SIMBA: An Efficient Simulator for Blockchain
Applications

Seyed Mehdi Fattahi, Adetokunbo Makanju, Amin Milani Fard
Department of Computer Science
New York Institute of Technology, Vancouver, Canada
{sfattahi,amakanju,amilanif} @nyit.edu

Abstract—Predicting the performance of a blockchain appli-
cation during the design phase is difficult and evaluation after it
is built could be expensive. The ability to simulate a blockchain
network during the design stage in order to evaluate it is therefore
a necessity. In this paper, we present a simulator for blockchain
applications, called SIMBA (SIMulator for Blockchain Appli-
cations). SIMBA extends an existing simulator by adding the
Merkle tree feature to blockchain nodes to improve efficiency
and allowing more realistic evaluations not possible with the base
tool to be performed. Results of our experiments show that the
inclusion of Merkle trees has a high impact of up to 30 times
reduction in the verification time of block transactions without an
impact on block propagation delay. Since block verification is a
critical part of the computational load of nodes on the network,
this performance improvement significantly affects the overall
performance of each node and consequently the entire network.

Index Terms—Blockchain, simulation, Merkle tree, security

I. INTRODUCTION

A blockchain is a growing list of records shared between
participating parties, which is secured using cryptographic
methods. The parties are nodes of a peer to peer network
that shape a blockchain system or network. The records are
transactions or a ledger of transactions stored in blocks. Each
record in a block is verified by consensus of a majority of the
members (parties or nodes) in the network. At the least, each
block contains a cryptographic hash of the previous block,
a timestamp, and transaction data. The data in blocks are
immutable and cannot be altered as result of the protection
offered by cryptographic hashes. Blockchain technology has
gained widespread interest in industrial environments such as
cryptocurrencies, e.g., Bitcoin and Ethereum, smart contracts,
supply chain management, and intellectual property protection.

While evaluation is a key requirement in developing
blockchain systems, experiments on the blockchain networks
is challenging because a large number of nodes are necessary
for realistic experiments and such experiments on blockchains
are costly. For instance, there are over a million client nodes
and more than 10,000 full nodes in the Bitcoin network
[6]. Hence, simulation is an alternative way to evaluate a
large scale system and it can be performed in a simulated
setting with reasonable result at a low cost. Existing simulation
tools, such as Bitcoin Simulator [4], Shadow-Bitcoin [5]], and
Minichain [7], create a model to describe network resources
and also use a discrete-event simulation model. They do
not, however, have the flexibility to extend the model, to

simulate different blockchain systems, or create a new private
blockchain system. BlockSim [3]] as a simulation framework
provides a tool for the design, implementation, and evaluation
of blockchains. However, it does not simulate some features
of real blockchain networks in particular Transactions Merkle
Trees. A Merkle tree is a structure that provides a secure
and efficient way to verify the consistency of a large group
of data records. This structure improves the performance of
transactions verification in blocks, and is a feature of most
blockchain implementations such as Bitcoin and Ethereum.

In this paper, we present our extended version of Blocksim
called SIMBA [2] that improves on the realism of simulations
by including Merkle trees in each block, making it more
efficient for transaction verification. We evaluate SIMBA by
comparing block verification time and propagation delay using
Merkle tree and without it and results show that using Merkle
Trees can significantly improve the performance of nodes to
verify the consistency of transactions in blocks.

II. SYSTEM DESIGN

Our prosed blockchain simulator, called SIMBA [2f,
is based on BlockSim [3]]. BlockSim is an open-source
blockchain simulator and is accessible via GitHub [1]]. Block-
Sim provides a framework and a set of models common to
blockchains. These models are extendable, when necessary,
to evaluate design decisions. BlockSim uses a discrete-event
simulation model that is suitable to model a blockchain sys-
tem. Blockchain design evaluation with BlockSim consists of
conceptualizing the underlying models i.e. block, transaction,
network, messages, node; determining the input parameters for
the models; checking if the conceptual model is accurate by
comparing the simulated results with the measurements taken
from a private Ethereum network; and measuring how long it
takes to propagate a block and a transaction.

The inclusion of Merkle trees in blockchains plays a key
role in the scalability of the network. However, it was not
included in the BlockSim implementation in order to reduce its
complexity. Cryptographic hash functions are the underlying
technology that allows for Merkle trees to work. Merkle Trees
are used in Bitcoin and Ethereum blockchain networks to
verify the existence of a transaction in a way that conserves
both space and time more effectively. Merkle Trees enable
nodes to quickly verify that a given transaction is included in
a particular block. Without using a Merkle Tree, the node has



mine a new block  block verification
Miner node "t o or o oo o

Other nodes

Fig. 1: Overview of the block verification process.

to load the entire block to verify that the transaction is part of
the block. In a Merkle tree, each node is created by hashing
the concatenation of its children. The tree can be constructed
by taking nodes at the same height, concatenating their values,
and hashing the result until the root is reached. Once created,
data can be checked using only the root hash in logarithmic
time to the number of leaf nodes. Auditing works by recreating
the branch containing the piece of data from the root to the
node containing the piece of data being verified.

Fig. |1| depicts how SIMBA verifies a block. We change
some classes of BlockSim and added Merkle tree verification
functionality to the “receive block bodies™ stage in the node
class that is responsible for assembling the block header and
the block body received and then insert it in the blockchain.
Then we assess its impact on blocks’ transactions verification
time and block propagation delay.

III. EXPERIMENT RESULTS

We evaluate two metrics of verification time and propa-
gation time for a block. We selected these two metrics to
demonstrate the performance gains of the inclusion of Merkle
trees to the simulator and to demonstrate that their inclusion
does not negatively impact the performance of the network.
All simulations were conducted on a computer with 187 GB
RAM and a 2.60 GHz Intel Xeon processor. We configured
the simulation with the following parameters for an Ethereum
network for 864,000 seconds duration time for all evaluations.
We set the number of miner and non-miner nodes n to 50, 100,
and 300, and block size (number of transactions in a block) s
to 50, 100, 200, and 300.

Block Verification Time. We assess the impact of using
Merkle tree on block verification time. Average verification
time per block for n = 50 is shown in Fig. |2| For the sake
of space we did not present results for n = 100 and 300 as
it looks very similar in the case of average time. As shown
in the chart, the average verification time per block without
using Merkle trees is from 5 to 30 times higher than when
using Merkle tree. Similarly Fig. |3| shows total verification
time for different number of nodes. This leads us to conclude
that irrespective of the number of nodes on the network (n),
the amount of time spent in verifying blocks does not increase
significantly for the network with Merkle trees while a linear
increase can be expected without Merkle trees.

Block Propagation Time. Let ¢; ; and ¢ ; be the propaga-
tion time between node ¢ and j in simulation without and with
Merkle trees respectively. We compare the block propagation
time of the two simulations Ey %alculating the mean absolute
difference (MD) as ﬁzl _ —t7 ;] for i # j. For
this experiment we set numberj of nodes n to 300, and block

. |ti,j

= With Merkle Tree = Without Merkle Tree

n =50
1.25

0.75
0.5
0.25

50 100 150 200 250 300
Block Size

Fig. 2: Average block verification time (ms).

= With Merkle Tree = Without Merkle Tree
n=>50

15000

10000

5000

n =100
25000

20000
15000
10000

5000

n =300
40000

30000
20000
10000

50 100 150 200 250

Block Size

Fig. 3: Total block verification time (ms).

size s to 100. The calculated MD value is less than 0.0001, that
implies almost no change in the propagation delay between
using Merkle tree and without using it. We therefore can state
that the inclusion of the Merkle Trees does not significantly
impact the performance of the network.

REFERENCES

[1] A discrete event Blockchain Simulator. https://github.com/blockbirdLabs/
blocksim, 2019.

[2] SIMBA: An Efficient Simulator for Blockchain Applications.
github.com/nyit-vancouver/SIMBA| 2020.

[3] C. Faria and M. Correia. Blocksim: Blockchain simulator. In 2019 IEEE
International Conference on Blockchain (Blockchain), pages 439-446.
IEEE, 2019.

[4] A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and
S. Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security - CCS'16. ACM Press, 2016.

[5] A. Miller and R. Jansen. Shadow-bitcoin: Scalable simulation via direct
execution of multi-threaded applications. In 8th Workshop on Cyber
Security Experimentation and Test, 2015.

[6] S. Park, S. Im, Y. Seol, and J. Pack. Nodes in the bitcoin network:
Comparative measurement study and survey. [EEE Access, 7:57009—
57022, 2019.

[7] X. Wu, J. Yan, and D. Jin. Virtual-time-accelerated emulation for
blockchain network and application evaluation. In Proceedings of the
2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation - SIGSIM-PADS '19. ACM Press, 2019.

https://


https://github.com/blockbirdLabs/blocksim
https://github.com/blockbirdLabs/blocksim
https://github.com/nyit-vancouver/SIMBA
https://github.com/nyit-vancouver/SIMBA

	Introduction
	System Design
	Experiment Results
	References

