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Abstract
Multifractal detrended cross-correlation analysis (MFDCCA) is largely used to ana-

lyze non-stationary financial time series. Existing methods for such analysis utilize the
time series itself as the detrending function with a polynomial. We propose a technique
for a more accurate removal of local trends, called indicator-based MFDCCA (IMFD-
CCA), which leverages market technical indicators to better determine correlations be-
tween financial time series. We evaluated our method on pair trading in the Foreign
Exchange Market (Forex) and our results show that the proposed IMFDCCA compared
to the MFDCCA reduces the RMSE for the Hurst exponent estimation by 30%.
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1. Introduction

Transactions in financial markets generate huge amount of data in the form of time series
that reflect price changes. Cross-correlation analysis of two financial time series helps to
understand the impact of changes amongst interconnected components of the market [1].
Correlated time series can be used for predicting and decision-making in financial markets.
Currency pairs, such as EUR/USD or USD/JPY, are key variables in financial markets as
their fluctuations influence banks, traders, policy makers, and economic institutions [2], and
thus determining such currency pairs relation can help in market prediction.

Most financial time series are complex and non-stationary, i.e., they do not fluctuate
around a fixed average and have varying mean and variance. Statistical techniques, such as
vector autoregressive or correlation, which are used for linear correlation analysis of price
fluctuations, are not appropriate for the analysis of nonlinear and non-stationary behavior
of financial time series and thus fractal analysis techniques are used [3]. The dynamic
characteristic of a complex system can be specified by fractal property based on the scaling
exponent that is a criterion for analysis of their self-similarity and helps in predicting the
system behavior. Monofractal time series have a fixed scale, meaning that a fractal pattern
is repeated without considering the scale factor, and so there is no difference in their shape
at different zoom levels. Changes in most time series, however, cannot be determined by
one scaling exponent. To capture the dynamism of such systems a multifractal is used that
is determined by multiple scaling exponents at different sections of the series also called the
singularity spectrum. Examples of multifractal systems are weather changes, and economic
series. Multifractal analysis enables us to investigate the long-term behavior of time series
with respect to each other and determine whether the multifractal relation will continue at
longer time scales which in turn helps in prediction and decision making.

Short-term behaviors of financial markets are affected by external factors, such as im-
portant events, while long-term behaviors are influenced by internal market factors. Peng
et al. [4] presented the Detrended Fluctuation Analysis (DFA) technique to discover fractal
structure, however, it could not be used for multifractal analysis. Kantelhardt et al. [5] pro-
posed the Multifractal DFA (MFDFA) which became popular in long-term autocorrelation
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detection. Later Podobnik et al. [6] extended DFA for detrended cross-correlation analy-
sis (DCCA) to determine cross-correlation between two non-stationary time series. Zhou
combined DFA and DCCA and proposed MFDCCA [7] that since then is largely used for
multifractal analysis of financial time series such as [8].

Detrending financial time series helps to determine their correct volatility and fluctuations
by eliminating the effects that might be related to sudden events. Existing techniques have
used the intended time series to create the function for removing local trends. In this
work we incorporate the effect of influential external factors using technical indicators of
the market, and use the indicator function as a fitness function for removing local trends.
Technical indicators of markets are functions that use open, close, maximum, and minimum
price, and trading volume, to help in forecasting the future trend of the market. Our
hypothesis is that using technical indicators that reflect the market movement trend can
assist in a more accurate elimination of local trends in time series. In this preliminary
work we only focus on multifractal analysis methods and do not compare our solution with
sequence learning methods. We propose the Indicator-based Multifractal Detrended Cross-
Correlation Analysis (IMFDCCA) technique that leverages technical market indicators, such
as ATR, in the detrending step of MFDCCA [7].

2. The Proposed Approach

We explain the five steps of our IMFDCCA, for which the first two steps are the same
as DCCA [6], our novelty for using polynomials of technical indicators to eliminate local
trends is presented in step 3, and the rest follows MFDCCA [7].

Step 1: Let x(i) and y(i) be two non-stationary time series, where i = 1, 2, ..., N , and
N is the maximum number of samples or length of the series. We determine the profile
(cumulative series) of them as X(i) =

∑i
t=1 x(t) − x̄, and Y (i) =

∑i
t=1 y(t) − ȳ, where

x̄ = 1
N

∑N
t=1 x(t), and ȳ = 1

N

∑N
t=1 y(t).

Step 2: X(i) and Y (i) are divided into Ns = int(N/s) nonoverlapping segments of equal
length s. Since the length N of most time series is often not a multiple of the time scale s,
for not disregarding the remaining part, the same dividing procedure is repeated this time
starting from the end of the series. Thus, 2Ns segments are obtained in total.

Step 3: For each segment v of length s, we calculate the local trend by a least-square fit
of X(i) and Y (i), using a polynomial function of order n, which represents the trend in that
segment. This step is to determine the local trend in each segment to be removed later. We
then calculate the covariance of the residuals in each section:

F 2
v =

1

s

s∑
i=1

|Xv((v − 1)s+ i)− x̄v(i)| · |Yv((v − 1)s+ i)− ȳv(i)|, (2.1)

where Xv and Yv are the fitting polynomials in segment v = 1, ..., 2Ns.
In this work, however, instead of using polynomial functions for fitting the data, we

propose leveraging equations of technical market indicators for detrending. The movement
of such indicators can reflect the direction of financial markets. For example, the Average
True Range (ATR) indicator defines the true ranges of the trade in a simple form:

TRt = max[(hight − lowt), abs(hight − closet−1), abs(lowt − closet−1)], (2.2)

which measures market volatility by decomposing the entire range of an asset price for that
period. The true range indicator is taken as the maximum of the following: current high
less the current low; the absolute value of the current high less the previous close; and
the absolute value of the current low less the previous close. ATR is a moving average,
typically using 14 days, of the true ranges. The indicator formula at time t is ATRt =
ATRt−1∗(n−1)+TRt

n and then ATR is calculated as ATR = 1
n

∑n
i=1 TRi.
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In our proposed method, for the data in each segment v at time t, the value of ATR
indicator is calculated and the interpolation polynomial function is determined according to
this indicator. The ATR time series is then fitted to a degree-2 polynomial to be used for
local detrending in the covariance function F 2

v .
Step 4: We average over segments to get the q-th order fluctuation function:

Fxy (q, s) =

[
1

2Ns

2Ns∑
v=1

FV (S)
q/2

]1/q

; q 6= 0 (2.3)

Fxy (0, s) = exp

[
1

4Ns

2Ns∑
v=1

lnFV (s)

]
; q = 0

For q = 2, the standard DCCA procedure is retrieved. In general, we are interested to
know how the fluctuation function depends on the time scale.

Step 5: We repeat the above steps for different time scales and determine the scaling of
the fluctuation function by analyzing log-log plots of Fxy(q, s) versus s for each q. For two
cross-correlated time series x and y, there is a power-law relation between the fluctuation
function Fxy(q, s) and the scale s as Fxy(q, s) ∼ shxy(q).

For very large values of s, Fxy(q, s) becomes statistically unreliable as the number of
segments Ns for the averaging procedure in step 4 becomes very small. If series x and y
have exponential long-term correlation, the covariance function increases exponentially for
large values of s. When x and y are equal, this turns into MFDFA. Note that the long-term
correlation between time series means that current changes in one series depends on the
past changes in the other one.

The Hurst Exponent. The Hurst exponent is used to explain autocorrelation or self-
similarity at different time scales. Different methods have been proposed to estimate this
exponent and we also proposed one. By taking logarithm from both sides of the above
equation, we obtain the Hurst exponent for each scale:

hxy(q) =
log(Fxy(q, s))

log(s)
(2.4)

For q=2 this analysis turns into the DCCA, and 0 < hxy(2) < 0.5 indicates negatively
correlated, hxy(2)=0.5 implies not correlated, and 0.5 < hxy(2) < 1 means stronger corre-
lation. Cao et al. [9] studied that the dependency of hxy(q) to q can be used to explain the
behavior between two time series. If hxy(q) changes with different values of q, it indicates
that the relation between the time series is multifractal and monofractal otherwise. The
scaling exponent hxy(q) represents the degree of the cross-correlation between the time se-
ries. hxy(q) = 0.5 denotes the absence of cross-correlation. hxy(q) > 0.5 indicates persistent
long-range cross-correlations, i.e., a large value in one variable is likely to be followed by a
large value in another variable. hxy(q) < 0.5 implies anti-persistent cross-correlations, i.e.,
a large value in one variable is likely to be followed by a small value in another variable.

3. Evaluation

We implement our method in MQL4 on the MetaTrader 4 trading platform and make
the code and our dataset available for download1. We assess the efficacy of our IMFDCCA
against MFDCCA on determining long-term and short-term relations of currency pairs
EUR/USD and USD/JPY. The reason for choosing MFDCCA as the baseline is that using
technical indicators (consist of 5 time series) has limited us to not being able to consider
common evaluation methods that consider a specific Hurst Exponent. Also related recent
works such as [1] did not change steps of MFDCCA and thus were not comparable.

1https://figshare.com/s/282ffd3b47acff02fb9b

https://figshare.com/s/282ffd3b47acff02fb9b
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Dataset and Data Collection. We extracted our dataset from the history center of
MetaTrader for FXTM broker (www.forextime.com) containing 2000 records of 8 years data
from October 10, 2011 to September 18, 2019 for currency pairs EUR/USD and USD/JPY.
In our experiments we used the logarithmic returns r∆t = log(p(t+ ∆t))− log(p(t)), where
∆t denotes the returns’ time-lag the daily close price of currency pairs.

Comparison. We compare the Hurts exponent calculated by our method against two
most common Hurst exponent estimation techniques R/S [10] and GHE [11, 12]. To do so,
we calculate the Hurst exponent in each time series with these methods and then use the
following equation from [13] to determine the overall Hurst exponent for time series:

hxy =
hxx + hyy

2
(3.1)

This is the average of the generalized Hurst exponent of time series x and y at scale q,
and and it corresponds to the Hurst exponent H for q=2.

Rescaled Range Method. Hurst [10] proposed this method and is still commonly used for
fractal time series analysis. According to this method, for a time series x of length n, the rate
of R(n)/S(n) is defined as: [max(xcum (t, n)) −min (xcum (t, n))]/

√
1

n−1

∑n
t=1 (x (t)− x̄)

2,

where xcum (t, n) =
∑t
i=1 x (i)− x̄ (n) and x̄ (n) = 1

n

∑n
t=1 x (t), i.e., R(n) is the range of

cumulative deviate series xcum(t, n), and S(n) is the standard deviation of x. Finally, the

Hurst exponent is defined as: H =
log(R

S )
logn .

Generalized Hurst Exponent Method. GHE method is the extended version of the classic
Hurst exponent. It is the main method to calculate the exponent for long-term relation
analysis of time series [11, 12] and is used to determine multifractal behavior. Let: Kq(τ) =
<|X(t+τ)−X(t)|q>

<|X(t)|q> , where 1 < τ < τmax determines the number of periods in time series, and
< . > is the average within the time window. Then GHE is Kq(τ) ∝ τ qH(q), and the Hurst
exponent is defined as: H =

logKq(τ)
logτ .

3.1. Results

We compare the Hurst exponent in equation 3.1 with the ones obtained by our method and

the baseline and report the root mean square error as RMSE =

√ ∑10
q=−10 (Hxy(q)−hxy(q))

2

21 .
Our results show that for the short-term relation of H(q) versus q for EURUSD and US-
DJPY, the RMSE for MFDCCA(Linear fit) is 0.173309 and for IMFDCCA (ATR fit) is
0.125028. Also for the long-term relation of H(q) versus q for EURUSD and USDJPY the
RMSE for MFDCCA(Linear fit) is 0.144925 and for IMFDCCA (ATR fit) is 0.078993. This
indicates that our method yields a smaller error.

Fig. 1 presents the calculated exponents using IMFDCCA and MFDCCA in short-term
and long-term for EUR/USD and USD/JPY, and shows changes of exponent h(q) with
respect to q. This indicates that IMFDCCA predicts the relation of two time series to be
multifractal as h(q) changes with q, whereas MFDCAA [7] predicts the long-term relation
to be monofractal. We further analyze the fractal property with respect to each other by
evaluating the data volume used in cross-correlation analysis. Figure 2 shows long-term
and short-term relationships with different data lengths and scales. In the long-term, the
monofractal relationship between the two time series is observed in the MFDCCA method,
while in the IMFDCCA the result is multifractal. As explained in the introduction section,
such fractal relations can have a major impact in trading and market prediction. The mul-
tifractal relation that is obtained by the proposed method has a smaller error and indicates
that the movement of a currency pair can affect the other pair in the long term.
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(a) Short-term with IMFDCCA (b) Short-term with MFDCCA

(c) Long-term with IMFDCCA (d) Long-term with MFDCCA

Figure 1. Hurst exponent in short-term and long-term for EUR/USD and USD/JPY

(a) IMFDCCA (ATR fit) (b) MFDCCA (Linear fit)

Figure 2. hxy(q, s) plotted with different q and s values showing multifractal and
monofractal relation of two time series with different lengths

Table 1. Comparison against the Rescaled Range and the Generalized Hurst Exponent methods.

Length of time series (n) IMFDCCA (q=2) MFDCCA (q=2) R/S GHE (q=1)

500 0.50114 0.39581 0.50628 0.36154
1000 0.52109 0.63508 0.52797 0.53343
1500 0.52490 0.69504 0.53735 0.54685
2000 0.49258 0.73403 0.65136 0.59003

RMSE w.r.t R/S 0.07974 0.11519
RMSE w.r.t GHE 0.08605 0.11640

Table 1 shows the comparison of calculated Hurst exponent using MFDCCA and IMFD-
CCA methods. Note that we set q=1 for the GHE method as suggested in [14]. Results
indicate that our proposed method has reduced the root-mean-squared error compared to
the base method by 30% and 26% using R/S and GHE respectively.
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Table 2. Multifractal degree (MF) for EURUSD versus other currency pairs.

USDCHF GBPUSD USDCAD AUDUSD EURJPY XAUEUR XAUUSD

MF Degree 0.247780 0.330963 0.179011 0.239952 0.231616 0.180248 0.281299

Lastly we investigate the strength of multifractal relations between EUR/USD and other
currency pairs by calculating the multifractal degree that implies the range of the Hurst
exponent [15]. Table 2 shows EUR/USD has stronger multifractal relations with GBP/USD
and XAU/USD compared to others.

4. Conclusions and Future Work

We proposed a method to remove local trends by leveraging market indicators for mul-
tifractal cross-correlation analysis, which results in a more accurate detrending in different
parts of time series. We plan to investigate other influential series functions for detrending
and also consider using sequence learning techniques to deal with the temporal dynamics.
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