
Limiting Link Disclosure in Social Network Analysis
through Subgraph-Wise Perturbation

Amin Milani Fard
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

milanifard@cs.sfu.ca

Ke Wang
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada
wangk@cs.sfu.ca

Philip S. Yu
Dept. of Computer Science

University of Illinois at Chicago
Chicago, Illinois, USA
psyu@cs.uic.edu

ABSTRACT
Link disclosure between two individuals in a social network
could be a privacy breach. To limit link disclosure, previous
works modeled a social network as an undirected graph and
randomized a link over the entire domain of links, which
leads to considerable structural distortion to the graph. In
this work, we address this issue in two steps. First, we model
a social network as a directed graph and randomize the des-
tination of a link while keeping the source of a link intact.
The randomization ensures that, if the prior belief about
the destination of a link is bounded by some threshold, the
posterior belief, given the published graph, is no more than
another threshold. Then, we further reduce structural dis-
tortion by a subgraph-wise perturbation in which the given
graph is partitioned into several subgraphs and randomiza-
tion of destination nodes is performed within each subgraph.
The benefit of subgraph-wise perturbation is that it retains
a destination node with a higher retention probability and
replaces a destination node with a node from a local neigh-
borhood. We study the trade-off of utility and privacy of
subgraph-wise perturbation.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; K.4.1 [Public
Policy Issues]: Privacy

General Terms
Algorithms, Measurement, Design, Experimentation

Keywords
Social networks, Privacy-preserving data publishing, Graph
node partitioning

1. INTRODUCTION
Social network analysis is gaining more attention in the

study of many human and natural phenomena. However,
publishing the structure of a social network for such analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26-30, 2012 Berlin, Germany
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00.

may reveal sensitive information about participants. A com-
promise is often reached between the data publisher and the
data miner, resulting in both parties agreeing to some meth-
ods that will be used to anonymize the network data prior
to its publication. Graph anonymization is more challeng-
ing than relational data because the adversary’s background
knowledge can be any information about nodes, links, sub-
graphs, and etc. [3]. Another challenge is that measuring
information loss of graph anonymization can be tricky be-
cause two graphs with the same number of vertices and the
same number of links can vary considerably in their global
properties such as betweenness, diameter, etc., that are cen-
tral to social network analysis [17].

Several types of privacy disclosure for social network data
have been identified: identity disclosure, link disclosure, and
content disclosure [15]. Content disclosure refers to sensitive
disclosure of content information associated with each indi-
vidual, such as age, gender, sex orientation, etc. Such disclo-
sures are typically addressed by data anonymization [1][11].
Even if no such content information is released, identity dis-
closure can occur, which refers to the re-identification of the
node of a target individual using background knowledge on
neighborhood structure such as the degree of a node [3].
Identity disclosure is typically limited by node anonymiza-
tion, which renders the neighborhood of several nodes simi-
lar. Such techniques include degree k-anonymity [4][15][23],
k-automorphism [24], and k-isomorphism [9]. Link disclo-
sure refers to inference about the existence of a link between
two known individuals and is the focus of this work.

1.1 Motivation
In this work, we consider the problem of limiting link

disclosure, that is, we want to limit the ability of an ad-
versary to infer the existence of a link between two indi-
viduals. The work in [22] shows that knowledge about the
links of a node can undo node anonymization. In this sense,
limiting link disclosure is more fundamental than limiting
identity disclosure. One powerful technique for limiting link
disclosure is link perturbation [13][18], where some number
of randomly selected links are deleted from the graph and
some number of randomly selected new links are inserted
into the graph. The number of links deleted and the num-
ber of links inserted dictate the trade-off between utility and
privacy. The analysis in [6] show that link perturbation may
achieve meaningful levels of identity obfuscation while still
preserving characteristics of the original graph.

All previous works on link perturbation have the following
characteristics (or limitations).

• First, despite the fact that many real life social net-
works (e.g., Twitter followers, e-mail networks, Google+
circles, Facebook) are directed graphs, previous works
in the field of privacy preserving data publishing model
a social network as an undirected graph. For example,
a directed link (u, v) in a trust network means that u
trusts (or distrusts) v, whereas a link (v, u) means that
v trusts (or distrusts) u. The privacy implication of
disclosing the two links is different. Dealing with only
undirected graphs, previous link perturbation [13][18]
will randomize both the source node u and the distinc-
tion node v of a link (u, v), even though, to hide the
link (u, v), it suffices to hide either the source u or the
destination v. Consequently, considerable structural
distortion is incurred.

• Second, the prior belief of a destination node is not
factored in inferring a destination node. The long-tail
degree distribution of social networks implies that a
small number of nodes are highly popular destination
nodes of links [5]. Hiding the links to such celebrity
nodes is more difficult or even unrealistic because of
the prior knowledge due to such a popularity. A rea-
sonable privacy notion should take this prior into ac-
count and protect a destination node only if the prior
is bounded by some threshold.

• Third, the deleted/inserted links are selected randomly
from the entire graph without considering the struc-
tural proximity of nodes. For example, adding a link
between two nodes that are far apart would make the
graph useless for shortest path analysis, or deleting
the only link connecting two parts of the graph would
make the two parts disconnected.

1.2 Contributions
To address the above issues, we propose several impor-

tant deviations from previous works. Our contributions are
summarized as follows.

Contribution 1 We model a social network as a directed
graph and hide the existence of a link by perturbing the
destination node of the link while keeping the source node
intact. Specifically, for each (directed) link (u, v), we retain
(u, v) with a certain probability p and replace (u, v) with a
link (u,w) with probability 1−p, where w is randomly se-
lected from all destination nodes in the graph. We name
this solution graph-wise perturbation. Note that being able
to handle directed graphs is a generalization, not a restric-
tion, because undirected graphs can always be modeled by
directed ones.

Contribution 2 We formalize the privacy of a link through
(ρ1,ρ2)-privacy proposed in [10]. Informally, (ρ1,ρ2)-privacy,
where 0 < ρ1 < ρ2 < 1, says that if the adversary’s prior
belief (before seeing the published graph) that a node v is
the destination of a link is no more than ρ1, his posterior
belief (after seeing the perturbed graph) that v is the true
destination of a link is no more than ρ2. In other words,
publishing the data changes the belief of the adversary by
at most ρ2−ρ1. We give the maximum retention probability
p for satisfying a given (ρ1, ρ2)-privacy requirement.
Contribution 3 We propose subgraph-wise perturbation

in which the given graph is partitioned into local subgraphs
and graph-wise perturbation is applied to each subgraph.
By confining the choice of a randomized node to a smaller

subgraph, this approach is able to preserve more structure
of the graph by retaining a destination node of a link with a
higher retention probability and by replacing a destination
node with a node from a local neighborhood. We present
an analysis on the impact of graph partitioning on privacy,
and a way to reduce the impact. We study empirically the
trade-off between utility and privacy.

The rest of the paper is organized as follows. Related
work, preliminaries, and problem description are presented
in Section 2, 3, and 4. Our subgraph-wise perturbation,
experiments, and conclusion appear in Section 5, 6, and 7.

2. RELATED WORK
Most previous works consider limiting identity disclosure,

e.g., [4][15][23][24]. As shown in [9], limiting identity dis-
closure does not limit link disclosure. Our work is most
related to link disclosure. The first group of works in this
area achieves some form of edge anonymity by transforming
the graph to have some structural similarity. k-isomorphism
[9] is a way to achieve such structural similarity where the
original graph is transformed into k disconnected pairwise
isomorphic subgraphs through link insertion and deletion.
Another approach is partitioning by nodes into equivalence
classes and inducing edge equivalence classes grouping links
between node classes[20]. In general, considerable structural
distortion is required to provide the desired structural simi-
larity.

The second group of works is based on random link per-
turbation. The work in [18][13] considered randomly adding
m non-existing links, randomly deleting m existing links, or
randomly switching m pairs of links (by switching their end-
points). As explained earlier, since the graph is considered
undirected and since the deleted links and inserted links are
chosen from the entire graph, such perturbation incurs con-
siderable structural distortion.

The third group of works aims to hide the existence of
links from an adversary who employs link prediction tech-
niques to infer the presence of sensitive links from non-
sensitive links. [21] is a work in this group. To publish
a graph, their method removes all sensitive links and some
non-sensitive links in order to limit the adversary’s ability
of predicting (removed) sensitive links. We assume that all
links in a graph are sensitive; therefore, if their method is
applied to our graphs, no link will be published.

To our knowledge, our work is the first that models a
social network as a directed graph in the field of privacy
preserving data publishing, adopts (ρ1, ρ2)-privacy [10] to
factor in the prior belief of a destination node, and retains
more structure of a graph by subgraph-wise perturbation.
Note that [10] does not consider social network data or link
privacy.

3. PRELIMINARIES
In this section we introduce our data model, assumptions,

perturbation operator, and privacy/utility measures.

3.1 Social Network Data
We represent a social network by a simple directed graph

G = (V,E), where V is the set of nodes {1,. . . ,|V |} rep-
resenting users, and E is the link table on two columns
(N1, N2) and contains one row for each link (u, v) repre-
senting a relationship from user u to user v. u is the source

node of the link and v is the destination node of the link.
Each node is associated with a unique (pseudonym) node ID
and no content information about a node will be published.
Src(G) denotes the set of all source nodes and Dst(G) de-
notes the set of all destination nodes in G. din(u) denotes
the in-degree of u, i.e., the number of links with u being the
destination node, and dout(u) denotes the out-degree of u,
i.e., the number of links with u being the source node. An
undirected graph can be represented by replacing each undi-
rected link (u, v) with two directed links (u, v) and (v, u).
Figure 1(a) shows the link table E for the graph G in Fig-
ure 1(c).

Assumptions. (1) We assume that the destination of a
link in G is chosen independently at random according to
some underlying probability distribution (such as the power
law of in-degree). This assumption is reasonable because no
content information of a node is released, thus, can be used
to correlate nodes. The underlying probability distribution,
in the form of the in-degree distribution of nodes Pr[X = x],
is not private, and in fact, the data miner is allowed to learn
it (more details in Section 3.3 and 3.4). (2) An adversary
has access to the published graph and the algorithm and pa-
rameters used to produce the published graph, including the
retention probability for perturbing the destination node of
a link. With this information and the independence assump-
tion in (1), the adversary tries to infer the true destination
node of a link in the original graph, by computing the poste-
rior probability of the true destination, given that the link is
observed in the published graph (which was randomized by
our algorithm). We do not assume that an adversary never
identifies the node of a target individual; in fact, making this
assumption would result in a weak privacy model. Rather,
our privacy goal is to hide the existence of a link between
two individuals by bounding the posterior probability of in-
ferring the true destination of an observed link.

3.2 Link Perturbation
To hide the presence of a link (u, v), it suffices to hide

either the source u or the destination v because knowing
one but not the other does not reveal the existence of the
link (u, v). We consider hiding the destination node, but the
same method can be used to hide the source node by first
reversing the direction of each link.

Specifically, for each link (u, v)∈E, we retain the destina-
tion v with some retention probability p and perturb the des-
tination v to a node w randomly chosen from Dst(G) with
the probability 1−p

m
, where m=|Dst(G)|. Note that this per-

turbation process is done for each link independently. These
probabilities can be represented by a perturbation matrix
Pm×m: the ith column represents probabilities Pji that the
original destination node i is perturbed to a new destination
node j. Pji is defined as:

Pji =

{
p+ (1− p)/m if j=i (retain i)
(1− p)/m if j 6=i (perturb i to j)

(1)

Let G∗ denote the perturbed version of G and let E∗ denote
the link table for G∗. Note that this perturbation operator
always preserves the out-degree of a node because the source
node of a link is never perturbed. Figure 1(b) shows the
perturbed table E∗ with perturbed values in shaded cells,
and Figure 1(d) shows the perturbed graph G∗.

During the perturbation process, duplicate links and self-
loops may be generated. Such links are called singular links

4

N1 N2

3

5

1

3

2

N1 N2

2

4

1

1

1

1

1

2

2

3

3

3

4

4

5

2

4

1

3

2

4

5

1

3

3

(b) Table E

1

(a) Table E

G(c) Graph (d) Graph G*

*

1

2

2

3

3

3

4

4

5

2

5

1

2

3

4

1

2

5

Figure 1: A simple social network graph

because they do not occur in the original graph G. We will
keep all singular links because they are part of the perturba-
tion and are useful for reconstructing the degree distribution
(Section 3.4) and performing social network analysis (Sec-
tion 6). We will discuss the privacy implication of such links
and ways to deal with them in Section 5.3.

3.3 Privacy Model
We want to perturb the destination of a link to achieve

some uncertainty of inferring the true destination of a pub-
lished link. This goal is not achievable if a destination node
is overly popular among the links. Therefore, privacy pro-
tection should be relative to the “prior” of a node as a desti-
nation of links. To capture such a relative notion of privacy,
we adapt the (ρ1, ρ2)-privacy originally proposed by Ev-
fimievski el al [10]. Consider the link table E(N1, N2) for G
and the link table E∗(N1, N2) for G∗. Let r∗ in E∗ be the
corresponding link of a link r in E. X and Y denote the ran-
dom variables for the destination node x in r[N2] and y in
r∗[N2] respectively. Pr[X=x] denotes the prior probability
that x is the destination of a link in G.

In the absence of further knowledge, we equate Pr[X=x]

with the fraction of source nodes linking to x, i.e., din(x)
|Src(G)| ,

where din(x) is the in-degree of x in G. Pr[X=x|Y=y] de-
notes the posterior probability that, given that a link is ob-
served to have the destination y in G∗, x is the true destina-
tion of the link in G. Since the source node of a link is never
perturbed, the probability Pr[X=x|Y=y] represents the ad-
versary’s ability to infer the presence of a link between two
individuals in G. We limit this ability by (ρ1, ρ2)-privacy
[10].

Definition 1. ((ρ1, ρ2)-privacy): Let 0<ρ1<ρ2<1. There
is an upward (ρ1,ρ2)-privacy breach w.r.t a value x for X
if for some y for Y , Pr[X=x]≤ρ1 and Pr[X=x|Y=y]>ρ2.
(ρ1,ρ2)-privacy holds if upward privacy breach is eliminated.2

Essentially, (ρ1,ρ2)-privacy says that whenever the prior
does not exceed ρ1, the posterior must not exceed ρ2. For a
more elaborated discussion, please see [10]. This definition is
more restricted than the original definition in [10] which con-
siders the prior Pr[Q(X)] and posterior Pr[Q(X)|Y=y] for
a general predicate Q(X) on X. We consider the restricted
form X = x of Q(X) because we are concerned with the risk
of inferring an individual destination node x of a link.

The values of ρ1 and ρ2 are set by the data publisher. For a
destination node x, (ρ1, ρ2)-privacy requirement imposes the
bound ρ2 on Pr[X=x|Y=y] if and only if Pr[X = x] ≤ ρ1.
The power-law or long-tail distribution of degrees for social

networks suggests that a small number of nodes may have
a very large degree whereas the rest have a small degree [5].
Therefore, (ρ1, ρ2)-privacy will bound the posterior by ρ2 for
the majority of nodes, i.e., those with Pr[X = x] ≤ ρ1.

For the small number of nodes with Pr[X = x] > ρ1,
the prior is considered too high and link disclosure comes
as a result of “prior belief”, which occurs before the data
release. Since such “celebrity” nodes are commonly refer-
enced by other nodes, the existence of a link to such nodes
is a “fact of life” and less sensitive to infer. Indeed, even
if all links to celebrity nodes are removed from the pub-
lished graph, the prior belief cannot be removed and thus
no algorithm could prevent link disclosure for such nodes.
For this reason, we focus on link disclosure mainly due to
the release of data, like in most previous works. With the
pre-condition Pr[X = x] ≤ ρ1, our privacy goal is to limit
the inference of destination nodes that have a low in-degree.
This in turn limits the adversary’s ability to reconstruct the
original graph.

We should mention that [10] does not consider social net-
work data or privacy notions for links. We borrow from [10]
the standard notion of (ρ1,ρ2)-privacy, but all social network
related contributions are new.

3.4 Utility Metrics
The graph for a social network is published to serve a

variety of analysis purposes. We consider three types of
utility metrics in this regard: (i) common graph metrics such
as centrality, clustering coefficient, diameter, and etc. [17];
(ii) the destination retention probability p (Equation (1)),
which indicates the portion of original links preserved; (iii)
the reconstruction of the in-degree of each node, which has
applications such as popularity based ranking and influence
of nodes. Note that our perturbation does not alter the
out-degree of a node. Since (i) and (ii) are well defined, we
explain only (iii).

Let D=< d1,· · · , dm> be the in-degree vector of desti-
nation nodes in G, and O =< o1, · · · , om > be the ob-
served in-degree vector of destination nodes in G∗, where
m = |Dst(G)|. The data miner has access to O but not
D, and wants to reconstruct an estimate of D. Directly us-
ing O as the estimate of D would give a large distortion
because it does not take into account of the perturbation
of destination nodes. A better estimate can be obtained
by treating O as the result of applying the perturbation to
the original graph, which is characterized by the perturba-
tion matrix P in Equation (1) (recall that P is public). Let
E(O) =< E(o1), · · · , E(om) >, where E(oj) is the mean of
oj , Σmi=1Pji × di. We have E(O) = P ×D. Approximating
E(O) by the observed instance O, we get an estimate of D
as D′ = P−1 × O, where P−1 is the inversion of P . D′ can
be computed by the iterative Bayesian reconstruction [2].

Definition 2. (Reconstruction error): Let D and D′ be
the actual and estimated in-degree vectors for G and G∗ re-

spectively. The reconstruction error is
∑

i |di−d
′
i|∑

i di
. 2

4. PROBLEM DESCRIPTION
The next question is what retention probability p is re-

quired to provide (ρ1,ρ2)-privacy on destination nodes. We
propose two solutions, graph-wise perturbation and subgraph-
wise perturbation.

4.1 Graph-wise Perturbation
In graph-wise perturbation, the replacing destination node

is randomly selected from the entire domain of the desti-
nation nodes, Dst(G). In this case, m = |Dst(G)| for the
perturbation matrix P in Equation (1). We can determine
the maximum retention probability p in Equation (1) for en-
suring (ρ1,ρ2)-privacy from a constraint called amplification
condition due to [10]. Intuitively, this condition says that
for any two destination nodes k and i, their probabilities of
being perturbed to the same node j, i.e., Pjk and Pji, must
not differ by a factor of more than γ. Precisely, let X be a
variable for a true destination node of a link in G, and Y be a
variable for an observed destination node of a link in G∗. A
perturbation matrix P is said to satisfy the γ-amplification
condition [10] for a value j of Y if for all values k, i of X

Pjk
Pji
≤ γ (2)

Therefore, when this condition holds, the small difference
between Pjk and Pji implies uncertainty that both k and i
are likely to be the original destination node, when observing
a destination node j in a link in the perturbed graph. The
next theorem, also due to [10], relates the γ-amplification
condition to (ρ1, ρ2)-privacy.

Theorem 1. (ρ1, ρ2)-privacy is guaranteed if the pertur-
bation matrix P satisfies the γ-amplification condition for
all values j of Y , where γ ≤ ρ2

ρ1
× 1−ρ1

1−ρ2
.

The proof of Theorem 1 can be found in [10]. Let us
derive the maximum retention probability for guaranteing
(ρ1, ρ2)-privacy from Theorem 1. Following Equation (1),
Pji is maximized if i = j, i.e., p + (1 − p)/m, and Pji is
minimized if i 6= j, i.e., (1 − p)/m. So the left-hand side

of Equation (2) is maximized at p+(1−p)/m
(1−p)/m , when j = k

and j 6= i, and Equation (2) reduces to p+(1−p)/m
(1−p)/m ≤ γ.

To maximize the retention probability p, we replace ≤ with

= in the inequality and get p= (γ−1)
(m−1+γ)

= 1
m/(γ−1)+1

. p is

maximized by the maximum value of γ, which, according to
Theorem 1, is

γ =
ρ2
ρ1
× 1− ρ1

1− ρ2
(3)

So Equation (1) with the maximum p that guarantees (ρ1, ρ2)-
privacy has the form

Pji =

{
γ/(m− 1 + γ) if j = i
1/(m− 1 + γ) if j 6= i

(4)

with γ being given by Equation (3). Note that Pji is com-
pletely determined by m, ρ1, ρ2.

Corollary 1. The perturbation matrix given by Equa-
tions (3) and (4) provides (ρ1, ρ2)-privacy.

4.2 Subgraph-wise Perturbation
The above graph-wise perturbation has two limitations.

First, the retention probability p= γ−1
(m−1+γ)

can be very low

because m = |Dst(G)| is large, easily thousands or more
for real life social network graphs. Second, the unrestricted
choice of the replacing destination node from the entire do-
main Dst(G) means that the structure of the perturbed
graph could be considerably different from the original graph.

Figure 2: Link partitioning

Figure 3: Subgraph-wise perturbation operators

A low retention probability due to a large randomization do-
main was first pointed out in [8] for relational data, but their
work does not address graph data and the second limitation.

To tackle these limitations, we propose a subgraph-wise
perturbation approach so that the replacing destination node
is chosen from some local part of the graph. First, we parti-
tion the graph G into link partitioned subgraphs G1, . . . , Gk.
In contrast to the usual node partitioning of a graph, the link
partitioning scheme partitions the links into subgroups, so
that each link in G will be contained in exactly one subgraph
Gt. A node may appear in multiple subgraphs and the sub-
graphs may not be connected. Such link partitioning ensures
that, when randomizing the links in each subgraph Gt, each
link in G gets exactly one chance of being randomized.

Additionally, the link partitioning is expected to satisfy
two properties: (i) the nodes in the same Gt are close to each
other and (ii) each subgraph Gt has a smaller set Dst(Gt)
than Dst(G). (i) ensures that a randomized destination
node will not be structurally far away from the original
destination node, and (ii) ensures a smaller domain size
m = |Dst(Gt)| of destination nodes in a subgraph Gt, com-
pared to the domain size m = |Dst(G)| of destination nodes
in the whole graph G, in order to increase the retention
probability for Gt.

Example 1. Figure 2 shows a link partitioning {G1, G2}
and the corresponding link table partitioning {E1, E2}. The
links in each partition are marked with a different thickness.
The two circles depict destination nodes in the two parti-
tions: Dst(G1) = {‘1’,‘2’,‘3’,‘4’} andDst(G2) ={‘5’,‘6’,‘7’}.2

Definition 3. (Subgraph-wise perturbation): For a given
k, we want to find a linkpartitioning of G, G1, · · · , Gk, such
that, for 1≤t≤k, the nodes within each partition Gt are close
to each other and |Dst(Gt)| are as small as possible. 2

In subgraph-wise perturbation we will randomize the links
in each Gt independently, 1 ≤ t ≤ k, and produce the per-
turbed version G∗t , using the mt×mt perturbation matrix
P t defined in Equation (4), where mt=|Dst(Gt)|. To re-
construct the in-degree distribution D′ for G, we can re-
construct the in-degree distribution D′t from each G∗t using
the method described in Section 3.4 and aggregate D′t over
1≤t≤k. Subgraph-wise perturbation helps address the two
limitations of graph-wise perturbation mentioned at the be-
ginning of Section 4.2 because mt is smaller than m, where
m = |Dst(G)|, and the replacing destination node of a link in

Gt is chosen from destination nodes in a local neighborhood,
Dst(Gt). This point is illustrated by the next example.

Example 2. Consider Figure 2 again. Let ρ1=0.4 and
ρ2=0.6, thus we have γ= 2.25 (Equation (3)). With graph-
wise perturbation, m=|Dst(G)|=7 and Pjj = γ

|Dst(G)|−1+γ
=

2.25
7−1+2.25

= 0.27 (Equation (4)). With subgraph-wise pertur-

bation, |Dst(G1)|=4 and |Dst(G2)|=3, and Figure 3 shows
the perturbation matrixes for the subgraphs in Figure 2.
P 1
jj = γ

|Dst(G1)|−1+γ
= 2.25

4−1+2.25
=0.43 and P 2

jj=0.53. This

shows that the retention probabilities for the subgraphs are
significantly higher than the retention probability for the
original graph. 2

Remark 1. A question is how to publish the perturbed
graphs G∗1, · · · , G∗k. If the publication is for reconstruct-
ing the in-degree distribution of nodes, as in Section 3.4,
publishing each G∗t separately will facilitate a more accu-
rate reconstruction because each G∗t is produced by a dif-
ferent perturbation matrix P t. In this case, the in-degree
distribution, i.e., the prior probability, of a node in Gt,

Prt[X = x] =
dint (x)

|Src(Gt)| , may differ from that in the orig-

inal graph G. We will discuss the privacy implications due
to this difference in Section 5.2. In the case that the data is
published for social network analysis, such as the study on
closeness and betweenness centrality, clustering coefficient,
graph diameter, eigenvalues, and shortest paths, it suffices
to publish all G∗t in a single merged graph G∗ through com-
mon nodes without separating them apart. For example,
the merged graph is obtained in Figure 2 by ignoring the
different thickness of links for different partitions. In this
case, the prior probability of a destination node remains un-
changed.

5. SUBGRAPH-WISE PERTURBATION
In this section, we present an algorithm for subgraph-wise

perturbation problem. This is shown in Algorithm 1. Given
the input graph G(V,E), the number of partitions k, the
privacy setting ρ1 and ρ2, and the sparsity parameter ` (ex-
plained later), the algorithm consists of following main steps.

• Partition the node set V into k subsets U1, · · · , Uk
(Line 1). Ui contains the destination nodes for sub-
graph Gi. This partition ensures the destinations in
each Gi are close to each.

• Induce k link partitioned subgraphs G1, · · · , Gk using
U1, · · · , Uk (Line 2). That is, Gi contains all links to
the destinations in Ui.

• Balance the in-degree of nodes in G1, · · · , Gk to limit
the prior probability of destination nodes in Gt (Lines
3-4), which will be explained in Section 5.2.

• Enforce a notion of `-sparsity on each Gt (Line 5),
which will be explained in section 5.3.

• Lastly, the algorithm perturbs the destination nodes of
links in each subgraph Gt independently and outputs
the perturbed G∗t and P t (Lines 6-11).

Steps 3 and 4 address some privacy issues introduced by
the graph partitioning. The details will be discussed in Sec-
tions 5.2 and 5.3.

Algorithm. 1 Subgraph-wise Perturbation

Input: A directed graph G(V,E), number of partitions k,
privacy settings (ρ1, ρ2), sparsity parameter `
Output: Perturbed subgraphs G∗t , matrices P t; 1 ≤ t ≤ k
1: {U1, . . . , Uk} ← VertexPartition(G, k)
2: {G1, . . . , Gk} ← InduceSubgraphs(U1, . . . , Uk)
3: Build the sorted list of exposed nodes Exposed
4: DegreeBalance(G1, . . . , Gk, ρ1, Exposed)
5: `-sparsity(G1, . . . , Gk, `)
6: γ ← (ρ2 × (1− ρ1))/(ρ1 × (1− ρ2))
7: for each subgraph Gt do
8: Build P t using Equation (4) where m = |Dst(Gt)|
9: Using P t, perturb destination nodes of links in Gt

10: Output the perturbed subgraph G∗t and P t

11: end for

Theorem 2. Algorithm 1 is in O(|E|+ |V | · log |V |).

Proof. The multilevel k-way partitioning [14] (line 1),
and inducing a link partitioning (line 2), are both in O(|E|).
Sorting exposed nodes (line 3) is in O(|V | · log |V |). Degree
balancing (line 4) according to Theorem 3 in Section 5.2 is
in O(|E|) and `-sparsity (line 5) is in O(|V | · `). Finally
generating G∗ (lines 7-11) is in O(|E|). Since log |V | is
typically larger than `, the overall complexity is O(|E| +
|V | · log |V |).

Let us explain Lines 1-5 in Algorithm 1 in details.

5.1 Link Partitioning (Lines 1-2)
Lines 1 and 2 partition G into link partitioned subgraphs

G1, · · · , Gk such that highly connected nodes are in the same
subgraph and |Dst(Gt)| is as small as possible. In Line 1,
VertexPartition(G, k) partitions the set of nodes V into k
disjoint sets U1,. . . ,Uk of balanced size such that the num-
ber of links with the endpoints in different sets is minimized.
This is the standard node partitioned graph partitioning.
We recommend METIS1, an open source software for parti-
tioning graphs [14]. Intuitively, each Ui contains the desti-
nation nodes in the subgraph Gi. This partitioning ensures
that the destination nodes in each Gi are close to each other.

In Line 2, InduceSubgraphs(U1, . . . , Uk) induces a link par-
titioning G1(V1, E1), . . . , Gk(Vk, Ek) from U1,. . . ,Uk. For
1≤t≤k, Et contains all links with the destination nodes be-
ing in Ut and Vt is the set of nodes on either sides of the
links in Et. Since each Ut contains highly connected nodes,
the destination nodes within each Gt are close to each other.
This property is important because we want a replacing des-
tination node to be structurally close to the original destina-
tion node. At this point, G1, . . . , Gk is both a link partition-
ing and a destination-partitioning, but is not necessarily a
source-partitioning, as shown in the next example. In other
words, a node may appear in multiple partitions as source
nodes, but appear in one partition as a destination node.

Example 3. Figure 2 shows a link partitioning {G1, G2}.
The first step produces the node partitioning U1 ={‘1’,‘2’,‘3’,‘4’}
and U2 ={‘5’,‘6’,‘7’}. The second step produces the link par-
titioning G1(V1, E1) and G2(V2, E2), where the ith partition

1http://glaros.dtc.umn.edu/gkhome/metis/metis/download

Ei includes all the links that have Ui as the destination node
set. Note that a node (such as the node ‘4’) may appear in
more than one partition as a source node, but only in one
partition as a destination node. 2

5.2 Degree Balancing (Lines 3-4)
(ρ1, ρ2)-privacy bounds the posterior probability Pr[X =

x|Y = y] only if the prior probability Pr[X = x] = din(x)
|Src(G)|

is ≤ ρ1. If each G∗t is published separately, the destination
node x in a subgraph Gt has a new prior Prt[X = x] =
dint (x)

|Src(Gt)| , where dint (x) denotes the in-degree of x in Gt. If

Pr[X = x] ≤ ρ1 but Prt[X = x] > ρ1, (ρ1,ρ2)-privacy w.r.t.
Gt will not impose the bound ρ2 on the posterior. We call
such nodes“exposed nodes”. The degree balancing step aims
to reduce the number of exposed nodes.

Definition 4 (Exposed nodes). For a destination node
x in Gt, if Pr[X = x] ≤ ρ1 and if Prt[X = x] > ρ1, x is
called an exposed node in Gt. 2

Remark 2. The long-tail degree distribution of social
networks implies that most nodes x have a low in-degree
and the prior probability Pr[X = x] is well below ρ1, con-
sequently, Prt[X = x] in Gt remains below ρ1. A few nodes
that have a prior Pr[X = x] “close enough” to ρ1 in G may
become exposed nodes after link partitioning. For example,
consider the Newman’s scientific collaboration network [16]
with 16,264 destination nodes. Let ρ1 = 0.01. The high-
est in-degree is 107, thus, the highest prior probability is
Pr[X = x] = 107

16,264
≤ ρ1. If we partition the graph (us-

ing METIS) into k = 5 subgraphs with an (almost) equal
number of destination nodes, the number of source nodes
within each subgraph would be 3886, 4147, 4136, 4481, and
4273. Note that the partitioning is not source disjoint. To
avoid becoming an exposed node, the maximum in-degree
for a node in each subgraph is ρ1×|Src(Gt)|, that is, 38.86,
41.47, 41.36, 44.81, and 42.73, for G1, ..., G5. Only 67 nodes
have an in-degree above this threshold, so 67

16,264
=0.41% of

all nodes are exposed nodes.
To reduce the number of exposed nodes x in Gt, the De-

greeBalance step reduces the prior Prt[X = x] =
dint (x)

|Src(Gt)| in

two ways: either decrease dint (x) by moving out some links
to x in Gt to other subgraphs Gt′ while keeping |Src(Gt)|
unchanged, or increase |Src(Gt)| by moving some links from
other subgraphsGt′ with new source nodes toGt while keep-
ing dint (x) unchanged. This move is called a prior-reducing
move for Gt and the subgraph Gt′ is called the donor of the
move. Additionally, such moves must not yield new exposed
nodes in the donor Gt′ . We say that a prior-reducing move
for Gt involving the donor Gt′ is safe if the move does not
increase the number of exposed nodes in Gt′ .

DegreeBalance reduces the number of exposed nodes by
a sequence of safe prior-reducing moves, or simply “safe-
moves”. This is implemented by Algorithm 2. It gets an
input list of exposed nodes x in the ascending order of in-
degree, Exposed, and iteratively reduces the prior probabil-

ity
dint (x)

|Src(Gt)| by safe-moves for Gt. Exposed nodes are con-

sidered in the ascending order of in-degree because nodes
with lower in-degree are more sensitive and are considered
first. Each iteration has two phases.

Algorithm. 2 DegreeBalance

Input: Subgraphs G1,· · · ,Gk, parameter ρ1, the list of ex-
posed nodes in ascending order of in-degree, Exposed
Output: Balanced subgraphs G1, . . . , Gk
1: repeat
2: Out-phase:
3: for all x ∈ Exposed where x is exposed in Gt do
4: Safe-move as much as possible but no more than

αt(x) links (y, x) from Gt to some Gt′ with maxi-
mum |Src(Gt′)|

5: Remove x from Exposed if x is not exposed in any
subgraph

6: end for
7: In-phase:
8: for all x ∈ Exposed where x is exposed in Gt do
9: Safe-move as much as possible but no more than

βt(x) links (w, z) from some Gt′ to Gt, where z 6= x
and w /∈ Src(Gt)

10: Remove x from Exposed if x is not exposed in any
subgraph

11: end for
12: until no safe-move is done or Exposed is empty

• Out-phase (line 2-6) reduces the in-degree dint (x) for an
exposed node x in Gt by safe-moving out links to x as
much as possible, but no more than αt(x). αt(x) is the

minimum number required to satisfy
dint (x)−αt(x)

|Src(Gt)| ≤
ρ1, i.e., αt(x) = ddint (x) − ρ1 × |Src(Gt)|e. Given
choices, we choose the donor subgraph Gt′ with the
largest |Src(Gt′)| because such subgraphs have a small

increase in the prior probability
din
t′ (x)

|Src(Gt′)|
after accept-

ing more links to x.

• In-phase (line 7-11) increases |Src(Gt)| for Gt con-
taining some exposed nodes x by safe-moving in links
(w, z) with new source nodes w as much as possible,
but no more than βt(x), which is the minimum num-

ber required to satisfy
dint (x)

|Src(Gt)|+βt(x) ≤ ρ1. βt(x) =

ddint (x)/ρ1 − |Src(Gt)|e.

The next theorem, shows nice properties of degree balanc-
ing in Algorithm 2.

Theorem 3. Algorithm 2 never increases the number of
exposed nodes and will terminate in O(|E|).

Proof. It never increases the number of exposed nodes
because it only makes safe-moves. For an exposed node x
in Gt, each safe-move either reduces dint (x) (i.e., out-phase),
or increases |Src(Gt)| (i.e., in-phase). Each such safe-move

brings
dint (x)

|Src(Gt)| closer to ρ1, so the iterative process is guar-

anteed to terminate. The number of safe moves required to
finish the algorithm is in O(

∑
∀x αt(x) +

∑
∀x βt(x)). Since∑

∀x αt(x) and
∑
∀x βt(x) are both in O(|E|), Algorithm 2

is in O(|E|).

Example 4. Consider the two subgraphs in Figure 2. Let
ρ1=0.4 and ρ2=0.6. Pr1[X=‘1’]=Pr1[X=‘2’]=Pr1[X=‘3’]= 1

4
,

Pr1[X=‘4’]= 2
4
, Pr2[X=‘5’]= Pr2[X=‘6’]= 2

4
, Pr2[X=‘7’]= 1

4
.

Since the prior probability of node ‘4’ in G1 and the prior
probability of nodes ‘5’ and ‘6’ in G2 are > ρ1, and their

prior probability in G is ≤ ρ1, these nodes are exposed and
Exposed=<‘4’,‘5’,‘6’>.

Out-phase: Consider node ‘4’ first. There is no safe-move
out of G1 for links (1,4) and (5,4) because their source nodes
have out-degree of 1. Consider node ‘5’. Similarly, there is
no safe-move out of G2 for links (4,5) and (7,5) because their
source nodes have out-degree of 1. Consider node ‘6’. We
can safe-move the link (5,6) from G2 to G1. Since α2(‘6’)=1,
it suffices to move one link, so node ‘6’ is removed from
Exposed.

In-phase: Consider node ‘4’. Since all links in G2 have a
source node with out-degree of 1, there is no safe-move of
any link from G2 into G1. Consider node ‘5’. We can safe-
move the link (2,1) from G1 to G2 to increase |Src(G2)|.
Since β2(‘5’)=1, node ‘5’ is removed from Exposed.

In the second iteration, Exposed=<‘4’>. We can safe-
move out (5,4) from G1 to G2. Since α1(‘4’)=1, node ‘4’
is removed from Exposed. There is no more exposed node.
The final two subgraphs have the links E1={(4,2), (2,3),
(1,4), (5,6)} and E2={(4,5), (5,4), (7,5), (3,6), (5,7), (2,1)}.2

Remark 3. Algorithm 2 provides no guarantee to elim-
inate all exposed nodes. In this sense, subgraph-wise per-
turbation serves a trade-off between utility and privacy. As
discussed in Remark 2, social networks are highly sparse and
follow a long-tail degree distribution. Thus, we expect that
only nodes with a very high in-degree are likely to exceed ρ1
after the linking-partitioning, but such nodes are naturally
less sensitive because they are commonly referenced. Fur-
thermore, as discussed in Remark 1, for many social network
applications, it suffices to publish all G∗t in a single merged
graph G∗ without separating them apart. In this case, the
prior probability of destination nodes remains unchanged,
so the degree balancing step in Algorithm 1 is not needed.

5.3 Anonymizing Singular Links (Line 5)
While the problem in Section 5.2 is caused by a large in-

degree of destination nodes in a subgraph, we now consider
a problem caused by a large out-degree of source nodes in
a subgraph. Consider E2 in Figure 2 where node ‘5’ is con-
nected to all nodes in Dst(G2) but itself. Suppose that the
link (5,7) is perturbed to (5,5) or (5,6), we have either a self-
loop or duplicate links. Such links are called singular links.
Since singular links do not appear in the original graph and
since node ‘7’ is the only unused destination node in G∗2, it is
immediate that the self-loop or the multiple link must come
from the original link (5,7).

In general, if a source node x is connected to all or most
destination nodes in Gt (for a large Gt, this is very unlikely),
there is an increased chance to infer the true destination of
a singular link originating at x since each singular link will
leave exactly one destination node to which x has no link in
G∗t . This node in fact is the true destination node for the
singular link.

Simply discarding the singular links from the perturbed
subgraph G∗t will interfere with the perturbation intended
for providing (ρ1,ρ2)-privacy. Our solution is to keep all
singular links in G∗t but remove some links from Gt prior to
the perturbation of Gt. Specifically, we want to ensure that
each source node in Src(Gt) has no link to some minimum
number, say ` − 1, of nodes in Dst(Gt). This condition
implies that for a singular link in G∗t , there are at least
` choices for its true destination node, thus, bounding the
guessing probability by 1

`
.

Definition 5. (`-sparsity): Let Dst(Gt)\x denote Dst(Gt)
without node x. A subgraph Gt is `-sparse if each source
node x∈Src(Gt) is not connected to at least `−1 destination
nodes in Dst(Gt)\x. In other words, the out-degree of any
node in Src(Gt) is at most |Dst(Gt)\x|+1−`. 2

Lemma 1. If a subgraph Gt is `-sparse, the probability of
guessing the true destination node for each singular link in
G∗t is no more than 1

`
.

`-sparsity with a value of ` from 5 to 10 should provide
sufficient uncertainty. Given that a social network graph is
typically large and sparse, we expect that `-sparsity typically
holds for a subgraph Gt without further modification to Gt,
unless Gt is very small. In the rare case that Gt is not
`-sparse, some node x in Src(Gt) has an out-degree more
than |Dst(Gt)\x|+1−`. We can satisfy the condition of `-
sparsity by deleting no more than `−1 out-going links (x, v)
from Gt. If v becomes isolated after deleting the link (x, v),
Dst(Gt) still contains v. Note that this link removal does
not reduce |Src(Gt)| because x remains a source for other
links, thus, does not increase the prior probability of any
node in Gt and does not create new exposed nodes. The
step `-sparsity(G1, . . . , Gk, `) in Algorithm 1 is based on this
idea.

6. EXPERIMENTS
We implemented the proposed algorithms to evaluate the

utility of perturbed graphs on a system with core-2 Duo
2.99GHz CPU with 3.83 GB memory. The implementation
was done in VC++. For social network analysis we used
UCINET software [7].

6.1 Experiment Setup

6.1.1 Data sets
Our first data set is the e-mail network of University Rovi-

rai Virgili (URV) with 1,132 nodes and 10,900 links [12].
This graph shows e-mail interchanges between members of
the university. Data providers eliminated e-mails that were
sent to more than 50 different recipients (spam ignored) and
also only considered bidirectional interchanges.

The second data set is the Newman’s scientific co-authorship
network [16] with 16,264 nodes and 95,188 links (47,594 bidi-
rectional links), which is a co-authorship network of scien-
tists posting preprints on the High-Energy Theory in arXiv
E-Print Archive between 1995 and 1999. Figure 4 shows the
long-tail degree distribution of these data sets.

6.1.2 Parameters
For (ρ1, ρ2)-privacy, we set ρ1 to 0.01, and ρ2 to 0.1, 0.2,

0.3, and 0.4. We set the number of partitions k to 1, 10,
50 and 100 for the URV network, and to 1, 100, 500, and
1000 for the Newman’s network. For both data sets, the
generated subgraphs are `-sparse for `=5 and all settings of
k. Therefore, the step `-sparsity(G1, . . . , Gk, `) in Algorithm
1 can be skipped.

6.1.3 Evaluation methods
We compare the following approaches:
Subgraph-Wise Perturbation, with and without degree

balancing. This is the proposed Algorithm 1.

(a) URV email network

(b) Newman’s co-authorship network

Figure 4: Network degree distribution

Table 1: Average values for the URV email network

k 1 10 50 100
|Ei| 10900 1090 218 109

|Dst(Gi)| 1132 113.19 22.63 11.32
|Dst(Gi)| (balancing) 1132 291.39 60.41 26.21

|Src(Gi)| 1132 320 111.1 70.25
|Src(Gi)| (balancing) 1132 466.2 142.08 81.83

Pii 0.05 0.37 0.75 0.85
Pii (balancing) 0.05 0.23 0.67 0.83
Coverage 100% 41.53% 11.98% 4.85%

Coverage (balancing) 100% 99.75% 56.82% 41.66%

Table 2: Average values for the Newman’s network

k 1 100 500 1000
|Ei| 95188 951.88 190.37 95.188

|Dst(Gi)| 16264 162.63 32.52 16.26
|Dst(Gi)| (balancing) 16264 269.70 43.38 21.30

|Src(Gi)| 16264 272.02 68.56 40.56
|Src(Gi)| (balancing) 16264 387.62 95.01 53.39

Pii 0.004 0.29 0.67 0.83
Pii (balancing) 0.004 0.28 0.65 0.81
Coverage 100% 35.65% 3.42% 0.4%

Coverage (balancing) 100% 90.02% 64.52% 58.60%

Graph-Wise Perturbation : This is the special case of
Subgraph-Wise Perturbation when k=1.

Random Add/Del : This is the implementation of the
link perturbation approach in [18], which randomly adds n
non-existing links and randomly deletes n existing links. n is
derived from the method in [19] as follows. Let A and A∗ be
the adjacency matrix of G and G∗ respectively. According
to [19], both the link retention probability and the poste-

rior belief Pr[aij=1|a∗ij=1] are equal to |E|−n|E| . We bound

Pr[aij=1|a∗ij=1] by ρ2. Thus n=(1-ρ2)×|E|.

We investigate the following utility metrics.

• Link retention probability . For Subgraph-Wise Per-
turbation and Graph-Wise Perturbation, this is Pii,

and for Random Add/Del, this is |E|−n|E| , where n is

the number of links deleted.

• Reconstruction error . This is the reconstruction
error of in-degree distribution in Definition 2. Only
Graph-Wise Perturbation and Subgraph-Wise Pertur-
bation use this metric.

• Common graph metrics. We study social network
analysis metrics including degree/closeness/betweenness
centralities, clustering coefficient, graph diameter, and
largest eigenvalue. For detailed definitions, see [17].
These metrics apply to all methods.

6.2 Results

6.2.1 The number of exposed nodes
First, we examine the impact of Subgraph-Wise Perturba-

tion on the number of exposed nodes, i.e., the destination
nodes that have the prior ≤ ρ1 in G but have the prior
> ρ1 in some subgraph Gt. This can be measured by the
percentage of destination nodes that have the prior ≤ ρ1
in all subgraphs Gt after graph partitioning, among those
destination nodes that have the prior ≤ ρ1 in G. With our
setting of ρ1 = 0.01, before graph partitioning, 73% of desti-
nation nodes in the URV networks have the prior ≤ ρ1, and
100% of destination nodes in the Newman’s network have
the prior probability ≤ ρ1. The last two rows in Tables 1
and 2 show the percentage of destination nodes that have
the prior ≤ ρ1 in all subgraphs Gt, with and without degree
balancing, among the destination nodes that have the prior
≤ ρ1 in G.

With a larger number of subgraphs, k, |Src(Gt)| for each
subgraph Gt becomes smaller, thus, more nodes become ex-
posed after graph partitioning. In this case, degree balanc-
ing is effective to reduce the number of exposed nodes. For
example, with k = 10 for URV and k = 100 for Newman,
without degree balancing, 41.53% and 35.65% of those with
the prior ≤ ρ1 in G also have ≤ ρ1 in all subgraphs Gt, but
with degree balancing, these percentages are 99.75% and
90.02%, respectively. In other words, except for a very large
k, most nodes that have their posterior bounded by ρ2 in
G∗ also have their posterior bounded by ρ2 in all subgraphs
G∗t

6.2.2 Link retention probability
Retention probability is a direct indicator of how much

original links are preserved. For Subgraph-Wise Perturba-
tion, the left side of Figure 5 shows the retention probability
vs ρ2 and the number of subgraphs k. The retention prob-
ability increases as ρ2 increases, and a larger k results in a
significant higher retention probability. In fact, a larger k
implies that the domain size |Dst(Gt)| for destination nodes
in a subgraph Gt is reduced, and according to Equation
(4), this contributes to a larger retention probability. Ta-
bles 1 and 2 show the detailed statistics on |Et|, |Dst(Gt)|,
|Src(Gt)|, and retention probability Pii, with respect to k.
ρ1 is set to 0.01 and ρ2 is set to 0.4.

(a) URV email network - without degree balancing

(b) URV email network - with degree balancing

(c) Newman’s co-authorship network - without degree bal-
ancing

(d) Newman’s co-authorship network - with degree balancing

Figure 5: Link retention and reconstruction error
comparison

The link retention probability for Random Add/Del is

equal to |E|−n
|E| , which is bounded by ρ2, that is, 0.1, 0.2,

0.3 and 0.4. These probabilities are lower than those of
Subgraph-Wise Perturbation for a large k. This study sup-
ports our claim that subgraph-wise perturbation better re-
tains structural information than graph-wise perturbation.

6.2.3 In-degree reconstruction error
This experiment studies the accuracy of reconstructing

the in-degree of each node from the published graph, where
the accuracy is measured by the reconstruction error (Defi-
nition 2). The right side of Figure 5 shows the reconstruc-
tion error of in-degree distribution vs ρ2 and k, where k is

(a) URV email network

(b) Newman’s co-authorship network

Figure 6: Relative error for social network analysis

the number of partitions. Without degree balancing, for a
larger k, the increased retention probability contributes to a
decreased reconstruction error. With degree balancing, the
effect of increasing k to reduce the reconstruction error is
less significant. This is because degree balancing increases
m = |Dst(Gt)| in a receiving subgraph Gt of a link, thus, re-
duces the retention probability in Gt according to Equation
(4).

This study suggests that subgraph-wise perturbation is
more effective in reducing the reconstruction error when pro-
tecting low in-degree nodes is the priority, in which case
degree balancing is not needed.

6.2.4 Social network analysis
One important motivation of publishing social network

data is to study a variety of social network behaviors. Figure
6 shows the relative error of four methods for common social
network metrics. Subgraph-wise perturbation is run without
the degree balancing step because we only publish a single
merged graph G∗ for performing social network analysis, as
discussed in Remarks 1 and 3. For each method, we run 10
trials of randomization and reported their average results.
The values of closeness/degree/betweenness centralities are
the average over all nodes. In this experiment, ρ1 is set to
the default value, ρ2 is set to 0.4, and for Subgraph-Wise
Perturbation, k=100 for the email network and k=1000 for
the co-authorship network.

For almost the metrics studied, Subgraph-Wise Perturba-
tion gives more accurate results than Graph-Wise Perturba-
tion and Random Add/Del. Graph-Wise Perturbation has a
large error across most metrics used. Indeed, all these met-
rics depend on the local structure (such as degree centrality
and clustering coefficient) and/or global structure (such as
diameter and largest eigenvalue) of the graph to a varied
degree. Compared to Graph-Wise Perturbation, Subgraph-
Wise Perturbation better preserves such structures by re-
taining more original destination nodes of links and replac-
ing an original destination node with a structurally close

destination node when a link is perturbed. This study sup-
ports our claim that Subgraph-Wise Perturbation is superior
to Graph-Wise Perturbation for general social network data
analysis.

7. CONCLUSION
We presented a novel link perturbation algorithm, subgraph-

wise perturbation, to limit link disclosure in publishing so-
cial network data. This algorithm addresses the excessive
structural distortion in previous link perturbation methods
through two novel modifications: It treats a social network
as a directed graph and perturbs only the destination of a
link, instead of both the source and the destination, and it
partitions a large graph into several small subgraphs and
perturbs the destination nodes within each subgraph. Com-
pared to the previous graph-wise perturbation, subgraph-
wise perturbation is able to preserve more graph structure
while providing a given privacy guarantee by (1) completely
preserving the source nodes of all links, (2) retaining more
original destination nodes of links with a larger retention
probability, and (3) confining the randomized destination
node of a link to a local neighborhood. Additionally, we
also factor the popularity of destination nodes through a
privacy notion of a destination node relative to this popu-
larity. To our best knowledge, this is the first work that
preserves structural properties through link destination per-
turbation within a local subgraph and factors the popularity
of destination nodes in privacy of such nodes.

8. ACKNOWLEDGMENT
The authors would like to thank reviewers of EDBT 2012

conference for their feedback. The work of Ke Wang was
supported by Canada NSERC Discovery Grant, and the
work of Philip S. Yu was supported by US NSF through
grants CNS-1115234, and IIS-0914934, and Google Mobile
2014 Program.

9. REFERENCES
[1] C. C. Aggarwal, and P. S. Yu. Privacy-preserving data

mining: models and algorithms. Vol. 34, Advances in
Database Systems, Springer, 2008

[2] R. Agrawal, R. Srikant, and D. Thomas. Privacy
preserving OLAP. In SIGMOD 2005

[3] L. Backstrom, C. Dwork, and J. M. Kleinberg.
Wherefore art thou R3579X?: anonymized social
networks, hidden patterns, and structural
steganography. In WWW, 2007

[4] K. Bai, Y. Liu, and P. Liu. Prevent identity disclosure
in social network data study. In ACM CCS 2009

[5] A.-L. Barabasi, R. Albert. Emergence of scaling in
random networks. In Science, Vol 286, 509–512, 1999

[6] F. Bonchi, A. Gionis, and T. Tassa. Identity
obfuscation in graphs through the information
theoretic lens. In ICDE 2011.

[7] S.P. Borgatti, M.G. Everett, and L.C. Freeman.
Ucinet for windows: software for social network
analysis. Harvard, MA: Analytic Technologies 2002.

[8] R.Chaytor, and K.Wang.Small domain randomization:
same privacy, more utility. In VLDB 2010

[9] J. Cheng, A. W. Fu, and J. Liu. K-isomorphism:
privacy preserving network publication against
structural attacks. In SIGMOD 2010

[10] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting
privacy breaches in privacy preserving data mining. In
PODS 2003

[11] B. C. M. Fung, K. Wang, A. W.-C. Fu, and P. S. Yu.
Introduction to privacy-preserving data publishing:
concepts and techniques. Data Mining and Knowledge
Discovery Series. Chapman & Hall/CRC, 2010

[12] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt and
A. Arenas. Self-similar community structure in a
network of human interactions. In Physical Review E,
Vol. 68, 2003

[13] M. Hay, G. Miklau, D. Jensen, P. Weis, and S.
Srivastava. Anonymizing social networks. Technical
report, University of Massachusetts Amherst, 2007

[14] G. Karypis, V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. In
SIAM Journal on Scientific Computing, Vol. 20, 1999

[15] K. Liu, and E. Terzi. Towards identity anonymization
on graphs. In ACM SIGMOD/PODS 2008

[16] M. E. J., Newman. The structure of scientific
collaboration networks. In Proc. of the National
Academy of Sciences of the USA, Vol. 98, No. 2.
404-409. 2001.

[17] S. Wasserman and K. Faust. Social network analysis:
methods and applications. Cambridge University
Press, 1994

[18] X. Ying, and X. Wu. Randomizing social networks: a
spectrum preserving approach. In SDM 2008

[19] X. Ying and X. Wu. On link privacy in randomizing
social networks. In PAKDD 2009

[20] L. Zhang, and W. Zhang. Edge anonymity in social
network graphs. In IEEE Social Computing 2009

[21] E. Zheleva, and L. Getoor. Preserving the privacy of
sensitive relationships in graph data. In PinKDD 2007

[22] E. Zheleva, and L. Getoor. To join or not to join: the
illusion of privacy in social networks with mixed

public and private user profiles. In WWW 2009

[23] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. In ICDE 2008

[24] L. Zou, L. Chen, and M. T. Ozsu. K-automorphism: a
general framework for privacy preserving network
publication. In VLDB 2009.

