI tests.

Test effectiveness. Another test quality metric that is interesting to investigate is

test effectiveness. An ideal effective test suite should fail if there is a defect in

the code. Mutation score, i.e., the percentage of killed mutants over total non-

equivalent mutants, is often used as an estimate of defect detection capability of a

test suite. In fact it has been shown that there exists a significant correlation be-

tween mutant detection and real fault detection [102]. In this work, however, we

did not consider mutation score as a quality metric as it was too costly to gener-

ate mutants for each subject and execute the tests on each of them. We believe

that it is worthwhile to study the effectiveness of JavaScript tests using mutation

testing techniques, such as Mutandis [129], which guides mutation generation to-

wards parts of the code that are likely to affect the program output. This can help

to find out which aspects of code are more error-prone and not well-tested. Apart

from test quality evaluation based on mutation score, studying JavaScript bug re-

ports [142] and investigating bug locations, can give us new insights for developing

more effective test generation tools.

Threats to validity. With respect to reproducibility of the results, our tool and

list of the studied subjects are publicly available [59]. Regarding the generaliz-

ability of the results to other JavaScript projects, we believe that the studied set

of subjects is representative of real-world JavaScript projects as they differ in do-

main (category), size (SLOC), maturity (number of commits and contributors), and

popularity (number of stars and watchers). With regards to the subject categoriza-

tion, we used some existing categories proposed by JSter Catalog [54] and GitHub

Showcases [56].

97

There might be case that TESTSCANNER cannot detect a desired pattern in

the code as it performs complex static code analysis for detecting DOM-related

statements, event-dependent callbacks, and asynchronous APIs. To mitigate this

threat, we made a second pass of manual investigation through such code patterns

using grep with regular expressions in command line and manually validated ran-

dom cases. Such a textual search within JavaScript files through grep was espe-

cially done for a number of projects with parsing errors in their code for which

TESTSCANNER cannot generate a report or the report would be incomplete. Since

our tool statically analyzes test code to compute the number of function calls per

test, it may not capture the correct number of calls that happen during execution.

While dynamic analysis could help with this regard, it can not be used for the

unexecuted code and thus is not helpful to analyze uncovered code.

4.4 Related Work
There are number of previous empirical studies on JavaScript. Ratanaworabhan

et al. [152] and Richards et al. [153] studied JavaScript’s dynamic behavior and

Richards et al. [154] analyzed security issues in JavaScript projects. Ocariza et

al. [142] performed study to characterize root causes of client-side JavaScript

bugs. Gallaba et al. [87] studied the use of callback in client and server-side

JavaScript code. Security vulnerabilities in JavaScript have also been studied on

remote JavaScript inclusions [140], [193], cross-site scripting (XSS) [183], and

privacy violating information flows [98]. Milani Fard et al. [124] studied code

smells in JavaScript code. Nguyen et al. [139] performed usage patterns mining in

JavaScript web applications.

Researchers also studied test cases and mining test suites in the past. Inozemt-

seva et al. [97] found that code coverage does not directly imply the test suite

effectiveness. Zhang et al. [199] analyzed test assertions and showed that exis-

tence of assertions is strongly correlated with test suite effectiveness. Vahabzadeh

et al. [176] studied bugs in test code. Milani Fard et al. proposed Testilizer [126]

that mines information from existing test cases to generate new tests. Zaidman et

al. [194] investigated co-evolution of production and test code.

These work, however, did not study JavaScript tests. Related to our work,

98

Mirshokraie et al. [129] presented a JavaScript mutation testing approach and as

part of their evaluation, assessed mutation score for test suites of two JavaScript

libraries. To the best of our knowledge, our work is the first (large scale) study on

JavaScript tests and in particular their quality and shortcomings.

4.5 Conclusions
JavaScript is heavily used to build responsive client-side web applications as well

as server-side projects. While some JavaScript features are known to be hard to test,

no empirical study was done earlier towards measuring the quality and coverage of

JavaScript tests. This work presents the first empirical study of JavaScript tests to

characterize their prevalence, quality metrics, and shortcomings.

We found that a considerable amount of JavaScript projects do not have any

test and this is in particular for projects with JavaScript at client-side. On the other

hand almost all purely server-side JavaScript projects have tests and the quality of

those tests are higher compared to tests for client-side. On average JavaScript tests

lack proper coverage for event-dependent callbacks, asynchronous callbacks, and

DOM-related code. The result of this study can be used to improve JavaScript test

generation tools in producing more effective test cases that target hard-to-test code.

It would be interesting to evaluate effectiveness of JavaScript test by measuring

their mutation score, which reveals the quality of written assertions. Another possi-

ble direction could be designing automated JavaScript code refactoring techniques

towards making the code more testable and maintainable.

99

Chapter 5

Generating Fixtures for JavaScript Unit Testing

Summary11

In today’s web applications, JavaScript code interacts with the Document Object

Model (DOM) at runtime. This runtime interaction between JavaScript and the

DOM is error-prone and challenging to test. In order to unit test a JavaScript func-

tion that has read/write DOM operations, a DOM instance has to be provided as

a test fixture. This DOM fixture needs to be in the exact structure expected by

the function under test. Otherwise, the test case can terminate prematurely due

to a null exception. Generating these fixtures is challenging due to the dynamic

nature of JavaScript and the hierarchical structure of the DOM. We present an au-

tomated technique, based on dynamic symbolic execution, which generates test

fixtures for unit testing JavaScript functions. Our approach is implemented in a

tool called CONFIX. Our empirical evaluation shows that CONFIX can effectively

generate tests that cover DOM-dependent paths. We also find that CONFIX yields

considerably higher coverage compared to an existing JavaScript input generation

technique.

5.1 Introduction
To create responsive web applications, developers write JavaScript code that dy-

namically interacts with the DOM. As such, changes made through JavaScript code

11An initial version of this chapter has been published in the IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015 [127].

100

via these DOM API calls become directly visible in the browser.

This complex interplay between two separate languages, namely JavaScript

and the HTML, makes it hard to analyze statically [101, 111], and particularly

challenging for developers to understand [62] and test [66, 130] effectively. As re-

vealed in a recent empirical study [141], the majority (65%) of reported JavaScript

bugs are DOM-related, meaning the fault pertains to a DOM API call in JavaScript

code. Moreover, 80% of the highest impact JavaScript faults are DOM-related.

In order to unit test a JavaScript function that has DOM read/write op-

erations, a DOM instance needs to be provided in the exact structure as ex-

pected by the function. Otherwise, a DOM API method (e.g., var n =

getElementById("news")) returns null because the expected DOM node

is not available; any operations on the variable pointing to this non-existent DOM

node (e.g., n.firstChild) causes a null exception and the test case calling the

function terminates prematurely. To mitigate this problem, testers have to write

test fixtures for the expected DOM structure before calling the JavaScript function

in their unit tests. The manual construction of proper DOM fixtures is, however,

tedious and costly.

Despite the problematic nature of JavaScript-DOM interactions, most current

automated testing techniques ignore the DOM and focus on generating events and

function arguments [66, 161]. JSeft [130] applies an approach in which the appli-

cation is executed and the DOM tree is captured just before executing the function

under test. This DOM tree is used as a test fixture in generated test cases. This

heuristic-based approach, however, assumes that the DOM captured at runtime

contains all the DOM elements, values, and relations as expected by the function,

which is not always the case. Thus, the code coverage achieved with such a DOM

can be quite limited. Moreover, the DOM captured this way, can be too large and

difficult to read as a fixture in a test case. SymJS [109] applies symbolic execution

to increase JavaScript code coverage, with limited support for the DOM, i.e., it

considers DOM element variables as integer or string values and ignores the DOM

structure. However, there exist complex DOM structures and element relations ex-

pected by the JavaScript code in practice, which this simplification cannot handle.

In this work, we provide a technique for automatically generating DOM-based

fixtures and function arguments. Our technique, called CONFIX, is focused on cov-

101

ering DOM-dependent paths inside JavaScript functions. It operates through an

iterative process that (1) dynamically analyses JavaScript code to deduce DOM-

dependent statements and conditions, (2) collects path constraints in the form of

symbolic DOM constraints, (3) translates the symbolic path constraints into XPath

expressions, (4) feeds the generated XPath expressions into an existing structural

constraint solver [89] to produce a satisfiable XML structure, (5) generates a test

case with the solved structure as a test fixture or function argument, runs the gen-

erated test case, and continues recursively until all DOM-dependent paths are cov-

ered.

To the best of our knowledge, our work is the first to consider the DOM as a test

input entity, and to automatically generate test fixtures to cover DOM-dependent

JavaScript functions.

Our work makes the following main contributions:

• A novel dynamic symbolic execution engine to generate DOM-based test

fixtures and inputs for unit testing JavaScript functions;

• A technique for deducing DOM structural constraints and translating those

to XPath expressions, which can be fed into existing structural constraint

solvers;

• An implementation of our approach in a tool, called CONFIX, which is pub-

licly available [24];

• An empirical evaluation to assess the coverage of CONFIX on real-world

JavaScript applications. We also compare CONFIX’s coverage with that of

other JavaScript test generation techniques.

The results of our empirical evaluation show that CONFIX yields considerably

higher coverage — up to 40 and 31 percentage point increase on the branch, and

the statement coverage, respectively — compared to tests generated without DOM

fixtures/inputs.

102

1 function dg(x){
2 return document.getElementById(x);
3 }

5 function sumTotalPrice(){
6 sum = 0;
7 itemList = dg("items");
8 if (itemList.children.length == 0)
9 dg("message").innerHTML = "List is empty!";

10 else {
11 for (i = 0; i < itemList.children.length; i++){
12 p = parseInt(itemList.children[i].value);
13 if (p > 0)
14 sum += p;
15 else
16 dg("message").innerHTML += "Wrong value for the price of item "←↩

+ i;
17 }
18 dg("total").innerHTML = sum;
19 }
20 return sum;
21 }

Figure 5.1: A JavaScript function to compute the items total price.

5.2 Background and Motivation
The majority of reported JavaScript bugs are caused by faulty interactions with the

DOM [141]. Therefore, it is important to properly test DOM-dependent JavaScript

code. This work is motivated by the fact that the execution of some paths in a

JavaScript function, i.e., unique sequences of branches from the function entry to

the exit, depends on the existence of specific DOM structures. Such DOM struc-

tures have to be provided as test fixtures to effectively test such DOM-dependent

paths.

5.2.1 DOM Fixtures for JavaScript Unit Testing

A test fixture is a fixed state of the system under test used for executing tests [122].

It pertains to the code that initializes the system, brings it into the right state, pre-

pares input data, or creates mock objects, to ensure tests can run and produce re-

peatable results. In JavaScript unit testing, a fixture can be a partial HTML that the

JavaScript function under test expects and can operate on (read or write to), or a

fragment of JSON/XML to mock the server responses in case of XMLHttpRequest

103

(XHR) calls in the code.

Running Example.. Figure 5.1 depicts a simple JavaScript code for calculating

the total price of online items. We use this as a running example to illustrate the

need for providing proper DOM structures as test input for unit testing JavaScript

code.

Lets assume that a tester writes a unit test for the sumTotalPrice function

without any test fixture. In this case, when the function is executed, it throws

a null exception at line 8 (Figure 5.1) when the variable itemList is ac-

cessed for its children property. The reason is that the DOM API method

getElementById (line 2) returns null since there is no DOM tree available

when running the unit test case. Consequently, dg (line 2) returns null, and

hence the exception at line 8. Thus, in order for the function to be called from a

test case, a DOM tree needs to be present. Otherwise, the function will terminate

prematurely. What is interesting is that the mere presence of the DOM does not

suffice in this case. The DOM tree needs to be in a particular structure and contain

attributes and values as expected by the different statements and conditions of the

JavaScript function.

For instance, in the case of sumTotalPrice, in order to test the calculation,

a DOM tree needs to be present that meets the following constraints:

1. A DOM element with id "items" must exist (line 7)

2. That element needs to have one or more child nodes (lines 8, 10)

3. The child nodes must be of a DOM element type that can hold values (line 12),

e.g., <input value="..."/>

4. The values of the child nodes need to be positive (line 13) integers (lines 12)

5. A DOM element with id "total" must exist (line 18).

A DOM subtree that satisfies these constraints is depicted in Figure 5.2, which

can be used as a test fixture for unit testing the JavaScript function. There are

currently many JavaScript unit testing frameworks available, such as QUnit [40],

JSUnit [35], and Jasmine [31]. We use the popular QUnit framework to illustrate

the running example in this work. QUnit provides a $"qunit-fixture" vari-

able to which DOM test fixtures can be appended in a test case. A QUnit unit test

104

<div id=‘qunit-fixture’>

<form id=‘items’>

<input id=‘item1’ value=50> <input id=‘item2’ value=120>

<div id=‘total’>

Figure 5.2: A DOM subtree for covering a path (lines 6-8, 10-14, and 18-20) of sumTotalPrice in
Figure 5.1.

1 test("A test for sumTotalPrice", function() {
2 $("#qunit-fixture").append('<form id="items"><input type="text" id="←↩

item1" value=50><input type="text" id="item2" value=120></form><←↩
div id="total"/>');

3 sum = sumTotalPrice();
4 equal(sum, 170, "Function sums correctly.");
5 });

Figure 5.3: A QUint test case for the sumTotalPrice function. The DOM subtree of Figure 5.2 is
provided as a fixture before calling the function. This test with this fixture covers the path going
through lines 6-8, 10-14, and 18 in sumTotalPrice.

is shown in Figure 5.3. The execution of the test case with this particular fixture

results in covering a path (lines 6-8, 10-14, and 18). If the fixture lacks any of the

provided DOM elements that is required in the execution path, the test case fails

and terminates before reaching the assertion.

Other DOM fixtures are required to achieve branch coverage. For example,

to cover the true branch of the if condition in line 8, the DOM must satisfy the

following constraints:

1. A DOM element with id "items" must exist (line 7)

2. That element must have no child nodes (line 8)

3. A DOM element with id "message" must exist (line 9).

Yet another DOM fixture is needed for covering the else branch in line 16:

1. A DOM element with id "items" must exist (line 7)

2. That element needs to have one or more child nodes (lines 8, 10)

3. The child nodes must be of a DOM element type that can hold values (line 12)

e.g., input

105

4. The child nodes values need to be integers (lines 12)

5. The value of a child node needs to be zero or negative (line 15)

6. A DOM element with id "message" must exist (line 16).

7. A DOM element with id "total" must exist (line 18).

5.2.2 Challenges

As illustrated in this simple example, different DOM fixtures are required for maxi-

mizing JavaScript code coverage. Writing these DOM fixtures manually is a daunt-

ing task for testers. Generating these fixtures is not an easy task either. There are

two main challenges in generating proper DOM-based fixtures that we address in

our proposed approach.

Challenge 1: DOM-related variables.. JavaScript is a weakly-typed and

highly-dynamic language, which makes static code analysis quite challenging

[153, 161, 182]. Moreover, its interactions with the DOM can become difficult

to follow [62, 141]. For instance, in the condition of line 13 in Figure 5.1, the

value of the variable p is checked. A fixture generator needs to determine that p

is DOM-dependent and it refers to the value of a property of a DOM element, i.e.,

itemList.children[i].value.

Challenge 2: Hierarchical DOM relations.. Unlike most test fixtures that deal

only with primitive data types, DOM-based test fixtures require a tree structure. In

fact, DOM fixtures not only contain proper DOM elements with attributes and their

values, but also hierarchical parent-child relations that can be difficult to recon-

struct. For example the DOM fixture in Figure 5.2 encompasses the parent-child

relation between <form> and <input> elements, which is required to evaluate

itemList.children.length and itemList.children[i].value in

the code (lines 8, 11, and 12 in Figure 5.1).

5.2.3 Dynamic Symbolic Execution

Our insight in this work is that the problem of generating expected DOM fixtures

can be formulated as a constraint solving problem, to achieve branch coverage.

Symbolic execution [106] is a static analysis technique that uses symbolic val-

ues as input values instead of concrete data, to determine what values cause each

106

branch of a program to execute. For each decision point in the program, it in-

fers a set of symbolic constraints. Satisfiability of the conjunction of these sym-

bolic constraints is then checked through a constraint solver. Concolic execution

[92, 160], also known as dynamic symbolic execution [170], performs symbolic ex-

ecution while systematically executing all feasible program paths of a program on

some concrete inputs. It starts by executing a program with random inputs, gathers

symbolic constraints at conditional statements during execution, and then uses a

constraint solver to generate a new input. Each new input forces the execution of

the program through a new uncovered path; thus repeating this process results in

exploring all feasible execution paths of the program.

5.3 Approach
We propose a DOM-based test fixture generation technique, called CONFIX. To

address the highly dynamic nature of JavaScript, is based on a dynamic symbolic

execution approach.

Scope. Since primitive data constraints can be solved using existing input genera-

tors for JavaScript [109, 158, 161], in this work, we focus on collecting and solving

DOM constraints that enable achieving coverage for DOM dependent statements

and conditions in JavaScript code. Thus, is designed to generate DOM-based test

fixtures and function arguments for JavaScript functions that are DOM-dependent.

Definition 11 (DOM-Dependent Function) A DOM dependent function is a

JavaScript function, which directly or indirectly accesses DOM elements, at-

tributes, or attribute values at runtime using DOM APIs. 2

An instance of a direct access to a DOM element is

document.getElementById("items") in the function dg (Line 2,

Figure 5.1). An indirect access is a call to another JavaScript function that

accesses the DOM. For instance, the statement at line 7 of Figure 5.1 is an indirect

DOM access through function dg.

Overview. Figure 5.4 depicts an overview of CONFIX. At a high level, instruments

the JavaScript code (block 1), and executes the function under test to collect a

trace (blocks 2 and 3). Using the execution trace, it deduces DOM-dependent path

107

DOM-based
Fixture

JavaScript
Code

(1)
Instrument

Code

(2)
Execute
Function

(4)
Deduce

DOM-dependant
PCs

Execution
Trace

(3)
Collect

Execution
Trace

(9)
Generate
Test case

Generated
Unit Tests

(7)
Generate Fixture

(8)
Apply Fixture

to Cover a New
Path

Instrumented
Code

(6)
Solve XPath
expressions

(5)
Translate PCs to

XPath expressions
Solved XML

tree

Figure 5.4: Processing view of our approach.

constraints (block 4), translates those constraints into XPath expressions (block 5),

which are fed into an XML constraint solver (block 6). The solved XML tree is

then used to generate a DOM-based fixture (block 7), which subsequently helps

in covering unexplored paths (block 8). Finally, it generates a test suite by adding

generated test fixtures into a JavaScript unit testing template such as QUnit (block

9). In the following subsections we discuss each of these steps in more details.

Algorithm. Algorithm 4 demonstrates our DOM fixture generation technique. The

input to our algorithm is the JavaScript code, the function under test f , and op-

tionally its function arguments (provided by a tester or a tool [158, 161]). The

algorithm concolically generates DOM fixtures required for exploring all DOM-

dependent paths.

5.3.1 Collecting DOM-based Traces

We instrument the JavaScript code under test (algorithm 4 line 3) with wrapper

functions to collect information pertaining to DOM interactions, which include

statements or conditional constructs that depend on the existence of a DOM struc-

ture, element, attribute, or value. The instrumentation is non-intrusive meaning

that it does not affect the normal functionality of the original program.

108

The instrumentation augments function calls, conditionals (in if and loop

constructs), infix expressions, variable initializations and assignments, and return

statements with inline wrapper functions to store an execution trace (see Sec-

tion 5.3.5 for more details). Such a trace includes the actual statement, type of

statement (e.g. infix, condition, or function call), list of variables and their values

in the statement, the enclosing function name, and the actual concrete values of

the statement at runtime. CONFIX currently supports DOM element retrieval pat-

terns based on tag names, IDs, and class names, such as getElementById,

getElementsByTagName, children, innerHTML, parentNode, and

$() for jQuery-based code.

After instrumenting the source code, the modified JavaScript file is used in a

runner HTML page that is loaded inside a browser (line 7, algorithm 4) and then a

JavaScript driver (e.g., WebDriver [42]) executes the JavaScript function under test

(line 8). The initial DOM fixture is an empty HTML runner having a div element

with id qunit-fixture. This execution results in an execution trace, which is

collected from the browser for further analysis (line 9).

5.3.2 Deducing DOM Constraints

An important phase of dynamic symbolic execution is gathering path constraints

(PCs). In our work, path constraints are conjunctions of constraints on symbolic

DOM elements.

Definition 12 (Symbolic DOM Element) A symbolic DOM element d is a data

structure representing a DOM element in terms of its symbolic properties and val-

ues. d is denoted by a 4 tuple < P,C ,A ,T > where:

1. P is d’s parent symbolic DOM element.

2. C is a set of child symbolic DOM elements of d.

3. A is a set of 〈att, val〉 pairs; each pair stores an attribute att of d

with a symbolic value val.

4. T is the element type of d. 2

109

Algorithm 4: Test Fixture Generation
input : JavaScript code JS, the function under test f , function arguments for f
output: A set of DOM fixtures f ixtureSet for f

1 negatedConstraints←∅
2 DOMRefTrackList←∅

Procedure GENERATEFIXTURE(JS, f)
begin

3 JSinst ← INSTRUMENT(JS)
4 f ixtureSet←∅
5 f ixture←∅
6 repeat
7 browser.LOAD(JSinst , f ixture)
8 browser.EXECUTE(f)
9 t← browser.GETEXECUTIONTRACE()

10 f ixture← SOLVECONSTRAINTS(t)
11 f ixtureSet← f ixtureSet ∪ f ixture

until f ixture 6=∅;
12 return fixtureSet

end

Procedure SOLVECONSTRAINTS(t)
begin

13 DOMRefTrackList← GETDOMREFERENCETRACKS(t)
14 pc← GETPATHCONSTRAINT(t, DOMRefTrackList)
15 f ixture← UNSAT
16 while f ixture = UNSAT do
17 f ixture←∅
18 c← GETLASTNONNEGCONST(pc,negatedConstraint)
19 if c 6= null then
20 negatedConstraint← negatedConstraint ∪ c
21 pc← NEGATECONSTRAINT(pc,c)
22 xp← GENERATEXPATH(pc,DOMRe f TrackList)

/* SOLVEXPATHCONSTRAINT returns UNSAT if xp is not
solvable. */

23 f ixture← SOLVEXPATHCONSTRAINT(xp)
end

end
24 return fixture

end

Note that keeping the parent-children relation for DOM elements is sufficient

to recursively generate the DOM tree.

DOM constraints in the code can be conditional or non-conditional. A non-

conditional DOM constraint is a constraint on the DOM tree required by a DOM

accessing JavaScript statement. A conditional DOM constraint is a constraint on

the DOM tree used in a conditional construct.

Example 5 Consider the JavaScript code in Figure 5.1. In line 2,

110

document.getElementById(x) is a non-conditional DOM constraint,

i.e., an element with a particular ID is targeted. On the other hand,

itemList.children.length == 0 (line 8) is a conditional DOM con-

straint, i.e., the number of child nodes of a DOM element is checked to be zero.

Non-conditional DOM constraints evaluate to null or a not-null object, while,

conditional DOM constraints evaluate to true or false. For example, if

we execute sumTotalPrice() with a DOM subtree void of an element with

id="items", the value of itemList at line 7 will be null and the execution

will terminate at line 8 when evaluating itemList.children.length ==

0. On the other hand, if that element exists and has a child, the condition at line 8

evaluates to false.

In this work, the input to be generated is a DOM subtree that is accessed via

DOM APIs in the JavaScript code. As we explained in Section 5.2.2, due to the

dynamic nature of JavaScript, its interaction with the DOM can be difficult to fol-

low (challenge 1). Tracking DOM interactions in the code is needed for extracting

DOM constraints. Aliases in the code add an extra layer of complexity. We need

to find variables in the code that refer to DOM elements or element attributes. To

address this challenge, we apply an approach similar to dynamic backward slic-

ing, except that instead of slices of the code, we are interested in relevant DOM-

referring variables. To that end, we use dynamic analysis to extract DOM referring

variables from the execution trace, by first searching for DOM API calls, their argu-

ments, and their actual values at runtime. The process of collecting DOM referring

variables (Algorithm 4 line 13) is outlined further in subsection 5.3.5.

Once DOM referring variables are extracted, constraints on their corre-

sponding DOM elements are collected and used to generate constraints on

symbolic DOM elements (see Definition 12). DOM constraints can be ei-

ther attribute-wise or structure-wise. Attribute-wise constraints are satis-

fied when special values are provided for element attributes. For example,

parseInt(itemList.children[i].value) > 0 (line 13 of Figure 5.1)

requires the value of the i-th child node to be an integer greater than zero. The

value is an attribute of the child node in this example. Structure-wise constraints

are applied to the element type and its parent-children relations. For example, in

111

itemList.children.length == 0 (line 8 of Figure 5.1 to cover the else

branch (lines 10–19) an element with id "items" is needed with at least one child

node.

The conjunction of these symbolic DOM constraints in an iteration

forms a path constraint. For instance, the structure-wise constraint in

parseInt(itemList.children[i].value) > 0 (line 13 of Figure 5.1)

requires the child nodes to be of an element type that can hold values, e.g., input

type, and the attribute-wise constraint requires the value to be a positive integer.

Our technique reasons about a collected path constraint and constructs sym-

bolic DOM elements needed. For each symbolic DOM element, (1) infers the

type of the parent node, (2) determines the type and number of child nodes, and

(3) generates, through a constraint solver, satisfied values that are used to assign

attributes and values (i.e., 〈att, val〉 pairs). The default element type for a

symbolic DOM element is div — the div is a placeholder element that defines a

division or a section in an HTML document. It satisfies most of the element type

constraints and can be parent/child of many elements — unless specific attributes/-

values are accessed from the element, which would imply that a different element

type is needed. For instance, if the value is read/set for an element, the type

of that element needs to change to, for instance input, because per definition,

the div type does not carry a value attribute (more detail in subsection 5.3.5).

These path constraints with satisfied symbolic DOM elements are used to generate

a corresponding XPath expression, as presented in the next subsection.

5.3.3 Translating Constraints to XPath

The problem of DOM fixture generation can be formulated as a decision prob-

lem for the emptiness test [69] of an XPath expression, in the presence of XHTML

meta-models, such as Document Type Definitions (DTD) or XML Schemas. These

meta-models define the hierarchical tree-like structure of XHTML documents with

the type, order, and multiplicity of valid elements and attributes. XPath [75]

is a query language for selecting nodes from an XML document. An example

is the expression /child::store/child::item/child::price which

navigates the root through the top-level “store” node to its “item” child nodes and

112

on to its “price” child nodes. The result of the evaluation of the entire expression is

the set of all the “price” nodes that can be reached in this manner. XPath is a very

expressive language. We propose a restricted XPath expression grammar, shown

in Figure 5.5, which we use to model our DOM constraints in.

〈XPath〉 ::= 〈Path〉 | /〈Path〉

〈Path〉 ::= 〈Path〉/〈Path〉 | 〈Path〉[〈Qualifier〉] | child::〈Name〉 | 〈Name〉

〈Qualifier〉 ::= 〈Qualifier〉 and 〈Qualifier〉 | 〈Path〉 | @〈Name〉

〈Name〉 ::= 〈HTMLTag〉 | 〈Attribute〉=〈Value〉

〈HTMLTag〉 ::= a | b | button | div | form | frame | h1 - h6 | iframe | img | input | i | li | link | menu |
option | ol | p | select | span | td | tr | ul

〈Attribute〉 ::= id | type | name | class | value | src | innerHTML | title | selected | checked | href |
size | width | height

Figure 5.5: Restricted XPath grammar for modeling DOM constraints.

We transform the deduced path constraints, with the symbolic DOM elements,

into their equivalent XPath expressions conforming to this specified grammar.

These XPath expressions systematically capture the hierarchical relations between

elements. Types of common constraints translated to expressions include specify-

ing the existence of a DOM element/attribute/value, properties of style attributes,

type and number of child nodes or descendants of an element, or binary properties

such as selected/not selected.

Example 6 Table 5.1 shows examples of collected DOM con-

straints that are translated to XPath expressions, for the run-

ning example. For example, in the first row, the DOM constraint

document.getElementById("items") 6= null is translated to the

XPath expression div[@id="qunit-fixture"][div[@id="items"]],

which expresses the desire for the existence of a div element with id “items”

in the fixture. The last row shows a more complex example, including six DOM

constraints in a path constraint, which are translated into a corresponding XPath

expression.

113

Table 5.1: Examples of DOM constraints, translated XPath expressions, and solved XHTML instances for the running example.

DOM constraints Corresponding XPath expressions Solved XHTML
document.getElementById(“items”) 6= null div[@id=“qunit-fixture”][div[@id=“items”]] <div id=“items”/>
document.getElementById(“items”) 6= null ∧ div[@id=“qunit-fixture”][div[@id=“items”] and <div id=“items”/>
itemList.children.length == 0 ∧ child::div[@id=“message”]] <div id=“message”/ >
document.getElementById(“message”) 6= null
document.getElementById(“items”) 6= null ∧ div[@id=“qunit-fixture”][div[@id=“items” and <div id=“items”>
itemList.children.length 6= 0 ∧ child::div[@id=“Confix1”]] and <div id=“Confix1”/>
0 < itemList.children.length ∧ child::div[@id=“message”]] </div>
document.getElementById(“message”) 6= null <div id=“message”/>
document.getElementById(“items”) 6= null ∧ div[@id=“qunit-fixture”][div[@id=“items” and <div id=“items”>
itemList.children.length 6= 0 ∧ child::input[@id=“Confix1” and @value=”1”]] and <input id=“Confix1” value=“1”/>
0 < itemList.children.length ∧ child::div[@id=“message”] and </div>
parseInt(itemList.children[0].value) > 0 ∧ child::div[@id=“total”]] <div id=“message”/>
document.getElementById(“message”) 6= null ∧ <div id=“total”/>
document.getElementById(“total”) 6= null

114

5.3.4 Constructing DOM Fixtures

Next, the XPath expressions are fed into a structural XML solver [89]. The con-

straint solver parses the XPath expressions and compiles them into a logical rep-

resentation, which is tested for satisfiability. If satisfiable, the solver generates a

solution in the XML language. Since an XHTML meta-model (i.e., DTD) is fed

into the solver along with the XPath expressions, the actual XML output is an

instance of valid XHTML. The last column of Table 5.1 shows solved XHTML in-

stances that satisfy the XPath expressions, for the running example. These solved

XHTML instances are subsequently used to construct test fixtures.

Each newly generated fixture forces the execution of the JavaScript function

under test along a new uncovered path. This is achieved by systematically negating

the last non-negated conjunct in the path constraint and solving it to obtain a new

fixture, in a depth first manner. If a path constraint is unsatisfiable, the technique

chooses a different path constraint and this process repeats until all constraints are

negated.

In the main loop of Algorithm 4 (lines 6–11), fixtures are iteratively gen-

erated and added to the fixtureSet. In the SolveConstraints proce-

dure, a fixture is initialized to UNSAT; the loop (lines 16–23) continues until

the fixture is set either to a solved DOM subtree12 (line 23), or to ∅ (line 17)

if there exist no non-negated constraints in the PCs. When a ∅ fixture returns

from SolveConstraints, the loop in the main procedure terminates, and the

fixtureSet is returned.

12Note that SolveXpathConstraint returns UNSAT when it fails to solve the given path
constraint.

115

Table 5.2: Constraints table for the running example. The “Next to negate” field refers to the last non-negated constraint.
It

er
at

io
n

Current fixture Current DOM constraints N
eg

at
ed

N
ex

tt
o

ne
ga

te

Fixture for the next iteration Paths covered
1 ∅ document.getElementById(“items”) = null - 3 <div id=“items”/> Lines 1–8
2 <div id=“items”/> document.getElementById(“items”) 6= null ∧ 3 - <div id=“items”/> Lines 1–9

itemList.children.length = 0 ∧ - - <div id=“message”/ >
document.getElementById(“message”) = null - 3

3 <div id=“items”/> document.getElementById(“items”) 6= null ∧ 3 - <div id=“items”> Lines 1–9 and 20
<div id=“message”/ > itemList.children.length = 0 ∧ - 3 <div id=“Confix1”/>

document.getElementById(“message”) 6= null 3 - </div>
<div id=“message”/>

4 <div id=“items”> document.getElementById(“items”) 6= null ∧ 3 - <div id=“items”> Lines 1–8, 10–13,
<div id=“Confix1”/> itemList.children.length 6= 0 ∧ 3 - <div id=“Confix1”/> and 15–18

</div> 0 < itemList.children.length ∧ - - </div>
<div id=“message”/> parseInt(itemList.children[0].value) ≯ 0 ∧ - - <div id=“message”/>

document.getElementById(“message”) 6= null ∧ 3 - <div id=“total”/>
document.getElementById(“total”) = null - 3

5 <div id=“items”> document.getElementById(“items”) 6= null ∧ 3 - <div id=“items”> Lines 1–8, 10–13,
<div id=“Confix1”/> itemList.children.length 6= 0 ∧ 3 - <input id=“Confix1” value=“1”/> and 15–20

</div> 0 < itemList.children.length ∧ - - </div>
<div id=“message”/> parseInt(itemList.children[0].value) ≯ 0 ∧ - 3 <div id=“message”/>
<div id=“total”/> document.getElementById(“message”) 6= null ∧ 3 - <div id=“total”/>

document.getElementById(“total”) 6= null 3 -
6 <div id=“items”> document.getElementById(“items”) 6= null ∧ 3 - UNSAT⇒ Negate last non-negated Lines 1–8, 10–14,

<input id=“Confix1” value=“1”/> itemList.children.length 6= 0 ∧ 3 - constraint and 18–20
</div> 0 < itemList.children.length ∧ - 3
<div id=“message”/> parseInt(itemList.children[0].value) > 0 ∧ 3 -
<div id=“total”/> document.getElementById(“message”) 6= null ∧ 3 -

document.getElementById(“total”) 6= null 3 -
<div id=“items”> document.getElementById(“items”) 6= null ∧ 3 - No non-negated constraint exists⇒
<input id=“Confix1” value=“1”/> itemList.children.length 6= 0 ∧ 3 - Fixture = ∅
</div> 0 < itemList.children.length ∧ 3 -
<div id=“message”/> parseInt(itemList.children[0].value) > 0 ∧ 3 -
<div id=“total”/> document.getElementById(“message”) 6= null ∧ 3 -

document.getElementById(“total”) 6= null 3 -

116

Example 7 Table 5.2 shows the extracted path constraints and their values, as well

as the current and next iteration fixtures at each iteration of the concolic execution

for the running example. Since there is no fixture available in the first iteration,

the constraint obtained is document.getElementById("items")=null.

This means the execution terminates at line 8 of the JavaScript code (Figure 5.1)

due to a null exception. Our algorithm negates the last non-negated constraint (d

ocument.getElementById("items") 6=null), and generates the corre-

sponding fixture (<div id="items">) to satisfy this negated constraint. This

process continues until the solver fails at producing a satisfiable fixture in the sixth

iteration. UNSAT is returned because the constraints itemList.children

.length 6=0 and the newly negated one (0≮itemList.children.leng
th) require that the number of child nodes be negative, which is not feasible in

the DOM structure. It then tries to generate a fixture by negating the last non-

negated constraint without applying any fixtures, i.e., the path constraint extracted

in the sixth iteration. However, in this case there are no non-negated constraints

left since the last one (0<itemList.children.length) had already been

negated and the result was not satisfiable. Consequently the algorithm terminates

with an empty fixture in the last iteration. The table also shows which paths of the

running example are covered in terms of lines of JavaScript code.

5.3.5 Implementation Details

CONFIX currently generates QUnit test cases with fixtures, however, it can be

easily adapted to generate test suites in other JavaScript testing frameworks. To

parse the JavaScript code into an abstract syntax tree for instrumentation, we build

up on Mozilla Rhino [41]. To collect execution traces while executing a function

in the browser, we use WebDriver [42].

XML Solver.. To solve structure-wise DOM constraints using XPath expressions,

we use an existing XML reasoning solver [89]. A limitation with this solver is

that it cannot generate XML structures with valued attributes (i.e., attributes are

supported but not their values). To mitigate this, we developed a transformation

technique that takes our generic XPath syntax (Figure 5.5) and produces an XPath

format understandable by the solver. More specifically, we merge attributes and

117

their values together and feed them to the solver as single attributes to be gen-

erated. Once the satisfied XML is generated, we parse and decompose it to the

proper attribute-value format as expected in a valid XHTML instance. Another

limitation is that it merges instances of the same tag elements at the same tree level

when declared as children of a common parent. We resolved this by appending an

auto-increment number to the end of each tag and remove it back once the XML

produced.

Handling asynchronous calls. Another challenge we encountered pertains to han-

dling asynchronous HTTP requests that send/retrieve data (e.g., in JSON/XML for-

mat) to/from a server performed by using the XMLHttpRequest (XHR) object.

This feature makes unit-level testing more challenging since the server-side gener-

ated data should also be considered in a test fixture as an XHR response if the func-

tion under test (in)directly uses the XHR and expects a response from the server.

Existing techniques [100] address this issue by mocking the server responses, but

they require multiple concrete executions of the application to learn the response.

This is, however, not feasible in our case because we generate JavaScript unit tests

in isolation from other dependencies such as the server-side code. As a solution,

our instrumentation replaces the XHR object of the browser with a new object and

redefines the XHR open() method in a way that it always uses the GET request

method to synchronously retrieve data from a local URL referring to our mocked

server. This helps us to avoid null exceptions and continue the execution of the

function under test. However, if the execution depends on the actual value of the

retrieved data (and not merely their existence), our current approach can not handle

it. In such cases, a string solver [105] may be helpful.

Tracking DOM-referring variables. To detect DOM-referring variables — used

to generate constraints on symbolic DOM elements (Definition 12) — we auto-

matically search for DOM API calls, their arguments, and their actual values at

runtime, in the execution trace. Algorithm 4 keeps track of DOM references (line

13) by storing information units, called DOM Reference Track (DRT), in a data

structure.

Definition 13 (DOM Reference Track (DRT)) A DOM reference track is a data

structure capturing how a DOM tree is accessed in the JavaScript code. It is de-

118

Table 5.3: DRT data structure for the running example.

It
er

at
io

n

D
O

M
Va

ri
ab

le

Pa
re

nt
Va

ri
ab

le

E
le

m
en

t

A
tt

ri
bu

te
Va

ri
ab

le
s

E
xi

st
s?

Ty
pe

1 itemList document div 〈id:items, -〉 7

2 itemList document div 〈id:items,-〉 3
- itemList div 〈id:Confix1,-〉 7
- document div 〈id:message,-〉 7

3 itemList document div 〈id:items,-〉 3
- itemList div 〈id:Confix1,-〉 7
- document div 〈id:message,-〉 3

...
6 itemList document div 〈id:items,-〉 3

- itemList input 〈id:Confix1,-〉, 〈value:1, p〉 3
- document div 〈id:message,-〉 3
- document div 〈id:total,-〉 3

noted by a 4 tuple < D ,P,A ,T > where:

1. D (DOMVariable) is a JavaScript variable v that is set to refer to a DOM

element d.

2. P (ParentVariable) is a JavaScript variable (or the document object) that

refers to the parent node of d.

3. A (AttributeVariables) is a set of 〈att:val, var〉 pairs; each pair stores

the variable var in the code that refers to an attribute att of d with a value

val.

4. T (ElementType) is the node type of d. 2

When JavaScript variables are evaluated in a condition, the DRT entries in this

data structure are examined to determine whether they refer to the DOM. If the

actual value of a JavaScript variable at runtime contains information regarding a

DOM element object, and it does not exist in our DRT data structure, we add it as

a new DOM referring variable. Table 5.3 presents an example of the DRT for the

running example.

119

We implemented a constraint solver that reasons about some common symbolic

DOM constraints such as string/integer attribute values, and number of children

nodes. Specifically the solver infers conditions on DOM referring variables by ex-

amining DRT entries. If the constraint is on an attribute of a DOM element, then

the AttributeVariables property of the corresponding DRT will be updated

with a satisfying value. In case the constraint is a structural constraint, such as

number of child nodes, a satisfying number of DRT entities would be added to the

table. Table 5.3 depicts the process of constructing the DRT during different itera-

tions of the concolic execution. The Exists field indicates whether the element

exists in the DOM fixture.

Example 8 Consider the running example of Figure 5.1. When

sumTotalPrice() is called in the first iteration, dg("items") re-

turns null as no DOM element with ID items exists. Table 5.3 would then

be populated by adding the first row: DOMVariable is itemList, the

ParentVariable points to document, the default element type is set to div,

and the attribute id is set to items; and this particular element does not exist

yet. The execution terminates with a null exception at line 8. In the next iteration,

CONFIX updates the DOM fixture with a div element with id items. Therefore

dg("items") returns a DOM element and line 8 evaluates the number of

child nodes under itemList. This would then update the table with a new

entry having ParentVariable point to itemList and attribute id set to

an automatically incremented id "Confix1" (in the second row). This process

continues as shown in Table 5.3.

Generating DOM-based function arguments. Current tools for JavaScript input

generation (e.g., [158, 161]) only consider primitive data types for function argu-

ments and thus cannot handle functions that take DOM elements as input. Consider

the following simple function:

1 function foo(elem) {

2 var price = elem.firstChild.value;

3 if (price > 200) {

4 ...

5 }}

120

The elem function parameter is expected to be a DOM element, whose first

child node’s value is read in line 2 and used in line 3. The problem of generating

DOM function arguments is not fundamentally different from generating DOM

fixtures. Thus, we propose a solution for this issue in CONFIX. The challenge here,

however, is that JavaScript is dynamically typed and since elem in this example

does not reveal its type statically nor when foo is executed in isolation in a unit

test (because elem does not exist to log its type dynamically), it is not possible to

determine that elem is a DOM element. To address this challenge, CONFIX first

computes a forward slice of the function parameters. If there is a DOM API call in

the forward slice, CONFIX deduces constraints and solves them similarly to how

DOM fixtures are constructed. The generated fixture is then parsed into a DOM

element object and the function is called with that object as input in the test case.

In the example above, there is a DOM API call present, namely firstChild in

the forward slice of elem. Therefore, CONFIX would know that elem is a DOM

element and would generate it accordingly. Then foo is called in the test case with

that object as input.

5.4 Empirical Evaluation
To assess the efficacy of our proposed technique, we have conducted a controlled

experiment to address the following research questions:

RQ1 (Coverage) Can fixtures generated by CONFIX effectively increase code

coverage of DOM-dependent functions?

RQ2 (Performance) What is the performance of running ? Is it acceptable?

The experimental objects and our results, along with the implementation of are

available for download [24].

5.4.1 Experimental Objects

To evaluate CONFIX, we selected four open source web applications that have

many DOM-dependent JavaScript functions. Table 5.4 shows these applications,

which fall under different application domains and have different sizes. ToDoList

121

Table 5.4: Characteristics of experimental objects excluding blank/comment lines and external JavaScript
libraries.

Name JS
L

O
C

#
B

ra
nc

he
s

#
Fu

nc
tio

ns

%
D

O
M

-D
ep

en
de

nt
Fu

nc
tio

ns

#
D

O
M

C
on

st
ra

in
ts

(D
C

)

%
N

on
-C

on
di

tio
na

lD
C

%
C

on
di

tio
na

lD
C

ToDoList 82 10 7 100 19 84 16
HotelReserve 106 88 9 56 13 69 31
Sudoku 399 344 18 78 66 67 33
Phormer 1553 464 109 71 194 70 30
Total 2140 906 143 72 292 70 30

[43] is a simple JavaScript-based todo list manager. HotelReserve [29] is a reser-

vation management application. Sudoku [44] is a web-based implementation of

the Sudoku game. And Phormer [39] is an Ajax photo gallery. As presented in

Table 5.4, about 70% of the functions in these applications are DOM-dependent.

The table also shows the lines of JavaScript code, and number of branches and

functions in each application.

5.4.2 Experimental Setup

Our experiments are performed on Mac OS X, running on a 2.3GHz Intel Core i7

with 8 GB memory, and FireFox 37.

Independent variables

To the best of our knowledge, there exists no DOM test fixture generation tool to

compare against; the closest to is JSeft [130], which generates tests that use the

entire DOM at runtime as test fixtures. However, JSeft does not generate DOM

fixtures, and it requires a deployed web application before it can be used.

Therefore, we construct baseline test suites to compare against. We compare

different types of test suites to evaluate the effectiveness of test fixtures generated

by CONFIX. Table 5.5 depicts different JavaScript unit test suites. We classify

test suites based on the type of test input they have support for, namely, (1) DOM

122

Table 5.5: Evaluated function-level test suites.

Test Suite Function Arguments DOM DOM # Test
Fixture Input Cases

NoInput No input 7 7 98
Jalangi Generated by JALANGI 7 7 98+4
Manual Manual inputs 7 7 98+55
ConFix + NoInput No input 3 7 98+125
ConFix + Jalangi Generated by JALANGI 3 7 98+129
ConFix + Manual Manual inputs 3 3 98+236

fixtures, and/or (2) DOM function arguments.

Test suites without DOM fixtures. NoInput is a naive test suite that calls each

function without setting any fixture or input for it. Jalangi produces (non-DOM)

function arguments using the concolic execution engine of JALANGI [161]. Man-

ual is a test suite that uses manually provided (non-DOM) inputs.

Test suites with DOM fixtures. To assess the effect of DOM fixtures and inputs

generated by CONFIX, we consider different combinations: ConFix + NoInput

has DOM fixtures generated by but no function arguments, ConFix + Jalangi has

DOM fixtures generated by but uses the inputs generated by JALANGI for non-

DOM function arguments, and ConFix + Manual uses DOM fixtures and DOM

function arguments generated by and manual inputs for non-DOM function argu-

ments. Table 5.5 shows all these combinations along with the number of test cases

in each category.

Note that since our approach is geared toward generating DOM-based test fix-

tures/inputs, we only consider test generation for DOM-dependent functions and

thus for all categories we consider the same set of 98 DOM-dependent functions

under test, but with different inputs/fixtures. The 55 manual non-DOM function

arguments were written by the authors through source code inspection.

Dependent variables

Our dependent variables are code coverage and generation time.

Code coverage. Code coverage is commonly used as a test suite adequacy crite-

rion. To address RQ1, we compare the JavaScript code coverage of the different

123

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	

NoInput	 ConFix	 +	
NoInput	

Jalangi	 ConFix	 +	
Jalangi	

Manual	 ConFix	 +	
Manual	

Co
de

	 C
ov
er
ag
e	

Statement	 Coverage	 Branch	 Coverage	

Figure 5.6: Comparison of statement and branch coverage, for DOM-dependent functions, using different
test suite generation methods.

test suites, using JSCover [33]. Since our target functions in this work are DOM-

dependent functions (Definition 11), code coverage is calculated by considering

only DOM-dependent functions.

Fixture generation time. To answer RQ2 (performance), we measure the time

(in seconds) required for to generate test fixtures for a test suite, divide it by the

number of generated tests, and report this as the average fixture generation time.

5.4.3 Results

Coverage (RQ1). Figure 5.6 illustrates the comparison of code coverage achieved

by each test suite category. We report the total statement and branch coverage of

the JavaScript code obtained from the experimental objects.

Table 5.4 shows that in total about 14% of the code (i.e., 292 out of 2140 LOC)

contains DOM constraints. However, as shown in Figure 5.6, this relatively small

portion of the code has a remarkable impact on the code coverage when comparing

test suites with and without DOM test fixtures. This is due to the fact that if a DOM

constraint is not satisfied, the function terminates as a result of a null exception in

most cases. Such constraints may exist at statements near the entrance of functions

(as shown in Figure 5.1) and thus, proper DOM test fixtures are essential to achieve

proper coverage. Table 5.6 shows the coverage increase for the test suites.

Our results, depicted in Figure 5.6 and Table 5.6, show that Manual and Jalangi

cannot achieve a much higher code coverage than NoInput. This again relates to

the fact that if expected DOM elements are not available, then the execution of

DOM-dependent functions terminates and consequently code coverage cannot be

124

Table 5.6: Coverage increase (in percentage point) of test suites on rows over test suites on columns.
Statement and branch coverage are separated by a slash, respectively.

NoInput Jalangi Manual ConFix ConFix
+ +

NoInput Jalangi
Jalangi 3 / 2 — — — —
Manual 7 / 9 4 / 7 — — —
ConFix + NoInp 23 / 23 20 / 21 16 / 14 — —
ConFix + Jalangi 26 / 25 23 / 23 19 / 16 3 / 2 —
ConFix + Manual 34 / 42 31 / 40 27 / 33 11 / 19 8 / 17

increased much, no matter the quality of the function arguments provided.

The considerable coverage increase for ConFix + NoInput vs. Jalangi and

Manual indicates that test suites generated by CONFIX, even without providing any

arguments, is superior over other test suites with respect to the achieved code cov-

erage. The coverage increases even more when function arguments are provided;

for example, for ConFix + Manual compared to Jalangi, there is a 40 percentage

point increase (300% improvement) in the branch coverage, and a 31 percentage

point increase (67% improvement) in the statement coverage.

The coverage increase for ConFix + Manual vs. ConFix + NoInput and ConFix

+ Jalangi is more substantial in comparison with the coverage increase for Manual

vs. NoInput and Jalangi. This is mainly due to (1) the DOM fixtures generated,

which are required to execute paths that depend on manually given arguments; and

(2) the DOM arguments generated, which enable executing paths that depend on

DOM elements provided as function arguments.

Although DOM fixtures generated by can substantially improve the cover-

age compared to the current state-of-the-art techniques, we discuss why does not

achieve full coverage in Section 5.5.

Performance (RQ2). The execution time of is mainly affected by its concolic ex-

ecution, which requires iterative code execution in the browser and collecting and

solving constraints. Our results show that, on average, CONFIX requires 0.7 second

per test case and 1.6 second per function to generate DOM fixtures. This amount

of time is, however, negligible considering the significant code coverage increase.

Since the number of DOM constraints in typical DOM-dependent JavaScript func-

125

tions is not large (2.9 on average in our study), concolic execution can be performed

in a reasonable time.

5.5 Discussion

Applications. Given the fact that JavaScript extensively interacts with the DOM

on the client-side, and these interactions are highly error-prone [141], we see many

applications for our technique. CONFIX can be used to automatically generate

JavaScript unit tests with DOM fixtures that could otherwise be quite time consum-

ing to write manually. It can also be used in combination with other existing test

generation techniques [130, 161] to improve the code coverage. In case a DOM

constraint depends on a function argument, we can perform concolic execution

i.e., beginning with an arbitrary value for the argument, capturing the DOM con-

straint during execution, and treating the DOM referring variable and the argument

as symbolic variables. In addition to DOM fixtures, can also generate DOM-based

function arguments, i.e., DOM elements as inputs, as explained in subsection 5.3.5.

Currently there is no tool that supports DOM input generation for JavaScript func-

tions.

Limitations. We investigated why does not achieve full coverage. The main rea-

sons that we found reveal some of the current limitations of our implementation,

which include: (1) we implemented a simple integer/string constraint solver to

generate XPath expressions with proper structure and attribute values, which can-

not handle complex constraints currently; (2) we do not support statements that

require event-triggering; (3) the XML solver used in our work cannot efficiently

solve long lists of constraints, (4) some paths are browser-dependent, which is out

of the scope of CONFIX; (5) the execution of some paths are dependent on global

variables that are set via other function calls during the execution, which is also

out of the scope of ; and (6) does not analyze dynamically generated code using

eval() that interacts with the DOM.

Threats to validity. A threat to the external validity of our experiment is with

regard to the generalization of the results to other JavaScript applications. To mit-

igate this threat, we selected applications from different domains (task manage-

ment, form validation, game, gallery) that exhibit variations in functionality, and

126

we believe they are representative of JavaScript applications that use DOM APIs

for manipulating the page; although we do need more and large applications to

make our results more generalizable. With respect to the reproducibility of our

results, CONFIX, the test suites, and the experimental objects are all available [24],

making the experiment repeatable.

5.6 Related Work
Most current web testing techniques focus on generating sequences of events at

the DOM level, while we consider unit test generation at the JavaScript code level.

Event-based test generation techniques [121, 123, 126] can miss JavaScript faults

that do not propagate to the DOM [130].

Unit testing. Alshraideh [65] generates unit tests for JavaScript programs through

mutation analysis by applying basic mutation operators. Heidegger et al. [95] pro-

pose a test case generator for JavaScript that uses contracts (i.e., type signature

annotations that the tester has to include in the program manually) to generate in-

puts. ARTEMIS [66] is a framework for automated testing of JavaScript, which

applies feedback-directed random test generation. None of these techniques con-

sider DOM fixtures for JavaScript unit testing.

More related to our work, JSEFT [130] applies a heuristic-based approach by

capturing the full DOM tree during the execution of an application just before

executing the function under test, and uses that DOM as a test fixture in a generated

test case. This approach, however, cannot cover all DOM dependent branches.

Symbolic and concolic execution. Nguyen et al. [138] present a technique that ap-

plies symbolic execution for reasoning about the potential execution of client-side

code embedded in server-side code. KUDZU [158] performs symbolic reasoning to

analyze JavaScript security vulnerabilities, such as code injections in web applica-

tions. JALANGI [161] is a dynamic analysis framework for JavaScript that applies

concolic execution to generate function arguments; however, it does not support

DOM-based arguments nor DOM fixtures, as CONFIX does. SYMJS [109] con-

tains a symbolic execution engine for JavaScript, as well as an automatic event

explorer. It extends HTMLUnit’s DOM and browser API model to support sym-

bolic execution by introducing symbolic values for specific elements, such as text

127

inputs and radio boxes. However, it considers substituting DOM element variables

with integer or string values and using a traditional solver, rather than actually gen-

erating the hierarchical DOM structure. CONFIX on the other hand has support for

the full DOM tree-structure including its elements and their hierarchical relations,

attributes, and attribute values.

To the best of our knowledge, CONFIX is the first to address the problem of

DOM test fixture construction for JavaScript unit testing. Unlike most other tech-

niques, we consider JavaScript code in isolation from server-side code and without

the need to execute the application as a whole.

5.7 Conclusions
Proper test fixtures are required to cover DOM-dependent statements and condi-

tions in unit testing JavaScript code. However, generating such fixtures is not an

easy task. In this chapter, we proposed a concolic technique and tool, called CON-

FIX, to automatically generate a set of unit tests with DOM fixtures and DOM

function arguments. Our empirical results show that the generated fixtures sub-

stantially improve code coverage compared to test suites without these fixtures.

128

Chapter 6

Detecting JavaScript Code Smells

Summary13

JavaScript is a powerful and flexible prototype-based scripting language that is in-

creasingly used by developers to create interactive web applications. The language

is interpreted, dynamic, weakly-typed, and has first-class functions. In addition, it

interacts with other web languages such as CSS and HTML at runtime. All these

characteristics make JavaScript code particularly error-prone and challenging to

write and maintain. Code smells are patterns in the source code that can adversely

influence program comprehension and maintainability of the program in the long

term. We propose a set of 13 JavaScript code smells, collected from various devel-

oper resources. We present a JavaScript code smell detection technique called JS-

NOSE. Our metric-based approach combines static and dynamic analysis to detect

smells in client-side code. This automated technique can help developers to spot

code that could benefit from refactoring. We evaluate the smell finding capabilities

of our technique through an empirical study. By analyzing 11 web applications,

we investigate which smells detected by JSNOSE are more prevalent.

6.1 Introduction
JavaScript is a flexible popular scripting language that is used to offload core func-

tionality to the client-side web browser and mutate the DOM tree at runtime to

13An initial version of this chapter has been published in the IEEE International Conference on
Source Code Analysis and Manipulation (SCAM), 2013 [124].

129

facilitate smooth state transitions. Because of its flexibility JavaScript is a par-

ticularly challenging language to write code in and maintain. The challenges are

manifold: First, it is an interpreted language, meaning that there is typically no

compiler in the development cycle that would help developers to spot erroneous or

unoptimized code. Second, it has a dynamic, weakly-typed, asynchronous nature.

Third, it supports intricate features such as prototypes [151], first-class functions,

and closures [77]. And finally, it interacts with the DOM through a complex event-

based mechanism [180].

All these characteristics make it difficult for web developers who lack in-depth

knowledge of JavaScript, to write maintainable code. As a result, web applica-

tions written in JavaScript tend to contain many code smells [85]. Code smells are

patterns in the source code that indicate potential comprehension and maintenance

issues in the program. Code smells, once detected, need to be refactored to improve

the design and quality of the code.

Detecting code smells manually is time consuming and error-prone. Auto-

mated smell detection tools can lower long-term development costs and increase

the chances for success [178] by helping to make the code more maintainable.

Current work on web application code smell detection is scarce [137] and tools

[9, 17, 27, 137] available to web developers to maintain their code are mainly static

analyzers and thus limited in their capabilities.

In this work, we propose a list of code smells for JavaScript applications. In

total, we consider 13 code smells: 7 are existing well-known smells adapted to

JavaScript, and 6 are specific JavaScript code smell types, collected from various

JavaScript development resources. We present an automated technique, called JS-

NOSE, which performs a metric-based static with dynamic analysis to detect these

smells in JavaScript code.

Our work makes the following main contributions:

• We propose a list of JavaScript code smells, collected from various web de-

velopment resources;

• We present an automated metric-based approach to detect JavaScript code

smells;

130

• We implement our approach in a tool called JSNose, which is freely avail-

able;

• We evaluate the effectiveness of our technique in detecting code smells in

JavaScript applications;

• We empirically investigate 11 web applications using JSNOSE to find out

which smells are more prevalent.

Our results indicate that amongst the smells detected by JSNOSE, lazy object,

long method/function, closure smells, coupling between JavaScript, HTML, and

CSS, and excessive global variables, are the most prevalent code smells. Further,

our study indicates that there exists a strong and significant positive correlation

between the types of smells and lines of code, number of functions, number of

JavaScript files, and cyclomatic complexity.

6.2 Motivation and Challenges
Although JavaScript is increasingly used to develop modern web applications,

there is still lack of tool support targeting code quality and maintenance, in par-

ticular for automated code smell detection and refactoring.

JavaScript is a dynamic weakly typed and prototype-based scripting language,

with first-class functions. Prototype-based programming is a class-free style of

object-oriented programming, in which objects can inherit properties from other

objects directly. In JavaScript, prototypes can be redefined at runtime, and imme-

diately affect all the referring objects.

The detection process for many of the traditional code smells [85, 104] in

object-oriented languages is dependent on identifying objects, classes, and func-

tions in the code. Unlike most object-oriented languages such as Java or C++,

identification of such key language items is not straightforward in JavaScript code.

Bellow we explain the major challenges in identifying objects and functions in

JavaScript.

JavaScript has a very flexible model of objects and functions. Object properties

and their values can be created, changed, or deleted at runtime and accessed via

first-class functions. For instance, in the following piece of code a call to the

131

function foo() will dynamically create a property prop for the object obj if prop

does not already exist.

1 function foo(obj, prop, value){

2 obj.prop = value;

3 }

Due to such dynamism, the set of all available properties of an object is not

easily retrievable through static analysis of the code alone. Empirical studies [153]

reveal that most dynamic features in JavaScript are frequently used by developers

and cannot be disregarded in code analysis processes.

Furthermore, functions in JavaScript are first-class values. They can (1) be

objects themselves, (2) contain properties and nested function closures, (3) be as-

signed dynamically to other objects, (4) be stored in variables, objects, and arrays,

(5) be passed as arguments to other functions, and (6) be returned from functions.

JavaScript also allows the creation (through eval()) and execution of new code

at runtime, which again makes static analysis techniques insufficient.

Manual analysis and detection of code smells in JavaScript is time consuming,

tedious, and error-prone in large code bases. Therefore, automated techniques are

needed to support web developers in maintaining their code. Given the challenging

characteristics of JavaScript, our goal in this work is to propose a technique that can

handle the highly dynamic nature of the language to detect potential code smells

effectively.

6.3 Related Work
Fowler and Beck [85] proposed 22 code smells in object-oriented languages and

associated each of them with a possible refactoring. Although code smells in

object-oriented languages have been extensively studied in the past, current work

on smell detection for JavaScript code is scarce [137]. In this work we study

a list of code smells in JavaScript, and propose an automated detection tech-

nique. The list of proposed JavaScript code smells in this chapter is based on a

study of various discussions in online development forums and JavaScript books

[86, 136, 137, 145, 147].

Many tools and techniques have been proposed to detect code smells automat-

132

ically in Java and C++ such as Checkstyle [3], Decor [133], and JDeodorant [174].

A common heuristic-based approach to code smell detection is the use of code

metrics and user defined thresholds [76, 108, 133, 135, 162]. Similarly we adopt

a metric-based smell detection strategy. Our approach is different from such tech-

niques in the sense that due to the dynamic nature of JavaScript, we propose a code

smell technique that combines static with dynamic analysis.

Cilla [118] is a tool that similar to our work applies dynamic analysis but for

detecting unused CSS code in relation to dynamically mutated DOM elements. A

case study conducted with Cilla revealed that over 60% of CSS rules are unused in

real-world deployed web applications, and eliminating them could vastly improve

the size and maintainability of the code.

A more closely related tool is WebScent [137], which detects client-side smells

that exist in embedded code within scattered server-side code. Such smells can not

be easily detected until the client-side code is generated. After detecting smells in

the generated client-side code, WebScent locates the smells in the corresponding

location in the server-side code. WebScent primarily identifies mixing of HTML,

CSS, and JavaScript, duplicate code in JavaScript, and HTML syntax errors. Our

tool, JSNOSE, can similarly identify JavaScript code smells generated via server-

side code. However, we propose and target a larger set of JavaScript code smells

and unlike the manual navigation of the application in WebScent, we apply au-

tomated dynamic exploration using a crawler. Another advantage of JSNOSE is

that it can infer dynamic creation/change of objects, properties, and functions at

runtime, which WebScent does not support.

A number of industrial tools exist that aim at assisting web developers with

maintaining their code. For instance, WARI [17] examines dependencies between

JavaScript functions, CSS styles, HTML tags and images. The goal is to stati-

cally find unused images as well as unused and duplicated JavaScript functions

and CSS styles. Because of the dynamic nature of JavaScript, WARI cannot guar-

antee the correctness of the results. JSLint [9] is a static code analysis tool written

in JavaScript that validates JavaScript code against a set of good coding practices.

The code inspection tends to focus on improving code quality from a technical per-

spective. The Google Closure Compiler [27] is a JavaScript optimizer that rewrites

JavaScript code to make it faster and more compact. It helps to reduce the size of

133

JavaScript code by removing comments and unreachable code.

6.4 JavaScript Code Smells
In this section, we propose a list of code smells for JavaScript-based applications.

Of course a list of code smells can never be complete as the domain and projects

that the code is used in may vary. Moreover, code smells are generally subjective

and imprecise, i.e., they are based on opinions and experiences [178]. To mitigate

this subjective nature of code smells, we have collected these smells by studying

various online development resources [10, 86, 136, 145, 147, 163] and books [77,

195, 196] that discuss bad JavaScript coding patterns.

In total, we consider 13 code smells in JavaScript. Although JavaScript has

its own specific code smells, most of the generic code smells for object-oriented

languages [85, 104] can be adapted to JavaScript as well. Since JavaScript is a

class-free language and objects are defined directly, we use the notion of “object”

instead of “class” for these generic smells. The generic smells include the follow-

ing 7: Empty catch blocks (poor understanding of logic in the try), Large object

(too many responsibilities), Lazy object (does too little), Long functions (inade-

quate decomposition), Long parameter list (need for an object), Switch statements

(duplicated code and high complexity), and Unused/dead code (never executed or

unreachable code).

In addition to the generic smells, we propose 6 types of JavaScript code smells

in this section as follows.

6.4.1 Closure Smells

In JavaScript, it is possible to declare nested functions, called closures. Clo-

sures make it possible to emulate object-oriented notions such as public,

private, and privileged members. Inner functions have access to the pa-

rameters and variables — except for this and argument variables — of the

functions they are nested in, even after the outer function has returned [77]. We

consider four smells related to the concept of function closures in JavaScript.

Long scope chaining. Functions can be multiply-nested, thus closures can have

multiple scopes. This is called “scope chaining” [10], where inner functions have

134

access to the scope of the functions containing them. An example is the following

code:

1 function foo(x) {

2 var tmp = 3;

3 function bar(y) {

4 ++tmp;

5 function baz(z) {

6 document.write(x + y + z + tmp);

7 }

8 baz(3);

9 }

10 bar(10);

11 }

12 foo(2); // writes 19 i.e., 2+10+3+4

This nested function style of programming is useful to emulate privacy, how-

ever, using too many levels of nested closures over-complicates the code, making

it hard to comprehend and maintain. Moreover, identifier resolution performance

is directly related to the number of objects to search in the scope chain [195]. The

farther up in the scope chain an identifier exists, the longer the search goes on and

the longer time it takes to access that variable.

Closures in loops. Inner functions have access to the actual variables of their

outer functions and not their copies. Therefore, creating functions within a loop

can cause confusion and be wasteful computationally [77]. Consider the following

example:

1 var addTheHandler = function (nodes) {

2 for (i = 0; i < nodes.length; i++) {

3 nodes[i].onclick = function (e) {

4 document.write(i);

5 };

6 }

7 };

8 addTheHandler(document.getElementsByTagName("div"));

Assume that there are three div DOM elements present. If the developer’s

actual intention is to display the ordinal of the div nodes when a node is clicked,

then the result will not be what she expected as the length of nodes, 3, will be

returned instead of the node’s ordinal position. In this example, the value of i in

the document.write function is assigned when the for loop is finished and

135

the inner anonymous function is created. Therefore, the variable i has the value

of nodes.length, which is 3 in this case. To avoid this confusion and potential

mistake, the developer can use a helper function outside of the loop that will deliver

a function binding to the current local value of i.

Variable name conflict in closures. When two variables in the scopes of a closure

have the same name, there is a name conflict. In case of such conflicts, the inner

scope takes precedence. Consider the following example [10]:

1 function outside() {

2 var a = 10;

3 function inside(a) {

4 return a;

5 }

6 return inside;

7 }

8 result = outside()(20); \\ result: 20

In this example, there is a name conflict between the variable a in outside()

and the function parameter a in inside() that takes precedence. We consider

this a code smell as it makes it difficult to comprehend the actual intended value

assignment. Due to scope chain precedence, the value of result is now 20.

However, it is not evident from the code whether this is the intended result (or

perhaps 10).

Moreover, dynamic typing in JavaScript makes it possible to reuse the same

variable for different types at runtime. Similar to the variable name conflict issue,

this style of programming reduces readability and in turn maintainability. Thus,

declaring a new variable with a dedicated unique name is the recommended refac-

toring. This issue is not restricted to closures, or to nested functions.

Accessing the this reference in closures. Due to the design of JavaScript lan-

guage, when an inner function in a closure is invoked, this becomes bounded

to the global object and not to the this variable of the outer function [77]. We

consider the usage of this in closures a code smell as it is a potential symptom

for mistakes. As a refactoring workaround, the developer can assign the value of

the this variable of the outer function to a new variable that and then use that

in the inner function [77].

136

6.4.2 Coupling between JavaScript, HTML, and CSS

In web applications, HTML is meant for presenting content and structure, CSS

for styling, and JavaScript for functional behaviour. Keeping these three enti-

ties separate is a well-known programming practice, known as separation of con-

cerns. Unfortunately, web developers often mix JavaScript code with markup and

styling code [137], which adversely influences program comprehension, mainte-

nance and debugging efforts in web applications. We categorize the tight coupling

of JavaScript with HTML and CSS code into the following three code smells types:

JavaScript in HTML. One common way to register an event listener in web ap-

plications is via inline assignment in the HTML code. We consider this inline

assignment of event handlers a code smell as it tightly couples the HTML code to

the JavaScript code. An example of such a coupling is shown below:

1 <button onclick="foo();" id="myBtn"/>

This smell can be refactored by removing the onclick attribute from the

button in HTML and using the addEventListener function of DOM Level 2

[180] to assign the event handler through JavaScript:

1 <button id="myBtn"/>

3 function foo() {

4 // code

5 }

6 var btn = document.getElementById("myBtn");

7 btn.addEventListener("click", foo, false);

This could be further refactored using the jQuery library as

$("#myBtn").on("click", foo);.

Note that JavaScript code within the <script> tag in HTML code can be

seen as a code smell [137]. We do not consider this a code smell as it does not affect

comprehension nor maintainability, although separating the code to a JavaScript

file is preferable.

HTML in JavaScript. Extensive DOM API calls and embedded HTML strings

in JavaScript complicate debugging and software evolution. In addition, editing

markup is believed to be less error prone than editing JavaScript code [196]. The

following code is an example of embedded HTML in JavaScript [86]:

137

1 // add book to the list

2 var book = doc.createElement("li");

3 var title = doc.createElement("strong");

4 titletext = doc.createTextNode(name);

5 title.appendChild(titletext);

6 var cover = doc.createElement("img");

7 cover.src = url;

8 book.appendChild(cover);

9 book.appendChild(title);

10 bookList.appendChild(book);

To refactor this code smell, we can move the HTML code to a template

(book tpl.html):

1 TITLE

The JavaScript code would then be refactored as:

1 var tpl = loadTemplate("book_tpl.html");

2 var book = tpl.substitute({TITLE: name, COVER: url});

3 bookList.appendChild(book);

Another example this smell is using long strings of HTML in jQuery function

calls [147]:

1 $('\#news')

2 .append('<div class="gall">Linky</←↩
div>')

3 .append('<button onclick="app.doStuff()">Button</button>');

CSS in JavaScript. Setting the presentation style of DOM elements by assign-

ing their style properties in JavaScript is a code smell [86]. Keeping styling

code inside JavaScript is asking for maintenance problems. Consider the following

example:

1 div.onclick = function(e) {

2 var clicked = this;

3 clicked.style.border = "1px solid blue";

4 }

The best way to change the style of an element in JavaScript is by manipulating

CSS classes properly defined in CSS files [86, 196]. The above code smell can be

refactored as follows:

138

1 \\ CSS file:

2 .selected{border: 1px solid blue;}

3 \\ JavaScript:

4 div.onclick = function(e) {

5 this.setAttribute("class","selected");

6 }

6.4.3 Excessive Global Variables

Global variables are accessible from anywhere in JavaScript code, even when de-

fined in different files loaded on the same page. As such, naming conflicts between

global variables in different JavaScript source files is common, which affects pro-

gram dependability and correctness. The higher the number of global variables in

the code, the more dependent existing modules are likely to be; and dependency

increases error-proneness, and maintainability efforts [145]. Therefore, we see the

excessive use of global variables as a code smell in JavaScript. One way to mitigate

this issue is to create a single global object for the whole application that contains

all the global variables as its properties [77]. Grouping related global variables into

objects is another remedy.

6.4.4 Long Message Chain

Long chaining of functions with the dot operator can result in complex control

flows that are hard to comprehend. This style of programming happens frequently

when using the jQuery library. One extreme example is shown bellow [147]:

1 $('a').addClass('reg-link').find('span').addClass('inner').end().find('←↩
div').mouseenter(mouseEnterHandler).mouseleave(mouseLeaveHandler).←↩
end().explode();

Long chains are unreadable specially when a large amount of DOM traversing

is taking place [147]. Another instance of this code smell is too much cascading.

Similar to object-oriented languages such as Java, in JavaScript many methods

calls can be cascaded on the same object sequentially within a single statement.

This is possible when the methods return the this object. Cascading can help to

produce expressive interfaces that perform much work at once. However, the code

139

written this way tends to be harder to follow and maintain. The following example

is borrowed from [77]:

1 getElement('myBoxDiv').move(350, 150).width(100).height(100).color('red←↩
').border('10px outset').padding('4px').appendText("Please stand ←↩
by").on('mousedown', function (m) {

2 this.startDrag(m, this.getNinth(m));}).on('mousemove', 'drag').on('←↩
mouseup', 'stopDrag').tip("This box is resizeable");

A possible refactoring to shorten the message chain is to break the chain into

more general methods/properties for that object which incorporate longer chains.

6.4.5 Nested Callback

A callback is a function passed as an argument to another (parent) function. Call-

backs are executed after the parent function has completed its execution. Callback

functions are typically used in asynchronous calls such as timeouts and XML-

HttpRequests (XHRs). Using excessive callbacks, however, can result in hard to

read and maintain code due to their nested anonymous (and usually asynchronous)

nature. An example of a nested callback is given below [163]:

1 setTimeout(function () {

2 xhr("/greeting/", function (greeting) {

3 xhr("/who/?greeting=" + greeting, function (who) {

4 document.write(greeting + " " + who);

5 });

6 });

7 }, 1000);

A possible refactoring to nested callbacks is to split the functions and pass a

reference to another function [19]. The above code can be rewritten as below:

1 setTimeout(foo,1000);

2 function foo() {

3 xhr("/greeting/", bar);

4 }

5 function bar(greeting) {

6 xhr("/who/?greeting=" + greeting, baz);

7 }

8 function baz(who) {

9 document.write(greeting + " " + who);

10 }

140

6.4.6 Refused Bequest

JavaScript is a class-free prototypal inheritance language, i.e., an object can inherit

properties from another object, called a prototype object. A JavaScript object that

does not use/override many of the properties it inherits from its prototype object is

an instance of a refused bequest [85] soft code smell. In the following example, the

student object inherits from its prototype parent person. However, student

only uses one of the five properties inherited from person, namely fname.

1 var person={fname:"John", lname:"Smith", gender:"male", age:28, ←↩
location:"Vancouver"};

2 var student = Object.create(person);

3 ...

4 student.university = "UBC";

5 document.write(student.fname + " studies at " + student.university);

A simple refactoring, similar to the push down field/method proposed by

Fowler [85], could be to eliminate the inheritance altogether and add the required

property (fname) of the prototype to the object that refused the bequest.

6.5 Smell Detection Mechanism
In this section, we present our JavaScript code smell detection mechanism, which

is capable of detecting the code smells discussed in the previous section.

A common heuristic-based approach to detect code smells is the use of source

code metrics and thresholds [76, 108, 133, 135, 162]. In this work, we adopt a

similar metric-based approach to identify smelly sections of JavaScript code.

In order to calculate the metrics, we first need to extract objects, functions, and

their relationships from the source code. Due to the dynamic nature of JavaScript,

static code analysis alone will not suffice, as discussed in Section 6.2. Therefore, in

addition to static code analysis, we also employ dynamic analysis to monitor and

infer information about objects and their relations at runtime.

Figure 6.1 depicts an overview of our approach. At a high level, (1) the con-

figuration, containing the defined metrics and thresholds, is fed into the code smell

detector. We automatically (2) intercept the JavaScript code of a given web ap-

plication, by setting up a proxy between the server and the browser, (3) extract

JavaScript code from all .js and HTML files, (4) parse the source code into an

141

DOM-based
Fixture

JavaScript
Code

(1)
Instrument

Code

(2)
Execute
Function

(4)
Deduce

DOM-dependant
PCs

Execution
Trace

(3)
Collect

Execution
Trace

(9)
Generate
Test case

Generated
Unit Tests

(7)
Generate Fixture

(8)
Apply Fixture

to Cover a New
Path

Instrumented
Code

(6)
Solve XPath
expressions

(5)
Translate PCs to

XPath expressions
Solved XML

tree

Figure 6.1: Processing view of JSNOSE, our JavaScript code smell detector.

Abstract Syntax Tree (AST) and analyze it by traversing the tree. During the AST

traversal, the analyzer visits all program entities, objects, properties, functions, and

code blocks, and stores their structure and relations. At the same time, we (2) in-

strument the code to monitor statement coverage, which is used for unused/dead

code smell detection. Next, we (7) navigate the instrumented application in the

browser to produce an execution trace, through an automated dynamic crawler,

and (8) collect and use execution traces to calculate code coverage. We (5) ex-

tract patterns from the AST such as names of objects and functions, and (6) infer

JavaScript objects, their types, and properties dynamically by querying the browser

at runtime. Finally, (9) based on all the static and dynamic data collected, we detect

code smells (10) using the metrics.

142

Table 6.1: Metric-based criteria for JavaScript code smell detection.

Code smell Level Detection method Detection criteria Metric
Closure smell Function Static & Dynamic LSC > 3 LSC: Length of scope chain
Coupling JS/HTML/CSS File Static & Dynamic JSC > 1 JSC: JavaScript coupling instance
Empty catch Code block Static LOC(catchBlock) = 0 LOC: Lines of code
Excessive global variables Code block Static & Dynamic GLB > 10 GLB: Number of global variables
Large object Object Static & Dynamic [185]: LOC(ob j)> 750 or NOP > 20 NOP: Number of properties
Lazy object Object Static & Dynamic NOP < 3 NOP: Number of properties
Long message chain Code block Static LMC > 3 LMC: Length of message chain
Long method/function Function Static & Dynamic [108, 185]: MLOC > 50 MLOC: Method lines of code
Long parameter list Function Static & Dynamic [185]: PAR > 5 PAR: Number of parameters
Nested callback Function Static & Dynamic CBD > 3 CBD: Callback depth
Refused bequest Object Static & Dynamic [108]: BUR < 1

3 and NOP > 2 BUR: Base-object usage ratio
Switch statement Code block Static NOC > 3 NOC: Number of cases
Unused/dead code Code block Static & Dynamic EXEC = 0 EXEC: Execution count

or RCH = 0 RCH: Reachability of code

143

6.5.1 Metrics and Criteria Used for Smell Detection

Table 6.1 presents the metrics and criteria we use in our approach to detect code

smells in JavaScript applications. Some of these metrics and their correspond-

ing thresholds have been proposed and used for detecting code smells in object-

oriented languages [76, 108, 133, 135, 162]. In addition, we propose new metrics

and criteria to capture the characteristics of JavaScript code smells discussed in

Section 6.4.

Closure smell. We identify long scope chaining and accessing this in closures.

If the length of scope chain (LSC) is greater than 3, or if this is used in an inner

function closure, we report it as a closure smell instance.

Coupling JS/HTML/CSS. We count the number of occurrences of JavaScript

within HTML tags, and CSS in JavaScript as described in Section 6.4.2. Our tool

reports all such JavaScript coupling instances as code smell.

Empty catch. Detecting empty catches is straightforward in that the number of

lines of code (LOC) in the catch block should be zero.

Excessive global variables. We extract global variables in JavaScript, which can

be defined in three ways: (1) using a var statement outside of any function, such

as var x = value;, (2) adding a property to the window global object, i.e.,

the container of all global variables, such as window.foo = value;, and (3)

using a variable without declaring it by var. If the number of global variables

(GLB) exceeds 10, we consider it as a code smell.

Large/Lazy object. An object that is doing too much or not doing enough work

should be refactored. Large objects may be restructured or broken into smaller

objects, and lazy objects maybe collapsed or combined into other classes. If an

object’s lines of code is greater than 750 or the number of its methods is greater

than 20, it is identified as a large object [185]. We consider an object lazy, if the

number of its properties (NOP) is less than 3.

Long message chain. If the length of a message chain (LMC), i.e., the number of

items being chained by dots as explained in Section 6.4.4, in a statement is greater

than 3, we consider it a long message chain and report it as a smell.

Long method/function. A method with more than 50 lines of code (MLOC) is

identified as a long method smell [108, 185].

144

Long parameter list. We consider a parameter list long when the number of pa-

rameters (PAR) exceeds 5 [185].

Nested callback. We identify nested functions that pass a function type as an

argument. If the callback depth (CBD) exceeds 3, we report it as a smell.

Refused bequest. If an object uses or specializes less than a third of its parent

prototype, i.e., base-object usage ratio (BUR) is less than 1
3 , it is considered as

refused parent bequest [108]. Further, the number of methods and the cyclomatic

complexity of the child object should be above average since simple and small

objects may unintentionally refuse a bequest. In our work, we slightly change this

criteria to the constraint of NOP>2, i.e., not to be a lazy small object.

Switch statement. The problem with switch statements is duplicated code. Typi-

cally, similar switch statements are scattered throughout a program. If one adds or

removes a clause in one switch, often has to find and repair the others too [85, 104].

When the number of switch cases (NOC) is more than three, it is considered as a

code smell. This can also be applied to if-then-else statements with more

than three branches.

Unused/dead code. Unused/dead code has negative effects on maintainability as

it makes the code unnecessarily more difficult to understand [112, 145]. Unlike

languages such as Java, due to the dynamic nature of JavaScript it is quite chal-

lenging to reason about dead JavaScript code statically. Hence, if the execution

count (EXEC) of an statement remains 0 after executing the web application, we

report it as a candidate unused/dead code. Reachability of code (RCH) is another

metric we use to identify unreachable code.

6.5.2 Combining Static and Dynamic Analysis

Algorithm 5 presents our smell detection method. The algorithm is generic in the

sense that the metric-based static and dynamic smell detection procedures can be

defined and used according to any smell detection criteria. Given a JavaScript

application A, a maximum crawling time t, and a set of code smell criteria τ , the

algorithm generates a set of code smells CS.

The algorithm starts by looking for inline JavaScript code embedded in HTML

(line 3). All JavaScript code is then extracted from JavaScript files and HTML

145

<script> tags (line 4). An AST of the extracted code is then generated us-

ing a parser (line 5). This AST is traversed recursively (lines 6, 19-21) to detect

code smells using a static analyzer. Next the AST is instrumented (line 7) and

transformed back to the corresponding JavaScript source code and passed to the

browser (lines 8). The crawler then navigates (line 9-16) the application, and po-

tential code smells are explored dynamically (line 9 14). After the termination of

the exploration process, unused code is identified based on the execution trace and

added to the list of code smells (line 17), and the resulting list of smells is returned

(line 18).

Next, we present the relevant static and dynamic smell detection processes in

detail.

Static Analysis. The static code analysis (Line 19) involves analyzing the AST by

traversing the tree. During this step, we extract CSS style usage, objects, proper-

ties, inheritance relations, functions, and code blocks to calculate the smell metrics.

If the calculated metrics violate the given criteria (τ), the smell is returned.

There are different ways to create objects in JavaScript. In this work,

we only consider two main standard forms of using object literals, namely,

through (1) the new keyword, and (2) Object.create(). To detect the

prototype of an object, we consider both the non-standard form of using the

proto property assignment, and the more general constructor functions

through Object.create().

In order to detect unreachable code, we search the AST nodes for return,

break, continue, and throw statements. Whatever a statement is found right

after these statements that is on the same node level in the AST, we mark it as

potential unreachable code.

Dynamic Analysis. Dynamic analysis (Line 14) is performed for two reasons:

1. To calculate many of the metrics in Table 6.1, we need to monitor the cre-

ation/update of functions, objects, and their properties at runtime. To that

end, a combination of static and dynamic analysis should be applied. The

dynamic analysis is performed by executing a piece of JavaScript code in

the browser, which enables retrieving a list of all global variables, objects,

and functions (own properties of the window object) and dynamically de-

146

Algorithm 5: JavaScript Code Smell Detection
input : A JavaScript application A, the maximum exploration time t, the set of smell

metric criteria τ

output: The list of JavaScript code smells CS

1 CS←∅
Procedure EXPLORE() begin

2 while TIMELEFT(t) do
3 CS←CS∪DETECTINLINEJSINHTML(τ)
4 code← EXTRACTJAVASCRIPT(A)
5 AST ← PARSTOAST(code)
6 VISITNODE(AST.root)
7 ASTinst← INSTRUMENT(AST)
8 INJECTJAVASCRIPTCODE(A,ASTinst)
9 C← EXTRACTCLICKABLES(A)

10 for c ∈C do
11 dom← browser.GETDOM()
12 robot.FIREEVENT(c)
13 new dom← browser.GETDOM()
14 CS←CS∪DETECTDYNAMICALLY(τ)
15 if dom.HASCHANGED(new dom) then
16 EXPLORE(A)

end
end

end
17 CS←CS∪DETECTUNUSEDCODE()
18 return CS

end
Procedure VISITNODE(ASTNode) begin

19 CS←CS∪DETECTSTATICALLY(node,τ)
20 for node ∈ AST Node.getChildren() do
21 VISITNODE(node)

end
end

tecting prototypes of objects (using getPrototypeOf() on each object).

However, local objects in functions are not accessible via JavaScript code

execution in the global scope. Therefore, we use static analysis and extract

the required information from the parsed AST. The objects, functions, and

properties information gathered this way is then fed to the smell detector

process.

2. To detect unused/dead code we need to collect execution traces for measur-

ing code coverage. Therefore, we instrument the code and record which parts

147

of it are invoked by exploring the application through automated crawling.

However, this dynamic analysis can give false positives for non-executed,

but reachable code. This is a limitation of any dynamic analysis approach

since there is no guarantee of completeness (such as code coverage).

Note that our approach merely reports candidate code smells and the decision

will always be upon developers whether or not to refactor the code smells.

6.5.3 Implementation

We have implemented our approach in a tool called JSNOSE, which is publicly

available [34]. JSNOSE operates automatically, does not modify the web browser,

is independent of the server technology, and requires no extra effort from the user.

We use the WebScarab proxy to intercept the JavaScript/HTML code. To parse

the JavaScript code to an AST and instrument the code, we use Mozilla Rhino

[41]. To automatically explore and dynamically crawl the web application, we

use CRAWLJAX [120]. The output of JSNOSE is a text file that lists all detected

JavaScript code smells with their corresponding line numbers in a JavaScript file

or an HTML page.

6.6 Empirical Evaluation
We have conducted an empirical study to evaluate the effectiveness and real-world

relevance of JSNOSE. Our study is designed to address the following research

questions:

RQ1: How effective is JSNOSE in detecting JavaScript code smells?

RQ2: Which code smells are more prevalent in web applications?

RQ3: Is there a correlation between JavaScript code smells and source code met-

rics?

Our experimental data along with the implementation of JSNOSE are available

for download [34].

148

Table 6.2: Experimental JavaScript-based objects.

ID Name #J
S

fil
es

JS
L

O
C

#F
un

ct
io

ns

Av
er

ag
e

C
C

Av
er

ag
e

M
I

Description
1 PeriodicTable [13] 1 71 9 12 116 A periodic table of the elements
2 CollegeVis [4] 1 177 30 11 119 A visualization tool
3 ChessGame [20] 2 198 15 102 105 A simple chess game
4 Symbolistic [15] 1 203 20 28 109 A simple game
5 Tunnel [16] 0 234 32 29 116 A simple game
6 GhostBusters [7] 0 278 26 45 97 A simple game
7 TuduList [51] 4 782 89 106 94 A task manager (J2EE and MySQL)
8 FractalViewer [26] 8 1245 125 35 116 A fractal zoomer
9 PhotoGallery [39] 5 1535 102 53 102 A photo gallery (PHP without MySQL)

10 TinySiteCMS [49] 13 2496 462 54 115 A CMS (PHP without MySQL)
11 TinyMCE [50] 174 26908 4455 67 101 A WYSIWYG editor

6.6.1 Experimental Objects

We selected 11 web applications that make extensive use of client-side JavaScript,

and fall under different application domains. The experimental objects along with

their source code metrics are shown in Table 6.2. In the calculation of these source

code metrics, we included inline HTML JavaScript code, and excluded blank lines,

comments, and common JavaScript libraries such as jQuery, DWR, Scriptaculous,

Prototype, and google-analytics. Note that we also exclude these libraries in the

instrumentation step. We use CLOC [22] to count the JavaScript lines of code

(JS LOC). Number of functions (including anonymous functions), ad cyclomatic

complexity (CC) are all calculated using complexityReport.js [23]. The reported

CC is across all JavaScript functions in each application.

6.6.2 Experimental Setup

We confine the dynamic crawling time for each application to 10 minutes, which is

acceptable in a maintenance environment. Of course, the more time we designate

for exploring the application, the higher statement coverage we may get and thus

more accurate the detection of unused/dead code. For the crawling configuration,

we set no limits on the crawling depth nor the maximum number of DOM states

to be discovered. The criteria for code smell metrics are configured according to

149

those presented in Table 6.1.

To evaluate the effectiveness of JSNOSE (RQ1), we validate the produced re-

sults by JSNOSE against manual code inspection. Similar to [133], we measure

precision and recall as follows:

Precision is the rate of true smells identified among the detected smells: T P
T P+FP

Recall is the rate of true smells identified among the existing smells: T P
T P+FN

where TP (true positives), FP (false positives), and FN (false negatives) respec-

tively represent the number of correctly detected smells, falsely detected smells,

and missed smells. To count TP, FP, and FN in a timely fashion while preserving

accuracy, we only consider the first 9 applications since the last 2 applications have

relatively larger code bases. In our manual validation process, we also consider

runtime created/modified objects and functions that are inferred during JSNOSE

dynamic analysis. It is worth mentioning that this manual process is a labour in-

tensive task, which took approximately 6.5 hours for the 9 applications.

Note that the precision-recall values for detecting unused/dead code smell is

calculated considering only “unreachable” code, which is code after an uncondi-

tional return statement. This is due to the fact that the accuracy of dead code

detection depends on the running time and dynamic exploration strategy.

To measure the prevalence of JavaScript code smells (RQ2), we ran JSNOSE

on all the 11 web applications and counted each smell instance.

To evaluate the correlation between the number of smells and application

source code metrics (RQ3), we use R14 to calculate the non-parametric Spearman

correlation coefficients as well as the p-values. The Spearman correlation coeffi-

cient does not require the data to be normally distributed [103].

14http://www.r-project.org

150

http://www.r-project.org

Table 6.3: Precision-recall analysis (based on the first 9 applications), and detected code smell statistics (for all 11 applications).

S1
.C

lo
su

re
sm

el
ls

S2
.C

ou
pl

in
g

JS
/H

T
M

L
/C

SS

S3
.E

m
pt

y
ca

tc
h

N
um

be
r

of
gl

ob
al

va
ri

ab
le

s

S4
.E

xc
es

si
ve

gl
ob

al
va

ri
ab

le
s

S5
.L

ar
ge

ob
je

ct

S6
.L

az
y

ob
je

ct

S7
.L

on
g

m
es

sa
ge

ch
ai

n

S8
.L

on
g

m
et

ho
d/

fu
nc

tio
n

S9
.L

on
g

pa
ra

m
et

er
lis

t

S1
0.

N
es

te
d

ca
llb

ac
k

S1
1.

R
ef

us
ed

be
qu

es
t

S1
2.

Sw
itc

h
st

at
em

en
t

S1
3.

U
nr

ea
ch

ab
le

co
de

S1
3.

U
nu

se
d/

de
ad

co
de

N
um

be
r

of
sm

el
li

ns
ta

nc
es

N
um

be
r

of
ty

pe
so

fs
m

el
ls

TPtotal 19 171 16 200 - 14 391 87 25 12 1 13 10 0 n/a 959 n/a
FPtotal 0 0 0 0 - 4 73 0 0 0 0 6 0 0 n/a 83 n/a
FNtotal 6 0 0 0 - 1 2 8 0 0 0 0 0 0 n/a 17 n/a

Precisiontotal 100% 100% 100% 100% - 78% 85% 100% 100% 100% 100% 68% 100% n/a n/a 92% n/a
Recalltotal 76% 100% 100% 100% - 94% 99% 92% 100% 100% 100% 100% 100% n/a n/a 98% n/a

PeriodicTable 1 2 0 6 - 4 10 0 0 0 0 0 0 0 28% 23 4
CollegeVis 1 0 0 17 + 0 32 0 2 0 1 0 0 0 22% 53 5
ChessGame 0 7 0 39 + 3 9 4 0 2 0 0 0 0 36% 64 6
Symbolistic 0 0 0 4 - 0 17 0 1 0 0 1 0 0 20% 23 3
Tunnel 9 0 0 15 + 0 28 0 2 0 0 0 0 0 44% 54 4
GhostBusters 2 0 0 4 - 0 38 0 2 3 0 0 0 0 45% 49 4
TuduList 6 47 0 45 + 6 138 78 12 2 0 2 7 0 65% 343 10
FractalViewer 0 16 0 40 + 7 117 4 5 5 0 16 2 0 36% 212 9
PhotoGallery 0 99 16 30 + 0 73 1 1 0 0 0 1 0 64% 221 7
TinySiteCMS 2 7 0 82 + 3 13 4 3 58 0 0 0 0 22% 172 8
TinyMCE 3 3 1 4 - 5 23 4 0 2 1 3 3 0 63% 52 10

Average 2.2 16.5 1.5 26 + 2.5 45.2 8.6 2.6 6.5 0.2 2 1.2 0 40% 115 6.4

#Smelly apps 7 7 2 n/a 7 6 11 6 8 6 2 4 4 0 n/a n/a n/a
%Smelly apps 64% 64% 18% n/a 64% 55% 100% 55% 73% 55% 18% 36% 36% 0% n/a n/a n/a

151

6.6.3 Results

Effectiveness (RQ1). We report the precision and recall in the first 5 rows of Table

6.3. The reported TPtotal , FPtotal , and FNtotal , are the sum of TP, FP, and FN values

for the first 9 applications. Our results show that JSNOSE has an overall precision

of 93% and an average recall of 98% in detecting the JavaScript code smells, which

points to its effectiveness.

We observed that most false positives detected are related to large/lazy objects

and refused bequest, which are primitive variables, object properties, and methods

in jQuery. This is due to the diverse coding styles and different techniques in object

manipulations in JavaScript, such as creating and initializing arrays of objects.

There were a few false negatives in closure smells and long message chain, which

are due to the permissive nature of jQuery syntax, complex chains of methods,

array elements, as well as jQuery objects created via $() function.

Code smell prevalence (RQ2). Table 6.3 shows the frequency of code smells in

each of the experimental objects. The results show that among the JavaScript code

smells detected by JSNOSE, lazy object, long method/function, closure smells,

coupling JS/HTML/CSS, and excessive global variables, are the most prevalent

smells (appeared in 100%-64% of the experimental objects).

Tunnel and TuduList use many instances of this in closures. Major cou-

pling smells in TuduList and PhotoGallary are with the use of CSS in JavaScript.

Refused bequest are most observed in FractalViewer in objects inheriting from ge-

ometry objects. The high percentage of unused/dead code reported for TuduList,

PhotoGallary, and TinyMCE is in fact not due to dead code per se, but is mainly

related to the existence of admin pages and parts of the code which require precise

data inputs that were not provided during the crawling process. On the other hand,

TinyMCE has a huge number of possible actions and features that could not be

exercised in the designated time of 10 minutes.

Correlations (RQ3). Table 6.4 shows the Spearman correlation coefficients be-

tween the source code metrics and the total number of smell instances/types. The

results show that there exists a strong and significant positive correlation between

the types of smells and LOC, number of functions, number of JavaScript files, and

cyclomatic complexity. A weak correlation is also observed between the number

152

Table 6.4: Spearman correlation coefficients between number of code smells and code quality metrics.

Total number of Total number of
Metric smell instances types of smells
Lines of code (r = 0.53, p = 0.05) (r = 0.70, p = 0.01)
Functions (r = 0.57, p = 0.03) (r = 0.76, p = 0.00)
JavaScript files (r = 0.53, p = 0.05) (r = 0.85, p = 0.00)
Cyclomatic complexity (r = 0.63, p = 0.02) (r = 0.70, p = 0.01)

of smell instances and the aforementioned source code metrics.

6.6.4 Discussion

Here, we discuss some of the limitations and threats to validity of our results.

Implementation Limitations. The current implementation of JSNOSE is not able

to detect all various ways of object creation in JavaScript. Also it does not deal

with various syntax styles of frameworks such as jQuery. For the dynamic analysis

part, JSNOSE is dependent on the crawling strategy and execution time, which may

affect the accuracy if certain JavaScript files are never loaded in the browser during

the execution since the state space of web applications is typically huge. Since

JSNOSE is using Rhino to parse the JavaScript code and generate the AST, if there

exists a syntax error in a JavaScript file, the code in that file will not be parsed to an

AST and thus any potential code smells within that file will be missed. Note that

these are all implementation issues and not related to the design of our approach.

Threats to Validity. A threat to the external validity of our evaluation is with re-

gard to the generalization of the results to other web applications. We acknowledge

that more web applications should be evaluated to support the conclusions. To mit-

igate this threat we selected our experimental objects from different application

domains, which exhibit variations in design, size, and functionality.

One threat to the internal validity of our study is related to the metrics and

criteria we proposed in Table 6.1. However, we believe these metrics can effec-

tively identify code smells described in Section 6.4. The designated 10 minutes

time for crawling could also be increased to get more accurate results, however,

we believe that in most maintenance environments this is acceptable considering

frequent code releases. The validation and accuracy analysis performed by manual

153

inspection can be incomplete and inaccurate. We mitigated this threat by focusing

on the applications with smaller sets of code smells so that manual comparison

could be conducted accurately.

With respect to reliability of our evaluation, JSNOSE and all the web-based

systems are publicly available, making the results reproducible.

6.7 Conclusions
In this work, we discussed a set of 13 JavaScript code smells and presented a

metric-based smell detection technique, which combines static and dynamic anal-

ysis of the client-side code. Our approach, implemented in a tool called JSNOSE,

can be used by web developers during development and maintenance cycles to spot

potential code smells in JavaScript-based applications. The detected smells can be

refactored to improve their code quality.

Our empirical evaluation shows that JSNOSE is effective in detecting

JavaScript code smells; Our results indicate that lazy object, long method/func-

tion, closure smells, coupling between JavaScript, HTML, and CSS, and exces-

sive global variables are the most prevalent code smells. Further, our study in-

dicates that there exists a strong and significant positive correlation between the

types of smells and LOC, cyclomatic complexity, and the number of functions and

JavaScript files.

154

Chapter 7

Conclusions

Web applications are often written in multiple languages such as JavaScript,

HTML, and CSS. JavaScript is extensively used to build responsive modern web

applications. The event-driven and dynamic nature of JavaScript, and its interac-

tion with the DOM, make it challenging to understand and test effectively. The

work presented in this dissertation has focused on proposing new techniques to

improve the quality of web and in particular JavaScript-based applications through

automated testing and maintenance.

7.1 Revisiting Research Questions and Future Directions
In the beginning of this thesis, we designed five research questions towards the goal

of improving the quality of web applications. We believe that we have addressed

the research questions with our contributions.

RQ1.4.1. How can we effectively derive test models for web applications?

Chapter 2. We proposed four aspects of a test model that can be derived by crawl-

ing, including functionality coverage, navigational coverage, page structural cov-

erage, and size of the test model. We also presented a feedback-directed exploration

approach, called FEEDEX, to guide the exploration towards achieving higher func-

tionality, navigational, and page structural coverage while reducing the test model

size [123]. Results of our experiments show that FEEDEX is capable of generat-

ing test models that are enhanced in all aspects compared to traditional exhaustive

methods (DFS, BFS, and random).

Future directions. There are number of possible future work based on the pre-

155

sented technique in Chapter 2. In this work we only measured the client-side

coverage. It would be interesting to include the server-side code coverage in the

feedback loop as well to guide the exploration. Also our state expansion method is

currently based on a memory-less greedy algorithm, which could leverage machine

learning techniques to improve its effectiveness. We do not claim that the proposed

state expansion heuristic and the scoring function is the best solution. Other heuris-

tics, such as selecting states with the least coverage improvement in state expansion

process, and other combinations for scoring function can be evaluated.

RQ1.4.2. Can we utilize the knowledge in existing UI tests to generate new

tests?

Chapter 3. We proposed a technique [126] and a tool, called TESTILIZER [47], to

generate DOM-based UI test cases using existing tests. This work is motivated by

the fact that a human-written test suite is a valuable source of domain knowledge,

which can be used to tackle some of the challenges in automated web application

test generation. TESTILIZER mines the existing UI test suite (such as SELENIUM)

to infer a model of the covered DOM states and event-based transitions including

input values and assertions. It then expands the inferred model by exploring alter-

native paths and generates assertions for the new states. Finally it generates a new

test suite from the extended model.

Our results supports that leveraging input values and assertions from human-

written test suites can be helpful in generating more effective test cases.

TESTILIZER easily outperforms a random test generation technique, provides sub-

stantial improvements in the fault detection rate compared with the original test

suite, while slightly increasing code coverage too.

Future directions. TESTILIZER is limited to applications that already have

human-written tests, which may not be so prevalent in practice. On the other hand,

many web applications are similar to each other in terms of design and code base,

such as being built on top of the same content management system. We propose an

open research problem whether human-written tests can be leveraged to generate

effective tests for applications without existing tests. This is, however, challenging

particularly for assertion generation based on learned patterns. DOM-based asser-

tions on abstract DOM states of an application may require some changes to be

156

applied on similar abstract DOM state of another application. This also requires

defining similarity measures between applications for testing purposes.

Another possible extension of this work is the test generation approach given

the extended SFG with newly generated assertions. The current graph traversal

method in TESTILIZER may produce test cases that share common paths, which

do not contribute much to fault detection or code coverage. An optimization could

be realized by guiding the test generation algorithm towards sates that have more

constrained DOM-based assertions.

RQ1.4.3. What is the quality of JavaScript tests in practice and which part of

the code are hard to cover and test?

Chapter 4. While some JavaScript features are known to be hard to test, no

empirical study was done earlier towards measuring the quality and coverage of

JavaScript tests. We present the first empirical study of JavaScript tests to charac-

terize their prevalence, quality metrics (code coverage, test code ratio, test commit

ratio, and average number of assertions per test), and shortcomings [125].

We found that a considerable percentage of JavaScript projects do not have any

test and this is in particular for projects with JavaScript at client-side. On the other

hand almost all purely server-side JavaScript projects have tests and the quality of

those tests are higher compared to tests for client-side. On average JavaScript tests

lack proper coverage for event-dependent callbacks, asynchronous callbacks, and

DOM-related code.

Future directions. The result of this study can be used to improve JavaScript test

generation tools in producing more effective test cases that target hard-to-test code.

Also evaluating the effectiveness of JavaScript tests by measuring their mutation

score, may reveal shortcomings regarding the quality of written assertions. An-

other possible direction could be designing automated JavaScript code refactoring

techniques towards making the code more testable and maintainable.

RQ1.4.4. How can we automate fixture generation for JavaScript unit testing?

Chapter 5. Proper test fixtures are required to cover DOM-dependent statements

and conditions in unit testing JavaScript code. However, generating such fixtures

is not an easy task. We proposed a DOM-based test fixture generation technique

[127] and a tool, called CONFIX [24], which is based on concolic (concrete and

157

symbolic) execution. Our approach guides program executing through different

branches of a function. CONFIX automatically generate a set of JavaScript unit

tests with DOM fixtures and DOM function arguments. Our empirical results show

that the generated fixtures substantially improve code coverage compared to test

suites without these fixtures, and the overhead is negligible .

Future directions. Our DOM-based fixture generation technique could be en-

hanced by adding support for statements that require event-triggering, and han-

dling more complex constraints by improving the integer/string constraint solver

to generate XPath expressions with proper structure and attribute values. Also ex-

isting JavaScript test input generator tools, such as JALANGI, could be combined

with CONFIX in such a way that the existing tool uses CONFIX in the case of

DOM-related constraints.

RQ1.4.5. Which JavaScript code smells are prevalent in practice and what

maintenance issues they cause?

Chapter 6. We proposed a tool and technique, called JSNOSE [34], to detect

JavaScript code smells [124]. It uses static and dynamic analysis of the client-

side code to detect objects, functions, variables, and code blocks. We collected

13 JavaScript code smells by studying various online development resources and

books that discuss bad JavaScript coding patterns and what maintenance issues they

make. Our empirical evaluation shows that (1) JSNOSE can accurately detect these

code smells, and (2) lazy object, long method/function, closure smells, coupling

between JavaScript, HTML, and CSS, and excessive global variables are the most

prevalent code smells.

Future directions. JSNOSE can be used during development and maintenance cy-

cles to spot potential JavaScript code smells, which can be refactored to improve

the code quality. However, manual code refactoring may take a significant amount

of time and may also introduce new bugs if changes are not done properly. Current

JavaScript refactoring techniques [8, 11, 83, 84] support basic operations such as

renaming of variables or object properties, or encapsulation of properties and ex-

traction of modules. One possible future direction is designing an automated tool

for JavaScript code refactoring for the detected code smell instances. Examples

of the required code refactoring is explained in our work, however, a major chal-

158

lenge towards building an effective JavaScript code refactoring is to guarantee code

changes do not affect the application behaviour.

7.2 Concluding Remarks
The work presented in this dissertation has focused on advancing the state-of-the-

art in automated testing and maintenance of web applications. Although, the pro-

posed approaches have been tailored to web and in particular JavaScript-based ap-

plications, a number of contributions are applicable to other types of applications,

programming languages, and software analysis domains as following:

• Our feedback-directed exploration technique [123] decides about next state

to expand and next event to exercise based on scoring functions. Such scor-

ing functions are generic and can be changed to adapt the model inference

for other purposes such as program comprehension.

• Our proposed UI testing techniques for test model generation [123], and us-

ing existing tests to generate new ones [126], can be adapted to other types of

application that have rich user interface interactions such as mobile applica-

tions and desktop GUI-based applications. The major difference is the DOM

structure and its elements compared to a specific designed user interface.

• The idea of leveraging knowledge in existing tests for UI test generation

[126] can also be applied for unit test generation. For instance some input

values and program paths can be reused.

• Our technique to generate JavaScript unit tests with DOM-based fixture

[127] can be adapted for building test fixtures in the form of partial UI that is

required for proper unit testing of mobile and other GUI-based applications.

• Our empirical study to analyze prevalence, quality, and shortcomings of ex-

isting JavaScript tests, can be similarly conducted to study unit tests written

in other languages. In particular, less studied popular languages such as

Ruby, Objective-C, Python, and Go can be interesting to analyse.

159

• Our JavaScript code smell detection technique [124] can be applied on other

implementations of ECMAScript (e.g. JScript .NET, and ActionScript), su-

persets of JavaScript (e.g. CoffeeScript and TypeScript), prototype-based

programming languages (e.g. Self, Lua, Common Lisp), and languages that

support first-class functions (e.g. ML, Haskell, Scala, Perl, Python, PHP).

160

Bibliography

[1] AddressBook. https://sourceforge.net/projects/php-addressbook/.
Accessed: 2016-01-30. → pages 59

[2] Brotherhood social network. https://github.com/HSJared/Social-Network/.
Accessed: 2016-01-30. → pages 59

[3] Checkstyle. http://checkstyle.sourceforge.net/. Accessed: 2015-04-30. →
pages 133

[4] CollegeVis. https://github.com/nerdyworm/collegesvis. Accessed:
2013-09-30. → pages 149

[5] CookeryBook. https://github.com/achudars/adaptable-cookery-book.
Accessed: 2016-01-30. → pages 59

[6] WSO2 EnterpriseStore. https://github.com/wso2/enterprise-store.
Accessed: 2014-11-30. → pages 59

[7] GhostBusters. http://10k.aneventapart.com/2/Uploads/657. Accessed:
2013-09-30. → pages 149

[8] Eclipse JavaScript development tools. http://wiki.eclipse.org/JSDT.
Accessed: 2015-04-30. → pages 158

[9] Jslint: The JavaScript code quality tool. http://www.jslint.com/. Accessed:
2015-04-30. → pages 8, 130, 133

[10] Mozilla developer network’s JavaScript reference.
https://developer.mozilla.org/en-US/docs/JavaScript/Reference. Accessed:
2013-09-30. → pages 134, 136

[11] JetBrains JavaScript editor.
http://www.jetbrains.com/editors/javascript editor.jsp. Accessed:
2015-04-30. → pages 158

161

https://sourceforge.net/projects/php-addressbook/
https://github.com/HSJared/Social-Network/
http://checkstyle.sourceforge.net/
https://github.com/nerdyworm/collegesvis
https://github.com/achudars/adaptable-cookery-book
https://github.com/wso2/enterprise-store
http://10k.aneventapart.com/2/Uploads/657
http://wiki.eclipse.org/JSDT
http://www.jslint.com/
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://www.jetbrains.com/editors/javascript_editor.jsp

[12] PMD code analyzer. http://pmd.sourceforge.net/. Accessed: 2015-04-30.
→ pages 8

[13] PeriodicTable. http://code.jalenack.com/periodic/. Accessed: 2013-09-30.
→ pages 149

[14] Environment simulated study room.
https://github.com/NhatHo/Environment-Simulated-Study-Room/.
Accessed: 2016-01-30. → pages 59

[15] Symbolistic. http://10k.aneventapart.com/2/Uploads/652. Accessed:
2013-09-30. → pages 149

[16] Tunnel. http://arcade.christianmontoya.com/tunnel. Accessed:
2013-09-30. → pages 149

[17] WARI: Web application resource inspector. http://wari.konem.net.
Accessed: 2015-04-30. → pages 8, 130, 133

[18] WolfCMS. https://github.com/wolfcms/wolfcms. Accessed: 2014-11-30.
→ pages 59

[19] Callback hell: A guide to writing elegant asynchronous JavaScript
programs. http://callbackhell.com/. Accessed: 2013-09-30. → pages 140

[20] SimpleChessGame. p4wn.sourceforge.net. Accessed: 2013-09-30. →
pages 27, 149

[21] Claroline. https://github.com/claroline/Claroline. Accessed: 2014-11-30.
→ pages 59

[22] CLOC. http://cloc.sourceforge.net. Accessed: 2013-09-30. → pages 28,
149

[23] complexityReport.js. https://npmjs.org/package/complexity-report/.
Accessed: 2013-09-30. → pages 149

[24] ConFix. http://salt.ece.ubc.ca/software/confix/. Accessed: 2015-11-30. →
pages 9, 102, 121, 127, 157

[25] FeedEx. https://github.com/saltlab/FeedEx. Accessed: 2013-09-30. →
pages 8, 26, 27

[26] FractalViewer. http://onecm.com/projects/canopy. Accessed: 2013-09-30.
→ pages 27, 149

162

http://pmd.sourceforge.net/
http://code.jalenack.com/periodic/
https://github.com/NhatHo/Environment-Simulated-Study-Room/
http://10k.aneventapart.com/2/Uploads/652
http://arcade.christianmontoya.com/tunnel
http://wari.konem.net
https://github.com/wolfcms/wolfcms
http://callbackhell.com/
p4wn.sourceforge.net
https://github.com/claroline/Claroline
http://cloc.sourceforge.net
https://npmjs.org/package/complexity-report/
http://salt.ece.ubc.ca/software/confix/
https://github.com/saltlab/FeedEx
http://onecm.com/projects/canopy

[27] Google closure compiler. https://developers.google.com/closure/.
Accessed: 2013-09-30. → pages 8, 130, 133

[28] Examples of hard to test JavaScript. https://www.pluralsight.com/blog/
software-development/6-examples-of-hard-to-test-javascript. Accessed:
2016-08-30. → pages 5, 75, 82

[29] Hotel Reservation. https://github.com/andyfeds/HotelReservationSystem.
Accessed: 2015-11-30. → pages 122

[30] Istanbul - a JS code coverage tool written in JS.
https://github.com/gotwarlost/istanbul. Accessed: 2016-08-30. → pages 79

[31] Jasmine. https://github.com/pivotal/jasmine. Accessed: 2016-08-30. →
pages 4, 75, 104

[32] JavaParser. https://code.google.com/p/javaparser/. Accessed: 2014-11-30.
→ pages 57

[33] Jscover. http://tntim96.github.io/JSCover/. Accessed: 2014-05-30. →
pages 63, 79, 124

[34] JSNose. https://github.com/saltlab/JSNose. Accessed: 2013-09-30. →
pages 9, 148, 158

[35] JsUnit. http://jsunit.net/. Accessed: 2016-08-30. → pages 104

[36] Mocha. https://mochajs.org/. Accessed: 2016-08-30. → pages 4, 75

[37] Nodeunit. https://github.com/caolan/nodeunit. Accessed: 2016-08-30. →
pages 4, 75

[38] Organizer. http://www.apress.com/9781590596951. Accessed:
2014-11-30. → pages 41

[39] Phormer Photogallery. http://sourceforge.net/projects/rephormer/.
Accessed: 2013-09-30. → pages 27, 59, 122, 149

[40] QUnit. http://qunitjs.com/. Accessed: 2016-08-30. → pages 1, 4, 75, 104

[41] Mozilla Rhino. https://github.com/mozilla/rhino. Accessed: 2013-08-30.
→ pages 26, 79, 117, 148

[42] Selenium HQ. http://seleniumhq.org/. Accessed: 2016-08-30. → pages 1,
30, 38, 109, 117

163

https://developers.google.com/closure/
https://www.pluralsight.com/blog/software-development/6-examples-of-hard-to-test-javascript
https://www.pluralsight.com/blog/software-development/6-examples-of-hard-to-test-javascript
https://github.com/andyfeds/HotelReservationSystem
https://github.com/gotwarlost/istanbul
https://github.com/pivotal/jasmine
https://code.google.com/p/javaparser/
http://tntim96.github.io/JSCover/
https://github.com/saltlab/JSNose
http://jsunit.net/
https://mochajs.org/
https://github.com/caolan/nodeunit
http://www.apress.com/9781590596951
http://sourceforge.net/projects/rephormer/
http://qunitjs.com/
https://github.com/mozilla/rhino
http://seleniumhq.org/

[43] SimpleToDo. https://github.com/heyamykate/vanillaJS. Accessed:
2015-11-30. → pages 122

[44] Sudoku game.
http://www.dhtmlgoodies.com/scripts/game sudoku/game sudoku.html.
Accessed: 2015-11-30. → pages 122

[45] TacirFormBuilder. https://github.com/ekinertac/TacirFormBuilder.
Accessed: 2013-09-30. → pages 27

[46] Writing testable JavaScript.
http://www.adequatelygood.com/Writing-Testable-JavaScript.html, .
Accessed: 2016-08-30. → pages 5, 75, 82

[47] Testilizer. https://github.com/saltlab/Testilizer, . Accessed: 2014-11-30. →
pages 8, 39, 57, 58, 156

[48] How to unit test private functions in JavaScript. https:
//philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/,
. Accessed: 2016-08-30. → pages 5, 75, 82, 85

[49] TinySiteCMS. tinysitecms.com, . Accessed: 2013-09-30. → pages 149

[50] TinyMCE. tinymce.com, . Accessed: 2013-09-30. → pages 27, 149

[51] TuduListManager. julien-dubois.com/tudu-lists/. Accessed: 2013-09-30.
→ pages 27, 149

[52] Which JavaScript test library should you use? http://www.techtalkdc.com/
which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/.
Accessed: 2016-08-30. → pages 4, 75

[53] Writing testable code in JavaScript: A brief overview.
https://www.toptal.com/javascript/writing-testable-code-in-javascript.
Accessed: 2016-08-30. → pages 5, 75, 82

[54] JSter JavaScript Libraries Catalog. http://jster.net/catalog, 2014. Accessed:
2016-08-30. → pages 76, 97

[55] Most depended-upon NMP packages.
https://www.npmjs.com/browse/depended, 2014. Accessed: 2016-08-30.
→ pages 76

[56] Github Showcases. https://github.com/showcases, 2014. Accessed:
2016-08-30. → pages 76, 97

164

https://github.com/heyamykate/vanillaJS
http://www.dhtmlgoodies.com/scripts/game_sudoku/game_sudoku.html
https://github.com/ekinertac/TacirFormBuilder
http://www.adequatelygood.com/Writing-Testable-JavaScript.html
https://github.com/saltlab/Testilizer
https://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/
https://philipwalton.com/articles/how-to-unit-test-private-functions-in-javascript/
tinysitecms.com
tinymce.com
julien-dubois.com/tudu-lists/
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha/
https://www.toptal.com/javascript/writing-testable-code-in-javascript
http://jster.net/catalog
https://www.npmjs.com/browse/depended
https://github.com/showcases

[57] Testing and deploying with ordered npm run scripts. http://blog.npmjs.org/
post/127671403050/testing-and-deploying-with-ordered-npm-run-scripts,
2015. Accessed: 2016-08-30. → pages 87, 95

[58] SLOC (source lines of code) counter. https://github.com/flosse/sloc/, 2016.
Accessed: 2016-08-30. → pages 77

[59] TestScanner. https://github.com/saltlab/testscanner, 2016. Accessed:
2016-08-30. → pages 76, 79, 97

[60] C. Q. Adamsen, A. Møller, and G. Mezzetti. Systematic execution of
android test suites in adverse conditions. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), pages
83–93. ACM, 2015. → pages 72

[61] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search
results. In Proc. of the International Conference on Web Search and Data
Mining, pages 5–14. ACM, 2009. → pages 16, 34

[62] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman.
Understanding JavaScript event-based interactions. In Proc. of the
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 367–377. ACM, 2014. → pages 1, 6, 101, 106

[63] N. Alshahwan and M. Harman. State aware test case regeneration for
improving web application test suite coverage and fault detection. In Proc.
of the International Symposium on Software Testing and Analysis (ISSTA),
pages 45–55, 2012. → pages 72

[64] N. Alshahwan, M. Harman, A. Marchetto, R. Tiella, and P. Tonella.
Crawlability metrics for web applications. In Proc. International
Conference on Software Testing, Verification and Validation (ICST), pages
151–160, Washington, DC, USA, 2012. IEEE Computer Society, IEEE
Computer Society. ISBN 978-0-7695-4670-4. doi:10.1109/ICST.2012.95.
URL http://dx.doi.org/10.1109/ICST.2012.95. → pages 12, 33, 34

[65] M. Alshraideh. A complete automation of unit testing for JavaScript
programs. Journal of Computer Science, 4(12):1012, 2008. → pages 127

[66] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip. A framework for
automated testing of JavaScript web applications. In Proc. International
Conference on Software Engineering (ICSE), pages 571–580. ACM, 2011.
→ pages 1, 4, 5, 6, 35, 39, 71, 75, 96, 101, 127

165

http://blog.npmjs.org/post/127671403050/testing-and-deploying-with-ordered-npm-run-scripts
http://blog.npmjs.org/post/127671403050/testing-and-deploying-with-ordered-npm-run-scripts
https://github.com/flosse/sloc/
https://github.com/saltlab/testscanner
http://dx.doi.org/10.1109/ICST.2012.95
http://dx.doi.org/10.1109/ICST.2012.95

[67] C. Atkinson, O. Hummel, and W. Janjic. Search-enhanced testing (nier
track). In Proceedings of the 33rd International Conference on Software
Engineering (ICSE-NIER track), pages 880–883. ACM, 2011. → pages 72

[68] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically testing
dynamic web sites. In Proc. of the International World Wide Web
Conference (WWW), pages 654–668, 2002. → pages 2, 12, 32, 33

[69] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of
DTDs. In Proc. of the Symposium on Principles of Database Systems,
pages 25–36. ACM, 2005. doi:10.1145/1065167.1065172. → pages 112

[70] K. Benjamin, G. von Bochmann, M. E. Dincturk, G.-V. Jourdan, and I.-V.
Onut. A strategy for efficient crawling of rich internet applications. In
Proc. of the International Conference on Web Engineering (ICWE), pages
74–89. Springer-Verlag, 2011. → pages 3, 33, 34

[71] C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security
testing of web widget interactions. In Proc. of the joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software Engineering (ESEC-FSE),
pages 81–91. ACM, 2009. → pages 2

[72] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:
27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm. → pages 58

[73] S. Choudhary, M. E. Dincturk, S. M. Mirtaheri, G.-V. Jourdan, G. von
Bochmann, and I. V. Onut. Building rich internet applications models:
Example of a better strategy. In Proc. of the International Conference on
Web Engineering (ICWE). Springer, 2013. → pages 3, 34

[74] S. R. Choudhary, M. Prasad, and A. Orso. Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibilities
in web applications. In Proc. International Conference on Software
Testing, Verification and Validation (ICST), pages 171–180. IEEE
Computer Society, 2012. → pages 2, 3, 12, 32, 33, 38

[75] J. Clark and S. DeRose. Xml path language (xpath).
http://www.w3.org/TR/1999/REC-xpath-19991116, November 1999. →
pages 112

166

http://dx.doi.org/10.1145/1065167.1065172
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.w3.org/TR/1999/REC-xpath-19991116

[76] Y. Crespo, C. López, R. Marticorena, and E. Manso. Language independent
metrics support towards refactoring inference. In 9th ECOOP Workshop on
QAOOSE, volume 5, pages 18–29, 2005. → pages 133, 141, 144

[77] D. Crockford. JavaScript: the good parts. O’Reilly Media, Incorporated,
2008. → pages 8, 84, 130, 134, 135, 136, 139, 140

[78] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test
cases for specification mining. In Proc. of the International Symposium on
Software Testing and Analysis (ISSTA), pages 85–96, 2010. → pages 71

[79] M. E. Dincturk, S. Choudhary, G. von Bochmann, G.-V. Jourdan, and I. V.
Onut. A statistical approach for efficient crawling of rich internet
applications. In Proc. of the International Conference on Web Engineering
(ICWE), pages 362–369. Springer, 2012. → pages 3, 34

[80] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou. Ajax crawl:
Making Amax applications searchable. In Proc. of the 2009 IEEE
International Conference on Data Engineering, ICDE ’09, pages 78–89.
IEEE Computer Society, 2009. → pages 23, 33

[81] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher. Leveraging user-session
data to support web application testing. IEEE Trans. Softw. Eng., 31(3):
187–202, 2005. ISSN 0098-5589. → pages 4, 70

[82] M. Erfani, I. Keivanloo, and J. Rilling. Opportunities for clone detection in
test case recommendation. In IEEE Computer Software and Applications
Conference Workshops (COMPSACW), pages 65–70. IEEE, 2013. →
pages 72

[83] A. Feldthaus and A. Møller. Semi-automatic rename refactoring for
JavaScript. In Proc. Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 323–338. ACM,
2013. → pages 8, 158

[84] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip.
Tool-supported refactoring for JavaScript. In Proc. Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2011. → pages 8, 158

[85] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999. → pages 7, 130, 131, 132, 134,
141, 145

167

[86] F. Galassi. Refactoring to unobtrusive JavaScript. JavaScript Camp 2009.
→ pages 132, 134, 137, 138

[87] K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t call us, we’ll call you:
Characterizing callbacks in JavaScript. In Proceedings of the ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 247–256. IEEE Computer Society, 2015. →
pages 76, 77, 84, 98

[88] V. Garousi, A. Mesbah, A. Betin Can, and S. Mirshokraie. A systematic
mapping study of web application testing. Information and Software
Technology, 2013. → pages 12

[89] P. Genevès, N. Layaı̈da, and A. Schmitt. Efficient static analysis of XML
paths and types. In Proc. of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, pages
342–351, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-633-2.
doi:10.1145/1250734.1250773. URL
http://doi.acm.org/10.1145/1250734.1250773. → pages 102, 115, 117

[90] M. Ghafari, C. Ghezzi, A. Mocci, and G. Tamburrelli. Mining unit tests for
code recommendation. In International Conference on Program
Comprehension (ICPC), pages 142–145. ACM, 2014. → pages 72

[91] GitHut. A small place to discover languages in GitHub. http://githut.info,
2015. → pages 1, 75

[92] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Proc. of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 213–223, New
York, NY, USA, 2005. ACM. ISBN 1-59593-056-6.
doi:10.1145/1065010.1065036. → pages 107

[93] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis for Ajax
intrusion detection. In Proc. of the International World Wide Web
Conference (WWW), pages 561–570. ACM, 2009. ISBN
978-1-60558-487-4. → pages 34

[94] M. Harrold, R. Gupta, and M. Soffa. A methodology for controlling the
size of a test suite. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2(3):270–285, 1993. → pages 17, 24

168

http://dx.doi.org/10.1145/1250734.1250773
http://doi.acm.org/10.1145/1250734.1250773
http://githut.info
http://dx.doi.org/10.1145/1065010.1065036

[95] P. Heidegger and P. Thiemann. Contract-driven testing of Javascript code.
In Proceedings of the 48th International Conference on Objects, Models,
Components, Patterns, TOOLS’10, pages 154–172, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-13952-3, 978-3-642-13952-9. URL
http://dl.acm.org/citation.cfm?id=1894386.1894395. → pages 5, 6, 75, 127

[96] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley
Professional, first edition, 2010. ISBN 0321601912, 9780321601919. →
pages 28

[97] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proc. of the International Conference on
Software Engineering (ICSE), 2014. → pages 5, 63, 79, 98

[98] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of
privacy-violating information flows in javascript web applications. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 270–283. ACM, 2010. → pages 98

[99] W. Janjic and C. Atkinson. Utilizing software reuse experience for
automated test recommendation. In Proceedings of the 8th International
Workshop on Automation of Software Test (AST), pages 100–106. IEEE
Press, 2013. → pages 72

[100] C. S. Jensen, A. Møller, and Z. Su. Server interface descriptions for
automated testing of JavaScript web applications. In Proc. of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 510–520. ACM, 2013. → pages 118

[101] S. H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and
browser API in static analysis of JavaScript web applications. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE’11, pages
59–69. ACM, 2011. → pages 34, 101

[102] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In
Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), FSE 2014, pages 654–665,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5.
doi:10.1145/2635868.2635929. URL
http://doi.acm.org/10.1145/2635868.2635929. → pages 97

169

http://dl.acm.org/citation.cfm?id=1894386.1894395
http://dx.doi.org/10.1145/2635868.2635929
http://doi.acm.org/10.1145/2635868.2635929

[103] S. H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2002. → pages 63, 150

[104] J. Kerievsky. Refactoring to patterns. Pearson Deutschland GmbH, 2005.
→ pages 131, 134, 145

[105] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI:
A solver for string constraints. In Proc. of the International Symposium on
Software Testing and Analysis (ISSTA), pages 105–116. ACM, 2009.
doi:10.1145/1572272.1572286. → pages 118

[106] J. C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, 1976. → pages 106

[107] M. Landhäußer and W. F. Tichy. Automated test-case generation by
cloning. In Proceedings of the 7th International Workshop on Automation
of Software Test (AST), pages 83–88. IEEE Press, 2012. → pages 72

[108] M. Lanza and R. Marinescu. Object-oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006. → pages 133, 141, 143, 144, 145

[109] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic symbolic testing of
JavaScript web applications. In Proc. of the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), page 11
pages. ACM, 2014. → pages 6, 96, 101, 107, 127

[110] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy.
Google’s deep web crawl. Proc. VLDB Endow., 1(2):1241–1252, 2008. →
pages 33

[111] M. Madsen, B. Livshits, and M. Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In
ESEC/FSE, 2013. → pages 101

[112] M. Mäntylä, J. Vanhanen, and C. Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In Proc. International Conference
on Software Maintenance (ICSM), pages 381–384. IEEE Computer
Society, 2003. → pages 145

[113] A. Marchetto and P. Tonella. Using search-based algorithms for Ajax event
sequence generation during testing. Empirical Software Engineering, 16
(1):103–140, 2011. → pages 2

170

http://dx.doi.org/10.1145/1572272.1572286

[114] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajax web
applications. In Software Testing, Verification, and Validation, 2008 1st
International Conference on, pages 121–130. IEEE, IEEE Computer
Society, 2008. ISBN 978-0-7695-3127-4. → pages 12, 32, 33, 35

[115] S. McAllister, E. Kirda, and C. Kruegel. Leveraging user interactions for
in-depth testing of web applications. In Recent Advances in Intrusion
Detection, volume 5230 of LNCS, pages 191–210. Springer, 2008. URL
http://dx.doi.org/10.1007/978-3-540-87403-4 11. → pages 70

[116] A. M. Memon. An event-flow model of gui-based applications for testing.
Software testing, verification and reliability, 17(3):137–157, 2007. ISSN
0960-0833. doi:http://dx.doi.org/10.1002/stvr.v17:3. → pages 68

[117] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating
adaptive algorithms. ACM Transactions on Internet Technology (TOIT), 4
(4):378–419, 2004. → pages 33

[118] A. Mesbah and S. Mirshokraie. Automated analysis of CSS rules to
support style maintenance. In Proc. International Conference on Software
Engineering (ICSE), pages 408–418. IEEE Computer Society, 2012. →
pages 133

[119] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proc. of the International Conference on Software Engineering
(ICSE), pages 561–570. ACM, 2011. → pages 2, 12, 32, 33

[120] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012. → pages 2, 8,
14, 22, 26, 33, 45, 57, 148

[121] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic
testing of modern web applications. IEEE Transactions on Software
Engineering (TSE), 38(1):35–53, 2012. ISSN 0098-5589.
doi:10.1109/TSE.2011.28. URL http://dx.doi.org/10.1109/TSE.2011.28.
→ pages 2, 3, 4, 8, 12, 15, 26, 32, 33, 35, 38, 39, 45, 47, 71, 127

[122] G. Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007. → pages 103

[123] A. Milani Fard and A. Mesbah. Feedback-directed exploration of web
applications to derive test models. In Proc. of the International Symposium

171

http://dx.doi.org/10.1007/978-3-540-87403-4_11
http://dx.doi.org/http://dx.doi.org/10.1002/stvr.v17:3
http://dx.doi.org/10.1109/TSE.2011.28
http://dx.doi.org/10.1109/TSE.2011.28

on Software Reliability Engineering (ISSRE), pages 278–287. IEEE
Computer Society, 2013. → pages iii, 8, 10, 11, 47, 71, 127, 155, 159

[124] A. Milani Fard and A. Mesbah. JSNose: Detecting JavaScript code smells.
In Proc. of the International Conference on Source Code Analysis and
Manipulation (SCAM), pages 116–125. IEEE Computer Society, 2013. →
pages iv, 9, 10, 32, 80, 98, 129, 158, 160

[125] A. Milani Fard and A. Mesbah. JavaScript: The (un)covered parts. In
Proceedings of the International Conference on Software Testing,
Verification, and Validation (ICST), page 11 pages. IEEE Computer
Society, 2017. → pages iii, 9, 10, 74, 157

[126] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests
in automated test generation for web applications. In Proc. of the
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 67–78. ACM, 2014. → pages iii, 8, 10, 37, 98, 127, 156, 159

[127] A. Milani Fard, A. Mesbah, and E. Wohlstadter. Generating fixtures for
JavaScript unit testing. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 190–200.
IEEE Computer Society, 2015. → pages iii, 5, 9, 10, 72, 75, 82, 83, 95, 96,
100, 157, 159

[128] S. Mirshokraie and A. Mesbah. JSART: JavaScript assertion-based
regression testing. In Proc. of the Internatinoal Conference on Web
Engineering (ICWE), pages 238–252. Springer, 2012. → pages 2, 12, 32,
33, 35, 71

[129] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript
mutation testing. In Proc. of the International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer Society, 2013.
→ pages 2, 5, 12, 33, 62, 97, 99

[130] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. JSeft: Automated
JavaScript unit test generation. In Proc. of the International Conference on
Software Testing, Verification and Validation (ICST), pages 1–10. IEEE
Computer Society, 2015. → pages 1, 4, 5, 6, 71, 72, 75, 95, 96, 101, 122,
126, 127

[131] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Atrina: Inferring unit
oracles from GUI test cases. In Proceedings of the International

172

Conference on Software Testing, Verification, and Validation (ICST), page
11 pages. IEEE Computer Society, 2016. → pages 5, 75, 95

[132] M. Mirzaaghaei, F. Pastore, and M. Pezze. Supporting test suite evolution
through test case adaptation. In Proc. of the International Conference on
Software Testing, Verification and Validation (ICST), pages 231–240. IEEE
Computer Society, 2012. → pages 72

[133] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur. DECOR: A
method for the specification and detection of code and design smells. IEEE
Transactions on Software Engineering, 36(1):20–36, 2010. → pages 133,
141, 144, 150

[134] A. Moosavi, S. Hooshmand, S. Baghbanzadeh, G.-V. Jourdan, G. V.
Bochmann, and I. V. Onut. Indexing rich internet applications using
components-based crawling. In Proc. of the International Conference on
Web Engineering (ICWE), pages 200–217. Springer-Verlag, 2014. → pages
3, 33, 34

[135] M. J. Munro. Product metrics for automatic identification of “bad smell”
design problems in Java source-code. In Proc. International Symposium
Software Metrics, pages 15–15. IEEE, 2005. → pages 133, 141, 144

[136] R. Murphey. JS minty fresh: Identifying and eliminating JavaScript code
smells. http:
//fronteers.nl/congres/2012/sessions/js-minty-fresh-rebecca-murphey. →
pages 132, 134

[137] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Detection of embedded code smells in dynamic web applications.
In Proc. of the International Conference on Automated Software
Engineering (ASE), pages 282–285. ACM, 2012. → pages 7, 130, 132,
133, 137

[138] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for
embedded client-side code in dynamic web applications. In Proc. of the
International Symposium on Foundations of Software Engineering (FSE),
pages 518–529. ACM, 2014. doi:10.1145/2635868.2635928. → pages 127

[139] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen. Mining
interprocedural, data-oriented usage patterns in javascript web applications.
In Proceedings of the 36th International Conference on Software
Engineering, pages 791–802. ACM, 2014. → pages 98

173

http://fronteers.nl/congres/2012/sessions/js-minty-fresh-rebecca-murphey
http://fronteers.nl/congres/2012/sessions/js-minty-fresh-rebecca-murphey
http://dx.doi.org/10.1145/2635868.2635928

[140] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. You are what you include:
large-scale evaluation of remote javascript inclusions. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 736–747. ACM, 2012. → pages 98

[141] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An empirical study
of client-side JavaScript bugs. In Proc. of the International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 55–64.
IEEE Computer Society, 2013. → pages 1, 6, 96, 101, 103, 106, 126

[142] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. A study of causes
and consequences of client-side JavaScript bugs. IEEE Transactions on
Software Engineering (TSE), page 17 pages, 2017. → pages 5, 97, 98

[143] F. J. Ocariza, K. Pattabiraman, and A. Mesbah. AutoFLox: An automatic
fault localizer for client-side JavaScript. In Proc. of the International
Conference on Software Testing, Verification and Validation (ICST’12),
pages 31–40. IEEE Computer Society, 2012. → pages 34

[144] C. Olston and M. Najork. Web crawling. Foundations and Trends in
Information Retrieval, 4(3):175–246, 2010. → pages 12, 16, 33

[145] V. Özçelik. o2.js JavaScript conventions & best practices.
https://github.com/v0lkan/o2.js/blob/master/CONVENTIONS.md. → pages
132, 134, 139, 145

[146] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In Proc. 29th Int. Conf. on Sw. Engineering
(ICSE’07), pages 75–84. IEEE Computer Society, IEEE Computer Society,
2007. doi:http://dx.doi.org/10.1109/ICSE.2007.37. → pages 71

[147] J. Padolsey. jQuery code smells.
http://james.padolsey.com/javascript/jquery-code-smells/. → pages 132,
134, 138, 139

[148] K. Pattabiraman and B. Zorn. DoDOM: Leveraging DOM Invariants for
Web 2.0 Application Robustness Testing. In Proc. of the International
Symposium on Sw. Reliability Eng. (ISSRE), pages 191–200. IEEE
Computer Society, 2010. → pages 35, 55, 71

[149] M. Pawlik and N. Augsten. RTED: a robust algorithm for the tree edit
distance. Proc. VLDB Endow., 5(4):334–345, Dec. 2011. ISSN 2150-8097.
URL http://dl.acm.org/citation.cfm?id=2095686.2095692. → pages 23, 27

174

https://github.com/v0lkan/o2.js/blob/master/CONVENTIONS.md
http://dx.doi.org/http://dx.doi.org/10.1109/ICSE.2007.37
http://james.padolsey.com/javascript/jquery-code-smells/
http://dl.acm.org/citation.cfm?id=2095686.2095692

[150] M. Pezze, K. Rubinov, and J. Wuttke. Generating effective integration test
cases from unit ones. In Proc. International Conference on Software
Testing, Verification and Validation (ICST), pages 11–20. IEEE, 2013. →
pages 4, 72

[151] S. Porto. A plain english guide to JavaScript prototypes.
http://sporto.github.com/blog/2013/02/22/
a-plain-english-guide-to-javascript-prototypes/. → pages 130

[152] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter: Comparing the
behavior of JavaScript benchmarks with real web applications. In
Proceedings of the 2010 USENIX Conference on Web Application
Development, WebApps’10, pages 3–3, Berkeley, CA, USA, 2010.
USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1863166.1863169. → pages 98

[153] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In Conference on Programming
Language Design and Implementation (PLDI), pages 1–12. ACM, 2010.
ISBN 978-1-4503-0019-3.
doi:http://doi.acm.org/10.1145/1806596.1806598. → pages 98, 106, 132

[154] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do. In
ECOOP 2011–Object-Oriented Programming, pages 52–78. Springer,
2011. → pages 98

[155] K. Rubinov and J. Wuttke. Augmenting test suites automatically. In Proc.
of the 2012 International Conference on Software Engineering, ICSE 2012,
pages 1433–1434, Piscataway, NJ, USA, 2012. IEEE Press. ISBN
978-1-4673-1067-3. URL
http://dl.acm.org/citation.cfm?id=2337223.2337438. → pages 72

[156] T. Sakai. Evaluation with informational and navigational intents. In Proc.
of the International Conference on World Wide Web (WWW), pages
499–508. ACM, 2012. → pages 34

[157] R. Santos, C. Macdonald, and I. Ounis. Selectively diversifying web search
results. In Proc. of the International Conference on Information and
knowledge management, pages 1179–1188. ACM, 2010. → pages 34

[158] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A
symbolic execution framework for JavaScript. In Proc. Symp. on Security
and Privacy (SP’10), SP ’10, pages 513–528, Washington, DC, USA,

175

http://sporto.github.com/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
http://sporto.github.com/blog/2013/02/22/a-plain-english-guide-to-javascript-prototypes/
http://dl.acm.org/citation.cfm?id=1863166.1863169
http://dx.doi.org/http://doi.acm.org/10.1145/1806596.1806598
http://dl.acm.org/citation.cfm?id=2337223.2337438

2010. IEEE Computer Society. ISBN 978-0-7695-4035-1.
doi:http://dx.doi.org/10.1109/SP.2010.38. URL
http://dx.doi.org/10.1109/SP.2010.38. → pages 6, 35, 96, 107, 108, 120,
127

[159] M. Schur, A. Roth, and A. Zeller. Mining behavior models from enterprise
web applications. In Proc. of the 2013 9th Joint Meeting on Foundations of
Software Engineering, Proc. of the Foundations of Software Engineering
(ESEC/FSE), pages 422–432. ACM, 2013. → pages 3, 4, 38, 71

[160] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In Proc. of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE, pages 263–272. ACM,
2005. ISBN 1-59593-014-0. doi:10.1145/1081706.1081750. URL
http://doi.acm.org/10.1145/1081706.1081750. → pages 107

[161] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript. In
Proceedings of the 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, pages 488–498. ACM, 2013. ISBN
978-1-4503-2237-9. doi:10.1145/2491411.2491447. URL
http://doi.acm.org/10.1145/2491411.2491447. → pages 6, 96, 101, 106,
107, 108, 120, 123, 126, 127

[162] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based refactoring.
In Proc European Conference on Software Maintenance and Reengineering
(CSMR), pages 30–38. IEEE, 2001. → pages 133, 141, 144

[163] K. Simpson. Native JavaScript: sync and async.
http://blog.getify.com/native-javascript-sync-async. → pages 134, 140

[164] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning important models for
web page blocks based on layout and content analysis. ACM SIGKDD
Explorations Newsletter, 6(2):14–23, 2004. → pages 53, 54

[165] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay and
failure detection for web applications. In ASE’05: Proc. 20th IEEE/ACM
Int. Conf. on Automated Sw. Eng., pages 253–262. ACM, 2005. ISBN
1-59593-993-4. doi:http://doi.acm.org/10.1145/1101908.1101947. URL
http://doi.acm.org/10.1145/1101908.1101947. → pages 4, 70

[166] P. Srinivasan, F. Menczer, and G. Pant. A general evaluation framework for
topical crawlers. Information Retrieval, 8(3):417–447, 2005. → pages 16

176

http://dx.doi.org/http://dx.doi.org/10.1109/SP.2010.38
http://dx.doi.org/10.1109/SP.2010.38
http://dx.doi.org/10.1145/1081706.1081750
http://doi.acm.org/10.1145/1081706.1081750
http://dx.doi.org/10.1145/2491411.2491447
http://doi.acm.org/10.1145/2491411.2491447
http://blog.getify.com/native-javascript-sync-async
http://dx.doi.org/http://doi.acm.org/10.1145/1101908.1101947
http://doi.acm.org/10.1145/1101908.1101947

[167] Stack Overflow. 2016 developer survey.
http://stackoverflow.com/research/developer-survey-2016, 2016. → pages
1, 75

[168] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM
(JACM), 26(3):422–433, 1979. ISSN 0004-5411.
doi:10.1145/322139.322143. URL
http://doi.acm.org/10.1145/322139.322143. → pages 23

[169] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
Guided test generation for web applications. In Proc. of the International
Conference on Software Engineering (ICSE), pages 162–171. IEEE
Computer Society, 2013. → pages 3, 33, 34, 38

[170] N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In
Proc. of Tests and Proofs (TAP’08), volume 4966 of LNCS, pages 134–153.
Springer Verlag, April 2008. URL
http://research.microsoft.com/apps/pubs/default.aspx?id=81193. → pages
107

[171] P. Tonella and F. Ricca. Statistical testing of web applications. Journal of
Software Maintenance and Evolution: Research and Practice, 16(1-2):
103–127, 2004. ISSN 1532-060X. doi:http://dx.doi.org/10.1002/smr.284.
→ pages 2, 12, 33

[172] P. Tonella, F. Ricca, A. Stocco, and M. Leotta. Automated generation of
visual web tests from DOM-based web tests. In Proceedings of the
International Symposium on Applied Computing (SAC), pages 775–782.
ACM, 2015. → pages 72

[173] M. E. Trostler. Testable JavaScript. O’Reilly Media, Incorporated, 2013.
→ pages 5, 75, 82

[174] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. JDeodorant:
Identification and removal of type-checking bad smells. In Proc. European
Conference on Software Maintenance and Reengineering (CSMR), pages
329–331, 2008. → pages 133

[175] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):
297–312, 2012. → pages 2

177

http://stackoverflow.com/research/developer-survey-2016
http://dx.doi.org/10.1145/322139.322143
http://doi.acm.org/10.1145/322139.322143
http://research.microsoft.com/apps/pubs/default.aspx?id=81193
http://dx.doi.org/http://dx.doi.org/10.1002/smr.284

[176] A. Vahabzadeh, A. Milani Fard, and A. Mesbah. An empirical study of
bugs in test code. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pages 101–110. IEEE
Computer Society, 2015. → pages 10, 98

[177] A. Valmari. The state explosion problem. In LNCS: Lectures on Petri Nets
I, Basic Models, Advances in Petri Nets, pages 429–528. Springer-Verlag,
1998. ISBN 3-540-65306-6. → pages 3, 12

[178] E. Van Emden and L. Moonen. Java quality assurance by detecting code
smells. In Proc. of the Working Conference on Reverse Engineering
(WCRE), pages 97–106. IEEE Computer Society, 2002. → pages 130, 134

[179] V. Vapnik. The nature of statistical learning theory. springer, 2000. →
pages 53

[180] W3C. Document Object Model (DOM) level 2 events specification.
http://www.w3.org/TR/DOM-Level-2-Events/, 13 November 2000. →
pages 1, 7, 130, 137

[181] Y. Wang, S. Person, S. Elbaum, and M. B. Dwyer. A framework to advise
tests using tests. In Proc. of ICSE NIER. ACM, 2014. → pages 4, 72

[182] S. Wei and B. G. Ryder. Practical blended taint analysis for JavaScript. In
Proc. of the International Symposium on Software Testing and Analysis
(ISSTA), pages 336–346. ACM, 2013. → pages 106

[183] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song.
An empirical analysis of XSS sanitization in web application frameworks.
Electrical Engineering and Computer Sciences University of California at
Berkeley, Technical Report, pages 1–17, 2011. → pages 98

[184] E. J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982. doi:10.1093/comjnl/25.4.465. → pages 3

[185] L. Williams, D. Ho, and S. Heckman. Software metrics in eclipse.
http://realsearchgroup.org/SEMaterials/tutorials/metrics/. → pages 143,
144, 145

[186] M. R. Woodward. Mutation testing?its origin and evolution. Information
and Software Technology, 35(3):163–169, 1993. → pages 62

[187] T. Xie and D. Notkin. Mutually enhancing test generation and specification
inference. In Formal Approaches to Software Testing, pages 60–69.
Springer, 2004. → pages 71

178

http://dx.doi.org/10.1093/comjnl/25.4.465
http://realsearchgroup.org/SEMaterials/tutorials/metrics/

[188] D. Xu, W. Xu, B. K. Bavikati, and W. E. Wong. Mining executable
specifications of web applications from Selenium IDE tests. In Software
Security and Reliability (SERE), 2012 IEEE Sixth International Conference
on, pages 263–272. IEEE, 2012. → pages 4, 71

[189] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen. Directed test
suite augmentation: techniques and tradeoffs. In Proc. of the International
Symposium on Foundations of Software Engineering (FSE), pages
257–266. ACM, 2010. → pages 4, 72

[190] S. Yoo and M. Harman. Test data regeneration: generating new test data
from existing test data. Software Testing, Verification and Reliability, 22
(3):171–201, 2012. → pages 4, 71

[191] X. Yuan and A. M. Memon. Using gui run-time state as feedback to
generate test cases. In ICSE ’07: Proc. of the 29th international conference
on Software Engineering, ICSE ’07, pages 396–405, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-7.
doi:http://dx.doi.org/10.1109/ICSE.2007.94. URL
http://dx.doi.org/10.1109/ICSE.2007.94. → pages 71

[192] X. Yuan and A. M. Memon. Iterative execution-feedback model-directed
GUI testing. Information and Software Technology, 52(5):559–575, 2010.
→ pages 4, 71

[193] C. Yue and H. Wang. Characterizing insecure JavaScript practices on the
web. In Proc. of the International World Wide Web Conference (WWW),
pages 961–970. ACM, 2009. → pages 98

[194] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van Deursen. Mining
software repositories to study co-evolution of production and test code. In
Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 220–229, 2008. → pages 98

[195] N. C. Zakas. Writing efficient JavaScript. In S. Souders, editor, Even
Faster Web Sites. O’Reilly, 2009. → pages 134, 135

[196] N. C. Zakas. Maintainable JavaScript - Writing Readable Code. O’Reilly,
2012. → pages 134, 137, 138

[197] D. Zhang, W. Wang, D. Liu, Y. Lei, and D. Kung. Reusing existing test
cases for security testing. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 323–324. IEEE
Computer Society, 2008. → pages 72

179

http://dx.doi.org/http://dx.doi.org/10.1109/ICSE.2007.94
http://dx.doi.org/10.1109/ICSE.2007.94

[198] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin. Empirically revisiting the test independence assumption. In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA, pages 385–396. ACM, 2014. → pages 69

[199] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 214–224. ACM,
2015. → pages 5, 79, 98

[200] Y. Zheng, T. Bao, and X. Zhang. Statically locating web application bugs
caused by asynchronous calls. In Proc. of the International World-Wide
Web Conference (WWW), pages 805–814. ACM, 2011. → pages 34

[201] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang. Mining api usage
examples from test code. In Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME), pages 301–310. IEEE
Computer Society, 2014. → pages 72

180

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 UI Testing
	1.1.1 Test Model Generation
	1.1.2 UI Test Generation

	1.2 Unit Testing
	1.2.1 JavaScript Test Quality Assessment
	1.2.2 JavaScript Unit Test Generation

	1.3 Code Maintenance
	1.3.1 JavaScript Code Smell Detection

	1.4 Research Questions
	1.5 Publications

	2 Feedback-Directed Exploration of Web Applications to Derive Test Models
	2.1 Introduction
	2.2 Background and Motivation
	2.3 Approach
	2.3.1 Deriving Test Models
	2.3.2 Feedback-directed Exploration Algorithm
	2.3.3 State Expansion Strategy
	2.3.4 Event Execution Strategy
	2.3.5 Implementation

	2.4 Empirical Evaluation
	2.4.1 Experimental Objects
	2.4.2 Experimental Setup
	2.4.3 Results and Findings

	2.5 Discussion
	2.6 Related Work
	2.7 Conclusions

	3 Leveraging Existing Tests in User Interface Test Generation for Web Applications
	3.1 Introduction
	3.2 Background and Motivation
	3.3 Approach
	3.3.1 Mining Human-Written Test Cases
	3.3.2 Exploring Alternative Paths
	3.3.3 Regenerating Assertions
	3.3.4 Test Suite Generation

	3.4 Implementation
	3.5 Empirical Evaluation
	3.5.1 Experimental Objects
	3.5.2 Experimental Setup
	3.5.3 Results

	3.6 Discussion
	3.6.1 Applications
	3.6.2 Generating Negative Assertions
	3.6.3 Test Case Dependencies
	3.6.4 Effectiveness
	3.6.5 Efficiency
	3.6.6 Threats to Validity

	3.7 Related Work
	3.8 Conclusions

	4 JavaScript: The (Un)covered Parts
	4.1 Introduction
	4.2 Methodology
	4.2.1 Subject Systems
	4.2.2 Analysis

	4.3 Results
	4.3.1 Prevalence of Tests
	4.3.2 Quality of Tests
	4.3.3 (Un)covered Code
	4.3.4 Discussion

	4.4 Related Work
	4.5 Conclusions

	5 Generating Fixtures for JavaScript Unit Testing
	5.1 Introduction
	5.2 Background and Motivation
	5.2.1 DOM Fixtures for JavaScript Unit Testing
	5.2.2 Challenges
	5.2.3 Dynamic Symbolic Execution

	5.3 Approach
	5.3.1 Collecting DOM-based Traces
	5.3.2 Deducing DOM Constraints
	5.3.3 Translating Constraints to XPath
	5.3.4 Constructing DOM Fixtures
	5.3.5 Implementation Details

	5.4 Empirical Evaluation
	5.4.1 Experimental Objects
	5.4.2 Experimental Setup
	5.4.3 Results

	5.5 Discussion
	5.6 Related Work
	5.7 Conclusions

	6 Detecting JavaScript Code Smells
	6.1 Introduction
	6.2 Motivation and Challenges
	6.3 Related Work
	6.4 JavaScript Code Smells
	6.4.1 Closure Smells
	6.4.2 Coupling between JavaScript, HTML, and CSS
	6.4.3 Excessive Global Variables
	6.4.4 Long Message Chain
	6.4.5 Nested Callback
	6.4.6 Refused Bequest

	6.5 Smell Detection Mechanism
	6.5.1 Metrics and Criteria Used for Smell Detection
	6.5.2 Combining Static and Dynamic Analysis
	6.5.3 Implementation

	6.6 Empirical Evaluation
	6.6.1 Experimental Objects
	6.6.2 Experimental Setup
	6.6.3 Results
	6.6.4 Discussion

	6.7 Conclusions

	7 Conclusions
	7.1 Revisiting Research Questions and Future Directions
	7.2 Concluding Remarks

	Bibliography

