
An Empirical Study of Bugs in Test Code
Arash Vahabzadeh Amin Milani Fard Ali Mesbah

University of British Columbia
Vancouver, BC, Canada

{arashvhb, aminmf, amesbah}@ece.ubc.ca

Abstract—Testing aims at detecting (regression) bugs in pro-
duction code. However, testing code is just as likely to contain
bugs as the code it tests. Buggy test cases can silently miss bugs
in the production code or loudly ring false alarms when the
production code is correct. We present the first empirical study of
bugs in test code to characterize their prevalence and root cause
categories. We mine the bug repositories and version control
systems of 211 Apache Software Foundation (ASF) projects and
find 5,556 test-related bug reports. We (1) compare properties of
test bugs with production bugs, such as active time and fixing
effort needed, and (2) qualitatively study 443 randomly sampled
test bug reports in detail and categorize them based on their
impact and root causes. Our results show that (1) around half
of all the projects had bugs in their test code; (2) the majority
of test bugs are false alarms, i.e., test fails while the production
code is correct, while a minority of these bugs result in silent
horrors, i.e., test passes while the production code is incorrect; (3)
incorrect and missing assertions are the dominant root cause of
silent horror bugs; (4) semantic (25%), flaky (21%), environment-
related (18%) bugs are the dominant root cause categories of
false alarms; (5) the majority of false alarm bugs happen in
the exercise portion of the tests, and (6) developers contribute
more actively to fixing test bugs and test bugs are fixed sooner
compared to production bugs. In addition, we evaluate whether
existing bug detection tools can detect bugs in test code.

Index Terms—Bugs, test code, empirical study

I. INTRODUCTION

Testing has become a wide-spread practice among practi-
tioners. Test cases are written to verify that production code
functions as expected. Test cases are also used as regression
tests to make sure previously working functionality still works,
when the software evolves. Since test cases are code written
by developers, they may contain bugs themselves. In fact, it is
stated [22] and believed by many software practitioners [11],
[18], [30] that “test cases are often as likely or more likely to
contain errors than the code being tested”.

Buggy tests can be divided into two broad categories [11].
First, a fault in test code may cause the test to miss a bug in
the production code (silent horrors). These bugs in the test
code can cost at least as much as bugs in the production code,
since a buggy test case may miss (regression) bugs in the
production code. These test bugs are difficult to detect and
may remain unnoticed for a long period of time. Second, a test
may fail while the production code is correct (false alarms).
While this type of test bugs is easily noticed, it can still take
a considerable amount of time and effort for developers to
figure out that the bug resides in their test code rather than
their production code. Figure 1 illustrates different scenarios
of fixing these test bugs.

Although the reliability of test code is as important as
production code, unlike production bugs [26], test bugs have
not received much attention from the research community
thus far. This work presents an extensive study on test bugs
that characterizes their prevalence, impact, and main cause
categories. To the best of our knowledge, this work is the first
to study general bugs in test code.

We mine the bug report repository and version control
systems of the Apache Software Foundation (ASF), containing
over 110 top-level and 448 sub open-source projects with
different sizes and programming languages. We manually
inspect and categorize randomly sampled test bugs to find
the common cause categories of test bugs.

Our work makes the following main contributions:

• We mine 5,556 unique fixed bug reports reporting test
bugs by searching through the bug repository and version
control systems of the Apache projects;

• We systematically categorize a total of 443 test bugs into
multiple bug categories;

• We compare test bugs with production bugs in terms of
the amount of attention received and fix time.

• We assess whether existing bug detection tools such as
FindBugs can detect test bugs.

Our results show that (1) around half of the Apache Software
Foundation projects have had bugs in their test code; (2) the
majority (97%) of test bugs result in false alarms, and their
dominant root causes are “Semantic Bugs" (25%), “Flaky
Tests" (21%), “Environmental Bugs" (18%), “Inappropriate
Handling of Resources" (14%), and “Obsolete Tests" (14%);
(3) a minority (3%) of test bugs reported and fixed pertain
to silent horror bugs with “Assertion Related Bugs" (67%)
being the dominant root cause; (4) developers contribute more
actively to fixing test bugs and test bugs require less time to
be fixed.

The results of our study indicate that test bugs do exist
in practice and their bug patterns, though similar to that of
production bugs, differ noticeably, which makes current bug
detection tools ineffective in detecting them. Although current
bug detection tools such as FindBugs and PMD do have a few
simple rules for detecting test bugs, we believe that this is
not sufficient and there is a need for extending these rules or
devising new bug detection tools specifically geared toward
test bugs.

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

101

Test
Passes

Fix Test
Bug

Fix
Production

Bug

Test
Fails

Bug in
Test

Code

Test
Passes

Test
Fails

Test
Passes

Bug in
Production

code

Fig. 1: Different scenarios for fixing test and production bugs.

II. METHODOLOGY

The goal of our work is to gain an understanding of the
prevalence and categories of bugs in test code. We conduct
quantitative and qualitative analyses to address the following
research questions:

RQ1: How prevalent are test bugs in practice?
RQ2: What are common categories of test bugs?
RQ3: Are test bugs treated differently by developers compared

to production bugs?
RQ4: Are current bug detection tools able to detect test bugs?

All our empirical data is available for download [3].

A. Data Collection

Figure 2 depicts an overview of our data collection, which
is conducted in two main different steps, namely, mining bug
repositories for test-related bug reports (A), and analyzing
commits in version control systems (B and C).

1) Mining Bug Repositories: One of the challenges in
collecting test bug reports is distinguishing between bug reports
for test code and production code. In fact, most search and
filtering tools in current bug repository systems do not support
this distinction. In order to identify bug reports reporting a
test bug, we selected the JIRA bug repository of the Apache
Software Foundation (ASF) since its search/filter tool allows
us to specify the type and component of reported issues. We
mine the ASF JIRA bug repository [2], which contains over
110 top-level and 448 sub open-source projects, with various
sizes and programming languages.

We search the bug repository by selecting the type as “Bug",
component as “test", and resolution as “Fixed".

Type. The ASF JIRA bug report types can be either “Bug",
“Improvement", “New Feature", “Test", or “Task". However, we
observed that most of the reported test-related bugs have “Bug"
as their type. The “Test" label is mainly used when someone
is contributing extra tests for increasing coverage and testing
new features.

Component. The ASF bug repository defines components for
adding structure to issues of a project, classifying them into
features, modules, and sub-projects [23]. We observed that
many projects in ASF JIRA use this field to distinguish different
modules of the project. Specifically, they use “test" for the
component field to refer to issues related to test code.

Resolution. We only consider bug reports with resolution
“Fixed" because if a reported bug is not fixed, it is difficult to
verify that it is a real bug and analyze its root causes.

Version Control
System

(1,236,162
commits)

Select Commits
Associated with

a Bug Report

Filter
resolution=“Fixed”

type=“Bugs”

Extract Modified
Locations

Bug Reports
Associated with
a Test Commit

(B)

Bug Reports
Associated with

a Production
Commit

(C)

Bug Repository
(447,021 bug

reports)

Filter
resolution=“Fixed”

type=“Bugs”
component=“test”

Bug Reports
Reporting a
Bug in Test
Component

(A)

Retrieve HEAD
Commit For Each

Project

Compile and Run
FindBugs on Test

Code and
Production Code

Parse XML
Output of
FindBugs

Identify Test
Bugs Based on

Warning’s
Location

Test Bugs
Detected By

FindBugs

(D)

Check Modified
Locations

Fig. 2: Overview of the data collection phase.

2) Analyzing Version Control Commits: Since our search
query used on the bug repository is restrictive, we might miss
some test bugs. Therefore, we augment our data by looking into
commits of the version control systems of the ASF projects,
Similar to [21]. We use the read-only Git mirrors of the ASF
codebases [1], which “contain full version histories (including
branches and tags) from the respective source trees in the
official Subversion repository at Apache"; thus using these
mirrors does not threaten the validity of our study. We observed
that most commits associated with a bug report mention the
bug report ID in the commit message. Therefore, we leverage
this information to distinguish between bug reports reporting
test bugs and production bugs. We extract test bugs through
the following steps:

Finding Commits with Bug IDs. We clone the Git repository
of each Apache project and use JGIT [6] to traverse the
commits. In the ASF bug repository, every bug report is iden-
tified using an ID composed of {PROJECTKEY}-#BUGNUM
where PROJECTKEY is a project name abbreviation. Using
this pattern, we search in the commit messages to find if a
commit is associated with a bug report in JIRA. Once we have
the ID, we can seamlessly retrieve the data regarding the bug
report from JIRA.

Identifying Test Commits. For each commit associated with
a bug report, we compute the diff between that commit and
its parents. This enables us to identify files that are changed by
the commit, which in turn allows us to identify test commits,
i.e., commits that only change files located in the test directory
of a project. We refer to commits that change at least one file
outside test directories1 as production commits. If a project
is using Apache Maven, we automatically extract information
about its test directory from the pom.xml file. Otherwise, we

1We ignored auxiliary files such as .gitignore and *.txt.

102

Bug Reports
Associated with a
Test Commit (B)

Bug Reports that
are in Test

Component (A)

Bug Reports
Associated with a

Production Commit
(C)

AB

C

Fig. 3: Bug reports collected from bug repositories and version
control systems. |(A ∪ B) − C| = 5, 556 test bug reports in
total (|B −A− C| = 3, 849, |A− C| = 1, 707).

consider any directory with “test" in its name as a test directory;
we also manually verify that these are test directories.

This phase resulted in two sets of bug reports, namely (1)
those associated with a test commit (block B in Figure 2),
and (2) those associated with a production commit (block C
in Figure 2). Since a bug report can be associated with both
test and production commits, in our analysis we only consider
bug reports that are associated with test commits but not with
any production commit (set B − C in the venn diagram of
Figure 3).

B. Test Bug Categorization

To find common categories of test bugs (RQ2), we manually
inspect the test bug reports. Manual inspection is a time
consuming task; on average, it took us around 12 minutes
per bug report to study the comments, patches, and source
code of any changed files. Therefore, we decided to sample the
mined test-related bug reports from our data collection phase.
Sampling. We computed the union of the bug reports obtained
from mining the bug reports (subsubsection II-A1) and the
version control systems (subsubsection II-A2). This union is
depicted as a grey set of (A ∪B)−C in the venn diagram of
Figure 3. We randomly sampled ≈ 9.0% of the unique bug
reports from this set.
Categorization. For the categorization phase, we leverage
information from each sampled bug report’s description,
discussions, proposed patches, fixing commit messages, and
changed source code files.

First, we categorize each test bug in one of the two main
impact classes, of false alarms, i.e., test fails while the
production code is correct, or silent horrors, i.e, test passes
while the production code is or could be incorrect. We adopt
the terms false alarms and silent horrors coined by Cunningham
[11].

Second, we infer common cause categories while inspecting
each bug report. When three or more test bugs exhibited a
common pattern, we added a new category. Subcategories also
emerged to further subdivide the main categories.

Finally, we also categorize test bugs with respect to the
location (in the test case) or unit testing phase in which they
occur as follows:

1) Setup. Setting up the test fixture, e.g., creating required
files, entries in databases, or mock objects.

2) Exercise. Exercising the software under test, e.g., by
instantiating appropriate object instances, calling their
methods, or passing method arguments.

3) Verify. Verifying the output or changes made to the states,
files, or databases of the software under test, typically
through test assertions.

4) Teardown. Tearing down the test, e.g., closing files,
database connections, or freeing allocated memories for
objects.

The categorization step was a very time consuming task and
was carried out through several iterations to refine categories
and subcategories; the manual effort for these iterations was
more than 400 hours, requiring more than 100 hours for each
iteration.

C. Test Bug Treatment Analysis
To answer RQ3, we measure the following metrics for each

bug report:
Priority: In JIRA, the priority of a bug report indicates its

importance in relation to other bug reports. For the Apache
projects we analyzed, this field had one of the following
values: Blocker, Critical, Major, Minor or Trivial. For
statistical comparisons, we assign a ranking number from
5 to 1 to each, respectively.

Resolution time: The amount of time taken to resolve a bug
report starting from its creation time.

Number of unique authors: Number of developers involved
in resolving the issue (based on their user IDs).

Number of comments: Number of comments posted for the
bug report. It captures the amount of discussions between
developers.

Number of watchers: Number of people who receive notifi-
cations; an indication of the number of people interested
in the fate of the bug report.

We collected these metrics for all the test bug reports and
all the production bug reports, separately. For the comparison
analysis, we only included projects that had at least one test bug
report. To obtain comparable pools of data points, the number
of production bug reports that we sampled, were the same as
the number of test bug reports mined from each project.

D. FindBugs Study
To answer RQ4, we use FindBugs [17], a popular static byte-

code analyzer in practice for detecting common patterns of
bugs in Java code. We investigate its effectiveness in detecting
bugs in test code.

1) Detecting Bugs in Tests: We run FindBugs (v3.0.0) [4] on
the test code as well as the production code of latest version
of Java ASF projects that use Apache Maven (see Figure
2 (D)). Compiling projects that do not use Maven requires
much manual effort, for instance in resolving dependencies on
third party libraries. Also we noticed that FindBugs crashes
while running on some of the projects. In total, we were able to
successfully run FindBugs on 129 of the 448 ASF sub-projects.

103

2) Analysis of Bug Patterns Found by FindBugs: We parse
the XML output of FindBugs and extract patterns from the
reported bugs. FindBugs statically analyzes byte code of
Java programs to detect simple patterns of bugs in the byte
code. This is done by applying static analysis techniques
such as control and data flow analyses. Among patterns of
bugs that FindBugs detects, we only considered reported
Correctness and Multithreaded Correctness as others, such
as internationalization, bad practice, security or performance,
are more related to non-functional bugs.

3) Effectiveness in Detecting Test Bugs: To evaluate Find-
Bugs’ effectiveness in detecting test bugs, we choose a similar
approach used by Couto et al. [10]. We sample 50 bug reports
from projects that we can compile the version containing the
bug, just before the fix. By comparing the versions before and
after a fix, we are able to identify the set of methods that are
changed as part of the fix. We run FindBugs on the version
before and after the fix to see if FindBugs is able to detect the
test bug and could have potentially prevented it. If FindBugs
reports any warning in any of the methods changed by the
fix and these warnings disappear after the fix, we assume that
FindBugs is able to detect the associated test bug.

The next four sections present the results of our study for
each research question, subsequently.

III. PREVALENCE OF TEST BUGS

Overall, our analysis reveals that 47% of the ASF sub-
projects (211 out of 448) have had bugs in their tests. Our
search query on the JIRA bug repository retrieved 2,040 bug
reports. After filtering non-test related reports, we obtained
1,707 test bug reports, shown as A− C in the venn diagram
of Figure 3. The search in version control systems resulted in
4,982 bug reports associated only with test commits, depicted
as the set B −C in Figure 3. In total, we found 5,556 unique
test bug reports ((A ∪ B) − C). Table I presents descriptive
statistics for the number of test bug reports and Table II shows
the top 10 ASF projects in terms of the number of test bug
reports we found in their bug repository2.

TABLE I: Descriptive statistics of test bug reports.

Min Mean Median σ Max Total
0 12.4 0 48.3 614 5,556

Finding 1: Around half of all the projects analyzed had bugs
in their test code that were reported and fixed. On average,
there were 12.4 fixed test bugs per project.

IV. CATEGORIES OF TEST BUGS

We manually examined the 499 sampled bug reports; 56 of
these turned out to be difficult to categorize due to a lack of
sufficient information in the bug report. We categorized the
remaining 443 bug reports. Table III shows the main categories
and their subcategories that emerged from our manual analysis.

2Source lines of code is for all programming languages used in project,
measured with CLOC: http://cloc.sourceforge.net

TABLE II: Top 10 ASF projects sorted by the number of
reported test bugs.

Project Production Test # Test
Code Code Bug

KLOC KLOC Reports
Derby 386 370 614
HBase 587 195 440
Hive 836 124 295
Hadoop HDFS 101 57 286
Hadoop Common 1249 380 279
Hadoop Map/Reduce 60 24 231
Accumulo 405 78 187
Qpid 553 93 152
Jackrabbit Content Repository 247 107 145
CloudStack 1361 228 111

Exercise	

33%	

Asser,on	

Fault	

40%	

Missing	

Asser,on	

60%	

Verify	

67%	

Fig. 4: Distribution of silent horror bug categories.

Our results show that a large number of reported test bugs
result in a test failure (97%), and a small fraction pertains to
silent test bugs that pass (3%).

A. Silent Horror Test Bugs

Silent test bugs that pass are much more difficult to detect
and report compared to buggy tests that fail. Hence, it is not
surprising that only about 3% of the sampled bug reports (15
out of 443) belong to this category.

Figure 4 depicts the distribution of silent horror bug
categories in terms of the location of the bug. In five instances,
the fault was located in the exercise step of the test case,
i.e., the fault caused the test not to execute the SUT for
the intended testing scenario, which made the test useless.
For instance, as reported in bug report JCR-3472, due to
a fault in the test code of the Apache Jackrabbit project,
queries in LargeResultSetTest run against a session
where the test content is not visible and thus the resulting set
is empty and the whole test is pointless. In another example,
due to the test dependency between two test cases, one of test
cases “is actually testing the GZip compression rather than
the DefaultCodec due to the setting hanging around from a
previous test” (FLUME-571). Such issues could explain why
these bugs remain unnoticed and are difficult to detect.

The other 10 instances were located in the verification step,
i.e., they all involved test assertions. From these, six pertained
to a missing assertion and four were related to faults in the
assertions, which checked a wrong condition or variable.

Interestingly, two of the silent test bugs resulted in a failure
when they were fixed, indicating a bug in the production code
that was silently ignored. For example, in ACCUMULO-1878,
1927, 1988 and 1892, since the test did not check the

104

http://cloc.sourceforge.net

TABLE III: Test bug categories for false alarms.

Category Subcategory Description

Semantic Bugs

S1. Assertion Fault Fault in the assertion expression or arguments of a test case.
S2. Wrong Control Flow Fault in a conditional statement of a test case.
S3. Incorrect Variable Usage of the wrong variable.
S4. Deviation from Test Requirement and Miss-
ing Cases

A missing step in the exercise phase, missing a possible scenario, or when test case deviates from
actual requirements.

S5. Exception Handling Wrong exception handling.
S6. Configuration Configuration file used for testing is incorrect or test does not consider these configurations.
S7. Test Statement Fault or Missing Statements A statement in a test case is faulty or missing.

Environment
E1. Differences in Operating System Tests in this category pass on one OS but fail on another one.
E2. Differences in third party libraries or JDK
versions and vendors

Failure is due to incompatibilities that exist between different versions of JDK or different
implementations of JDK by different vendors, or different versions of third party libraries.

Resource Handling I1. Test Dependency Running one test affects the outcome of other tests.
I2. Resource Leak A test does not release its acquired resources properly.

Flaky Tests F1. Asynchronous Wait Test failure is due to an asynchronous call and not waiting properly for the result of the call.
F2. Race Condition Test failure is due to non-deterministic interactions of different threads.
F3. Concurrency Bugs Concurrency issues such as deadlocks and atomicity violations.

Obsolete tests O1. Obsolete Statements Statements in a test case are not evolved when production code has evolved.
O2. Obsolete Assertions Assertion statements are not evolved as production code evolves.

1 -for (int j = 0; i < cr.getFiles().size(); j++) {
2 +for (int j = 0; j < cr.getFiles().size(); j++) {
3 assertTrue(cr.getFiles().get(j)
4 .getReader().getMaxTimestamp() < (System.←↩

currentTimeMillis() - this.store.getScanInfo()←↩
.getTtl()));

Fig. 5: An example of a silent horror test bug due to a fault
in for loop.

return value of the executed M/R jobs, these jobs were failing
silently (ACCUMULO-1927), when this was fixed, the test
failed. Figure 5 shows the fixing commit for HBASE-7901,
a bug in the for loop condition that caused the test not to
execute the assertion.

Although JUnit 4 permits to assert a particular
exception through the expected annotation and
ExpectedException rule, many testers are used
to or prefer [13] using the traditional combination of
try/catch and fail() assertion type to achieve this goal.
However, this pattern tends to be error-prone. In our sampled
list, four out of 15 silent bugs involved incorrect usage of the
try/catch and in combination with the fail() primitive.
For example, Figure 6 shows the fixing commit for the bug
report JCR-500; the test needs to assert that unregistering a
namespace that is not registered should throw an exception.
However, a fail() assertion is missing from the code
making the whole test case ineffective. Another pattern of this
type of bug is when the SUT in the try block can throw
multiple exceptions and the tester does not assert on the type
of the thrown exception. It is worth mentioning that two of
these 15 bugs could have potentially been detected statically;
in one case (ACCUMULO-828), the whole test case did not
have any assertions, and in another (SLIDER-41) a number
of test cases were not executed because they did not comply
with the test class name conventions of Maven, i.e., their name
did not start with “Test".
Finding 2: Silent horror test bugs form a small portion
(3%) of reported test bugs. Assertion-related faults are the
dominant root cause of silent horror bugs.

1 try {
2 nsp.unregisterNamespace("NotCurrentlyRegistered←↩

");
3 + fail("Trying to unregister an unused prefix ←↩

must fail");
4 } catch (NamespaceException e) {
5 // expected behaviour
6 }

Fig. 6: An example of a silent horror test bug due to a missing
assertion.

B. False Alarm Test Bugs

We categorized the 428 bug reports that were false alarms
based on their root cause. We identified five major causes
for false alarms. Figure 7 shows the distribution for each
main category and also testing phase in which false alarm bug
occurred.
Finding 3: Semantic bugs (25%) and Flaky tests (21%)
are the dominant root causes of false alarms, followed by
Environment (18%) and Resource handling (14%) related
causes. The majority of false alarm bugs occur in the exercise
phase of testing.

1) Semantic Bugs: This category consists of 25% of the
sampled test bugs. Semantic bugs reflect inconsistencies
between specifications and production code, and test code.
Based on our observations of common patterns of these bugs,
we categorized them into seven subcategories as shown in Table
III. Figure 8a presents percentages of each subcategory, and
Figure 9a shows the fault location distribution in the testing
phase.

The majority of test bugs in this category (33%) belongs
to tests that miss a case or deviate from test requirements
(S4). Examples include tests that miss setting some re-
quired properties of the SUT (e.g., CLOUDSTACK-2542 and
MYFACES-1625), or tests that miss a required step to exercise
the SUT correctly (e.g., HDFS-824). Test statement faults or
missing statements account for 19% of bugs in this category. For
example in CLOUDSTACK-3796, a statement fault resulted
in ignoring to set the attributes needed for setting up the test

105

Environment
18%

Flaky Test
21%

Resources
14%

Semantic
Bugs
25%

Obsolete
Tests
14%

Other
8%

(a) Distribution based on bug categories.

setup	

28%	

exercise	

34%	

verify	

24%	

teardown	

14%	

(b) Distribution based on testing phases.

Fig. 7: Distribution of false alarms.

correctly, thus resulting in a failure. The use of an incorrect
variable, which may result in asserting the wrong variable (e.g.,
DERBY-6716) or a wrong test behaviour was observed in 9%
of the semantic bugs. 7% of semantic bugs in our sampled
bugs were due to improper exception handling in test code,
which resulted in false test failures (e.g., JCR-505). Some
tests require reading properties from an external configuration
file to run with different parameters without changing the test
code itself; however, some tests did not use these configurations
properly or in some other cases these configurations were buggy
themselves. 7% of the false alarm bugs had this issue. We
categorized a bug in the wrong control flow category if the
test failed due to a fault in a conditional statement (e.g., if,
for or while conditional). 5% of semantic bugs belong to
this category. Another 5% of semantic bugs were due to faulty
assertions (e.g., JCR-503).

Finding 4: Deviations from test requirements or missing
cases in exercising the SUT (33%) and faulty or missing test
statements (19%) are the most prevalent semantic bugs in
test code.

2) Environment: Around 18% of bug reports pertained to
a failing test due to environmental issues, such as differences
in path separators in Windows and Unix systems. In this case,
tests pass under the environment they are written in, but fail
when executed in a different environment. Since open source
software developers typically work in diverse development
environments, this category accounts for a large portion of the
test bug reports filed.

Figure 8b and Figure 9b show the distribution of envi-
ronmental bugs and their fault locations. About 61% of the
bug reports in this category were due to operating system
differences (E1), and particularly differences between the
Windows and Unix operating systems. Testers make platform-
specific assumptions that may not hold true in other platforms

— e.g., assumptions about file path and classpath conventions,
order of files in a directory listing, and environment variables
(MAPREDUCE-4983). Some of the common causes we ob-
served that result in failing tests in this category include: (1)
Differences in path conventions — e.g., Windows paths are
not necessarily valid URIs while Unix paths are, or Windows
uses quotation for dealing with spaces in file names but in
Unix spaces should be escaped (HADOOP-8409). (2) File
system differences — e.g., in Unix one can rename, delete,
or move an opened file while its file descriptor remains
pointing to a proper data; however, in Windows opened files
are locked by default and cannot be deleted or renamed
(FLUME-349). (3) File permission differences — e.g., default
file permission is different on different platforms. (4) Platform-
specific use of environmental variables — e.g., Windows uses
the %ENVVAR% and Unix uses the $ENVVAR notations to
retrieve environmental variable values (MAPREDUCE-4869).
Also classpath entries are separated by ‘;’ in Windows
and by ‘:’ in Unix.

Differences in JDK versions and vendors (E2) were respon-
sible for 26% of environment related test bugs. For example,
with IBM JDK developers should use SSLContext.getIn
stance(‘‘SSL_TLS") instead of “SSL" in Oracle JDK,
to ensure the same behaviour (FLUME-2441). There is also
compatibility issues between different versions of JDKs, e.g.,
testers depended on the order of iterating a HashMap, which
was changed in IBM JDK 7 (FLUME-1793).

Finding 5: 61% of environmental false alarms are platform-
specific failures, caused by operating system differences.

3) Inappropriate Handling of Resources: Ideally, test cases
should be independent of each other, however, in practice this
is not always true, as reported in a recent empirical study
[33]. Around 14% of bug reports (61 out of 428) point to
inappropriate handling of resources, which may not cause
failures on their own, but cause other dependent tests to fail
when those resources are used. Figure 8c shows the percentage
for sub-categories of resource handling bugs and Figure 9c
shows the distribution of testing phases in which the fault
occurs. About 61% of these bugs were due to test dependencies.

A good practice in unit testing is to mitigate any side-effects
a test execution might have; this includes releasing locally
used resources and rolling back possible changes to external
resources such as databases. Most of unit testing frameworks
provide opportunities to clean up after a test run, such as
the tearDown method in JUnit 3 or methods annotated with
@After in JUnit 4. However, testers might forget or fail to
perform this clean up step properly. One common mistake
is when a test that changes some persistent data (or acquires
some resources), conducts the clean up in the test method’s
body. In this case, if the test fails due to assertion failures,
exceptions or time outs, the clean up operation will not take
place causing other tests or even future runs of this test case to
fail. Figure 10 illustrates this bug pattern and its fix. Another
common problem we observed is that testers forgot to call
the super.tearDown() or super.setUp() methods

106

Devia&on	

From	

Requirement	

and	
 missing	

cases	

33%	

S3	

9%	

S1	

5%	

Missing	

Normal	

Statement	

and	
 Fault	

19%	

S5	

7%	

S2	

5%	

S6	

7%	

Other	

15%	

(a) Semantic bug.

JDK	
 &	

Third	

Party	

Library	

26%	

OS	

61%	

other	

13%	

(b) Environmental bugs.

Resource	

Leak	

31%	

Test	

Dependency	

61%	

Other	

8%	

(c) Resource related.

Async	

Wait	

46%	

Concurrency	

37%	

Race	

Condi7on	

12%	

Other	

5%	

(d) Flaky tests.

Obsolete
Assertion

23%

Obsolete
Normal

Statement
77%

(e) Obsolete tests.

Fig. 8: Percentage of subcategories of test bugs.

Setup
26%

Exercise
35%

Verify
35%

Teardown
4%

(a) Semantic bug.

Setup
35%

Exercise
25%

Verify
31%

Teardown
9%

(b) Environmental bugs.

Setup
27%

Exercise
8%

Verify
7%

Teardown
58%

(c) Resource related.

Setup	

25%	

Exercise	

51%	

Verify	

22%	

Teardown	

2%	

(d) Flaky tests.

Setup	

20%	

Exercise	

47%	

Verify	

27%	

Teardown	

6%	

(e) Obsolete tests.

Fig. 9: Test bugs distribution based on testing phase in which bugs occurred.

1 @Test
2 public void test(){
3 acquireResources();
4 assertEquals(a,b);
5 releaseResources();
6 }

(a) Buggy test.
1 @Before
2 public void setUp(){
3 acquireResources();
4 }
5 @Test
6 public void test() {
7 assertEquals(a,b);
8 }
9 @After

10 public void tearDown(){
11 releaseResources();
12 }

(b) Fixed test.

Fig. 10: Resource handling bug pattern in test code.

and this prevents their superclass to free acquired resources
(DERBY-5726). Bug detection tools such as FindBugs can
detect these types of test bugs.

Finding 6: 61% of inappropriate resource handling bugs are
caused by dependent tests. More than half of all resource
handling bugs occur in the teardown phase of test cases.

4) Flaky Tests: These test bugs are caused by non-
deterministic behaviour of test cases, which intermittently pass
or fail. These tests, also known as ‘flaky tests’ by practitioners,
are time consuming for developers to resolve, because they
are hard to reproduce [12]. A recent empirical study on flaky
tests [21] revealed that the main root causes for flaky tests are

Async Wait, which happens when a test does not wait properly
for a asynchronous call, and Race Condition, which is due
to interactions of different threads, such as order violations.
Our results are also inline with their findings; we found that
not waiting properly for asynchronous calls (46%) is the main
root cause of flaky tests, followed by race conditions between
different threads (Figure 8d). As shown by Figure 9d, most of
flaky tests (51%) are due to bugs in exercise phase of tests.

Finding 7: The majority of flaky test bugs occur when the
test does not wait properly for asynchronous calls during
the exercise phase of testing.

5) Obsolete Tests: Ideally, test and production code should
evolve together, however, in practice this is not always the
case [32]. An obsolete test [15] is a test case that is no longer
valid due to the evolution of the specifications and production
code of the program under test. Obsolete tests check features
that have been modified, substituted, or removed. When an
obsolete test fails, developers spend time examining recent
changes made to production code as well as the test code itself
to figure out that the failure is not a bug in production code.

As shown in Figure 9e, developers mostly need to update the
exercise phase of obsolete tests. This is expected as adding new
features to production code may change the steps required to
execute the SUT, however, may not change the expected correct
behaviour of the SUT, i.e., assertions. In fact, as depicted in
Figure 8e, only 23% of obsolete tests required a change to
assertions.

Finding 8: The majority of obsolete tests require modifi-
cations in the exercise phase of test cases, and mainly in
normal statements (77%) rather than assertions.

107

TABLE IV: Test code warnings detected by FindBugs.

Bug Description Bug Percentage
Category

Inconsistent synchronization Flaky 29.8%
Possible null pointer dereference in method on excep-
tion path

Semantic 17.6%

Using pointer equality to compare different types Semantic 8.8%
Possible null pointer dereference Semantic 7.3%
Class defines field that masks a superclass field Semantic 3.9%
Nullcheck of value previously dereferenced Semantic 2.9%
An increment to a volatile field isn’t atomic Flaky 2.9%
Method call passes null for nonnull parameter Semantic 2.4%
Incorrect lazy initialization and update of static field Flaky 2.4%
Null value is guaranteed to be dereferenced Semantic 2.0%

TABLE V: Comparison of test and production bug reports.
Metric Type Med Mean SD Max d OR p-value

Priority PR 3.00 2.91 0.76 5.00 -0.13 0.78 4.9e-14TE 3.00 2.80 0.75 5.00
Resolution
Time(days)

PR 6.39 109.70 282.04 2843.56 -0.20 0.69

<2.2e-16

TE 2.77 58.97 213.72 2666.60

#Comments PR 3.00 4.91 6.74 101.00 0.15 1.31TE 4.00 5.88 6.26 99.00

#Authors PR 2.00 2.41 1.53 18.00 0.31 1.77TE 2.00 2.89 1.53 12.00

#Watchers PR 0.00 1.32 2.04 24.00 0.25 1.58TE 1.00 1.84 2.06 16.00

V. TEST BUGS VS PRODUCTION BUGS

Table V shows the median, mean, standard deviation, and
maximum of each metric defined in subsection II-C, for test
bugs (TE) and production bugs (PR). We used the nonparamet-
ric Mann-Whitney U tests to compare the distribution of test
bugs with that of production bugs and compute the p-values.
The p-value is close to zero because of a large sample size
effect; we computed effect size — standardized mean difference
(d) and odds ratio (OR) — to compare the meaningfulness
of differences. The results indicate that test bugs take less
time to be fixed compared to production bugs. Although the
priority assigned to test bugs and production bugs have a
similar distribution, developers seem to contribute more to
fixing test bugs as both median and mean for the number of
unique authors, watchers and comments for test bugs are higher
than production bugs.
Finding 9: On average, developers contribute more actively
to fixing test bugs compared to production bugs and test
bugs are resolved faster than production bugs.

VI. FINDBUGS STUDY

A. Detected Bugs

FindBugs reported 205 Correctness and Multithreaded
Correctness warnings in the test code of 20 out of 129 ASF
projects that we were able to compile and run the tool on.
Table VI summarizes descriptive statistics for the number of
reported warnings. For additional fine-grained data per project
we refer the reader to our online report [3], which we removed
from this paper due to space limitations.

TABLE VI: Descriptive statistics of bugs reported by FindBugs.

Min Mean Median σ Max Total
0 1.6 0 5.5 48 205

Environment	

1%	

Flaky	

43%	

Seman5c	

56%	

Fig. 11: Distribution of warnings reported by FindBugs.

B. Categories of Test Bugs Detected by FindBugs

Table IV shows the top 10 most frequent potential test
bugs detected by FindBugs and their percentage. Figure 11
shows distribution of different categories of these warnings.
We consider Multithreaded Correctness warnings reported by
FindBugs as flaky test bugs and the Correctness warnings as
semantic bugs, i.e., inconsistencies between actual and intended
behaviour of the test. FindBugs has also one rule to detect bugs
that cause different behaviours in Linux and Windows due to
path separator differences, i.e., environment related bugs.

FindBugs has six test related rules that are part of the
included correctness rules. However, FindBugs did not report
any warnings related to these categories. As depicted in
Figure 11, semantic related warnings and flaky ones are the
major warnings reported by FindBugs.

C. FindBugs’ Effectiveness in Detecting Test Bugs

Earlier studies [10], [24] report that static code analysis
tools are able to detect 5-15 % of general bugs in software
projects. We wanted to know how they perform on test bugs.
We sampled 50 bug reports out of 623 bug reports that changed
Java source files and we were able to compile their project
when we checked out the version just before the fix. Among
these 50 sampled bug reports, in 3 (6%) instances at least one
Findbugs’ warning disappeared after the fix. We analyzed these
3 instances manually and found out one of them was actually
a false positive and the other two warnings were not directly
related to the bug report. This means, FindBugs was not able
to detect any of the 50 test bugs.

Finding 10: FindBugs could not detect any of the test bugs
in our sampled 50 bug reports.

VII. DISCUSSION

Our study has implications for both testers and developers
of bug detection tools. The results of this study imply that
test code is susceptible to bugs just like production code
(Finding 1). Test code is supposed to guard production code
against potential (future) bugs and thus should be bug free
itself. However, current bug detection tools are mainly geared
towards production code. For instance, FindBugs has only six
bug detection patterns dedicated for testing code among its
424 bug patterns [5]. Similarly, PMD, another popular static
bug detection tool for Java, has only 12 bug pattern rules for
bugs in JUnit [7]. Moreover patterns of environmental bugs,
flaky tests, and resource handling bugs in test code differ from
production code, making current bug detection tools unable

108

to detect them in test code. For example the latest version of
FindBugs detects run-time error handling mistakes based on
the method proposed by [31]. We identified a similar pattern
of this bug in test code (Figure 10). However, because of a
slight change of pattern in the test code, FindBugs was not
able to detect this.

In our study, FindBugs detected an average of 1.6 bugs
in the test code of 129 open source projects, most of which
fall into semantic and flaky test categories, the most prevalent
categories of bug reports (Findings 2 and 4). However, many
of the reported bugs cannot be simply detected using current
static bug detection tools. This is particularly true for the silent
horror bugs, which are mostly due to assertion related faults
(Finding 3). Finding automated ways of detecting silent horror
test bugs could be of great value to developers, since such
bugs are extremely difficult to detect.

Our results show that a large portion of bugs in test code
belongs to semantic bugs, i.e., test code does not properly test
production code (Finding 4). Any method that can enhance
developers’ understanding of the requirements, the software
under test, and its valid usage scenarios, can help to reduce
the number of semantic bugs in test code.

Compared to production bugs, we find that test bugs receive
more attention from developers and are fixed sooner. This
might be because the majority of the test bugs result in a test
failure, which is difficult to ignore for developers. Another
explanation could be that bugs in test code might be easier to
fix than bugs in production code.
Threats to Validity. An internal validity threat is that the
categorization of bug reports was made by two of the co-
authors, which may introduce author-bias. To mitigate this, we
conducted a review process in which each person reviewed
the categorization done by the other person. Regarding the
test bugs detected by FindBugs, we did not manually inspect
each to see if is indeed a real bug. However, since we chose
only the Correctness categories of FindBugs, we believe the
reported bugs are issues in the test code that need to be fixed.

In terms of external threats, our results are based on bug
reports from a number of experimental objects, which calls
into question the representativeness. However, we believe that
the chosen 448 ASF projects are representative of real-world
applications as they vary in domains such as desktop appli-
cations, databases and distributed systems, and programming
languages such as Java, C++ and Python. In addition, we focus
exclusively on bug reports that were fixed. This decision was
made since the root cause would be difficult to determine from
open reports, which have no corresponding fix. Further, a fix
indicates that there was indeed a bug in the test code.

VIII. RELATED WORK

Test smells were first studied by van Deursen et al. [27]
and later other works defined types of test smells, such as
test fixture [14], eager test, and mystery guest, and proposed
methods to detect these test smells [17], [9], [28], [29]. Test
smells are, however, not bugs. In this study, we focus on bugs
that change the intended behaviour of the test.

Zhang et al. [33] found that the test independence assumption
does not always hold in practice. They observed that the
majority of dependent tests result in false alarm and some
of these dependencies result in missed alarms. In this case a
test which should reveal a fault passes accidentally because
of the environment generated by another dependent test case.
Test dependency (I1) is one of the 16 cause subcategories for
test bugs emerged in our empirical study.

Lu et al. [20] studied real world concurrency bugs, and found
that most of concurrency bugs belong to order or atomicity
violations. Luo et al. [21] categorized and investigated the root
cause of failures in test cases manifested by non-determinism,
known as flaky tests. Flaky tests are one of the main cause
categories emerged in our categorization study. Our results are
inline with the findings of Lou et al in terms of the root causes
of such test bugs.

Li et al. [19] mined the software bug repositories to
categorize types of bugs found in production code. Their work
is similar to ours in case of categorization but we looked and
categorized types of bugs in test code instead of production
code. Athanasiou et al. [8] proposed a model to assess test
quality based on source code metrics. They showed that there
is a high correlation between the test quality as assessed by
their model and issue handling performance.

Herzig and Nagappan [16] proposed an approach to identify
false alarms. They use association rule learning to automatically
identify these false alarms based on patterns learned from
failing test steps in test cases that lead to a false alarm. The
authors aim at identifying test alarms to prevent development
process disruption, since a test failure halts the integration
process on the code branch that test failure occurred. Our
work, however, aims at providing insights into patterns of
faults in test code to help detect them by static analysis tools.

Zaidman et al. [32] investigated how production code and
test code co-evolve. They introduced three test co-evolution
views, namely change history view, growth history view, and
test quality evolution view. It would be interesting to see how
test bugs would fit into these views, for instance, are test bugs
introduced when they are first added or when they are modified
later as test code co-evolves with production code?

IX. CONCLUSIONS AND FUTURE WORK

This work presents the first extensive quantitative and
qualitative study of test bugs. Test bugs may cause a test
to fail while production code is correct (false alarms), or may
cause a test to pass, while the production code is incorrect
(silent horrors). Both are costly for developers. Our results show
that test bugs are in fact prevalent in practice, the majority
are false alarms, and semantic bugs and flaky tests are the
dominant root causes of false alarms, followed by environment
and resource handling related causes. Our evaluation reveals
that FindBugs, a popular bug detection tool, is not effective
in detecting test bugs. For future work, we plan to analyze
correlations between test bugs and various software metrics,
and use the results of this study to design a bug detection tool
with test bug patterns capable of detecting bugs in test code.

109

REFERENCES

[1] Apache projects’ Git repositories. http://git.apache.org.
[2] Apache projects supported by Jira. https://issues.apache.org/jira/secure/

BrowseProjects.jspa.
[3] An empirical study of bugs in test code. Dataset, additional tables and

figures. http://salt.ece.ubc.ca/software/testbugs-study/.
[4] FindBugs - find bugs in Java programs. http://findbugs.sourceforge.net.
[5] Findbugs’ rules. http://findbugs.sourceforge.net/bugDescriptions.html.
[6] JGIT library. https://eclipse.org/jgit/.
[7] PMD rules. http://pmd.sourceforge.net/pmd-5.2.3/pmd-java/rules/java/

junit.html.
[8] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman. Test code quality

and its relation to issue handling performance. Transactions on Software
Engineering, (11):1100–1125, 2014.

[9] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley. An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance. In Proceedings of the International Conference
on Software Maintenance (ICSM), pages 56–65, 2012.

[10] C. Couto, J. a. E. Montandon, C. Silva, and M. T. Valente. Static
correspondence and correlation between field defects and warnings
reported by a bug finding tool. Software Quality Control, pages 241–257,
2013.

[11] W. Cunningham. Bugs in the tests. http://c2.com/cgi/wiki?
BugsInTheTests.

[12] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me!
Characterizing non-reproducible bug reports. In Proceedings of the
Working Conference on Mining Software Repositories (MSR), pages
62–71. ACM, 2014.

[13] J. Goulding. Be careful when using JUnit’s expected
exceptions. http://jakegoulding.com/blog/2012/09/26/
be-careful-when-using-junit-expected-exceptions/.

[14] M. Greiler, A. van Deursen, and M.-A. Storey. Automated detection of
test fixture strategies and smells. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
322–331, 2013.

[15] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang. Is this a bug or an
obsolete test? In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 602–628. Springer-Verlag, 2013.

[16] K. Herzig and N. Nagappan. Empirically detecting false test alarms
using association rules. In Proceedings of the International Conference
on Software Engineering (ICSE). IEEE, 2015.

[17] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Notices,
39(12):92–106, 2004.

[18] C. Jones. Programming Productivity. McGraw-Hill., New York, NY,
1986.

[19] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now?: An empirical study of bug characteristics in modern
open source software. In Proceedings of the Workshop on Architectural

and System Support for Improving Software Dependability, pages 25–33.
ACM, 2006.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
329–339. ACM, 2008.

[21] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE), pages 643–653. ACM, 2014.

[22] S. McConnell. Code Complete. Microsoft Press., Redmond, WA, 1993.
[23] D. Meyer. Organize your JIRA issues with subcomponents. http://blogs.

atlassian.com/2013/11/organize-jira-issues-subcomponents/, 2013.
[24] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and

P. Balachandran. Making defect-finding tools work for you. In
Proceedings of the International Conference on Software Engineering
(ICSE), pages 99–108. ACM, 2010.

[25] M. Sullivan and R. Chillarege. A comparison of software defects in
database management systems and operating systems. In International
Symposium on Fault-Tolerant Computing, pages 475–484, 1992.

[26] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics
in open source software. Empirical Software Engineering, 19(6):1665–
1705, 2014.

[27] A. van Deursen, L. Moonen, A. v. d. Bergh, and G. Kok. Refactoring test
code. In Extreme Programming Perspectives, pages 141–152. Addison-
Wesley, 2002.

[28] B. van Rompaey, B. D. Bois, S. Demeyer, and M. Rieger. On the
detection of test smells: A metrics-based approach for general fixture and
eager test. IEEE Transactions on Software Engineering, 33(12):800–817,
2007.

[29] B. van Rompaey, B. Du Bois, and S. Demeyer. Characterizing the
relative significance of a test smell. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 391–400, 2006.

[30] R. J. Weiland. The Programmer’s Craft: Program Construction Computer
Architecture, and Data Management. Reston Publishing., Reston, VA,
1983.

[31] W. Weimer and G. C. Necula. Finding and preventing run-time error
handling mistakes. In Proceedings of the Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages
419–431. ACM, 2004.

[32] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van Deursen. Mining
software repositories to study co-evolution of production and test code.
In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 220–229, 2008.

[33] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin. Empirically revisiting the test independence assumption. In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), pages 385–396. ACM, 2014.

110

http://git.apache.org
https://issues.apache.org/jira/secure/BrowseProjects.jspa
https://issues.apache.org/jira/secure/BrowseProjects.jspa
http://salt.ece.ubc.ca/software/testbugs-study/
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net/bugDescriptions.html
https://eclipse.org/jgit/
http://pmd.sourceforge.net/pmd-5.2.3/pmd-java/rules/java/junit.html
http://pmd.sourceforge.net/pmd-5.2.3/pmd-java/rules/java/junit.html
http://c2.com/cgi/wiki?BugsInTheTests
http://c2.com/cgi/wiki?BugsInTheTests
http://jakegoulding.com/blog/2012/09/26/be-careful-when-using-junit-expected-exceptions/
http://jakegoulding.com/blog/2012/09/26/be-careful-when-using-junit-expected-exceptions/
http://blogs.atlassian.com/2013/11/organize-jira-issues-subcomponents/
http://blogs.atlassian.com/2013/11/organize-jira-issues-subcomponents/

	Introduction
	Methodology
	Data Collection
	Mining Bug Repositories
	Analyzing Version Control Commits

	Test Bug Categorization
	Test Bug Treatment Analysis
	FindBugs Study
	Detecting Bugs in Tests
	Analysis of Bug Patterns Found by FindBugs
	Effectiveness in Detecting Test Bugs

	Prevalence of Test Bugs
	Categories of Test Bugs
	Silent Horror Test Bugs
	False Alarm Test Bugs
	Semantic Bugs
	Environment
	Inappropriate Handling of Resources
	Flaky Tests
	Obsolete Tests

	Test Bugs vs Production Bugs
	FindBugs Study
	Detected Bugs
	Categories of Test Bugs Detected by FindBugs
	FindBugs' Effectiveness in Detecting Test Bugs

	Discussion
	Related Work
	Conclusions and Future Work
	References

